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Abstract

Single-task models have proven pivotal in solv-
ing specific tasks; however, they have limita-
tions in real-world applications where multi-
tasking is necessary and domain shifts are ex-
hibited. Recently, instructional prompts have
shown significant improvement towards multi-
task generalization; however, the effect of in-
structional prompts and Multi-Task Learning
(MTL) has not been systematically studied in
the biomedical domain. Motivated by this,
this paper explores the impact of instructional
prompts for biomedical MTL. We introduce
the BoX, a collection of 32 instruction tasks
for Biomedical NLP across (X) various cate-
gories. Using this meta-dataset, we propose a
unified model termed as In-BoXBART, that can
jointly learn all tasks of the BoX without any
task-specific modules. To the best of our knowl-
edge, this is the first attempt to propose a uni-
fied model in the biomedical domain and use
instructions to achieve generalization across
several biomedical tasks. Experimental results
indicate that the proposed model: 1) outper-
forms single-task baseline by ∼3% and multi-
task (without instruction) baseline by ∼18% on
an average, and 2) shows ∼23% improvement
compared to single-task baseline in few-shot
learning (i.e., 32 instances per task) on an aver-
age. Our analysis indicates that there is signifi-
cant room for improvement across tasks in the
BoX, implying the scope for future research
direction.1

1 Introduction

For long, task-specific models have played a cen-
tral role in achieving state-of-the-art performance
in both general and biomedical NLP (Wang et al.,
2021a; Banerjee et al., 2021). During 2017-2019,
pre-train and fine-tune paradigm (Liu et al., 2021)
became the prevalent approach in NLP. Due to suc-
cess of Language Models (LMs) in the biomedical
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pandemic is a global health crisis in the 21st Century. Question: What is the

promising approach for treating COVID-19?

NER 
Biomedical Instruction: From the given

input recognize all the disease and
chemical named entities. ...

QA
Biomedical Instruction: In this task, you
are given a context and a question, your
task is to find the answer for the given

question based on the given context. ...

Systematic Review 
Biomedical Instruction: You are given an

abstract and title of the paper as the
context. Your task is to classify a given

article into Include or Exclude, based on
the given criteria. ...

Input

Input

Input

COVID-19
<disease>

Stem Cell
Therapy

Include

Figure 1: Schematic representation of multi-tasking
in biomedical domain using instructional prompts. In
this approach, a model is allowed to utilize tasks to get
familiar with instructions and use them to map a given
input to its corresponding output.

domain such as BioBERT (Lee et al., 2020), Clini-
calXLNET (Huang et al., 2020), and others (Alrow-
ili and Shanker, 2021; Kraljevic et al., 2021; Phan
et al., 2021), this paradigm is widely used for creat-
ing many task-specific models (Wang et al., 2021a;
Banerjee et al., 2021). However, task-specific mod-
els have limitations to real-world applications be-
cause this approach is computationally expensive
(i.e., require large computational resources) and
time-consuming (Strubell et al., 2019; Schwartz
et al., 2020). Hence, there is a need for gener-
alization where a single model can perform var-
ious tasks leading to a computationally efficient
approach. Past attempts have been made in general-
domain NLP to achieve generalization across tasks
such as MQAN (McCann et al., 2018), UNICORN
(Lourie et al., 2021), and UnifiedQA (Khashabi
et al., 2020). However, approaches to achieve gen-
eralization across various biomedical NLP tasks
have not been systematically studied. Hence, this
paper studies the multi-tasking approach that can
generalize over different biomedical NLP tasks.
Figure 1 shows the overview of our proposed multi-
tasking approach for various biomedical NLP tasks.

https://github.com/Mihir3009/In-BoXBART


Recently, prompt-based models have been
widely used because of their ability to achieve
generalization instead of task-specific models (Liu
et al., 2021). Mishra et al. (2021b); Wei et al.
(2021) and Sanh et al. (2021) show the effective-
ness of instructional prompts in generalizing on
seen as well as unseen general-domain NLP tasks.
In this paper, we adapt this instructional prompt-
based approach for the first time to achieve gener-
alization across various biomedical NLP tasks. To
this extent, this paper introduces a collection of 32
instruction tasks for Biomedical NLP across (X)
various categories (BoX) and proposes a unified
model that can generalize over 32 different biomed-
ical NLP tasks. The proposed unified model (i.e.,
In-BoXBART) is trained on the instruction-based
meta-dataset (i.e., BoX) and evaluated on each task
individually from the BoX.

To evaluate the proposed approach, we compare
our model (i.e., In-BoXBART) with two baselines:
(1) single-task models (i.e., models trained on one
task and evaluated on the same task), and (2) multi-
task model (i.e., a single model trained on a com-
bination of all tasks) without instructions. Experi-
mental results show that In-BoXBART outperforms
single-task baseline by ∼3%, and multi-task base-
line by ∼18%. We also analyze few-shot learning
scenario using In-BoXBART since obtaining an-
notated data in the biomedical domain is costly
and time-consuming (Luo et al., 2022b). In the
few-shot setting (i.e., 32 instances per task), In-
BoXBART outperforms the single-task baseline by
23.33%. This indicates that Multi-Task Learning
(MTL) and instruction-tuning have an advantage
in the low resources settings. Although the per-
formance of the In-BoxBART is promising, our
analysis reveals that there is still room for improve-
ment on some tasks, implying the scope for future
research direction. Concisely, our contributions
can be summarized in three folds:

1. This paper introduces the first benchmark meta-
dataset in biomedical domain, i.e., BoX: a col-
lection of 32 instruction tasks for Biomedical
NLP across (X) various categories. Each task is
processed in a unified format and equipped with
instructions that can be used to train sequence-
to-sequence models.

2. Using this meta-dataset, we propose an
instruction-tuned Bidirectional and Auto-
Regressive Transformer (BART) model,
termed as In-BoXBART. The comparison of

In-BoxBART and two baselines shows that
In-BoXBART outperforms single-task baseline
by ∼ 3% and multi-task (without instruction)
baseline by ∼ 18%.

3. In the few-shot setting, we show that In-
BoxBART significantly outperforms the single-
task baseline by ∼ 23%. This indicates the
potential application of instruction-tuning in the
biomedical domain where annotated data is dif-
ficult to obtain.

2 Related Work

Multi-task Learning Owing to the problems as-
sociated with single-task learning in terms of their
space and time requirements, several multi-task
learning approaches have been proposed over the
years. DecaNLP (McCann et al., 2018) built a
multi-tasking model by converting format of each
tasks to question answering format. Several other
works have followed similar approach, for exam-
ple, by converting tasks to reading comprehension
(Mishra et al., 2022) and textual entailment for-
mat (Wang et al., 2021b). The multitasking model
T5 (Raffel et al., 2020) was built with the help of
a unified framework that converts all text-based
language problems into a text-to-text format. SCI-
FIVE (Phan et al., 2021) involved building a text-
to-text model for the biomedical literature. Agha-
janyan et al. (2021) introduced pre-finetuning, an
additional large-scale learning stage between lan-
guage model pre-training and fine-tuning to im-
prove multitask learning performance. Models
empowered by multi-task learning have achieved
SOTA in many different tasks, e.g., Question An-
swering (QA) (Khashabi et al., 2020), common-
sense reasoning (Lourie et al., 2021) and structured
knowledge grounding tasks (Xie et al., 2022).

Instruction Learning The turking test (Efrat and
Levy, 2020) was proposed to measure the effi-
cacy of models to follow instructions. Studies
have been made to investigate the effect of nat-
ural language instructions on model performance
(Hase and Bansal, 2021; Ye and Ren, 2021b; Zhong
et al., 2021; Weller et al., 2020). Moreover, Mishra
et al. (2021b) proposed Natural Instructions which
break down each task to multiple sub-tasks that
help models in following instructions and subse-
quently generalize to unseen tasks (i.e., cross-task
generalization). FLAN (Wei et al., 2021) and
T0 (Sanh et al., 2021) models were built by lever-
aging instruction/prompt-tuning on diverse range
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Figure 2: Schematic representation of 9 categories of
tasks: each block represents one category with various
tasks equipped with instruction.

of tasks and achieving zero-shot generalization on
target unseen tasks. Task reframing (Mishra et al.,
2021a) proposed several guidelines to reframe task
instructions to improve model response to follow
instructions. Analysis introduced to understand
in-context learning better on a large set of train-
ing tasks (Min et al., 2021, 2022). InstructGPT
model (Ouyang et al., 2022) is proposed, which is
fine-tuned with human feedback to follow natural
instructions. Furthermore, many works focused on
investigating whether LMs understands meaning of
natural language and prompts (Webson and Pavlick,
2021; Zhao et al., 2021). Weller et al. (2020) and
Ye and Ren (2021a) use task descriptions to achieve
generalization to new tasks. Puri et al. (2022) intro-
duced instruction augmentation to improve model
performance and sample complexity. Wang et al.
(2022) has developed instruction-based multi-task
framework for few-shot Named Entity Recogni-
tion (NER) task. Prasad et al. (2022) introduced
Gradient-free Instructional Prompt Search (GrIPS)
for improving task instructions for large LMs. Re-
cently, many approaches have been proposed to im-
prove model performance using instructions (Wu
et al., 2021, 2022; Lin et al., 2021; Kuznia et al.,
2022).

3 BoX

We use 29 existing, widely adopted biomedical
NLP datasets collected from various challenges,
platforms and organizations to create BoX. We de-
fine the BoX as a benchmark dataset for biomedical
MTL across 9 different categories. In the BoX,

Category # of training samples

NER 82503
De-identification 106
POS Tagging 16323
QA 5778
RE 23359
Sentiment Analysis 2860
Systematic Review 5761
Document Classification 3119
Risk Factor Identification 986

Total 140795

Table 1: Size of training samples in each category

we reframed all the datasets as text generation
tasks (see examples in Appendix B) and created
32 instruction tasks. BoX consists of high-quality
human-authored Biomedical Instructions (BIs) for
all 32 tasks. Figure 2 shows the 9 different cate-
gories and corresponding generated tasks. Each
category is defined as colored box and each box
contains instruction tasks re-purposed from origi-
nal datasets.

3.1 Tasks

Table 1 shows the number of training samples we
have used for each category. Further details of each
instruction task statistics is shown in Appendix A.
Each category and corresponding tasks from the
BoX are defined as below:

Named Entity Recognition (NER) NER has
been considered a necessary first step in process-
ing literature for biomedical text mining where the
model helps in identifying named entities such as
protein, gene, chemical, disease, treatment. We use
fifteen publicly available biomedical NER datasets
(Crichton et al., 2017) to create instruction tasks.

De-Identification (DI) In this task, the model
takes medical discharge records of a patient as input
and identify Private Health Information (PHI) such
as organizations, persons, locations, dates. We
use n2c2 2006 de-identification challenge dataset
(Uzuner et al., 2007) to perform this task.

Part-Of-Speech (POS) Tagging The goal of
this task is to identify various POS tags from the
biomedical text. We use GENIA corpus (Tateisi
et al., 2005) built from MEDLINE abstracts for the
POS tagging task.



Question-Answering (QA) QA models receive
a question and a corresponding context as input
and output the relevant answer from the given con-
text. To execute this task, we used the BioASQ-8b
dataset (Nentidis et al., 2020) for different question
types, i.e., yes/no, factoid, and list type questions.
We created three different tasks from this dataset.
Also, we use PubMedQA dataset (Jin et al., 2019)
for this task.

Relation Extraction (RE) We used two datasets
for this task: (1) CHEMPROT corpus from biocre-
ative VI precision medicine track (Islamaj Doğan
et al., 2019), and (2) Drug-Drug Interaction (DDI)
corpus from SemEval 2013 DDI Extraction chal-
lenge (Herrero-Zazo et al., 2013). Here, we only
consider binary RE tasks without any label describ-
ing the type of the relation.

Systematic Review (SR) We have included data
from the following five Systematic Reviews (SRs)
that were conducted using the traditional (manual)
process and published in relevant venues by Mayo
Clinic physicians: (1) Hormone Replacement Ther-
apy (HRT), (2) Cooking, (3) Accelerometer, (4)
Acromegaly, and (5) COVID for this task (Parmar,
2021). More details about these datasets creation
and statistics are given in Appendix C.

Sentiment Analysis (SA) Analyzing the senti-
ment of people towards medical drugs is an essen-
tial task in the biomedical domain. To that effect,
we use medical drug sentiment analysis dataset2 to
identify one of three sentiments: (1) positive, (2)
negative, and (3) neutral.

Document Classification (DC) We have used
the Hallmarks of Cancer (HoC) dataset (Baker
et al., 2016) for this task.

Risk Factor Identification (RFI) The goal of
this task is to identify risk factors for Coronary
Artery Disease (CAD) in diabetic patients over
time. For this, we used n2c2 2014 shared task track
2 dataset (Kumar et al., 2015) with two different
purposes: (1) identify if the risk factor is presented
in the medical discharge summary and (2) time of
risk factor present in the discharge records.

3.2 Biomedical Instructions
Motivated by Mishra et al. (2021b), we have used
a similar approach to create Biomedical Instruc-

2https://www.kaggle.com/arbazkhan971/
analyticvidhyadatasetsentiment

Figure 3: Unified schema used to create a Biomedical
Instruction (BI).

Figure 4: Example of Biomedical Instruction (BI) and
task instances from BioNLP11ID (NER) dataset.

tions (BIs). BI consists of natural language instruc-
tions that describe a task and contain instances of
that task. Here, we introduce a unified schema to
present BI and described how we can construct BI
for each task given in the BoX. Figure 3 illustrates
the schematic representation of the schema, and
Figure 4 shows an example of BI that describes a
“Named Entity Recognition (NER)” task accompa-
nied with a few positive examples.

3.2.1 Unified Schema
All BIs are mapped to the unified schema. As
shown in Figure 3, unified schema consists of a
definition, prompt, and positive examples. This
schema helps in organizing each BI. Each of the
elements of the schema is explained below:

https://www.kaggle.com/arbazkhan971/analyticvidhyadatasetsentiment
https://www.kaggle.com/arbazkhan971/analyticvidhyadatasetsentiment


Definition contains the core explanation about
the task and detailed instruction to the model that
what needs to be done in the given task.

Prompt is the short explanation of the task that
needs to be done.

Examples contain the input/output pairs of the
task instance along with the explanation of how
the output is generated. Generally, we provide 2-3
examples for each task.

Instances contain the input/output pairs of train-
ing samples from the task datasets.

3.2.2 Construction of BI
We have created a BI for each dataset given in the
BoX. To create BI, we manually fill in the fields
of unified instruction schema (Figure 3). For each
dataset, the BI is created by one author and were
verified by other authors.

Quality of BIs In the instruction verification pro-
cess, we edit BIs if needed in terms of grammar,
typos, ambiguity, etc. to improve the quality. Ac-
cording to (Beltagy et al., 2020), concise instruc-
tions are more beneficial compared to repetition,
hence, we also redact repetition from BIs. As a
result, our BIs consists of high-quality, short, and
meaningful task definition, and prompts.

Positive examples and its explanation For each
dataset, we have provided 2-3 positive examples
and corresponding explanations to give an idea of
how to perform the given task. As we know, the
selection of examples has an impact on model per-
formance (Lu et al., 2021). To that extent, we have
been careful in selecting examples for text gener-
ation and classification tasks. For text generation,
we have provided 2-3 examples with a detailed ex-
planation about how the output is generated. For
text classification tasks, we have included examples
corresponding to each class with an explanation of
why the particular class is assigned to a given input
instance. All positive examples are drawn from
training instances and have been removed from
training in order to avoid repetition. All the expla-
nations of examples pass through the verification
process to maintain high quality.

Collection of input/output instances Since each
biomedical NLP dataset included in the BoX has
its own annotated input/output instances, we con-
verted them into text-to-text format (Lourie et al.,
2021). Example of instances converted for each

task is given in Appendix B. After this, we ap-
pended all instances tuple (i.e., <input, output>)
with instruction schema (as shown in Figure 3).

4 Problem Setup and Models

4.1 Problem setup
Let us assume, we have input/output instances pair
(Xt, Yt) for given task t. Along with that, each task
is described in terms of its instruction BIt.

Single-task models Traditional supervised mod-
els learn a mapping function (fM ) between input
(x) and output (y), where (x, y) ∈ (Xt

train, Yt
train)

and are evaluated on the same task (Xt
test, Yt

test).
We refer this setup as single-task learning.

Multi-task models In this setup, we combined
training data and corresponding biomedical in-
struction of all tasks together. The goal of multi-
task learning models is to learn mapping function
(fM ) between input (x), output (y) and biomedi-
cal instruction BIt, i.e., fM (BIt, x) = y, where
(x, y) ∈ (Xt, Yt). This model is evaluated on task-
specific instances (x, y) ∈ (Xt

test, Yt
test) In con-

trast to single-task models, a single model is used
here to solve various tasks, hence, achieving gener-
alization. We refer this setup as MTL.

4.2 Models
We propose an instruction-based model to achieve
multi-tasking and compare it with two baselines:
(1) single-task models, and (2) multi-task models
without instructions. We have fine-tuned the BART
(base) model (Lewis et al., 2020) to build baselines
as well as the proposed model.

4.2.1 Baselines
Single-Task models As formulated in the single-
task problem setup, we have trained the BART
model on each task from the BoX and evaluated it
on the same task.

Multi-task without instruction To build this
baseline, we have combined training data of each
task from the BoX together without appending BIs
and trained a single model on the combined data.
We refer this model as Vanilla-BoXBART. This
model is evaluated on each task of the BoX.

4.2.2 Proposed Model
As formulated in the multi-task problem setup, we
have combined training data and the correspond-
ing BI of each task. To combine instruction with



input instances, we map a BI and an input (x) into
the textual format and obtain enc(BIt, x). After
that, BART model is used to predict an output (y)
using a mapping function fM : enc(BIt, x) → y.
To perform encoding, a standard NLP paradigm
of mapping is used, i.e., mapping an input to text.
Here, we map each element of BI (i.e., definition
and positive examples as shown in the schema)
to a textual format and append it before the in-
put instances. After appending BI of each task to
instances, we combined all training data of each
task. Now, we fine-tuned the BART model with
this combined instruction meta-dataset. We refer
this instruction-tuned model as In-BoXBART.

5 Experiments and Analysis

5.1 Experimental Setup

We have used BART (base) model to build all base-
lines and proposed model. All the experiments
are performed using Quadro RTX 8000 GPU. All
models are trained for 3 epochs. In particular, we
have used huggingface implementation (Wolf et al.,
2020) of the BART and its pre-defined functions for
the training and evaluation with default parameters.

Instance Selection As we know, BART (base)
can accept the input of a maximum 1024 token
length. Since there are few instances in some
datasets that exceed this limit (after including
instructions), we have discarded those instances
while creating instruction tasks. We have also re-
moved the same instances while training two base-
lines to do a fair comparison. We have discarded
long samples (>1024 token length) from validation
and testing data as well.

Example Selection As discussed in Lu et al.
(2021), the selection and order of the examples in-
cluded in instructions matters for mainly classifica-
tion tasks and affects the performance of the model.
We empirically conclude that the proposed model
benefits from ignoring examples from biomedical
instructions for classification tasks during training
and evaluation. Hence, we have discarded all exam-
ples from the BIs associated with the classification
instruction tasks.

Instance Sampling Some classification datasets
used to create the BoX are imbalanced. To bal-
ance these datasets, we have applied the sampling
techniques (Poolsawad et al., 2014) before using
datasets to create BoX. In particular, we have

analyzed three sampling techniques: (1) under-
sampling, (2) average-sampling, and (3) over-
sampling. In under-sampling, we have reduced
instances for all the classes to the class with the
lowest number of instances. In contrast, we have
over-sampled instances via replication of random
instances to the class with the highest number of
instances to achieve over-sampling. In average sam-
pling, we calculated mean of number of instances
across all the classes and over-sampled or under-
sampled instances accordingly for each class.

Few-shot setting Similar to the (Schick and
Schütze, 2021), we have started with 32 randomly
selected instances for each instruction task from
the BoX to exhibit few-shot learning. After that,
we have increased randomly selected instance in-
stances per task to 100/1k/4k. If any task have
already less number of instances than the threshold
(i.e., 100/1k/4k), we keep all the instances from
that task. While selecting the instances, we made
sure that we select balanced data for the classifica-
tion tasks. Moreover, the BoX contains an average
6k instances per task.

Evaluation Metric We use Rouge-L (Lin, 2004)
as our evaluation metric since we treat all the tasks
as text generation problems. We also use F1-Score
for evaluations.

5.2 Results and Findings

Effect of Sampling As mentioned above, we con-
duct three experiments to analyze the effect of sam-
pling on In-BoXBART. We train our model using
training data obtained from (1) under-sampling,
(2) average-sampling, and (3) over-sampling. We
achieve on an average (across all instruction
tasks) 69.62, 70.23 and 73.49 Rouge-L for under-,
average- and over-sampling, respectively. Here,
we observe from the experimental results that
over-sampling gives better performance compared
to under- and average-sampling since there is
a loss of training data samples for under- and
average-sampling. Hence, we report results of over-
sampling as the main result in Table 2.

Performance comparison Table 2 presents the
results for single-task model, Vanilla-BoXBART
and In-BoXBART. We can see from Table 2 that
the single-task model, Vanilla-BoXBART, and
In-BoXBART achieve on an average (across all
tasks) Rouge-L of 70.51, 55.55, and 73.49, respec-
tively. They achieve 70.15%, 55.21%, and 73.01%



Category Task Rouge-L F1-Score

Single Task V-BB I-BB Single Task V-BB I-BB

NER

AnatEM 84.88 32.30 83.93 85.55 33.50 84.61
BC2GM 77.66 50.87 74.10 78.56 50.86 75.03
BC4CHEMD 88.85 71.05 86.50 89.06 71.44 86.97
BC5CDR 74.83 69.81 74.76 75.13 70.11 75.24
BioNLP11EPI 84.64 50.10 87.60 84.95 52.85 88.04
BioNLP11ID 71.08 59.12 72.64 71.64 60.15 73.39
BioNLP13CG 64.19 55.18 67.72 61.68 53.88 65.09
BioNLP13GE 83.74 49.30 86.71 84.08 51.78 87.39
BioNLP13PC 70.42 53.06 72.46 66.89 51.61 67.77
BioNLP09 85.16 51.54 88.09 85.54 54.31 88.48
CRAFT 63.72 51.85 64.10 63.92 52.31 64.30
Ex-PTM 82.32 49.61 83.73 82.38 52.07 84.49
JNLPBA 71.65 69.37 71.54 70.79 68.60 70.26
NCBI 89.51 74.46 86.11 89.81 75.55 80.91
linnaeus 94.43 44.99 93.46 93.21 44.59 93.77
—————————- ——– ——– ——– ——– ——– ——–
Average 79.14 55.51 79.54 78.88 56.24 79.45

DI DI 2006 12.60 46.38 50.82 10.60 43.28 47.45

POS Genia 71.45 27.94 71.26 70.48 27.50 71.99

QA

BioASQ8b (factoid) 52.95 51.14 47.28 54.67 53.52 49.51
BioASQ8b (list) 38.96 19.87 36.11 - 17.74 35.59
BioASQ8b (yesno) 61.74 62.61 68.25 63.48 62.61 68.25
PubMedQA 27.12 25.48 24.49 31.44 30.74 29.58
—————————- ——– ——– ——– ——– ——– ——–
Average 45.19 39.78 44.03 46.39 41.15 45.73

RE ChemProt 76.08 76.00 81.61 63.89 52.17 63.22
DDI 91.78 82.97 89.35 94.10 82.97 89.35
—————————- ——– ——– ——– ——– ——– ——–
Average 83.04 79.48 85.48 79.00 67.57 76.28

SA Medical Drugs 47.51 46.39 47.37 47.51 46.39 47.37

SR

Accelerometer 74.65 72.54 81.25 74.65 72.54 81.25
Acromegaly 80.21 81.77 80.71 80.21 81.77 80.71
COVID 74.81 76.30 77.28 74.81 76.30 77.28
Cooking 71.71 82.93 83.25 71.71 82.93 83.25
HRT 75.68 77.17 82.70 75.68 77.17 82.70
—————————- ——– ——– ——– ——– ——– ——–
Average 75.41 78.14 81.04 75.41 78.14 81.04

DC HoC 88.53 49.64 82.53 88.53 49.51 82.53

RFI
RFHD 2014 (yesno) 57.21 64.97 69.17 57.21 64.97 69.17
RFHD 2014 (time-riskfactor) 66.18 0.97 85.24 66.18 0.97 85.28
—————————- ——– ——– ——– ——– ——– ——–
Average 72.87 57.30 77.21 61.69 32.97 77.22

Average - 70.51 55.55 73.49 70.15 55.21 73.01

Table 2: Results comparison between single-task baseline, Vanilla-BoXBART and In-BoXBART in terms of Rouge-
L and F1-Score. All the results for F1-Score are presented in %. V-BB: Vanilla-BoXBART, I-BB: In-BoXBART,
RFHD: Risk Factor for Heart Disease.

F1-Score, respectively, exhibiting the same per-
formance behaviour as Rouge-L. Hence, we use
Rouge-L for further comparisons. From the result,
we can observe that Vanilla-BoXBART reduces
the complexity compared to the single-task model
(i.e., 110 million parameters vs. 32x110 million pa-

rameters), however, on an average the performance
drops by 14.96% in terms of Rouge-L, and com-
pared to single-task models. This indicates that
multi-task learning in the biomedical domain is
more difficult than general domain NLP since many
previous works have shown that the multi-task
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Figure 5: Comparison of on an average Rouge-L
across all instruction tasks between single-task and In-
BoXBART based on the average number of training
instances per task.

model outperforms the single-task model (Lourie
et al., 2021; McCann et al., 2018). On the other
hand, In-BoXBART, which has the same complex-
ity as Vanilla-BoXBART, significantly outperforms
Vanilla-BoXBART by on average 17.94%, and also
outperforms the single-task model by a 2.98% mar-
gin, precisely. This indicates the benefit of using
instructions to achieve the MTL in the biomedical
domain.

Effect of instruction in few-shot learning We
have compared the average Rouge-L of In-
BoXBART with a single-task baseline for few-
shot setting. Figure 5 shows the relative perfor-
mance of In-BoXBART compared to single-task
baseline. We have shown results for all few-shot
learning experiments in Appendix D. From the re-
sults, we see that In-BoXBART achieves on an av-
erage 60.64% Rouge-L and the single-task model
achieves 37.31% for 32 instances per task. In-
BoxBART significantly outperforms the single-task
baseline by 23.33%. From Figure 5, we can see
that In-BoXBART consistently perform better com-
pared to the baseline. As we know, obtaining a
large annotated dataset in the biomedical domain
is difficult, time-consuming and costly. From few-
shot learning, we can see that instructions are ben-
eficial in achieving high performance compared to
task-specific models.

5.3 Analysis

For which tasks, instruction is helpful? From
Table 2, we can see that In-BoXBART outper-
forms baselines for 5 categories, i.e., NER, de-
identification, RE, SR and risk factor identifica-
tion. From this, we can see that instructions are

more helpful in these five categories. However, In-
BoXBART achieves performance lower or par with
the single-task baseline for the tasks from QA, POS
tagging, sentiment analysis and document classi-
fication which indicates room for improvement in
this direction.

Which are harder tasks to solve using instruc-
tions? Although instructions help in achieving
better performance for some tasks compared to
the single-task model, the overall performance is
still lower. For example, instruction improves
performance for de-identification, but overall per-
formance on this task is only 50.82% which can
be improved. A similar pattern we can see for
BioNLP12CG and CRAFT from NER; BioASQ-
8b (factoid, list) and PubmedQA from QA; and
Medical Drug from the sentiment analysis category.
In general, we can observe that tasks that include
either multi-class scenario or answer generation
from the context are most likely to be harder to
solve using instructions. For example, CRAFT and
BioNLP13CG have 6 entity types which are higher
than any other tasks from NER, and we can see
that the performance for these two tasks is lower
compared to other tasks of NER.

For which tasks, instruction is the most ben-
eficial in few shot setting? From the results
shown in Appendix D, tasks from the NER, de-
identification, QA, sentiment analysis and risk fac-
tor identification shows on average larger improve-
ment compared to baselines for the few-shot set-
tings (i.e., 32 and 100 instances per task). This in-
dicates that instructions are beneficial for the tasks
from the above categories.

6 Discussion

Can we design better instructions? Since in-
struction teach the model how to solve a given task,
domain specific information rich instructions can
improve model performance. One potential way is
to use the knowledge of domain experts. However,
designing a good biomedical instruction can be one
research direction.

How to handle long-context input? Training
instances of many biomedical datasets consist Elec-
tronic Health Records (EHRs) or discharge sum-
maries of patients. Because of this, these instances
are long and exceed the maximum input length of
LMs such as BERT, BART. In this scenario, en-
coding extra information in terms of prompts or



instructions becomes difficult. One potential so-
lution is to use Longformer (Beltagy et al., 2020),
and another solution is to use T5 kind of models
which use relative position embeddings so that the
inference length can be longer (Luo et al., 2022a).

How to handle multi-class classification tasks?
Multiple classes cause an issue while creating
biomedical instructions because we can not present
one example per class. If we do that, the encoding
of BI and input will exceed the maximum length
of LMs. A naive solution is to select examples of
a few labels or remove the examples. However,
this will cause a label bias issue or performance
degradation. Potential future research direction can
be designing a methodology to handle multi-class
classification tasks.

How far we are from the SOTA? We have pre-
sented preliminary comparison of our results w.r.t.
state-of-the-art (SOTA) single-task systems for 21
instruction tasks from the BoX as shown in Ap-
pendix E. Form the results, we can see that the
performance of the proposed model remains far
from the SOTA for some tasks, indicating signifi-
cant room for further research in this domain.

7 Summary and Conclusions

This research shows the impact of instructions in
MTL for the first time in the biomedical domain.
To this extent, we introduced the BoX, a first bench-
mark dataset consisting of 32 instruction tasks
across various biomedical NLP domains. Using
this meta-dataset, we proposed a unified model, i.e.,
In-BoXBART which outperforms single-task base-
line and Vanilla-BoxBART by ∼ 3% and ∼ 18%,
respectively. Our proposed approach also shows an
effective performance for a few-shot setting which
is more beneficial in the biomedical domain where
obtaining large annotated datasets is difficult. We
hope that the BoX benchmark, In-BoXBART, and
experimental results encourage future research into
more unified models for biomedical NLP.
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A Statistics of Instruction Tasks

This section provides all the statistics of training,
validation and inference data used for experiments
in Table 3. All the number of instances provided in
Table 3 are calculated after discarding the instances
with more than 1024 token length as described in
the section 5.1. We have divided the dataset into
standard 70/10/20 splits for train/validation/test if
there is no separate validation and testing set pro-
vided in the dataset.

B Instruction Tasks and Examples

To build all the models (baselines, proposed model
and few-shot learning), we adapt the unified format
for all the tasks of BoX. We converted all the tasks
into the text-to-text format, including the classifi-
cation tasks. Table 4 shows an example of input
and output from each category. Moreover, we have
also re-purposed some biomedical datasets to cre-
ate more than one task as described in the section
3.1.

C Systematic Review Datasets

This section describes the brief data creation pro-
cess for Systematic Reviews (SRs) that are used
in this study. The relentless growth in clinical re-
search and published articles have created a need
for automation to expedite the process of SRs and
to enable Living Systematic Reviews (LSRs). A
crucial step in both SRs and LSRs is the title and
abstract-based screening of the articles. A new
dataset was developed from six SRs in the clin-
ical domain by Mayo clinic physicians. In this
study, we used data from the following five SRs
that were conducted using the traditional (man-
ual) process and published in relevant venues: (1)
Hormone Replacement Therapy (HRT), (2) Cook-
ing, (3) Accelerometer, (4) Acromegaly, and (5)
COVID. The initial bibliographic search was de-
signed and conducted by an experienced librarian
with guidance from the principal investigators for
the respective studies. The search was conducted
in different bibliographic databases like PubMed,
PubMed Central (PMC), Embase, EBM Reviews,
and Ovid MEDLINE(R). Each article in the bib-
liographic search results was categorized by two
physicians with domain expertise as “Include” or
“Exclude”, by reading the title and abstract of the
article. When there was a disagreement between
two annotators, a positive class (i.e., “Include”)
was preferred.

D Few-Shot Learning results

This section presents the results of few-shot learn-
ing for all instruction tasks in Table 5.

E State-of-the-art results

In Table 6, we present State-Of-The-Art (SOTA)
results for 21 tasks. To compare the SOTA re-
sults with the proposed model, we calculate the
corresponding metric used in particular research
from our model predictions. For each task, we
gather the best performance, and specifically, they
are BioASQ-8b (Nentidis et al., 2020), Chemprot
(Peng et al., 2019), DDI (Peng et al., 2019). In
Chemprot and DDI, we compare results with the
base LMs instead of large for a fair comparison.
SOTA results for all 15 NER datasets are obtained
from (Banerjee et al., 2021). Best performance
for the HoC dataset is obtained from (Peng et al.,
2019). Here, we have considered the result of the
best system submitted to (Stubbs et al., 2015) as
SOTA result.



Category Tasks # of Instances

Train Dev Test

NER

AnatEM 3507 1121 2303
BC2GM 6427 1291 2570
BC4CHEMD 14466 14568 12397
BC5CDR 4940 4940 5158
BioNLP11EPI 3796 1242 2836
BioNLP11ID 2466 780 1869
BioNLP13CG 4591 1489 2759
BioNLP13GE 1503 1663 1937
BioNLP13PC 2945 1070 1997
BioNLP09 4710 1013 1699
CRAFT 12839 4423 8882
Ex-PTM 855 278 1160
JNLPBA 15124 1533 3152
NCBI 2922 488 538
linnaeus 1484 524 993

DI DI 2006 106 22 27

POS Genia 16323 2174 2035

QA BioASQ8b (factoid) 695 16 115
BioASQ8b (list) 373 8 45
BioASQ8b (yesno) 543 16 115
PubMedQA 4167 500 473

RE ChemProt 3350 2415 2660
DDI 20009 2780 2660

SA Medical Drugs 2860 526 804

SR

Accelerometer 499 58 142
Acromegaly 663 80 192
COVID 2385 300 675
Cooking 735 84 205
HRT 1479 171 410

DC HoC 3119 445 890

RFI
RFHD 2014 (yesno) 834 360 451
RFHD 2014 (time-riskfactor) 152 177 69

Total - 140795 46554 64561

Table 3: Statistics of training (i.e., Train), validation (i.e, Dev) and evaluation (i.e., Test) data for all instruction
tasks from the BoX. RFHD: Risk Factor for Heart Disease.



Category Task Input Output

NER BC5CDR
Such interactions may result in serious cardio-
vascular complications even after cessation of
an infusion of ritodrine.

cardiovascular complications <Disease>,
ritodrine <Chemical>

de-identification DI2006

757085252 HLGMC 1228824 18705/6o5b
3/25/1993 12:00:00 AM CONGESTIVE
HEART FAILURE . Unsigned DIS Report
Status : Unsigned ADMISSION DATE : 3/25/93
DISCHARGE DATE : 4/4/93 PRINCIPAL
DIAGNOSIS : congestive heart failure . AS-
SOCIATED DIAGNOSIS : aortic stenosis ;
coronary artery disease , status post multi vessel
coronary artery bypass graft surgery , ... , M.D.
TR : go / bmot DD : 4/4/93 TD : 04/06/93 CC :
[ report_end ]

3/25 <DATE>, 18705/6o5b <ID>,
757085252 <ID>, go / bmot <DOCTOR>,

4/4 <DATE>, 04/06 <DATE>

POS-Tagging Genia Binding sites were mapped for each factor .
Binding <VBG> sites <NNS> were
<VBD> mapped <VBN> for <IN> each
<DT> factor <NN> . <.>

QA
BioASQ8b

(factoid)

Context: Hyperosmia is suspected in pregnancy;
however, no empirical study using validated mea-
sures of olfactory function has clearly confirmed
the anecdotal reports of this phenomenon. sub-
jective hyperosmia is associated with primarily
negative odor-related experiences. Hyperosmia
is increased olfactory acuity \n Question: What
is hyperosmia

Hyperosmia is increased olfactory acuity.

RE
Drug-Drug
Interaction

Context: Antacids may interfere with the ab-
sorption of LEVSIN. Drug_1: Antacids Drug_2:
LEVSIN

true

Sentiment
Analysis

Medical
Drugs

Why don’t more folk opt for Cladribine? \n
Drug: cladribine \n Option1: Neutral Option2:
Positive Option3: Negative

Positive

Systematic
Review Acromegaly

No greater incidence or worsening of cardiac
valve regurgitation with somatostatin analog
treatment of acromegaly CONTEXT: Excess
GH and IGF-I in acromegaly are associated with
reduced life expectancy due to cardiovascular
complications. Option_1: Include, Option_2:
Exclude.

Include

Document
Classification

Hallmarks
of Cancer

(HoC)

Studies of cell-cycle progression showed that the
anti-proliferative effect of Fan was associated
with an increase in the G1/S phase of PC3 cells.

Evading growth suppressors, Sustaining
proliferative signaling

Risk
Factor

Identification

n2c2 - Risk
Factors Heart
Disease 2014

(yesno)

Context: Record date: 2157-08-27 History of
Present Illness ID:Admitted from cardiac cath
lab. HPI:Mr. Doty is a 80 y.o. male with
h/o HTN, DM, PVD, elevated cholesterol who
presents with 6 month h/o chest and upper ex-
tremity discomfort on exertion along with SOB.
He has limited his activities to prevent symp-
toms. ... \n Risk Factor: Diabetes

Yes

Table 4: Examples of one instruction tasks converted into text-to-text format for each category



Category Task 32 100 1k 4k

S I-BB S I-BB S I-BB S I-BB

NER

AnatEM 12.74 60.73 20.68 79.34 87.81 86.76 84.88 83.44
BC2GM 16.92 65.65 21.31 70.39 82.92 77.19 77.66 74.11
BC4CHEMD 10.55 71.05 14.93 73.85 86.53 83.75 88.85 86.19
BC5CDR 11.75 60.37 12.58 67.51 69.62 73.66 74.83 74.34
BioNLP11EPI 31.14 78.64 42.31 81.51 85.71 85.57 84.64 86.68
BioNLP11ID 11.00 62.38 10.06 68.92 71.41 71.62 71.08 71.96
BioNLP13CG 12.39 49.15 12.53 52.68 55.23 63.15 64.19 67.23
BioNLP13GE 26.10 78.80 25.00 81.82 84.77 84.29 83.74 85.58
BioNLP13PC 12.40 69.29 12.59 71.89 68.11 68.49 70.42 71.97
BioNLP09 32.51 78.17 30.51 82.71 87.48 86.39 85.16 86.33
CRAFT 8.07 37.35 8.60 40.38 49.67 51.56 63.72 63.35
Ex-PTM 16.06 74.32 47.93 76.15 82.92 84.11 82.32 83.81
JNLPBA 20.15 57.61 19.77 59.54 64.46 63.63 71.65 70.45
NCBI 38.69 68.82 30.46 79.35 93.02 90.36 89.51 86.46
linnaeus 28.75 58.69 36.94 67.29 93.81 92.50 94.43 70.57
—————————- ——– ——– ——– ——– ——– ——– ——– ——–
Average 19.28 64.74 23.08 70.22 77.56 77.54 79.14 77.50

DI DI 2006 12.67 50.19 13.30 49.54 13.54 55.28 12.60 50.10

POS Genia 51.48 13.41 48.26 30.65 66.27 61.93 71.45 70.57

QA BioASQ8b (factoid) 36.63 35.99 41.89 40.77 51.96 49.84 52.95 51.72
BioASQ8b (list) 14.99 20.91 19.66 29.38 40.14 29.59 38.96 34.68
BioASQ8b (yesno) 43.48 61.11 39.13 57.94 66.96 60.32 56.52 52.17
PubMedQA 17.32 19.28 25.16 23.26 27.68 25.86 27.12 24.96
—————————- ——– ——– ——– ——– ——– ——– ——– ——–
Average 28.11 34.32 31.46 37.84 46.68 41.40 43.89 40.88

RE ChemProt 61.64 72.02 66.07 64.91 66.01 55.22 76.86 77.38
DDI 85.53 77.37 85.53 81.37 46.99 55.41 87.39 73.04
—————————- ——– ——– ——– ——– ——– ——– ——– ——–
Average 73.59 74.70 75.80 73.14 56.50 55.31 82.12 75.21

SA Medical Drugs 33.29 63.48 24.51 63.66 43.41 31.58 37.31 49.50

SR

Accelerometer 76.76 77.78 75.35 68.06 83.80 73.61 72.54 70.83
Acromegaly 80.21 80.71 81.25 75.63 76.56 79.19 76.04 77.66
COVID 87.85 88.36 87.85 84.85 61.93 86.96 73.93 78.12
Cooking 88.29 87.08 87.80 87.56 81.95 87.08 80.98 82.78
HRT 85.86 86.02 85.61 75.12 89.08 81.99 83.87 80.81
—————————- ——– ——– ——– ——– ——– ——– ——– ——–
Average 83.79 83.99 83.57 78.24 78.66 81.77 77.47 78.04

DC HoC 17.06 19.87 17.98 27.13 46.94 52.36 88.53 81.51

RFI
RFHD 2014 (yesno) 57.21 51.78 57.21 51.50 43.02 66.35 43.86 66.46
RFHD 2014 (time-riskfactor) 54.51 64.22 52.75 63.37 66.18 59.60 66.18 62.70
—————————- ——– ——– ——– ——– ——– ——– ——– ——–
Average 55.86 58.00 54.98 57.43 54.60 62.98 54.93 64.58

Average - 37.31 60.64 39.24 63.38 66.75 67.98 69.81 70.23

Table 5: Comparison of few-shot learning results in terms of Rouge-L between single-task models and In-BoXBART
for 32/100/1000 training samples per instruction tasks. All results are presented in %. S: Single-task model, I-BB:
In-BoxBART, RFHD: Risk Factor for Heart Disease.



Category Task Metric SOTA Multi-Task

V-BB I-BB

NER

AnatEM F 91.61 33.50 84.61
BC2GM F 83.47 50.86 75.03
BC4CHEMD F 92.39 71.44 86.97
BC5CDR F 90.50 70.11 75.24
BioNLP11EPI F 88.66 52.85 88.04
BioNLP11ID F 87.36 60.15 73.39
BioNLP13CG F 90.16 53.88 65.09
BioNLP13GE F 85.81 51.78 87.39
BioNLP13PC F 91.65 51.61 67.77
BioNLP09 F 91.94 54.31 88.48
CRAFT F 90.12 52.31 64.03
Ex-PTM F 87.08 52.07 84.49
JNLPBA F 79.19 68.60 70.26
NCBI F 89.82 75.55 86.91
linnaeus F 95.68 44.59 93.77

QA BioASQ8 (list) F 52.99 17.74 35.59
BioASQ8 (yesno) F 89.95 62.61 68.25

RE Chemprot F 74.40 52.17 63.22
DDI F 79.40 82.97 89.35

DC HoC F 85.30 49.51 82.53

RFI RFHD 2014 (time-riskfactor) F 92.76 0.97 85.28

Average - - 85.55 50.36 72.24

Table 6: The state-of-the-art (SOTA) results for each task compared with Vanilla-BoXBART and In-BoXBART. All
results are in %. F: F1-score, V-BB: Vanilla-BoXBART, I-BB: In-BoXBART, RFHD: Risk Factor for Heart Disease.


