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ABSTRACT

Persistent homology is a widely used theory in topological data analysis. In the
context of graph learning, topological features based on persistent homology have
been used to capture potentially high-order structural information so as to augment
existing graph neural network methods. However, computing extended persistent
homology summaries remains slow for large and dense graphs. Inspired by recent
success in neural algorithmic reasoning, we propose a novel learning method to
compute extended persistence diagrams on graphs. The proposed neural network
aims to simulate a specific algorithm and learns to compute extended persistence
diagrams for new graphs efficiently. Experiments on approximating extended
persistence diagrams and several downstream graph representation learning tasks
demonstrate the effectiveness of our method. Our method is also efficient; on large
and dense graphs, we accelerate the computation by nearly 100 times.

1 INTRODUCTION

In recent years, much effort has been made to improve the expressiveness of graph neural networks
(GNNs). Among these methods, a widely used approach is to explicitly inject other high order
information, such as graph topological/structural information, into the GNN models (You et al., 2019;
Li et al., 2020). To this end, persistent homology (Edelsbrunner et al., 2000; Edelsbrunner & Harer,
2010), which captures topological structures (e.g., connected components and loops) and encodes
them in a summary called persistence diagram (PD), has been injected to machine learning pipelines
for various graph learning tasks (Zhao & Wang, 2019; Zhao et al., 2020; Hofer et al., 2020; Carrière
et al., 2020; Chen et al., 2021; Yan et al., 2021). In particular, it has been found helpful to use the
so-called extended persistence diagrams (EPDs) (Cohen-Steiner et al., 2009), which contain richer
information than the standard PDs.

Despite the strong learning power of PDs and EPDs, their computation remains a bottleneck in graph
learning. In situations such as node classification (Zhao et al., 2020) or link prediction (Yan et al.,
2021), one has to compute EPDs on vicinity graphs generated around all the nodes or all possible
edges in the input graph. This can be prohibitive especially for large and dense graphs.

Our goal is to develop a learning-based framework to estimate the EPDs for graphs efficiently. Recent
works on algorithmic learning on graphs (Veličković et al., 2019; Xhonneux et al., 2021) showed
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Figure 1: An explanation of extended persistent homology and its computation. (a) The input graph is
plotted with a given filter function. (b) the extended persistence diagram of (a). Commonly speaking,
the persistence points on the diagonal (uncritical points) should not be plotted. We plot these points
for a clearer illustration. (c) and (d) are examples of finding the loops in the input graph.

that sequential algorithms such as Dijkstra and Depth-First Search (DFS) can be approximated by
GNNs. Inspired by these works, we rewrite the algorithm to compute EPD into a sequential-like form
and propose a novel neural framework to estimate the EPDs whose architecture is aligned with this
algorithm. Experiments show that on large and dense graphs, the proposed framework is much faster
than the direct computation of EPDs.

Compared with the sequential algorithms proposed in (Xhonneux et al., 2021), the algorithm to
compute EPDs requires extra steps. To address these challenges, we propose several modules to
approximate these steps. Using these modules, we empirically show that our method achieves a
satisfying approximation quality of EPDs on different graphs. To further evaluate the effectiveness
of our framework, we perform experiments on two downstream graph representation learning tasks:
node classification and link prediction. We show that the deep learning models using the predicted
EPDs perform comparably with the architectures using the ground-truth EPDs. In other words, the
approximated EPDs do not lose learning power.

To the best of our knowledge, we are the first to directly estimate EPDs on graphs with deep learning
models. We note that our method is fundamentally different from previous works learning to directly
approximate persistence images, a vectorization of persistence diagrams (Som et al., 2020; Montufar
et al., 2020). These methods fail to simulate the computation algorithm closely. Furthermore, their
training loss does not respect the special metric of EPDs. Therefore their output is not satisfying in
both approximation quality and learning power. Finally, we observe that our model can be easily
transferred to unseen graphs. This is encouraging as we may now generalize topological computation
to various challenging real-world graphs without extra effort.

For detailed reading, we refer the readers to a more complete version of the paper: https://
arxiv.org/pdf/2201.12032.pdf.

2 RELATED WORKS

Learning with Persistent Homology. Based on the theory of algebraic topology (Munkres, 2018),
persistent homology (Edelsbrunner et al., 2000; Edelsbrunner & Harer, 2010) extends the classical
notion of homology, and can capture the topological structures (e.g., loops, connected components)
of the input data in a robust (Cohen-Steiner et al., 2007) manner. It has already been combined with
various deep learning methods including kernel machines (Reininghaus et al., 2015; Kusano et al.,
2016; Carriere et al., 2017), convolutional neural networks (Hofer et al., 2017; Hu et al., 2019; Wang
et al., 2020; Zheng et al., 2021), transformers (Zeng et al., 2021), connectivity loss (Chen et al., 2019;
Hofer et al., 2019), and graph neural networks (Zhao et al., 2020; Chen et al., 2021; Yan et al., 2021;
Zhao & Wang, 2019; Hofer et al., 2020; Carrière et al., 2020).

Neural Algorithm Execution. Many works have studied neural execution in different domains be-
fore (Zaremba & Sutskever, 2014; Kaiser & Sutskever, 2015; Kurach et al., 2015; Reed & De Freitas,
2015; Santoro et al., 2018; Yan et al., 2020). With the rapid development of GNNs in graph represen-
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tation learning, learning graph algorithms with GNNs has attracted researchers’ attention (Veličković
et al., 2019; 2020; Xhonneux et al., 2021). These works exploit GNNs to approximate certain classes
of graph algorithms, such as parallel algorithms and sequential algorithms.

3 EXTENDED PERSISTENT HOMOLOGY AND LEARNING EXTENDED
PERSISTENCE DIAGRAMS

Extended Persistent Homology. Extended persistent homology captures 0-dimensional (connected
components) and 1-dimensional (loops) topological structures and summarizes their topological
information into the so-called extended persistence diagram (EPD), which is a planar multiset
of points, each of which (b, d) corresponds to the information of some homological feature (i.e.,
components, loops, and their higher dimensional analogs). For example, for the input graph in
Figure 1 (a), its output EPD is shown in Figure 1 (b). Further details around extended persistent
homology are available in Section A.1 in the appendix.

Computing Extended Persistence Diagrams. Xhonneux et al. (2021) point out that sequential
algorithms (e.g., Dijkstra) can be approximated by GNNs. Inspired by their idea, we rewrite the
algorithms to compute EPDs in a sequential-like form that is easier for a GNN-like architecture to
“simulate”. The algorithms are listed in the Appendix.

Note that when we perform the standard persistence algorithm via matrix reduction, every simplex
in the input simplicial complex will either be a creator (indicating that adding this simplex will
create a new family of homology classes/topological features) or a destroyer (indicating that adding
this simplex will destroy some existing homology classes/topological features). In the end, the
persistence algorithm will pair up these creators and destroyers, and their function values give rise to
the persistence points in the resulting persistence diagrams. In our context where the input is a graph
which can be viewed as a 1-dimensional simplicial complex (consisting of 0-simplices/vertices V
and 1-simplices/edges E), the persistence algorithms will pair up these simplices. In other words, to
compute EPDs, we will simply find the pairing partners for all edges.

Description of the Sequential algorithm. Here we focus on describing the algorithm to compute
1D EPD. Further details are available in the Appendix. Our sequential algorithm, as shown in the
Appendix, exploits the observations from (Agarwal et al., 2006). Specifically, consider a vertex
vi ∈ V , and suppose there are k edges ei1 , . . . , eik incident to vi with function values higher than vi
(i.e., the function value of the other endpoint of these edges is higher than f(vi)). See Figure 1 (c)
for an illustration. For node u1, k = 3, and the three edges are u1u3, u1u4, and u1u6. Now imagine
we put each such edge in a different component Cij , j ∈ [1, k] – we call this upper-edges splitting
operation – and start to sweep the graph G in increasing values of a but starting at f(vi). Then, the
first time any two such components merge will give rise to a new persistence point in the 1D EPD.
For instance, in Figure 1 (c), C14 and C13 first merge at u4, and this will give rise to the brown loop
in Figure 1 (a) with (t4, t1) as its persistence point. Intuitively, this pairing captures the so-called
thinnest cycle basis (Agarwal et al., 2006; Cohen-Steiner et al., 2009).

Hence to compute the extended persistence pairing induced by vi, we can call Algorithm 3 to identify
the first time when components containing Cij s are merged. This can be achieved using the union-
find-like data structure to track the components. The main difference from the standard union-find
data structure is that as we merge components, each component needs to be represented by the
minimum (the vertex in this component with the smallest function value) which is not required in a
standard union-find data structure. (The same holds for the algorithm to compute the 0D PD.)

Learning Extended Persistence Diagrams. Considering that every edge in the input graph will
give rise to either a 0D ordinary persistence point or a 1D extended persistence point, we transfer the
learning of EPDs into a link prediction problem. Specifically, our base architecture follows standard
link-prediction architectures (Chami et al., 2019; Yan et al., 2021): (1) For a input graph, we first use
a specially designed GNN model which later we call PDGNN to obtain the node embedding for all
these vertices. (2) Subsequently, a MLP (Multi-layer perceptron) is applied to the node embeddings
to obtain the persistent pairing information for each edge.

Our specially designed GNN for estimating persistence diagrams, is called PDGNN (Persistence
Diagram Graph Neural Network). Compared with the Sequential algorithms proposed in (Xhonneux
et al., 2021), extended persistence diagrams need extra care: (1) the Find-Root algorithm needs
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Table 1: Time evaluation on different datasets (seconds)
Dataset Cora Citeseer PubMed Photo Computers CS Physics

Avg. N/E 38/103 16/43 61/190 797/16042 1879/47477 97/431 193/1315
Fast (Yan et al., 2021) 0.95 0.39 2.15 362.60 1195.66 5.72 24.14
Gudhi (The GUDHI Project, 2015) 0.44 0.21 1.00 583.55 8585.50 3.00 26.58
Ours 5.21 4.72 4.78 6.67 7.32 5.18 5.42

to return the minimum of the component, (2) edge operations such as upper-edge splitting. Our
PDGNN modifies standard GNNs by (1) implementing the root-finding process by a concatenation
of sum aggregation and min aggregation as our message aggregation function; (2) incorporating edge
operations such as the upper-edge splitting operation with edge features and edge attention. Further
details are available in the Appendix.

4 EXPERIMENTS

In this paper, we thoroughly evaluate the proposed model from 3 different perspectives: approximation
quality, transferability, and algorithm efficiency. Due to the page limit, we put the evaluation on
approximation quality and transferability to the Appendix, and briefly introduce the results in the
following paragraph. As for the evaluation on algorithm efficiency, experiments demonstrate that the
proposed method is much faster than the original algorithm, especially on large and dense graphs
(shown in Table 1).

Datasets. To compute EPDs, we need to set the input graphs and the filter functions. Following the
settings of existing state-of-the-art models (Zhao et al., 2020; Yan et al., 2021), for a given graph
G = (V,E), we extract the k-hop neighborhoods of all the vertices, and extract |V | vicinity graphs as
input graphs. In terms of filter functions, we introduce Ollivier-Ricci curvature Ni et al. (2018), heat
kernel signature, and the node degree as the filter function. The datasets include (1) citation networks
including Cora, Citeseer, and PubMed (Sen et al., 2008); (2) Amazon shopping datasets including
Photo and Computers (Shchur et al., 2018); (3) coauthor datasets including CS and Physics (Shchur
et al., 2018). Details are available in the Appendix.

Approximation Quality. In Section A.4.1, we evaluate the approximation error between the predicted
diagram and the ground truth diagram and show that the prediction is very close to the original diagram.
We also add ablation study to show the effectiveness of all the proposed modules. To understand
how much does the approximation error influence downstream tasks, in Section A.4.2, we evaluate
the learning power of the predicted diagrams through 2 downstream graph representation learning
tasks: node classification and link prediction. We observe that the model using the predicted diagrams
performs comparably with the model using the ground truth diagrams. From the two evaluation, we
can safely conclude that the predicted diagram is a wonderful substitution of the original EPD in
terms of both approximation error and learning power.

Transferability. One appealing feature of our method is its transferability. Training on one graph,
our algorithm can still approximate EPDs well on another graph. This makes it possible to apply
the computationally expensive topological features to a wide spectrum of real-world graphs; we can
apply a pre-trained model to large and dense graphs, on which direct EPD computation is infeasible.

We prove the transferability empirically. In Table 4, we adopt the model pre-trained on Photo to
predict the EPDs of CS and Physics, and achieve good approximation performance. We provide
comprehensive experiments to evaluate the transferability of our methods. See Table 6 and Table 7 in
the Appendix for the approximation quality and learning power evaluation of transferred models.

Algorithm Efficiency. For a fair and complete comparison, we compare with algorithms from
Gudhi (The GUDHI Project, 2015) and from (Yan et al., 2021). We select the first 1000 nodes from
Cora, Citeseer, PubMed, Photo, Computers, CS, Physics, and then extract their 2-hop neighborhoods
as the input vicinity graphs. We then compute the EPDs and report the time (seconds) used to infer
these diagrams.

We list the average nodes and edges of these vicinity graphs in the first line of Table 1. As shown in
Table 1, although our model is slower on small datasets like Cora or Citeseer, it is much faster on
large and dense datasets. Therefore we can simply use the original algorithm to compute the extended
persistence diagrams on small graphs, and use our model to execute extended persistence diagrams
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on large graphs. The model can be applied to various graph representation learning works based on
persistent homology.

5 CONCLUSION

We propose a learning algorithm to approximate EPDs. Inspired by recent success on neural algorithm
execution, we propose a novel GNN with different technical contributions to simulate the computation
of EPDs. Experiments show that our method achieves satisfying approximation quality and learning
power while being significantly faster than the original algorithm, especially on large and dense
graphs. Another strength of our method is the transferability: training on one graph, our algorithm can
still approximate EPDs well on another graph. This makes it possible to apply the computationally
expensive topological features to a wide spectrum of real-world graphs.
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Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural execution
of graph algorithms. In International Conference on Learning Representations, 2019.
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A APPENDIX

In the Appendix, we provide (1) Introduction of extended persistent homology and its computation;
(2) additional experimental details, including introduction on the datasets, and the experimental
settings; (3) further experiments, including the evaluation on approximation quality, the evaluation on
transferability, and the influence of training samples; (4) experiments on graph classification datasets.

A.1 EXTENDED PERSISTENT HOMOLOGY

We briefly introduce extended persistent homology and refer the readers to (Cohen-Steiner et al.,
2009; Edelsbrunner & Harer, 2010) for more details.

Ordinary Persistent Homology. Persistent homology captures 0-dimensional (connected compo-
nents) and 1-dimensional (loops) topological structures and measures their saliency via a scalar
function called filter function. Given a input graph G = (V,E), with node set V and edge set E, we
call all the nodes and edges simplices. Denote by X = V ∪ E the set of all simplices. We define a
filter function on all simpices, f : X → R. Often, f is induced by a node-valued function (e.g., node
degrees), and further defined on edges as f(uv) = max(f(u), f(v)).

Denote by Xa the sublevel set of X , consisting of simplices whose filter function values ≤ a,
Xa = {x ∈ X|f(x) ≤ a}. As the threshold value a increases from −∞ to ∞, we obtain a sequence
of growing spaces, called an ascending filtration of X: ∅ = X−∞ ⊂ ... ⊂ X∞ = X. As Xa

increases from ∅ to X , new topological structures gradually appear (born) and disappear (die). For
instance, the blue square persistence point at (t2, t3) in Figure 1 (b) indicates that the connected
component u2 appears at Xt2 and is merged with the whole connected component at Xt3 .

Applying the homology functor to the filtration, we can more precisely quantify the birth and death
of topological features (as captured by homology groups) throughout the filtration, and the output
is the so-called persistence diagram (PD), which is a planar multiset of points, each of which (b, d)
corresponds to the birth and death time of some homological feature (i.e., components, loops, and
their higher dimensional analogs). The lifetime |d− b| is called the persistence of this feature and
intuitively measures its importance w.r.t. the input filtration.

Extended Persistent Homology. In the ordinary persistent homology, topology of the domain
(e.g., the graph) will be created at some time (has a birth time), but never dies (i.e., with death
time being equal to +∞). Hence we cannot capture their importance. In the context of graphs, the
importance of loops are not captured via the ordinary persistence. To this end, extended persistence
(Cohen-Steiner et al., 2009)1 introduces a descending filtration : ∅ = X∞ ⊂ ... ⊂ X−∞ = X ,
where Xa = {x ∈ X|f(x) ≥ a} is a superlevel set. This induces a sequence of homology groups of
the form H(X) = H(X,X∞) → · · · → H(X,Xa) → · · · → H(X,X−∞) = ∅.

When the input domain is a graph, the 1-dimensional EPD consists of β1 number of persistent points,
capturing the birth and death of independent loop features. Here β1 is the rank of the first homology
group; for a connected graph, it is simply the number of independent loops, β1 = |E| − |V |+ 1. A
loop will be created during the ascending filtration, but killed during the descending filtration. The
birth and death times of the feature correspond to the threshold value a’s when these events happen.
In general, the death time for such loop feature is smaller than the birth time. For example, the red
triangle persistence point in Figure 1 (b) denotes that the red cycle in Figure 1 (a) appears at Xt5 in
the ascending filtration and appears again at Xt1 in the descending filtration.

Finally, persistence diagrams live in an infinite-dimensional space equipped with an appropriate
metric structure, such as the so-called p-th Wasserstein distance, or the bottleneck distance (Cohen-
Steiner et al., 2007). There have been many works in the literature to vectorize persistence diagrams
for downstream analysis. A popular choice is the persistence image (Adams et al., 2017),

A.1.1 COMPUTING EXTENDED PERSISTENCE DIAGRAMS (EPDS)

In this section, we rewrite the algorithms to compute the EPDs for graphs into a form that is easier
for GNNs to simulate as inspired by the neural execution work of (Veličković et al., 2019; Xhonneux

1Extended persistence is also closely related to the concept of zigzag persistence (Carlsson & De Silva,
2010).
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et al., 2021). The algorithm for computing the 0D EPDs is well-known, using the so-called union-find
data structure (Edelsbrunner & Harer, 2010; Dey & Wang, 2022). The algorithm for computing
the 1D EPDs has not been reported before, however, the idea follows from existing work (Agarwal
et al., 2006). For simplicity of presentation, we assume that all vertices have distinct function values
f : V → R, and our goal is to compute the 0D and 1D EPDs PD0 and PD1.

The neural execution of “sequential” algorithms. Xhonneux et al. (2021) point out that sequential
algorithms as shown in Algorithm 1 (e.g., Dijkstra) can be approximated by GNNs.

Inspired by their idea, we rewrite the algorithms to compute EPDs in a sequential-like form that is
easier for a GNN-like architecture later to “simulate”. In particular, the algorithm for computing 1D
extended persistence is shown in Algorithm 2; the algorithm for computing 0D persistence, which is
shown in Algorithm 4, is the standard union-find strategy.

High-level description of sequential algorithms. Note that when we perform the standard persis-
tence algorithm via matrix reduction, every simplex in the input simplicial complex will either be a
creator (indicating that adding this simplex will create a new family of homology classes/topological
features) or a destroyer (indicating that adding this simplex will destroy some existing homology
classes/topological features). In the end, the persistence algorithm will pair up these creators and
destroyers, and their function values give rise to the birth and death times in the resulting persistence
diagrams. In our context where the input is a graph which can be viewed as a 1-dimensional simplicial
complex (consisting of 0-simplices/vertices V and 1-simplices/edges E), the persistence algorithms
will pair up these simplices.

In particular, for an edge (1-simplex) e ∈ E: (1) it can either serve as a destroyer (killing a connected
component), in which case it is paired up with a vertex v, giving a persistence pairing (v, e) and a
corresponding persistence point (f(v), f(e)) in the 0-D PD PD0. For example, the persistence point
located at (t2, t3) in Figure 1 (b) denotes that the edge u2u3 is paired with u2. Alternatively, the edge
could be creating a 1-cycle (intuitively a loop in the graph) and is a creator during the ascending
filtration. This loop will ultimately be killed during the descending filtration when we take relative
homology H1(X,Xa), when we sweep past some vertex w (and a = f(w)). Hence the algorithm
will pair up (e, w) which gives rise to a persistence point (f(e), f(w)) in the 1-D EPD PD1.

In other words, to compute PD0 and PD1, we will simply find the pairing partners for all edges.
We note that in the literature, when the filtration is induced by a filter function, often in the end
we output the persistence diagram induced by the lower-star filtration, which roughly means that
we ignore all local pairings where a simplex is paired with another one incident on it. Such local
pairings correspond to those persistence points with 0 persistence if the function value is distinct on
all vertices. We compute all pairings as this has the consequence that later our neural network will
essentially compute a “pairing partner” for each edge in the graph as an edge feature. Once such
pairings are computed, it is easy to remove those local pairings.

Sequential algorithm to compute PD1. The algorithm to compute PD0 is similar to Algorithm 3.
Therefore, here we just describe the algorithm to compute PD1. It turns out that using the observations
from (Agarwal et al., 2006), the following procedure will produce the 1D extended persistence
capturing loops. Specifically, consider a vertex vi ∈ V , and suppose there are k edges ei1 , . . . , eik
incident to vi with function values higher than vi (i.e., the function value of the other endpoint of
these edges is higher than f(vi)). See Figure 1 (c) for a simple illustration. For node u1, k = 3,
and the three edges are u1u3, u1u4, and u1u6. Now imagine we put each such edge in a different
component Cij , j ∈ [1, k] – we call this upper-edges splitting operation – and start to sweep the
graph G in increasing values of a but starting at f(vi). Then, the first time any two such components
merge will give rise to a new persistence point in the 1D extended persistence diagram. For instance,
in Figure 1 (c), C14 and C13 first merge at u4, and this will give rise to the brown loop in Figure 1
(a) with (t4, t1) as its persistence point. Intuitively, this pairing captures the so-called thinnest cycle
basis (Agarwal et al., 2006; Cohen-Steiner et al., 2009).

Hence to compute the extended persistence pairing induced by vi, we can call Algorithm 3 to identify
the first time when components containing Cij s are merged. This can be achieved using the union-
find-like data structure to track the components. The main difference from the standard union-find data
structure is that as we merge components, each component needs to be represented by the minimum
(the vertex in this component with the smallest function value) which is not required in a standard
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Algorithm 1 Sequential algorithm
1: Input: graph G = (V,E), filter function f .
2: Initialise-Nodes(V, f )
3: Q = Sort-Queue(V )
4: while Q is not empty do
5: u = Q.pop-min()
6: for v ∈ G.neighbors(u) do
7: Relax-Edge(u, v, f )
8: end for
9: end while

Algorithm 2 Computation of 1D EPD
1: Input: filter function f , input graph G = (V,E)
2: V,E = sorted(V,E, f)
3: PD0 = Union-Find(V,E, f), PD1 = {}
4: for i ∈ V do
5: Ci = {Cij |(i, j) ∈ E, f(j) > f(i)}, Ei = E
6: for Cij ∈ Ci do
7: f(Cij ) = f(i), Ei = Ei − {(i, j)}+ {(Cij , j)}
8: end for
9: PDi

1 = Union-Find-step(V + Ci − {i}, Ei, f, Ci)
10: PD1+ = PDi

1
11: end for
12: Output: PD0, PD1

Algorithm 3 Union-Find-step (Sequential)
1: Input: V , E, f , Ci

2: PDi
1 = {}

3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V ), Q = Q− {v|f(v) < f(i)}
7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10: pu, pv = Find-Root(u),Find-Root(v)
11: if pu ̸= pv then
12: s/l = argmin/argmax(pu.value, pv.value)
13: l.root = s
14: if pu ∈ Vi and pv ∈ Vi then
15: PDi

1 + {(u.value, l.value)}
16: end if
17: end if
18: end for
19: end while
20: Function: Find-Root(u)
21: pu = u
22: while pu ̸= pu.root do
23: pu.root = (pu.root).root, pu = pu.root
24: end while
25: Return: pu

10
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union-find data structure. (The same holds for the algorithm to compute the 0D persistence diagram
PD0 in the Appendix.) The detailed algorithm/procedures involved can be found in Algorithm 3.

Complexity. The computational complexity of the Union-Find algorithm is O(|E|α(|E|)), where
α(·) is the inverse Ackermann function. Therefore, we need O(|V ||E|α(|E|)) time to compute an
EPD using the sequential algorithm described in this section. Note this sequential algorithm is not
necessarily the most efficient one. In practice, one may use the quadratic algorithm (O(|V ||E|)) as in
(Yan et al., 2021). We also note that although not formally published, the best known algorithm for
EPD computation is quasilinear, O(|E| log |V |), using the data structure of mergeable trees (Agarwal
et al., 2006; Georgiadis et al., 2011). But this algorithm remains theoretical so far.

Algorithm 4 Union-Find (Sequential)
1: Input: V , E, f
2: PD0 = {}
3: for v ∈ V do
4: v.value = f(v), v.root = v
5: end for
6: Q = Sort(V )
7: while Q is not empty do
8: u = Q.pop-min()
9: for v ∈ G.neighbors(u) do

10: pu, pv = Find-Root(u),Find-Root(v)
11: if pu ̸= pv then
12: s/l = argmin/argmax(pu.value, pv.value)
13: l.root = s
14: PD0 + {(l.value, u.value)}
15: end if
16: end for
17: end while
18: Function: Find−Root(u)
19: pu = u
20: while pu ̸= pu.root do
21: pu.root = (pu.root).root, pu = pu.root
22: end while
23: Return: pu

A.2 LEARNING EXTENDED PERSISTENCE DIAGRAMS

In this section, we will introduce our neural network architecture to approximate the EPDs on graphs.
As explained in the previous section, we will pair up all simplices (edges/vertices) in the input graph,
instead of outputting only those non-local pairing corresponding to the pairing between critical
points in the smooth case. The reason is that in this way, every edge is paired and corresponds to a
persistence point, therefore the computation of EPD can be transformed into a link prediction problem
on graphs. Furthermore, once such pairings are computed, we can easily remove all local pairings.

Basic Framework. As mentioned in Section A.1.1, every edge in the input graph will give rise to
either a 0-dim ordinary persistence point or a 1D extended persistence point. Therefore, we transfer
the learning of extended persistence diagram into a link prediction problem. Specifically, our base
architecture, which is shown in Figure 2, follows standard link-prediction architectures (Chami
et al., 2019; Yan et al., 2021): (1) For a input graph G = (V,E) and a filter function f , we first
obtain the initial filter value for all the nodes: X = f(V ) ∈ R|V |∗1, and then use a specially
designed GNN model which later we call PDGNN G to obtain the node embedding for all these
vertices: H = G(X) ∈ R|V |∗dH . (2) Subsequently, a MLP (Multi-layer perceptron) W is applied
to the node embeddings to obtain the persistent pairing information for each edge (u, v) ∈ E via
PPuv = W ([hu

⊕
hv]) ∈ R2 which is the persistence point associated to this edge (u, v). Here, hu

and hv denote the node embedding for node u and v, and
⊕

represents the concatenation of vectors.
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Figure 2: The basic framework.

Standard GNN. A GNN typically learns the node embedding via an iterative aggregation of local
graph neighbors. The k-th iteration (the k-th GNN layer) can be written as:

hk
u = AGGk({MSGk(hk−1

v ), v ∈ N(u)}, hk−1
u ) (1)

where hk
u is the node features for node u after k-th iterations, and N(u) is the neighborhood of node

u. In our setting, h0
u = xu is initialized to be the filter value of node u. Different GNNs have different

MSG and AGG functions, e.g., in GIN (Xu et al., 2018), MSG is a MLP followed by an activation
function, and AGG is a sum aggregation.

PDGNN. We now describe our specially designed GNN for estimating persistence diagrams, called
PDGNN (Persistence Diagram Graph Neural Network). Compared with the Sequential algorithms
proposed in (Xhonneux et al., 2021), extended persistence diagrams need extra care: (1) the Find-Root
algorithm needs to return the minimum of the component, (2) edge operations such as upper-edge
splitting. Our PDGNN modifies standard GNNs with the following modules to handle these steps.

Find-Root Algorithm. Finding the minimum intuitively suggests using a combination of several
local min-aggregations. Considering that the sum aggregation can bring the best expressiveness to
GNNs (Xu et al., 2018), we implement the root-finding process by a combination of sum aggregation
and min aggregation as our AGG function. To be specific:

AGGk(.) = SUM(.)
⊕

MIN(.) (2)

Incorporating edge operations. As shown in (Veličković et al., 2019; Xhonneux et al., 2021), classic
GNNs are not effective in “executing” algorithms operating on edges, such as Relax-Edge subroutine.
Furthermore, in Algorithm 2, we also need the upper-edge splitting operation for each vertex. To this
end, similar to (Xhonneux et al., 2021) we also use edge features and attention to provide bias using
edges. Specifically, we propose the following MSG:

MSGk(hk−1
v ) = σk[αk

uv(h
k−1
u

⊕
hk−1
v )W k] (3)

where σk is an activation function, W k is a MLP module, and αk
uv is the edge weight for uv. We

adopt PRELU as our activation function, and the edge weight proposed in GAT (Veličković et al.,
2018) as our edge weight.

Given that the Union-Find-step algorithm should be implemented on all nodes to obtain the EPDs,
ideally we need a large GNN model to simulate all the computations. However, these Union-Find-
step algorithms are running in parallel on the same graph. There are many overlapping or similar
computational steps between computations on different nodes. Therefore we expect a limited-size
single GNN model can simultaneously approximate all EPD computations. This is confirmed by
empirical evidence in Section 4.
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Table 2: Statistics of the node classification datasets
Dataset Classes Nodes Edges Features Avg degree

Cora 7 2708 5429 1433 2.00
Citeseer 6 3327 4732 3703 1.42
PubMed 3 19717 44338 500 2.25
CS 15 18333 100227 6805 5.47
Physics 5 34493 282455 8415 8.19
Computers 10 13381 259159 767 19.37
Photo 8 7487 126530 745 16.90

A.3 EXPERIMENTAL DETAILS

A.3.1 DATASETS.

In this paper, we exploit real-world datasets including:

1. Citation networks: Cora, Citeseer, and PubMed (Sen et al., 2008) are standard citation
networks where nodes denote scientific documents and edges denote citation links.

2. Amazon shopping records: In Photo and Computers (Shchur et al., 2018), nodes represent
goods, edges represent that two goods are frequently brought together, and the node features
are bag-of-words vectors.

3. Coauthor datasets: In CS and Physics (Shchur et al., 2018), nodes denote authors and edges
denote that the two authors co-author a paper.

The detailed statistics are available in Table 2.

To compute EPDs, we need to set the input graphs and the filter functions. Existing state-of-the-art
models on node classification (Zhao et al., 2020) and link prediction (Yan et al., 2021) mainly focus
on the local topological information of the target node(s). Following their settings, for a given graph
G = (V,E) (e.g., Cora), we extract the k-hop neighborhoods of all the vertices, and extract |V |
vicinity graphs.

In terms of filter functions, we use Ollivier-Ricci curvature (Ni et al., 2018)2, heat kernel signature
with two temprature values (Sun et al., 2009; Hu et al., 2014)3 and the node degree4. For an input
vicinity graph, we compute 4 EPDs based on the 4 filter functions, and then vectorize them to get 4
peristence images (Adams et al., 2017). Therefore, we can get 4|V | EPDs in total.

We note that in the literature, EPDs often contain the extended persistence point of the whole
connected component. In our setting, we remove the point because that (1) no edge is paired with the
whole connected component; (2) the value is easy to obtain, and does not need an extra prediction.

A.3.2 EXPERIMENTAL DETAILS

In this section, we mainly present the experimental settings on neural execution, as for the setting in
downstream graph representation learning tasks, we are consistent with (Zhao et al., 2020; Yan et al.,
2021).

Evaluation metrics. Recall that the input of our model is a graph and a filter function, and the output
is the predicted diagram. After obtaining the predicted diagram, we vectorize it with persistence
image (Adams et al., 2017) and evaluate (1) the 2-Wasserstein (W2) distance between the predicted
diagram and the ground truth EPD, (2) the total square error between the predicted persistence image
and the ground truth image (persistence image error, denoted as PIE). Considering that our aim is
to compute extended persistence diagrams on graphs rather than roughly approximating persistence

2Following the settings in (Zhao et al., 2020; Yan et al., 2021), we adopt the Ollivier-Ricci curvature as the
graph metric, and the distance to target node(s) as the filter function.

3Following the settings in (Carrière et al., 2020), we set the temparature t = 10 and 0.1 and adopt these two
kernel functions as the filter functions.

4Node degree is used as the initial filter function in (Hofer et al., 2020).
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Table 3: Approximation error on different vicinity graphs
Dataset Cora Citeseer PubMed Photo Computers
Evaluation W2 PIE W2 PIE W2 PIE W2 PIE W2 PIE

GIN PI — 5.03e-1 — 2.17e-1 — 4.08e-1 — 5.53 — 2.70
GAT PI — 1.43e-1 — 1.95e-1 — 1.60 — 20.98 — 44.50

GAT 0.655 2.46e-2 0.431 4.04e-2 0.697 3.5e-1 1.116 1.09 1.145 2.21
GAT (+MIN) 0.579 1.53e-2 0.344 1.02e-2 0.482 4.60e-2 0.820 1.35 0.834 0.64
PDGNN (w\o ew) 0.692 2.77e-2 0.397 2.24e-2 0.666 9.01e-2 2.375 6.47 18.63 27.35

PDGNN 0.241 4.75e-4 0.183 4.43e-4 0.256 8.95e-4 0.224 4.33e-3 0.220 6.20e-3

Table 4: Classification accuracy on various node classification benchmarks
Method Cora Citeseer PubMed Computers Photo CS Physics

GCN 81.5±0.5 70.9±0.5 79.0±0.3 82.6±2.4 91.2±1.2 91.1±0.5 92.8±1.0
GAT 83.0±0.7 72.5±0.7 79.0±0.3 78.0±19.0 85.1±20.3 90.5±0.6 92.5±0.9
HGCN 78.0±1.0 68.0±0.6 76.5±0.6 82.1±0.0 90.5±0.0 90.5 ± 0.0 91.3±0.0

PEGN (True Diagram) 82.7±0.4 71.9±0.5 79.4±0.7 86.6±0.6 92.7±0.4 93.3±0.3 94.3±0.1

PEGN (GIN PI) 81.8±0.1 65.7±2.1 77.7±0.9 82.4±0.5 88.3±0.7 92.6±0.3 93.7±0.5
PEGN (PDGNN) 82.0±0.5 70.8±0.5 78.7±0.6 86.7±0.9 92.2±0.2 93.2±0.2 94.2±0.2

images, we use the W2 distance as the training loss, while the PIE is only used as an evaluation
metric. Given an input graph (e.g., Cora, Citeseer, etc.) and a filter function, we extract the k-hop
neighborhoods of all the vertices and separate these vicinity graphs randomly into 80%/20% as
training/test sets. We report the mean W2 distance between diagrams and PIE on different vicinity
graphs and all different filter functions.

Other settings. Following the settings in (Zhao et al., 2020; Yan et al., 2021), we extract 2-hop
neighborhoods of all the nodes in Cora, Citeseer, PubMed and 1-hop neighborhoods of all the nodes
in Photo, Computers, Physics, and CS. In the training process, we only adopt the W2 distance between
the predicted diagram and the ground truth diagram as the loss function, while the PIE between the
predicted persistence image and the ground truth persistence image only serves as an evaluation
metric.

We adopt Adam as the optimizer with the learning rate set to 0.002 and weight decay set to 0.01. We
build a 4-layer GNN framework with dropout set to 0. In the training process, we set the batch size to
10, and the training epoch to 20. In this paper, we also exploit a 2-layer MLP to transform the node
embedding obtained by the GNN to the persistence points on edges. In the whole model, PRELU is
adopted as the activation function, the dimension of hidden layers is set to 32, and the dimension of
the output persistence image is 25. All the experiments are implemented with two Intel Xeon Gold
5128 processors,192GB RAM, and 10 NVIDIA 2080TI graphics cards.

Notice that in normal computation of Wasserstein distance between PDs, the persistence points can be
paired to the diagonal or the persistence points in the other diagram. However, in the experiments, we
observe that with this loss the model may converge to local minima, e.g., all the predicted persistence
points are paired to diagonal. Therefore, the predicted points all converge to the diagonal and contain
no topological information. In case of these situations, we force the predicted points to pair with the
persistence points in the ground truth diagram rather than the diagonal in the training stage, and report
the normal W2 distance, that is, to let the predicted points pair with the diagonal in the inference
stage.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 APPROXIMATION QUALITY

In this section, we evaluate the approximation error between the predicted EPDs and the ground truth
EPDs.

Evaluation metrics. Recall that the input of our model is a graph and a filter function, and the output
is the predicted diagram. After obtaining the predicted diagram, we vectorize it with persistence
image Adams et al. (2017) and evaluate (1) the 2-Wasserstein (W2) distance between the predicted

14



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Table 5: AUC-ROC score on various link prediction benchmarks
Method Cora Citeseer PubMed Photo Computers

GCN 90.5± 0.2 82.6±1.9 89.6±3.7 91.8±0.0 87.8±0.0
GAT 72.8± 0.2 74.8±1.5 80.3±0.0 92.9±0.3 86.4±0.0
HGCN 93.8±0.1 96.6±0.1 96.3±0.0* 95.4±0.0 93.6±0.0
P-GNN 74.1±2.4 73.9±2.6 79.6±0.5 90.9±0.7 88.3±1.0
SEAL 91.3±5.7 89.8±2.3 92.4±1.2 97.8±1.3 96.8±1.5

TLC-GNN (True Diagram) 94.9±0.4 95.1± 0.7 97.0±0.1 98.2±0.1 97.9±0.1
TLC-GNN (GIN PI) 93.0±0.2 92.8±0.6 96.3 ± 0.2 95.8± 1.0 96.2±0.3
TLC-GNN (PDGNN) 95.0±0.3 95.6±0.4 97.0±0.1 98.4±0.6 98.2±0.3

diagram and the ground truth EPD, (2) the total square error between the predicted persistence image
and the ground truth image (persistence image error, denoted as PIE). Considering that our aim is
to compute extended persistence diagrams on graphs rather than roughly approximating persistence
images, we use the W2 distance as the training loss, while the PIE is only used as an evaluation
metric. Given an input graph (e.g., Cora, Citeseer, etc.) and a filter function, we extract the k-hop
neighborhoods of all the vertices and separate these vicinity graphs randomly into 80%/20% as
training/test sets. We report the mean W2 distance between diagrams and PIE on different vicinity
graphs and 4 different filter functions.

Baseline settings. PDGNN denotes our proposed method, that is, the GNN framework with the AGG
function and MSG function proposed in Section A.2. Its strategy is to first predict the EPD, and then
convert it into the persistence image. To show the superiority of the strategy, we compare with the
strategy from Som et al. (2020); Montufar et al. (2020), i.e., directly approximate the persistence
image of the input graph, as a baseline strategy. GIN PI and GAT PI denote the baseline strategy
with GIN Xu et al. (2018) and GAT Veličković et al. (2018) as the backbone GNNs.

To show the effectiveness of the modules proposed in Section A.2, we add other baselines with our
proposed strategy. GAT denotes GAT as the backbone GNN. GAT (+MIN) denotes GAT with the
new AGG function. Compared with PDGNN, it exploits the original node feature rather than the
new edge feature in the MSG function. PDGNN (w\o ew) denotes PDGNN without edge weight.
Further experimental settings can be found in the Appendix.

Results. Table 3 reports the approximation error, we observe that PDGNN outperforms all the baseline
methods among all the datasets. The comparison between GAT and GAT PI shows the benefit of
predicting EPDs instead of predicting the persistence image. Comparing GAT and GAT (+MIN), we
observe the advantage of the new AGG function, which shows the necessity of using min aggregation
to approximate the Find-Root algorithm; Comparing GAT (+MIN) and PDGNN, we observe the
effectiveness of using the new MSG function to help the model capture information of the separated
connected components. Comparing PDGNN (w\o ew) and PDGNN, we find the use of the edge
weight being helpful. Edge weights help the model focus on the individual Relax-Edge sub-algorithm
operated on every edge.

A.4.2 DOWNSTREAM TASKS

In this section, we evaluate the performance of the predicted diagrams on 2 graph representation
learning tasks: node classification and link prediction. To be specific, we replace the ground truth
EPDs in state-of-the-art models based on extended persistent homology (Zhao et al., 2020; Yan et al.,
2021) with our predicted diagrams and report the results.

Baselines. We compare our method with various state-of-the-art methods. We compare with
popular GNN models including GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2018) and
HGCN (Chami et al., 2019). For link prediction, we compare with several state-of-the-art methods
such as SEAL (Zhang & Chen, 2018) and P-GNN (You et al., 2019). Notice that GCN and GAT are
not originally designed for link prediction, therefore we follow the settings in (Chami et al., 2019;
Yan et al., 2021), that is, to get the node embedding through these models, and use the Fermi-Dirac
decoder (Krioukov et al., 2010; Nickel & Kiela, 2017) to predict whether there is a link between
the two target nodes. In comparison with the original extended persistence diagram, we also add
PEGN (Zhao et al., 2020) and TLC-GNN (Yan et al., 2021) as baseline methods. Furthermore, to
show the benefit of directly predicting EPDs, we also add the baseline methods PEGN (GIN PI) and

15



Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Table 6: Transferability in terms of different graph structures (W2 distance.)
Pre-train Cora Citeseer PubMed Photo Computers

Pre-train 0.392 0.279 0.444 0.379 0.404
Fine-tune 0.348 0.259 0.360 0.380 0.381
Standard 0.354 0.267 0.344 0.379 0.377

TLC-GNN (GIN PI), which replace the original persistent homology feature with the output from
GIN PI.

Evaluation metrics. For node classification, our setting is the same as (Kipf & Welling, 2016;
Veličković et al., 2018; Zhao et al., 2020). To be specific, we train the GNNs with 20 nodes from each
class and validate (resp. test) the GNN on 500 (resp. 1000) nodes. We run the GNNs on these datasets
10 times and report the average classification accuracy and standard deviation. For link prediction,
our setting is the same as (Chami et al., 2019; Yan et al., 2021). To be precise, we randomly split
existing edges into 85/5/10% for training, validation, and test sets. An equal number of non-existent
edges are sampled as negative samples in the training process. We fix the negative validation and
test sets, and randomly select the negative training sets in every epoch. We run the GNNs on these
datasets 10 times and report the mean average area under the ROC curve (ROCAUC) scores and the
standard deviation.

Results. Table 4 and Table 5 summarize the performance of all methods on node classification and
link prediction. We observe that PEGN (PDGNN) and TLC-GNN (PDGNN) consistently perform
comparably with PEGN and TLC-GNN, showing that the EPDs approximated by PDGNN have the
same learning power as the true EPDs. Furthermore, PEGN using the approximated EPDs achieve
better or comparable performance with different SOTA methods.

We also discover that PEGN (GIN PI) and TLC-GNN (GIN PI) perform much inferior to the original
models using the true EPDs. It demonstrates that the large approximation error from GIN PI lose
much of the crucial information which is preserved in PDGNN.

A.4.3 EXPERIMENTS ON TRANSFERABILITY

In this section, we design experiments to evaluate the transferability of PDGNN in terms of different
graph structures. Our aim is that with a pre-trained model, or simply fine-tuning the pre-trained model
can let the model predict EPDs on totally unseen graphs. Therefore, we use the models pre-trained
on Photo, and report the W2 distance between the predicted diagrams and ground truth EPDs. Notice
that we only use Ollivier-Ricci curvature (Ni et al., 2018) as the filter function. The results are shown
in Table 6.

In Table 6, “Pre-train” is to directly predict the EPDs with the pre-trained model, and “Fine-tune” is
to fine-tune an epoch on the new datasets, and then predict the EPDs. As shown in Table 6, directly
predicting the EPDs with the pre-trained model perform comparably with the standard settings among
datasets. We also observe that with only a one-epoch fine-tune, the pre-trained model can achieve
almost an equal performance compared with the standard setting. It justifies the fine transferability of
PDGNN.

The fine transferability makes it possible to apply the computationally expensive topological features
to a wide spectrum of real-world graphs; we can potentially apply a pre-trained model to large and
dense graphs, on which direct EPD computation is infeasible. In a totally new environment, instead
of training the models without pre-training for many epochs, we can simply fine-tune or even directly
use the pre-trained model to predict extended persistence diagrams on new graph structures.

A.4.4 EVALUATION ON THE INFLUENCE OF TRAINING SAMPLES

In this section, we evaluate the influence of training samples on PDGNN. Our aim is to show that the
model can reach an acceptable performance with only a small number of training samples.
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Table 7: Influence of training samples on PDGNN
Dataset Cora Citeseer PubMed
Proportion W2 PIE NCA W2 PIE NCA W2 PIE NCA

5% 0.391 2.51e-3 81.3±0.6 0.273 3.12e-3 70.0±0.7 0.330 4.35e-3 78.0±0.4
10% 0.358 1.88e-3 81.6±0.7 0.231 3.01e-3 70.5±0.5 0.300 2.36e-3 78.5±0.4
20% 0.318 6.99e-4 81.8±0.8 0.227 1.63e-3 70.6±0.5 0.278 1.03e-3 78.3±0.3
40% 0.286 9.79e-4 81.6±0.6 0.208 9.98e-4 70.9±0.6 0.255 1.34e-3 78.8±0.5
80% 0.241 4.75e-4 82.0±0.5 0.183 4.43e-4 70.8±0.5 0.256 8.95e-4 78.7±0.6

Figure 3: Influence of training samples.

Recall that for a given graph, we extract the k-hop neighborhoods of all the nodes and randomly select
80% of these vicinity graphs to train PDGNN. For a thorough evaluation, we train PDGNN with
5/10/20/40% vicinity graphs in this experiment and report the W2 distance of persistence diagrams,
the PIE of persistence images, and the node classification accuracy (NCA) in Table 7. We also
visualize the influence in Figure 3 and Figure 4.

As shown in Figure 3, the training error tends to converge as the training samples gradually increase.
Considering that the W2 distance and PIE cannot directly reflect the influence as NCA does, we
select a vicinity graph in Cora which is hard for PDGNN to learn and visualize in Figure 4. As shown
in the figure, as the number of training samples increases, we find that PDGNN can gradually capture
the ground truth persistent points in the up y-axis and the up-right diagonal with much less noise.
The number of training samples may help the model learn the hard samples better.

We can also observe that in Table 7, PDGNN can reach a comparable performance on NCA with
much fewer training samples. The observation shows that a little perturbation on the persistence
image will not influence its structural information very much.

Combining the observation in Section A.4.3 and Section A.4.4, we can draw a conclusion that our
model can be easily generalized to other frameworks. PDGNN does not need many training samples
to reach an acceptable performance, while it can be easily transferred to totally unseen graphs.

A.4.5 EXPERIMENTS ON GRAPH CLASSIFICATION DATASETS.

In the experiment part (Section 4), we only consider predicting EPDs in the k-hop neighborhoods
of the original graphs. Even if these vicinity graphs can be large and dense, there are fundametal
structural differences between these vicinity graphs and other real-world graphs. For example, in a
k-hop neighborhood of node u, the distance between a node u1 to the other node u2 is at most 2k:
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(a) (b)

(c) (d)

Figure 4: Visualization on the influence of training samples. We select a vicinity graph in Cora
with Ollivier-Ricci curvature as the filter function, and plot the influence of training samples the W2

distance (loss) of EPDs. (a), (b), and (c) denote the prediction of PDGNN with 5/10/20% training
samples, (d) denotes the prediction of PDGNN with the standard setting.
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Table 8: Statistics and approximation error on the graph classification datasets
Dataset Graphs Avg Nodes Avg Edges W2 PIE

MUTAG 188 17.9 39.6 0.300 3.06e-4
ENZYMES 600 32.6 124.3 0.299 3.72e-3
PROTEINS 1113 39.1 145.6 0.194 8.30e-4
IMDB-BINARY 1000 19.8 193.1 0.176 4.13e-4
REDDIT-BINARY 2000 429.6 995.5 0.383 1.92e-4

d(u1, u2) ≤ d(u1, u) + d(u2, u) ≤ k + k = 2k. However, in a real-world graph, the distance can be
very long.

Observation. Assume that our aim is to find a loop generated by two connected components that
originate from the same node. An example is shown in Figure 1 (c), in which the two connected
components C14 and C13 are combined when node u4 arises. In every message passing iteration,
the Union-Find-step algorithm will only run the Relax-Edge function once. If starting from the
connected component C14 , the algorithm needs 1 GNN layer to find node u4. Similarly, if starting
from the connected component u13, the algorithm needs 2 GNN layers to find node u4. Therefore,
the algorithm needs max(1, 2) = 2 GNN layers to find node u4. In conclusion, to find a loop
generated by two connected components c1 and c2, the algorithm needs max(d1, d2) layers to obtain
the persistence point, where d1 (resp. d2) denotes the distance from c1 (resp. c2) to the node that the
two connected components are combined. Therefore, we can use a 2k-layer PDGNN to obtain the
persistence points of all the potential loops in a k-hop neighborhood. In the settings of (Zhao et al.,
2020; Yan et al., 2021), k is at most 2. Consequently in Section 4, we set the layer of PDGNN to 4
and achieve a promising approximation result.

In this section, we do further experiments on graph classification datasets, in which we approximate
the EPDs on the original graph rather than the vicinity graphs. We exploit the datasets from the
TU Dortmund University (Morris et al., 2020), the detailed information of these datasets and the
approximation error are all available in Table 8.

Notice that we do not add Ollivier-Ricci curvature as the filter function here, because computing the
filter function on all the graphs will bring too much computational cost. Comparing the results from
Table 8 and Table 4, we observe that the performance on graph classification datasets is generally
worse. There are 2 possible explanations: (1) In the graph classification datasets, the training samples
can be very small, e.g., there are only 188 graphs in MUTAG, therefore PDGNN has not well
approximated the algorithm. (2) As discussed above, the diameter of these graphs can be large,
therefore extra GNN layers are needed to execute the algorithm. However, we discover that the
increasing of GNN layers only brings little improvement to the approximation error. This can be due
to the well-known vanishing gradient problem in deep learning models.

To evaluate the results more clearly, we also visualize some selected examples in Figure 5. As shown
in the figure, in most situations, PDGNN can well execute the EPDs on these graphs, and the W2

distance around 0.3 is generally an acceptable result. However, in certain cases like Figure 5 (d), the
model only captures a tendency of the EPD. This can be due to the long diameter of the graph.
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(a) (b)

(c) (d)

Figure 5: Visualization of graph classification samples. We select samples from IMDB-BINARY,
PROTEINS, ENZYMES, and REDDIT-BINARY, respectively, and report the W2 distance (loss).
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