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Abstract—In this paper, we attempt to fine-tune the CLIP
(Contrastive Language-Image Pre-Training) model on the Lifelog
Question Answering dataset (LLQA) to investigate retrieval
performance of the fine-tuned model over the zero-shot baseline
model. We train the model adopting a weight space ensembling
approach using a modified loss function to take into account
the differences in our dataset (LLQA) when compared with
the dataset the CLIP model was originally pretrained on. We
further evaluate our fine-tuned model using visual as well as
multimodal queries on multiple retrieval tasks demonstrating
improved performance over the zero-shot baseline model.

Index Terms—lifelogging, image retrieval, pretrained models

I. INTRODUCTION

”Where are my car keys?”. Human memory can be fallible
and unreliable, though it is undoubtedly a vital cognitive
ability [1]. We humans tend to constantly forget trivial things,
such as failing to remember the location of our things, details
about a recent event, or simply struggling to remember the
name of the person we just met. In this work, we are interested
in augmenting human memory by building a digital twin of an
individual that can answer all such daily informaiton needs.

Lifelogging, as defined by [2], is the process of passively
capturing a personal digital collection of daily life experiences
using a variety of devices such as wearable cameras, tracking
devices such as Fitbit and other wearable sensor devices. As a
concept, lifelogging was introduced in Vannevar Bush’s 1945
article ‘As We May Think’ [3] where he discusses about
a ”future mechanised device” which acts as an ”enlarged
intimate supplement of an individual’s memory” storing all
his books, records, communications and can be consulted with
”exceeding speed and flexibility”.

The last two decades have witnessed growing attention to
lifelogging after MyLifeBits [4] was proposed by Gemmell
and Bell in the early 2000s. Further, with the advancement
of sensor technology, the availability of cheap storage fa-
cilities and cost-efficient wearable devices recording one’s
life passively has become feasible, and hence lifelogging has
witnessed a surge in interest from the research community
over time. Due to the sheer variety of data collected, lifelog
data have been used to address various use cases in research

domains such as signal processing [5], [6], natural language
processing [7], [8], computer vision [8], [9], and human-
computer interactions [10].

Information retrieval from lifelogs to realise the goal of
memory augmentation is, however, a very challenging problem
as human memory is pervasive and immediate while retrieval
from lifelogs using implicit queries is an iterative and cumber-
some process. The multimodal characteristics of lifelog data,
which includes data from multiple sources such as egocentric
images, textual data specifying details like location, time, date
and biometrics as well as it being a noisy and repetitive
archive due to passive data collection over longer periods of
time, further adds to the challenges of developing an effective
retrieval system.

Recent models like Contrastive Language-Image Pre-
Training (CLIP) [11], A Large-scale ImaGe and Noisy-text
embedding (ALIGN) [12], etc. which leverages the supervision
inherent in natural language texts to learn generalised vision-
language representations that can further be used to solve
multiple downstream tasks such as information retrieval, object
recognition, scene recognition have seen tremendous success
on multiple benchmarks. The zero-shot CLIP model [11]
beats several supervised baselines on multiple datasets, show-
ing robust transfer capability when applied to out-of-domain
datasets. However, as discussed in Section II-B the model fares
poorly when applied to certain specialised datasets, which
motivated us to experiment with model fine-tuning on lifelogs
and compare the performance with the zero-shot model.

This work aims to investigate whether fine-tuning the CLIP
model on domain-specific data improves the model’s perfor-
mance when compared with the zero-shot baseline model to
solve the task of lifelog information retrieval. Our contribu-
tions in this paper are as follows.

• We attempt to fine-tune the CLIP model on an in-the-
wild egocentric multimodal dataset (Lifelogs), which to
the best of our knowledge is the first work done in this
direction.

• We devise a modified loss function to accommodate the
structure of the dataset we use to fine-tune the CLIP
model.



• We evaluate our fine-tuned model on multiple retrieval
tasks using both visual and multimodal queries demon-
strating superior performance over the zero-shot baseline
model.

The results of this study will provide insight into the design
decisions of lifelog retrieval systems in the future. The rest
of the paper is structured as follows: Section II discusses
the efforts carried out so far to fine-tune the CLIP models
on various niche datasets, as well as briefly covering the
major milestones achieved so far at a high level in the area
of transfer learning. Subsequently, Section III discusses the
question answering LLQA dataset which has been used to
fine-tune the CLIP model followed by a detailed discussion on
our adopted methodology. Finally, in Section IV, we evaluate
the performance of our fine-tuned model over the zero-shot
baseline using both visual queries as well as multimodal
queries as input.

II. RELATED WORK

A. Transfer Learning

Curating a high-quality, large-scale annotated dataset is a
challenge in many specialised research domains, making it
hard to train large deep learning models from scratch. Trans-
fer learning aims to solve this issue of insufficient training
data by ’transferring’ knowledge from a data-abundant source
domain to a data-scarce target domain [13]. For a long time
now, researchers have used pretrained features from ImageNet
[14] to solve several downstream computer vision tasks such
as image classification, object detection, action recognition,
image segmentation, etc. In recent years, transfer learning in
the form of pretrained language models [15] [16] [17] based on
the tranformer architecture [18] has become quite ubiquitous
in the field of natural language processing as well, achieving
state-of-the-art performance in areas like machine translation,
natural language inference, etc.

Recently, models like CLIP [11] and ALIGN [12] gener-
ating zero-shot transferable representations have made a leap
forward towards generalised models which can work without
any data-specific fine-tuning. However, as discussed in Section
II-B, zero-shot transfer to few specific domains is still very
challenging. Consequently, several recent works have tried to
leverage the pretrained CLIP model to further improve its
performance by fine-tuning it on various specialised datasets
and have demonstrated competitive performance over the zero-
shot model.

B. Fine-tuning CLIP

As discussed in [11], the zero-shot CLIP model has shown
significant gains over the performance of fully supervised
ResNet-50 [19] baselines trained on several datasets. How-
ever, the zero-shot model fails to surpass the performance of
supervised models on a few specialised datasets such as Eu-
roSAT [20] and RESISC45 [21] (satellite image classification),
PatchCamelyon [22] (lymph node tumour detection), CLEVR-
Counts [23] (counting objects in synthetic scenes), GTSRB
[24] (German traffic sign recognition), KITTI Distance [25]

(recognising distance to the nearest car), which shows the
room for improvement for such complex and niche datasets.

Several recent works have tried to fine-tune the network
to improve its performance over specialised datasets in order
to address abstract problems. Clip-Art [26] aims to solve the
problem of retrieving and classifying fine-grained attributes
of artwork images by fine-tuning the network on the iMet
dataset. PointCLIP [27] fine-tuned the model with the objec-
tive of transfer learning across different modalities. It learns
to efficiently transfer representations learnt from 2D images to
do cross-modality zero-shot recognition on a 3D point cloud.
Arutiunian et al. [28] fine-tuned the model on satellite images
and captions from the RSICD dataset [29] to support satellite
image retrieval using queries in natural language. In addition,
ActionCLIP [30] applied the model to perform video action
recognition.

Another line of work focusses on strategies and techniques
to robustly fine-tune the CLIP model. CLIP Adapter [31]
adopts a lightweight bottleneck architecture to prevent the
potential overfitting problem of few-shot learning by reduc-
ing the number of parameters and only fine-tuning a small
number of additional weights instead of optimising all CLIP
parameters. Tip-Adapter [32] (Training free CLIP-Adapter)
further improves over CLIP-Adapter [31] by doing away with
stochastic gradient descent to train the adapter and instead
constructing a query-key cache model from few-shot super-
visions to obtain the weights of the adapter. WiSE-FT [33]
proposed to do weight space ensembling between zero-shot
and fine-tune models to preserve the model’s accuracy under
data distribution shift.

We attempt to fine-tune the CLIP model on the lifelog
dataset, which is a in-the-wild egocentric multimodal dataset
adopting the weight-space ensembling approch from [33]
demonstrating encouraging results.

C. Lifelog Retrieval

Effective information retrieval from lifelogs has been a long-
standing challenge given the multimodal nature and size of the
dataset as well as the very specific nature of information users
would want to retrieve from it. In the recent few years, several
benchmarking challenges have been organized like the Lifelog
Search Challenge [34], ImageCLEF Lifelog tasks [35]–[38],
NTCIR-Lifelog tasks [39]–[42] to advance the state of the art
in lifelog information retrieval.

LSC over the years has seen participation of many video
retrieval systems having previously participated in the VBS
Challenge and tweaked to support lifelog retrieval [43]–[45].
Systems like Exquisitor [46], THUIR [47] proposed to use
relavance feedback from users to guide the search process.
Virtual reality systems [48]–[50] providing a fully-immersive
experience to the search process have also been popular due to
their unique interactivity. Likewise several past systems lever-
aged visual concepts derived from object detection models
to build their retrieval engines [51]–[54]. Recently, approches
leveraging multimodal embeddings [55] and in particular the



zero-shot CLIP model for lifelog retrival have surpassed prior
state-of-the-art techniques in the field [56]–[60].

III. EXPERIMENT SETUPS

A. Lifelog captions

Fig. 1. Examples of annotated descriptions in the updated LLQA dataset.
The first example feature general narrative descriptions for a longer episode
of activity. The second one include details in a single image, usually when
the lifelogger was moving and the surroundings change considerably. Each
sentence in these descriptions count as one caption in the LLQA dataset used
to fine-tune CLIP models.

TABLE I
STATISTICS OF THE NUMBER OF IMAGES THAT ONE CAPTION DESCRIBES.

#captions mean min 25th 50th 75th max

Original 11398 15.89 1 5 8 15 297
Updated 1919 3.39 1 1 1 1 112

To generate a dataset to fine-tune the CLIP models, we
utilise the lifelog question answering dataset LLQA [61],
which includes questions and answers automatically generated
from human-annotated captions. Although LLQA was not
created for the purpose of this paper, the number of lifelog
captions collected is the largest to the best of our knowledge. A
total of 11,398 captions are available in the dataset, describing
daily activities on 85 days of lifelog. However, since this
work was an initial attempt at lifelog captioning and question
answering, a large portion of the descriptions are too vague
and not specific enough for some use cases (as previously
seen in some queries in the Lifelog Search Challenges (LSC)
[34], [62], [63]). For this reason, since the publication, we
have added more captions to the original dataset, including
more detailed descriptions that are more suitable. An addition
of 1,919 captions is added, which describe details of each
image instead of vague, general activities. The comparison
between these two parts of the dataset is presented in Table I.
Furthermore, Figure 1 shows two examples from the dataset.

One challenge in adapting this dataset is that the description
can describe a period of activity, including multiple images,
some of which do not match the caption individually. Thus,
we filter the dataset to choose only instances where the caption
covers at most 15 images to reduce the possibility of ill-
matched pairs of caption and image. The chosen instances are
then divided into a training set and a validating set, as detailed
in Table II to fine-tune the CLIP models, making sure there
are no overlapping images between the two sets.

TABLE II
LLQA DATASET SPLITS TO FINE-TUNE CLIP MODELS.

Split #image-caption pair #unique images #unique captions

Train 11982 6328 2916
Validate 1234 421 328

B. Fine-tuning CLIP models

CLIP models [11] were originally designed to match a
single image with a single caption. However, since the descrip-
tions we use often span across multiple images, we modify the
loss function accordingly to take into account this character-
istic. For every mini-batch, with T as text embedding matrix,
I as image embedding matrix, we calculate text similarity ST

and image similarity SI using the cosine similarity function in
Equation 5. The pairwise similarities between text and image,
which are Logits, are aimed to match with the mean self
similarity (of text and image) Target using cross-entropy loss,

ST =
T ·Tτ

∥T∥∥Tτ∥
; SI =

I · Iτ

∥I∥∥Iτ∥
(1)

Logits =
T · Iτ

∥T∥∥Iτ∥
; Target = σ

(
c · ST + SI

2

)
(2)

Loss = crossEntropy(Logits, Target) (3)

where σ is the softmax function and c is the logit scale.
Due to our limitation of GPU power, we could not fine-

tune the best performing model, ‘ViT-L/14’, amongst the
public releases. Instead, we choose to use the pretrained ‘ViT-
B/32’ and ‘ViT-B/16’ for our experiments. In order to prevent
overfitting, we selected the largest minibatch size possible
on our machine, which is 48 and 24 for the two models,
respectively. We use Adam Optimiser [64] with a weight
decay regularization [65] of 0.01, except for gains or biases,
and decay the learning rate using a cosine scheduler [66].
Large pretrained CLIP models can perform zero-shot inference
with consistent accuracy across a variety of data, which is
a valuable characteristic that we want to maintain. For this
reason, Wortsman et al. [33] suggested the idea of interpolating
the weights between the fine-tuned model and the original to
improve robustness. In other words, the final weights of the
model are as follows.

θfinal = (1− α) · θoriginal + α · θfine-tuned (4)

The authors suggest choosing α = 0.5 as it produced near
optimal performance in various experiments. More details on
how α affects the performance of the models are provided in
Section IV.

IV. EVALUATION AND RESULTS

Despite a large proportion of lifelog data are images,
lifelog data are intrinsically multimodal. As CLIP models are
incapable of explicit information, such as time or date, in this
section, we will adopt CLIP models in two ways:



TABLE III
SOME EXAMPLES OF THE TASKS IN LSC’21 AND THE CORRESPONDING INPUTS FOR THE CLIP MODELS.

Task ID Original Hints Transformed Hints

4

(1) I needed to buy a blood pressure monitor. (2) So I was looking in a pharmacy (3)
that sold Omron and Braun devices. (4) Afterwards, I waited for a long time in my
dentist office, (5) before getting a coffee/bagel and driving to my own office. (6) It was
in 2016.

(1) Looking to buy a blood pressure monitor
(2) in a pharmacy (3) that sold Omron and
Braun devices.

18

(1) I was looking at small computer chips on rolls. (2) It was in a small university
electronics laboratory in China. (3) There were at least 100 rolls of small computer
chips. (4) It was part of a tour of computing and engineering facilities (5) and I was
with a small delegation of people. (6) It was in May 2018.

(1) Looking at small computer chips on
rolls (2) in a small university electronics
laboratory (3) which had at least 100 rolls.

• Image-only: we simplify the queries and include only
content-based description;

• Multimodal: we incorporate CLIP model with query
parsing, automatically extract non-visual information
from the query and apply corresponding other search
operations.

Two metrics are used to evaluate the models:
• Hit rate at K (H@K): H@K = 1 means that one of

the target images appears in the top K of the result set.
Otherwise, H@K = 0;

• Average Precision (AP@K): the mean of the precision
scores after each relevant document is retrieved, where
K is the total of relevant documents.

A. Image-only

The most recent iteration of the Lifelog Search Challenge,
LSC’21 [34], presented a total of 23 queries with various
difficulty levels. Each query was gradually revealed over a
30-second time interval, showing more hints of visual descrip-
tions, time, location, etc. For this experiment, we simplify the
queries and consider only three time steps, in a way similar to
the approach in [56]. Some examples of the original queries
and the simplified hints are shown in Table III.

For each query, we encode the query using the textual
encoder of the CLIP model and calculate the similarity score
of each image with the text embedding. The images are
then ranked on the basis of their similarity score. With q as
the encoded search query, and c as the encoded image, the
similarity is defined as:

cos(q, c) =
qc

∥q∥∥c∥
=

∑n
i=1 qici√∑n

i=1 (qi)2
√∑n

i=1 (ci)
2

(5)

The task of LSC is to find one instance of the lifelog
moment that matches the search query. Thus, we use the Hit
rate at K to measure the performance on these queries. The
performance of the public release version of ViT-B/16 can be
seen in Table IV, which shows the average H@K of each time
step.

As mentioned in the previous section, we assemble the
fine-tuned CLIP model with the original pretrained weights.
To choose the best value for the interpolation parameter α,

Fig. 2. Affect of α on H@5 when interpolation the fine-tuned models.

TABLE IV
ORIGINAL CLIP VIT-B/16 PERFORMANCE ON 23 QUERIES OF LSC’21

H@1 H@3 H@5 H@10 H@20 H@50 H@100

h=1 0.17 0.22 0.22 0.26 0.35 0.48 0.52
h=2 0.17 0.22 0.22 0.35 0.43 0.52 0.52
h=3 0.26 0.30 0.35 0.35 0.48 0.57 0.61

we recorded H@5 scores across all interpolated models to
assess the influence of α. In general, the fine-tuned models
increased the retrieval result after fine-tuning, as can be seen
when α = 1.0. For the Vit-B/32 model, the increase in
H@5 is mostly positively correlated with alpha. However,
the pattern for the interpolated weights for ViT-B/16 models
is less definite. However, the H@5 scores tend to be higher
around the middle point when using two and three hints. For
this reason, with the original suggestion from [33], from this
point on, we choose to evaluate the fine-tuned ViT-B/16 with
α = 0.5 on different tasks and address it as LifelogCLIP for
the sake of simplicity.

The performance of LifelogCLIP is detailed in Table VI.
The table shows an increase in almost all hit rates, compared
to the original result in Table IV. Surprisingly, the H@1 score
for h = 2 is lower than that of h = 1, considering the intuitive
assumption that more hints should increase the score, as seen
in other cases. This can be explained by the fact that CLIP
classifiers can be sensitive to wording or phrasing [11]. Hence,
adding more information, which changes the phrasing, does
not always improve the performance. Other than that, the most
significant improvements tend to be in the first row where
h = 1 and in lower values K. This proves that the fine-tuned



TABLE V
INPUTS OF THE SAME TASKS IN TABLE III FOR LIFELOGCLIP IN E-MYSCÉAL.

* INDICATES OMITTING INFORMATION DUE TO THE LIMITATION OF THE SYSTEM.

Task ID Before Main After

4 Buying a blood pressure monitor in a pharmacy that
sold ”Omron” and ”Braun” device in 2016.

I waited for a long time in my
dentist office.*

18
A tour of computing and engineer-
ing facilities and I was with a small
delegation of people

I was looking at small computer chips on rolls. There
were at least a hundred rolls of small computer
chips. It was in a small university electronics
laboratory in China in May 2018

TABLE VI
LIFELOGCLIP (FINE-TUNED CLIP VIT-B/16 WITH α = 0.5)

PERFORMANCE ON 23 QUERIES OF LSC’21

H@1 H@3 H@5 H@10 H@20 H@50 H@100

h=1 0.26 0.30 0.30 0.35 0.35 0.52 0.65
h=2 0.21 0.35 0.43 0.48 0.48 0.57 0.65
h=3 0.30 0.43 0.48 0.48 0.52 0.61 0.65

model more effective in ranking the results.

B. Multimodal

Taking into account temporal and spatial clues, we incorpo-
rate the LifelogCLIP model with the query parsing unit from
E-MyScéal [51], a state-of-the-art interactive lifelog retrieval
system. To facilitate free-text querying (as opposed to using
multimodal faceted filters), the component detects location
names, as well as date and time format using part-of-speech
tagging, semantic role labelling, and regex matching.

1) LSC’21 queries: LSC’21 queries are complex and usu-
ally include multiple temporal-related events. To address these
queries, the user interface of E-MyScéal accepts up to three
temporal hints as ‘before’, ‘main’, and ‘after’ queries to
address the temporal context in the original search query. Thus,
we manually split the LSC’21 queries into temporal queries if
needed. Examples of transformed hints are shown in Table V.
Note that in some cases, there are more than one ‘before’
events or more than one ‘after’ events. Due to the limitation of
E-MyScéal, we only use the first event in order of appearance.
For example, the fifth clue of ‘before getting a coffee/bagel and
driving to my own office’ in Task 4 (Table III) is omitted.

TABLE VII
MEAN H@K FOR LSC’21 QUERIES, USING ALL HINTS.

H@1 H@3 H@5 H@10 H@20 H@50 H@100

0.52 0.65 0.74 0.74 0.74 0.74 0.74

Using all hints, E-MyScéal’s LifelogCLIP can find the
answer to more than half of the queries in the first result
as seen in Table VII. Interestingly, there is no difference in
the hit rates when k ≥ 10. Since the interface of E-MyScéal
can accommodate 12 events at once, this minimises the user’s
effort to scroll further down the result page.

2) Comparing with baselines on NTCIR-13 lifelog queries:
Since LSC’21 queries are aimed at retrieving a specific mo-
ment in lifelog data, hit rate is a suitable metric for evaluation.
We also want to assess LifelogCLIP for a different type of
lifelog retrieval task with another conventional information
retrieval metric: average precision (AP@K). About half of the
queries in the NTCIR-13 lifelog challenge focus on retrieving
many instances of an activity. We choose the first ten queries
and compare LifelogCLIP with the reported performance of
two state-of-the-art embedding models from [8]. Similarly, we
also used the cut-off point at 10 to calculate AP.

Fig. 3. Top 10 retrieved result from the first two tasks in NTCIR-13.

Table VIII details the task descriptions and the performance
of the baseline models and LifelogCLIP. For each description,
we remove the first part of ”Find the moment when” or similar
phraseing and use only the action (”I was eating lunch”) as
the search query. As we can see from the table, LifelogCLIP
achieved a higher score on most tasks, an equal score on one
task, and a lower score on two tasks. Figure 3 illustrates the
retrieval results using LifelogCLIP with query parsing. Since
we are using LifelogCLIP on an image level, several results
in the figure belong to the same event cluster.

The automatic retrieval results of multimodal LifelogCLIP
on LSC’21 queries and NTCIR-13 lifelog queries demonstrate
that the incorporation of CLIP models can increase the per-
formance of lifelog moment retrieval on both metrics that we
proposed at the beginning of the section.



TABLE VIII
THE AP@10 EVALUATED ON THE FIRST 10 TASKS OF NTCIR-13, COMPARED TO THE BASELINE APPROACHES IN [8]

Task Description Caption Joint embedding LifelogCLIP

1 Find the moments when I was eating lunch 0.65 0.88 0.88
2 Find moments when I was gardening in my home 0.12 0.23 0.40
3 Find the moment when I was visiting a castle at night 0.51 0.67 0.78
4 Find the moments when I was drinking coffee in a cafe 0.60 0.70 0.88
5 Find the moments when I was outside at sunset 0.56 0.64 0.51
6 Find the moments when I visited a graveyard 0.54 0.43 1.00
7 Find the moments when I was lecturing to a group of people in a classroom environment 0.35 0.55 0.58
8 Find all the moments when I was grocery shopping 0.62 0.68 1.00
9 Find the moments when I worked at home late at night 0.67 0.71 0.66

10 Find the moments when I was working on the computer at my office desk 0.57 0.85 1.00

V. CONCLUSION

This paper has described our efforts to fine-tune the CLIP
models by collecting annotated lifelog descriptions, modifying
a loss function for fine-tuning, and evaluating the fine-tuned
model on different lifelog retrieval tasks. Its performance
is also compared with the baseline multimodal embedding
models for lifelog. In summary, we have obtained encouraging
results, demonstrating that integrating the fine-tuned CLIP
model with query parsing can comparatively enhance the
retrieval performance. However, some limitations should be
considered. First, the LLQA [61] dataset used for fine-tuning,
despite being the best free-form collection of lifelog, is not
in the format where CLIP models are usually trained (i.e.
having exact matching image-caption pairs). Second, the size
of the dataset is tremendously small for a deep learning task
and might not have introduced enough difference for the
model to better adapt to lifelog data. Lastly, CLIP models
are incapable of taking into consideration the temporal aspect
of lifelog. More studies are needed to explore these points.
In particular, research on solving the last point is already
in progress. Additionally, CLIP models, especially the more
powerful pretrained versions, are being integrated in more
systems in the next Lifelog Search Challenge [63] in various
approaches. This provides us a great oppurtunity to ascertain
the performance of CLIP models in the future.
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