

ON THE EMERGENCE OF INDUCTION HEADS FOR IN-CONTEXT LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Transformers have become the dominant architecture for natural language pro-
 012 cessing. Part of their success is owed to a remarkable capability known as *in-*
 013 *context learning* (ICL): they can acquire and apply novel associations solely from
 014 their input context, without any updates to their weights. In this work, we study
 015 the emergence of *induction heads*, a previously identified mechanism in two-layer
 016 transformers that is particularly important for in-context learning. We uncover a
 017 relatively simple and interpretable structure of the weight matrices implementing
 018 the induction head. We theoretically explain the origin of this structure using a
 019 minimal ICL task formulation and a modified transformer architecture. We give
 020 a formal proof that the training dynamics remain constrained to a 19-dimensional
 021 subspace of the parameter space. Empirically, we validate this constraint while
 022 observing that only 3 dimensions account for the emergence of an induction head.
 023 By further studying the training dynamics inside this 3-dimensional subspace, we
 024 find that the time until the emergence of an induction head follows a tight asymp-
 025 totic bound that is quadratic in the input context length.

1 INTRODUCTION

029 How does intelligence emerge from *gradient descent*? Large language models (LLMs) have
 030 achieved highly advanced reasoning abilities, yet we still lack a principled account of how com-
 031 plex reasoning behaviors emerge from this simple learning rule. Understanding the inner workings
 032 of LLMs is an important avenue towards developing novel AI systems with increased reliability and
 033 efficiency.

034 LLMs possess a remarkable ability known as *in-context learning* (ICL). A well-trained language
 035 model can learn and apply novel associations from their input context, without additional parameter
 036 updates (Brown et al., 2020). This is in stark contrast to traditional *in-weights learning*, where novel
 037 associations are directly encoded into the model weights.

038 Previous work by Olsson et al. (2022) traces back the majority of transformers’ ICL capabilities to a
 039 learned mechanism termed *induction head*: a pair of two consecutive attention heads that implement
 040 a simple but powerful copying rule $[\dots, A, B, \dots, A] \rightarrow B$. Empirical work has shown that the
 041 formation of induction heads co-occurs with a sharp decrease in the training loss and an increase in
 042 ICL accuracy (Olsson et al., 2022; Reddy, 2023). This motivates the question of the current study:

043 *How do induction heads emerge during training?*

045 While a number of theoretical studies have established the emergence of induction heads using
 046 specific staged learning algorithms Nichani et al. (2024a); Bietti et al. (2024), the precise learning
 047 dynamics during standard training remain elusive. To answer this question, we study the training
 048 dynamics of an autoregressive two-layer transformer using a minimal ICL task formulation (defined
 049 in §3) and simplified architecture. We show that in the proposed setup, only 19 dimensions of
 050 parameter space have non-zero gradients and therefore govern the entire learning trajectory. Then,
 051 we empirically show how only 3 dimensions of the parameter space are needed to form an induction
 052 head. In this reduced and interpretable parameter space, we explicitly study the dynamics of the
 053 three pseudo-parameters and analyze the formation of induction heads.

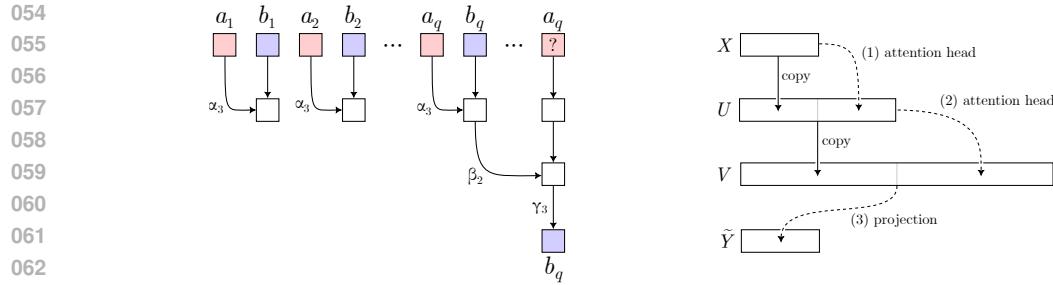


Figure 1: *Left*: an induction head solving the *in-context learning* (ICL) task. Given a series of item-label pairs, the model predicts the correct label for a query item. The first attention head retrieves the corresponding item for each label, enabling the second attention head to retrieve the correct label. Each path is modulated by one pseudo-parameter (α_3 , β_2 , or γ_3). *Right*: our minimal transformer architecture. We use two attention-only layers and a linear layer. We disentangle the attention layers by concatenating the inputs and outputs, rather than adding them together.

Concretely, our contributions are as follows:

1. We train and interpret a standard attention-only transformer on an ICL task (§2). We find a relatively simple and highly interpretable **description of the weight matrices** that implement and induction head.
2. Using a minimal ICL formulation, we give a formal proof that training dynamics induce a simplified structure of the weights (§4). The evolution of model weights stays within a 19-dimensional subspace of the entire parameter space, regardless of model or task size. We index this subspace by introducing **19 pseudo-parameters**.
3. We empirically find that only **3 pseudo-parameters** are learned at the end of training, corresponding exactly to an induction head (§5). We also find that the emergence of the 3 parameters is *self-contained*, unaided by the presence of the other 16 parameters.
4. We theoretically study the training dynamics of the induction head, assuming that only the 3 parameters are learnable (§6). We prove that the 3 parameters always emerge in a specific sequence. We also prove asymptotic bounds for the emergence time for each parameter in terms of the context length, as well as a **tight bound on the total emergence time**.

Finally, we also provide empirical validation for our theoretical results.

2 INDUCTION HEADS

Induction heads are attention heads that implement a simple but powerful algorithm. Given a prompt of the form $[\dots, A, B, \dots, A]$, an induction head predicts the token which follows the previous occurrence of A , in this case being B . Note that induction heads are not a modified type of attention head, but rather a mechanism learned by regular attention heads during standard training.

Induction heads are composed of two attention layers. The first attention layer retrieves the value of A into B by attending to the previous token using positional embeddings. The newly obtained value enables the second attention layer to retrieve B from the second occurrence of A . Note that two layers are necessary to solve the task since B and the second A initially have no shared information.

2.1 SETUP

In order to understand how induction heads are implemented, we train an autoregressive transformer following the recipe of Vaswani et al. (2017). We train the model using synthetic data to predict the label of a query item based on the preceding item-label pairs, as depicted in Fig. 1 (left). We use only two attention-only layers with one attention head per layer. We remove MLPs since they are neither necessary nor useful for the task at hand. We specify the full training details in App. E.

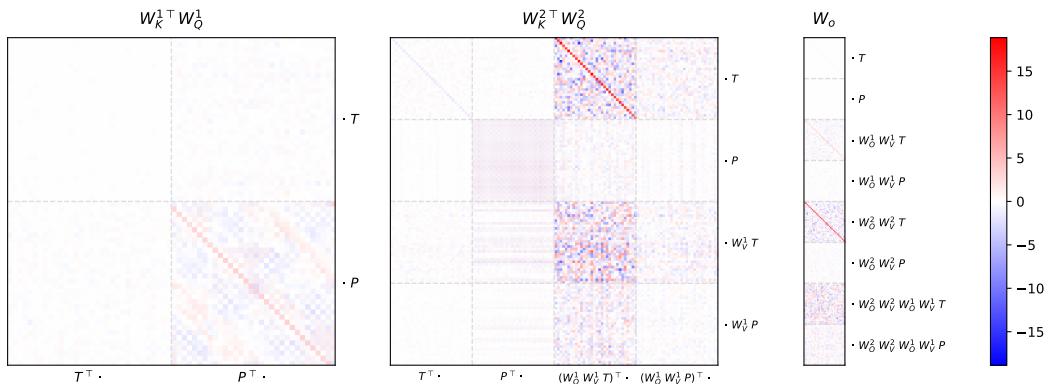
108
 109
Notation. Our model has token embeddings $\mathbf{E} \in \mathbb{R}^{D \times N_E}$ and positional embeddings $\mathbf{P} \in \mathbb{R}^{D \times N_P}$. The layer $l \in \{1, 2\}$ has the query, key, value, and output matrices $\mathbf{W}_Q^l, \mathbf{W}_K^l, \mathbf{W}_V^l \in \mathbb{R}^{D_H \times D}$, and $\mathbf{W}_O^l \in \mathbb{R}^{D \times D_H}$, respectively. A final linear output layer $\mathbf{W}_o \in \mathbb{R}^{N_E \times D}$ is applied.
 110
 111
 We denote the embedding of token i as $\mathbf{e}_i \in \mathbb{R}^D$ and the embedding of position i as $\mathbf{p}_i \in \mathbb{R}^D$. Our
 112
 model is configured with $D = D_H = 2048$ and $N_E = N_P = 32$.
 113

114 115 2.2 WEIGHT MATRIX STRUCTURE 116

117
 118 There are only 4 sub-spaces of the residual stream that are ever activated. First, there is the space
 119 spanned by the initial token and positional embeddings, \mathbf{e}_i and \mathbf{p}_i . Second, there is the space where
 120 the first head writes the retrieved embeddings, $\mathbf{W}_O^1 \mathbf{W}_V^1 \mathbf{e}_i$ and $\mathbf{W}_O^1 \mathbf{W}_V^1 \mathbf{p}_i$. Third, there is the
 121 space where the second head writes the retrieved embeddings, $\mathbf{W}_O^2 \mathbf{W}_V^2 \mathbf{e}_i$ and $\mathbf{W}_O^2 \mathbf{W}_V^2 \mathbf{p}_i$. Finally,
 122 the second head could retrieve the output of the first head, creating a fourth subspace spanned by
 123 $\mathbf{W}_O^2 \mathbf{W}_V^2 \mathbf{W}_O^1 \mathbf{W}_V^1 \mathbf{e}_i$ and $\mathbf{W}_O^2 \mathbf{W}_V^2 \mathbf{W}_O^1 \mathbf{W}_V^1 \mathbf{p}_i$.
 124

125 Since there are N_E tokens and N_P positions, each of the four subspaces will have $N_E + N_P$ dimensions.
 126 Moreover, each subspace is highly interpretable, as it can be indexed directly by the
 127 corresponding token or positional embedding. Therefore, the residual stream of our attention-only
 128 model always remains constrained to a highly interpretable $4(N_E + N_P)$ -dimensional subspace.
 129

130 Using these interpretable directions, we can understand the mechanism performed by each layer. For
 131 example, $\mathbf{p}_i^\top \mathbf{W}_K^1 \mathbf{W}_Q^1 \mathbf{p}_j$ corresponds exactly to the attention score paid by position i to position j
 132 during the first layer. In Fig. 2, we visualize the key-query matrix products and final output matrix,
 133 indexed by these highly interpretable dimensions. Note that this picture is a complete description of
 134 the behavior of the model.
 135



140 Figure 2: The complete behavior of a two-layer attention-only transformer can be understood using
 141 a highly interpretable transformation of key-query matrix products and output layer. Dots \cdot denote
 142 matrix multiplication. For example, the bottom-right block of the left figure, $\mathbf{P}^\top \mathbf{W}_K^1 \mathbf{W}_Q^1 \mathbf{P}$, is
 143 dominated by the subdiagonal, establishing that each position attends to the previous position during
 144 the first layer. Some noise is present due to the random initialization and stochastic gradient descent.
 145

146 147 2.3 INDUCTION HEAD MECHANISM 148

149 In Fig. 2, we can see that our weights have a relatively simple and interpretable structure. Each
 150 layer is dominated by a diagonal or subdiagonal within a single block. The first layer attends to the
 151 previous position. The second layer attends to the token retrieved by the first layer. The final layer
 152 outputs the token retrieved by the second layer. This clarifies the structure of the weight matrices that
 153 underlie the induction head mechanism.
 154

162

3 MINIMAL FORMULATION

163

164 In order to understand the emergence of induction heads, we study the training dynamics in a mini-
165 mal formulation. Inspired by the results of the previous section, we propose a simplified, but equally
166 powerful, transformer architecture with a *disentangled* residual stream (Friedman et al., 2023).
167

168

3.1 ARCHITECTURE

169

170 We use a transformer with two single-head attention-only layers followed by a linear layer. For the
171 attention layers, we use a merged key-query matrix and no projection layer, directly concatenating
172 the attention output to the existing residual stream:

173
$$\mathbf{H}_1 = \left[\mathbf{X} \mid \sigma(\mathbf{X} \mathbf{W}^{(1)} \mathbf{X}^\top) \mathbf{X} \right], \quad \mathbf{H}_2 = \left[\mathbf{U} \mid \sigma(\mathbf{H}_1 \mathbf{W}^{(2)} \mathbf{H}_1^\top) \mathbf{H}_1 \right], \quad \tilde{\mathbf{Y}} = \mathbf{H}_2 \mathbf{W}^{(3)}, \quad (1)$$
174

175 where $[\cdot \mid \cdot]$ denotes matrix concatenation, σ to denotes the softmax function with autoregressive
176 masking. $\mathbf{W}^{(1)} \in \mathbb{R}^{2D \times 2D}$, $\mathbf{W}^{(2)} \in \mathbb{R}^{4D \times 4D}$, $\mathbf{W}^{(3)} \in \mathbb{R}^{8D \times D}$ are the learnable weights and
177 $\mathbf{H}_1 \in \mathbb{R}^{(2N+1) \times 4D}$, $\mathbf{H}_2 \in \mathbb{R}^{(2N+1) \times 8D}$, $\tilde{\mathbf{Y}} \in \mathbb{R}^{(2N+1) \times D}$ denote the activations and final output.
178

179 Although not used in practice due to computational overhead, merged key-query matrices are com-
180 monly used in theoretical works (Edelman et al., 2024; Nichani et al., 2024a). MLPs are neither
181 necessary nor useful for the task at hand. The disentangled residual is equivalent to a very large
182 residual dimension, where all activations become almost orthogonal.
183

184

3.2 DATA DISTRIBUTION

185

186 We use a common ICL task that requires labeling an item based on a list of N item-label pairs (Chan
187 et al., 2022; Reddy, 2023; Hochreiter et al., 2001). The i^{th} pair consists of an item $\mathbf{a}_i \in \mathbb{R}^D$ and
188 a label $\mathbf{b}_i \in \mathbb{R}^D$ with dimensionality $D \in \mathbb{N}$. We ask the model to predict the label for one of the
189 items \mathbf{a}_q where $q \in \{1, \dots, N\}$.

190 We annotate each item with a positional embedding $\mathbf{p}_i \in \mathbb{R}^D$ and each label with the rotated pos-
191 iational embedding $\mathbf{M}\mathbf{p}_i$, where $\mathbf{M} \in \mathbb{R}^{D \times D}$. The rotation is fixed before training begins to create
192 a learnable correlation similar to a sinusoidal embedding (Vaswani et al., 2017). This enables the
193 attention mechanism to connect the corresponding items and labels. We do not use any positional
194 embedding for the query item.

195 Assuming that D is even, we use
196

197
$$\mathbf{M} = \left[\begin{array}{c|c} \mathbf{0}_{(D/2) \times (D/2)} & \mathbf{I}_{D/2} \\ \hline \mathbf{I}_{D/2} & \mathbf{0}_{(D/2) \times (D/2)} \end{array} \right], \quad (2)$$
198

199 where $\mathbf{I}_{D/2} \in \mathbb{R}^{(D/2) \times (D/2)}$ is the identity matrix.
200

201 We concatenate items and labels with their positional embeddings to obtain our data:

202
$$\mathbf{X}_{2i-1,:} = [\mathbf{a}_i^\top \mid \mathbf{p}_i^\top]^\top \quad \mathbf{X}_{2i,:} = [\mathbf{b}_i^\top \mid \mathbf{p}_i^\top \mathbf{M}]^\top \quad \forall i \in \{1, \dots, N\} \quad (3)$$
203

204
$$\mathbf{X}_{2N+1,:} = [\mathbf{a}_q^\top \mid \mathbf{0}]^\top \quad \mathbf{y} = \mathbf{b}_q \quad q \in \{1, \dots, N\} \quad (4)$$

205 where $\mathbf{X} \in \mathbb{R}^{(2N+1) \times 2D}$, $\mathbf{y} \in \mathbb{R}^D$, and $[\cdot \mid \cdot]$ denotes concatenation.
206

207 We assume a *lexinvariant* language model (Huang et al., 2023) where items, labels, and positional
208 embeddings are independent and identically distributed. For our theoretical results, we introduce
209 additional assumptions on the distribution of items, labels, and positional embeddings, as needed.
210

211 Only for our experiments, we sample $q \sim \text{unif}\{1, N\}$, and we sample items, labels, and positional
212 embeddings from a multivariate Gaussian:

213
$$(\mathbf{a}_i)_j \sim \mathcal{N}(0, 1), \quad (\mathbf{b}_i)_j \sim \mathcal{N}(0, 1), \quad (\mathbf{p}_i)_j \sim \mathcal{N}(0, 1), \quad (5)$$
214

215 for all $i \in \{1, \dots, N\}$ and $j \in \{1, \dots, D\}$.

216 We train our model with mean-squared error loss $\mathcal{L} = \|\mathbf{y} - \tilde{\mathbf{y}}\|^2$ using only the output of the query
217 item located at the last position, i.e. $\tilde{\mathbf{y}} = \tilde{\mathbf{Y}}_{2N+1,:}$.

216 **4 TRAINING DYNAMICS**
 217

218 Our model has a total of $28D^2$ parameters, which gives a total parameter space
 219

$$220 \quad [\text{vec}(\mathbf{W}^{(1)})^\top \mid \text{vec}(\mathbf{W}^{(2)})^\top \mid \text{vec}(\mathbf{W}^{(3)})^\top]^\top \in \mathbb{R}^{28D^2}$$

221 However, as we show below, the training dynamics on our data distribution remain constrained to a
 222 19-dimensional subspace that we index using 19 pseudo-parameters. Our theoretical result is based
 223 on the following assumptions:
 224

225 **Assumption 1. Zero Initialization.** *We assume our neural network is initialized with all weights
 226 having value zero, i.e. $\mathbf{W}^{(1)} = \mathbf{0}$, $\mathbf{W}^{(2)} = \mathbf{0}$, and $\mathbf{W}^{(3)} = \mathbf{0}$.*
 227

228 The zero initialization is commonly used in theoretical works (Nichani et al., 2024a; Edelman et al.,
 229 2024), being motivated it as a reasonable approximation for small random initializations.
 230

231 **Assumption 2. Population Loss.** *We assume the network is trained with gradient descent over the
 232 entire data distribution at every step:*
 233

$$232 \quad \mathbf{W}^{(k)} \leftarrow \mathbf{W}^{(k)} - \lambda \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(k)}} \right],$$

234 where $\lambda > 0$ is the learning rate.
 235

236 **Assumption 3. Isotropic Data.** *We assume that the data distribution is invariant to orthogonal
 237 transformations of items, labels, and positional embeddings:*
 238

$$f(\{\mathbf{a}_i\}, \{\mathbf{b}_i\}, \{\mathbf{p}_i\}, q) = f(\{\mathbf{Ea}_i\}, \{\mathbf{Eb}_i\}, \{\mathbf{p}_i\}, q) = f(\{\mathbf{a}_i\}, \{\mathbf{b}_i\}, \{\mathbf{Ep}_i\}, q),$$

239 for any orthogonal matrix $\mathbf{E} \in \mathbb{R}^{D \times D}$, where $f(\{\mathbf{a}_i\}, \{\mathbf{b}_i\}, \{\mathbf{p}_i\}, q)$ is the probability density
 240 over the items, labels, positional embeddings, and query index.
 241

242 Note that this assumption is weaker than, for example, assuming a normal distribution, since a
 243 normal distribution is isotropic.
 244

245 Under these assumptions, we are able to establish that weight matrices learn the following:
 246

247 **Theorem 1.** *Assume that we train a disentangled transformer from zero initialization with popu-
 248 lation loss on isotropic data on our ICL task. Then, the weight matrices will have the following
 249 structure throughout the entire training process:*

$$249 \quad \mathbf{W}^{(1)} = \left[\begin{array}{c|c} \alpha_1 \mathbf{I} & \mathbf{0} \\ \hline \mathbf{0} & \alpha_2 \mathbf{I} + \alpha_3 \mathbf{M} \end{array} \right] \quad (6)$$

$$250 \quad \mathbf{W}^{(2)} = \left[\begin{array}{c|c|c|c} \beta_1 \mathbf{I} & \mathbf{0} & \beta_2 \mathbf{I} & \mathbf{0} \\ \hline \mathbf{0} & \beta_3 \mathbf{I} + \beta_4 \mathbf{M} & \mathbf{0} & \beta_5 \mathbf{I} + \beta_6 \mathbf{M} \\ \hline \beta_7 \mathbf{I} & \mathbf{0} & \beta_8 \mathbf{I} & \mathbf{0} \\ \hline \mathbf{0} & \beta_9 \mathbf{I} + \beta_{10} \mathbf{M} & \mathbf{0} & \beta_{11} \mathbf{I} + \beta_{12} \mathbf{M} \end{array} \right] \quad (7)$$

$$251 \quad \mathbf{W}^{(3)} = [\gamma_1 \mathbf{I} \mid \mathbf{0} \mid \gamma_2 \mathbf{I} \mid \mathbf{0} \mid \gamma_3 \mathbf{I} \mid \mathbf{0} \mid \gamma_4 \mathbf{I} \mid \mathbf{0}]^\top, \quad (8)$$

252 where we collect the parameters of each weight matrix in three vectors $\alpha \in \mathbb{R}^3$, $\beta \in \mathbb{R}^{12}$ and
 253 $\gamma \in \mathbb{R}^4$ that vary throughout training.
 254

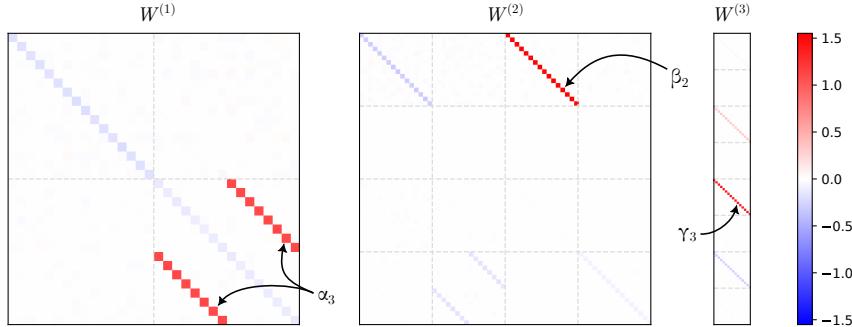
255 **Proof Sketch.** We give an inductive proof by showing that, if weights have the above structure,
 256 then their gradients also have the same structure. Since the zero initialization fits the structure, this
 257 ensures that the structure is preserved during training.
 258

259 To prove the structure of the gradient, we apply a carefully chosen rotation to the entire data distri-
 260 bution. Since the data distribution is isotropic, the rotation will not change the data distribution, so
 261 the expected gradient will also remain unchanged.
 262

263 However, we are also able to show that our rotation induces a specific similarity transformation of
 264 the gradient:
 265

$$266 \quad \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = F \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] F^\top, \quad (9)$$

270 where F is an orthogonal or block-orthogonal matrix and $\mathbf{W}_{ij}^{(k)}$ is a block of a weight matrix. From
 271 this, we are able to show that the expected gradient must have the desired structure. We give the full
 272 proof in App. A. \square
 273



285 Figure 3: Weights at the end of standard training have the theoretically predicted structure.
 286

288 **Empirical Validation** In Fig. 3, we confirm our theoretical result by visualizing the weights at the
 289 end of training with stochastic gradient descent. Full training details in App. C.
 290

291 5 EMERGENCE OF INDUCTION HEADS

293 We now proceed to studying the evolution of these 19 pseudo-parameters during training. By ob-
 294 serving or ablating specific parameters, we are able to test two hypotheses regarding the emergence
 295 of induction heads.
 296

297 **Hypothesis 1** (due to Olsson et al. (2022)). **Induction Head Phase Transition.** *Reaching low*
 298 *training loss on our ICL task coincides with the emergence of an induction head, as defined in §2.*

300 We can already see from Fig. 3 that three parameters have a larger magnitude, namely α_3 , β_2 , and
 301 γ_3 . Interestingly, the mechanism performed by these three parameters together corresponds exactly
 302 to an induction head. In the first layer, α_3 makes each label attend to the preceding item. In the
 303 second layer, β_2 makes the query item attend to the correct label based on the newly retrieved item.
 304 Finally, γ_3 outputs the label retrieved by the second layer. In Fig. 4 (top), we visualize the 19 pseudo-
 305 parameters and loss during training, confirming that the drop in loss is driven by the emergence of
 306 the induction head.
 307

308 **Hypothesis 2. Self-Contained Dynamics.** *The emergence of the induction head is unaided by the*
 309 *presence of any other parameter.*

310 By training the model while constraining its parameters to the 3-dimensional subspace spanned by
 311 the three parameters, we uncover very similar dynamics. As depicted in Fig. 4 (bottom), we find that
 312 the emergence of the induction head is unaffected, even slightly accelerated. We show a few more
 313 plots and full training details in App. D.

314 6 FULL TRAINING DYNAMICS OF INDUCTION HEADS

316 Motivated by the empirical results in the previous section, we study the training dynamics con-
 317 strained to the 3-dimensional subspace spanned by α_3 , β_2 , and γ_3 , finding several tight bounds for
 318 the emergence of the induction head.
 319

320 6.1 THEORETICAL RESULTS

321 We study the emergence of an induction head under the following assumptions:

322 **Assumption 4. Three-learnable Parameters.** *Only parameters α_3 , β_2 , and γ_3 are learnable. For*
 323 *the rest of the proof, we refer to these parameters as simply α , β , and γ .*

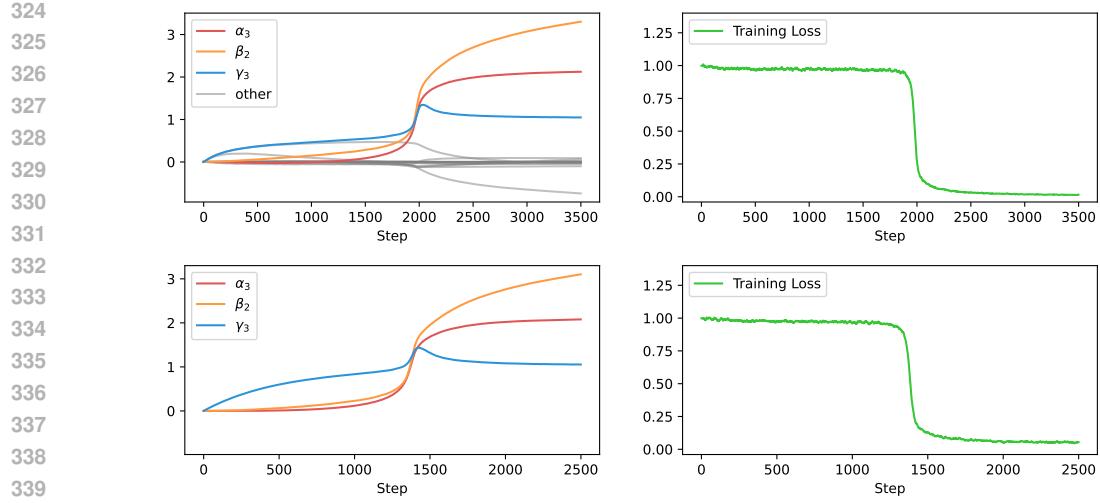


Figure 4: *Top*: The value of the 19 pseudo-parameters during standard training (*left*) and the associated training loss (*right*). *Bottom*: Ablating all parameters except α_3 , β_2 , and γ_3 results in strikingly similar dynamics.

Assumption 5. Gradient Flow. We study the training dynamics under the assumption of a continuous-time gradient flow with unit learning rate,

$$\frac{\partial \alpha}{\partial t} = -\frac{\partial \mathcal{L}}{\partial \alpha}, \quad \frac{\partial \beta}{\partial t} = -\frac{\partial \mathcal{L}}{\partial \beta}, \quad \frac{\partial \gamma}{\partial t} = -\frac{\partial \mathcal{L}}{\partial \gamma},$$

where $\alpha, \beta, \gamma : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ are the continuous-time trajectories of the three parameters.

Assumption 6. Zero Initialization. We assume our neural network is initialized with all weights having value zero. Equivalently, $\alpha(0) = \beta(0) = \gamma(0) = 0$.

Assumption 7. Orthonormal Inputs. We assume that all items, labels, and positional embeddings are orthogonal and have unit norm. Specifically,

$$\|a_i\| = \|b_i\| = \|p_i\| = 1, \quad a_i^\top a_j = b_i^\top b_j = a_i^\top b_i = p_i^\top M p_i = p_i^\top p_j = p_i^\top M p_j = 0,$$

for all $i, j \in \{1, 2, \dots, N\}$, $i \neq j$.

Note that this assumption requires $D \geq 2N$. There are two ways to motivate this assumption, either by preprocessing the inputs using a whitening transformation, or by considering a very large dimension $D \rightarrow \infty$ and vectors sampled from an i.i.d. Gaussian with variance $1/\sqrt{D}$.

Assumption 8. Query Last. We assume that the query item always refers to the last item-label pair present in the sequence, or $q = N$.

Note that even if the target label's position is fixed, a full induction head is still required: the model cannot directly attend to specific positions because positional embeddings are randomly generated and carry no explicit location information.

Definition 1. Parameter Emergence Time. We say that each of the parameters α , β , or γ has emerged when its value becomes greater than $1/2$ for the first time:

$$T_\alpha = \inf \left\{ t \mid \alpha(t) \geq \frac{1}{2} \right\}, \quad T_\beta = \inf \left\{ t \mid \beta(t) \geq \frac{1}{2} \right\}, \quad T_\gamma = \inf \left\{ t \mid \gamma(t) \geq \frac{1}{2} \right\},$$

where $t \in \mathbb{R}_{\geq 0}$.

Theorem 2. Assume that inputs are orthonormal and that only parameters α , β , and γ are learnable. In this case, we have that parameters always emerge in the order $T_\gamma < T_\beta < T_\alpha$ and the time until their emergence asymptotically follows:

$$T_\alpha = \Theta(N^2), \quad T_\beta = \Theta(N^2), \quad T_\gamma = \Theta(N), \quad (10)$$

where N is the number of item-label pairs in the context.

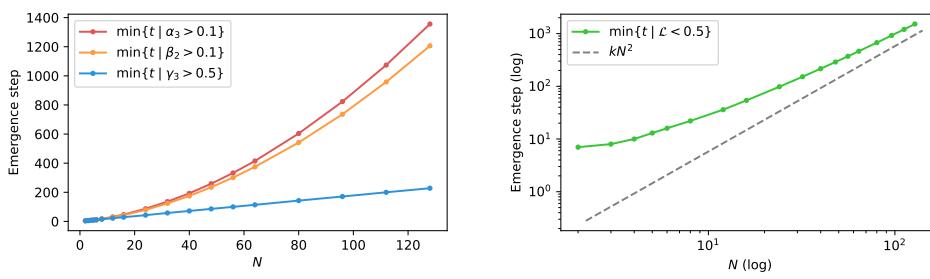


Figure 5: *Left:* The time until the emergence of α_3 , β_2 , and γ_3 for different values of N . *Right:* Time until the emergence of in-context learning (log scale) and its quadratic asymptote.

Proof Sketch. The proof is based on proving bounds for the gradient of each parameter. Before the emergence of any parameter, we have that $\partial\gamma/\partial t = \Theta(1/N)$, while $\partial\alpha/\partial t = O(1/N^2)$ and $\partial\beta/\partial t = O(1/N^2)$. This implies that γ emerges first in $\Theta(N)$. Afterwards, we show that $\partial\beta/\partial t = \Theta(1/N^2)$ and $\partial\beta/\partial t > \partial\alpha/\partial t$. This implies that β emerges next in $\Theta(N^2)$. Finally, we show that $\partial\alpha/\partial t = o(1/N^2)$, which implies that α emerges last in $\Theta(N^2)$. See the full proof in App. B. \square

Definition 2. Induction Head. We say that an induction has emerged if all three parameters are greater than $1/2$.

Definition 3. Time until ICL. We say that in-context learning has emerged at the first time when the induction head is present. Specifically,

$$t_{\text{ICL}} = \inf \left\{ t \in \mathbb{R}_{\geq 0} \mid \alpha(t) \geq \frac{1}{2}, \beta(t) \geq \frac{1}{2}, \gamma(t) \geq \frac{1}{2} \right\}.$$

Corollary 1. The time until the emergence of in-context learning asymptotically follows:

$$t_{\text{ICL}} = \Theta(N^2), \quad (11)$$

where N is the number of item-label pairs in the context.

We empirically validate our theoretical results in Fig. 5. Training details in App. F.

7 DISCUSSION

7.1 HOW DO α , β , AND γ EMERGE DURING TRAINING?

The emergence of γ . Even if α and β are completely untrained, the attention layers still return something: the average of all items and labels in the context. This average achieves a better loss than predicting zero, and this is exactly what the model learns to predict initially. However, this solution becomes worse when N is increased. In fact, the gradient towards this solution is inversely proportional to N , hence why γ emerges in $\Theta(N)$.

The emergence of β . After the final layer is in place, there is now a gradient for the second layer to attend correctly. Because each label follows immediately after its item, the first layer will always retrieve the item to some extent, even when completely untrained. Taking the causal masking into account, each item will be retrieved the most by its label. This enables the second layer to learn to retrieve based on the query item. However, since the first layer returns a very weak signal (inversely proportional to N), the gradient of β will be inversely proportional to N^2 .

The emergence of α . Finally, after β and γ have emerged, there is a very strong gradient for the first layer to attend correctly. This quickly drives the emergence of α .

7.2 THE IMPORTANCE OF CONTEXT LENGTH

We have established that a longer context length slows down the emergence of induction heads. This fact has interesting implications that are worth exploring in future work.

432 Chan et al. (2022) have empirically established that the emergence of in-context learning is modu-
 433 lated by data distributional properties specific to natural language, such as burstiness (items appear
 434 in clusters rather than being uniformly distributed over time). Our work paves the way for a theore-
 435 tical understanding of this connection. For example, bustiness could be understood as a modulator of
 436 the *effective* context length by reducing the distance between items from the same class. We hypothe-
 437 size that similar gains could be achieved by other means of reducing the *effective* context length,
 438 such as special positional embeddings (Su et al., 2024).

440 8 RELATED WORK

442 **In-Context Learning** Brown et al. (2020) first observed that LLMs are capable of in-context
 443 learning. Since then, a number of works has delved deep into the phenomenon and its underlying
 444 causes. Chan et al. (2022) empirically showed that the ICL–IWL trade-off is modulated by data
 445 distributional properties specific to natural language, such as a Zipfian distribution over concepts,
 446 burstiness, and within-class variance. One direction is to view the forward pass of a transformer as
 447 performing gradient descent Von Oswald et al. (2023); Ahn et al. (2023). Finally, Lu et al. (2024)
 448 provides an asymptotic analysis of ICL for linear regression and linear attention.

449 **Induction Heads** Later, Olsson et al. (2022) attributed this ability to a two-layer Sanford et al.
 450 (2024) mechanism (termed *induction head*) that emerges abruptly during training. Crucial to our
 451 work, Reddy (2023) proposed a 3-parameter *phenomenological* model of an induction head by di-
 452 rectly parameterizing the attention scores. The parameters of this model (denoted as β_1 , α , and
 453 ξ) correspond exactly to our three pseudo-parameters (α_3 , β_2 , and γ_3). Compared to their work,
 454 we provide a theoretical justification on how these parameters are learned with gradient descent.
 455 Other theoretical works have studied the emergence of induction heads, with different architectures
 456 and distributional assumptions Nichani et al. (2024a); Bietti et al. (2024); Chen et al. (2024); San-
 457 ford et al. (2024); Edelman et al. (2024); Wang et al. (2024a). Among these, Nichani et al. (2024a)
 458 demonstrates that two-layer disentangled transformers can learn to sample Markov chains in-context
 459 through a staged training process, and Bietti et al. (2024) study the transformer training dynamics
 460 from the perspective of *associative memories*. They show how an induction head can emerge after
 461 three steps of gradient descent. Concurrently, Chen et al. (2024) and Wang et al. (2024a) further
 462 studied staged layer-wise dynamics, reinforcing the staged learning hypothesis for induction head
 463 formation. Edelman et al. (2024) investigated how transformers acquire simple linguistic structures
 464 such as n-grams during training, and Zhang et al. (2025) analyzed training dynamics for linear at-
 465 tention transformers in regression tasks.

466 **Mechanistic Interpretability** Mechanistic interpretability seeks to attribute the emergence of par-
 467 ticular behaviors in neural networks to specific patterns in their weights and activations Olah et al.
 468 (2020); Elhage et al. (2021); Doshi-Velez & Kim (2017); Olah et al. (2017); Bereska & Gavves
 469 (2024); Cammarata et al. (2020). Friedman et al. (2023) introduce the *disentangled transformer*
 470 architecture, which is interpretable by design, but just as expressive. It keeps the residual stream
 471 disentangled by appending the attention output to the residual stream, rather than adding them to-
 472 gether. Several works study transformers from the perspective of associative memories (Bietti et al.,
 473 2024; Nichani et al., 2024b; Chen et al., 2025). Other works focus on multi-step reasoning (Wang
 474 et al., 2024b; Musat, 2025; Cabannes et al., 2024), context-free grammars (Allen-Zhu & Li, 2023),
 475 and modular addition (Nanda et al., 2023; Zhong et al., 2023; Gromov, 2023; He et al., 2024). Löwe
 476 et al. (2024) connect abrupt learning in artificial nets with insights in humans (also known as *evrika*
 477 *moments*).

478 9 CONCLUSION

481 In this paper, we have shown how induction heads emerge in an ICL task. Our work paves the way
 482 for a better theoretical understanding of transformer learning dynamics. We believe that a similar
 483 approach could illuminate other important phenomena in deep learning, such as the *in-context vs.*
 484 *in-weights learning* trade-off, abrupt learning, or the emergence of other transformer circuits.

486 REFERENCES
487

488 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
489 ment preconditioned gradient descent for in-context learning. *Advances in Neural Information*
490 *Processing Systems*, 36:45614–45650, 2023.

491 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical lan-
492 guage structures. *arXiv preprint arXiv:2305.13673*, 2023.

493 Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety—a review. *arXiv*
494 *preprint arXiv:2404.14082*, 2024.

495 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
496 transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36,
497 2024.

498 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
499 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
500 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

501 Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Xingyu Yang, Francois Charton, and Julia
502 Kempe. Iteration head: A mechanistic study of chain-of-thought. *Advances in Neural Infor-
503 mation Processing Systems*, 37:109101–109122, 2024.

504 Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schubert, Chelsea
505 Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. *Distill*, 2020. doi: 10.23915/distill.00024.
506 <https://distill.pub/2020/circuits>.

507 Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
508 James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
509 ing in transformers. *Advances in Neural Information Processing Systems*, 35:18878–18891, 2022.

510 Lei Chen, Joan Bruna, and Alberto Bietti. Distributional associations vs in-context reasoning: A
511 study of feed-forward and attention layers. In *The Thirteenth International Conference on Learn-
512 ing Representations*, 2025.

513 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
514 training dynamics and feature learning in transformers. *arXiv preprint arXiv:2409.10559*, 2024.

515 Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
516 *arXiv preprint arXiv:1702.08608*, 2017.

517 Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
518 evolution of statistical induction heads: In-context learning markov chains. *arXiv preprint
519 arXiv:2402.11004*, 2024.

520 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
521 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
522 transformer circuits. *Transformer Circuits Thread*, 1(1):12, 2021.

523 Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. *Advances in
524 Neural Information Processing Systems*, 36:49044–49067, 2023.

525 Andrey Gromov. Grokking modular arithmetic. *arXiv preprint arXiv:2301.02679*, 2023.

526 Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence of in-
527 context learning and skill composition in modular arithmetic tasks. *Advances in Neural Infor-
528 mation Processing Systems*, 37:13244–13273, 2024.

529 Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient descent.
530 In Georg Dorffner, Horst Bischof, and Kurt Hornik (eds.), *Artificial Neural Networks — ICANN*
531 2001, pp. 87–94, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-44668-
532 2.

540 Qian Huang, Eric Zelikman, Sarah Chen, Yuhuai Wu, Gregory Valiant, and Percy S Liang. Lexin-
 541 variant language models. *Advances in Neural Information Processing Systems*, 36:23990–24012,
 542 2023.

543 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 544 *arXiv:1711.05101*, 2017.

545 Anika T Löwe, Léo Touzo, Paul S Muhle-Karbe, Andrew M Saxe, Christopher Summerfield, and
 546 Nicolas W Schuck. Abrupt and spontaneous strategy switches emerge in simple regularised neural
 547 networks. *PLoS Computational Biology*, 20(10):e1012505, 2024.

548 Yue M Lu, Mary I Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymptotic
 549 theory of in-context learning by linear attention. *arXiv preprint arXiv:2405.11751*, 2024.

550 Tiberiu Muşat. Mechanism and emergence of stacked attention heads in multi-layer transformers.
 551 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=rUC7tHecSQ>.

552 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 553 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

554 Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
 555 gradient descent. *arXiv preprint arXiv:2402.14735*, 2024a.

556 Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via
 557 associative memories. *arXiv preprint arXiv:2412.06538*, 2024b.

558 Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. *Distill*, 2017. doi:
 559 10.23915/distill.00007. <https://distill.pub/2017/feature-visualization>.

560 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 561 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020.

562 Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
 563 Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
 564 Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
 565 Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
 566 and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
 567 <https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html>.

568 Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
 569 classification task. In *The Twelfth International Conference on Learning Representations*, 2023.

570 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induc-
 571 tion heads task. *arXiv preprint arXiv:2408.14332*, 2024.

572 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
 573 Enhanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 574 ISSN 0925-2312. doi: <https://doi.org/10.1016/j.neucom.2023.127063>. URL <https://www.sciencedirect.com/science/article/pii/S0925231223011864>.

575 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 576 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 577 tion processing systems*, 30, 2017.

578 Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 579 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 580 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

581 Mingze Wang, Ruoxi Yu, Lei Wu, et al. How transformers implement induction heads: Approxima-
 582 tion and optimization analysis. *arXiv preprint arXiv:2410.11474*, 2024a.

583 Zhiwei Wang, Yunji Wang, Zhongwang Zhang, Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng
 584 Sun, Zhenguo Li, Yaoyu Zhang, and Zhi-Qin John Xu. The buffer mechanism for multi-step
 585 information reasoning in language models. *arXiv preprint arXiv:2405.15302*, 2024b.

594 Yedi Zhang, Aaditya K Singh, Peter E Latham, and Andrew Saxe. Training dynamics of in-context
595 learning in linear attention. *arXiv preprint arXiv:2501.16265*, 2025.
596

597 Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
598 stories in mechanistic explanation of neural networks. *Advances in neural information processing*
599 *systems*, 36:27223–27250, 2023.

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A WEIGHTS STRUCTURE FULL PROOF
649650 A.1 SUMMARY
651652 Our strategy is to show that if $W^{(1)}, W^{(2)}$, and $W^{(3)}$ have this structure, then their gradients also
653 have the same structure. Since we start from zero initialization, by induction, this means that the
654 structure is preserved throughout the entire training process.655 To prove the structure of the gradient, we apply a carefully chosen rotation to the entire data distri-
656 bution. Since the data distribution is isotropic, the rotation will not change the data distribution, so
657 the expected gradient will also remain unchanged.658 However, we are also able to show that our rotation induces a specific similarity transformation of
659 the gradient:
660

661
$$\mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = F \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] F^\top$$

662
663

664 where F is an orthogonal or block-orthogonal matrix and $\mathbf{W}_{ij}^{(k)}$ is a block of a weight matrix. From
665 this we are able to show that the expected gradient must have the desired structure.666
667 A.2 PREREQUISITES
668

669 A.2.1 ORTHOGONAL TRANSFORMATIONS

670 **Definition 4.** *Orthogonal Matrix.* We say that a matrix $E \in \mathbb{R}^{k \times k}$ is orthogonal if it satisfies
671 $EE^\top = E^\top E = I$.672 **Proposition 1.** Let $A \in \mathbb{R}^{k \times k}$ be some matrix. If $EAE^\top = A$ holds for all orthogonal matrices
673 $E \in \mathbb{R}^{k \times k}$, then it follows that $A = \alpha I$ for some $\alpha \in \mathbb{R}$.674
675 *Proof.* Step 1. All off-diagonal entries of A vanish.676 Fix an index $j \in \{1, \dots, k\}$ and let
677

678
$$E = \text{diag}(1, \dots, 1, -1, 1, \dots, 1)$$

679 be the diagonal orthogonal matrix with entry -1 in the j th position and $+1$ elsewhere. Then
680

681
$$(EAE^\top)_{i\ell} = E_{ii} A_{i\ell} E_{\ell\ell} = \begin{cases} A_{i\ell}, & i, \ell \neq j, \\ -A_{i\ell}, & \text{exactly one of } i, \ell = j, \\ A_{jj}, & i = \ell = j. \end{cases}$$

682
683
684
685

686 Since $EAE^\top = A$, it follows that $-A_{ij} = A_{ij}$ for every $i \neq j$, whence $A_{ij} = 0$. Varying j shows
687 all off-diagonal entries vanish, so

688
$$A = \text{diag}(a_{11}, a_{22}, \dots, a_{kk}).$$

689
690

691 Step 2. All diagonal entries of A coincide.
692693 Let E be any permutation matrix which swaps two coordinates i and j . Then E is orthogonal and
694

695
$$EAE^\top = \text{diag}(\dots, a_{jj}, \dots, a_{ii}, \dots),$$

696 interchanging the i th and j th diagonal entries of A . By invariance $EAE^\top = A$, so $a_{ii} = a_{jj}$. Since
697 i, j were arbitrary, there exists $\alpha \in \mathbb{R}$ such that

698
$$a_{11} = a_{22} = \dots = a_{kk} = \alpha,$$

699

700 and hence $A = \alpha I$.
701

□

702 A.2.2 BLOCK-ORTHOGONAL TRANSFORMATIONS
703704 **Definition 5. Block-Orthogonal Matrix.** We say that a matrix $F \in \mathbb{R}^{2k \times 2k}$ is block-orthogonal if
705 it has either of the following two forms:

706
$$F = \left[\begin{array}{c|c} E & \mathbf{0} \\ \hline \mathbf{0} & E \end{array} \right] \quad \text{or} \quad F = \left[\begin{array}{c|c} \mathbf{0} & E \\ \hline E & \mathbf{0} \end{array} \right]$$

707

708 where $E \in \mathbb{R}^{k \times k}$ is an orthogonal matrix.
709710 **Proposition 2.** Let $A \in \mathbb{R}^{2k \times 2k}$ be some matrix. If $FAF^\top = A$ holds for all block-orthogonal
711 matrices $F \in \mathbb{R}^{2k \times 2k}$, then it follows that

712
$$A = \left[\begin{array}{c|c} \alpha I & \beta I \\ \hline \beta I & \alpha I \end{array} \right]$$

713

714 for some $\alpha, \beta \in \mathbb{R}$.
715716 **Remark 1.** Note that this condition is weaker than the condition stated in Proposition 1, since not
717 all orthogonal matrices are also block-orthogonal. Hence, the condition in Proposition 2 guarantees
718 a structure that is less specific than Proposition 1.719 *Proof.* We write
720

721
$$A = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array} \right],$$

722

723 where each block $A_{ij} \in \mathbb{R}^{k \times k}$.
724725 *Step 1. All blocks are scalar matrices.*726 For any orthogonal matrix E , we can set

727
$$F = \left[\begin{array}{c|c} E & \mathbf{0} \\ \hline \mathbf{0} & E \end{array} \right].$$

728

729 Then

730
$$F A F^\top = \left[\begin{array}{c|c} EA_{11}E^\top & EA_{12}E^\top \\ \hline EA_{21}E^\top & EA_{22}E^\top \end{array} \right] = \left[\begin{array}{c|c} A_{11} & A_{12} \\ \hline A_{21} & A_{22} \end{array} \right] = A,$$

731

732 so $EA_{ij}E^\top = A_{ij}$ for all i, j . By the previous proposition each block is a scalar multiple of the
733 identity, $A_{ij} = \alpha_{ij} I_k$, for some $\alpha_{ij} \in \mathbb{R}$. Therefore,
734

735
$$A = \left[\begin{array}{c|c} \alpha_{11} I & \alpha_{12} I \\ \hline \alpha_{21} I & \alpha_{22} I \end{array} \right].$$

736

737 *Step 2. Diagonally opposed blocks coincide.* By setting
738

739
$$F = \left[\begin{array}{c|c} \mathbf{0} & I \\ \hline I & \mathbf{0} \end{array} \right]$$

740

741 we obtain

742
$$F A F^\top = \left[\begin{array}{c|c} A_{22} & A_{21} \\ \hline A_{12} & A_{11} \end{array} \right]$$

743

744 which yields $\alpha_{11} = \alpha_{22}$, $\alpha_{12} = \alpha_{21}$. By writing $\alpha = \alpha_{11}$ and $\beta = \alpha_{12}$, we obtain
745

746
$$A = \left[\begin{array}{c|c} \alpha I & \beta I \\ \hline \beta I & \alpha I \end{array} \right]$$

747

748 \square 750 A.2.3 COMBINED TRANSFORMATIONS
751752 **Proposition 3.** Let $A \in \mathbb{R}^{2k \times 2k}$ be some matrix. If $EAF = A$ holds for all orthogonal matrices E
753 and block-orthogonal matrices F , then $A = \mathbf{0}$.
754755 *Proof.* By setting $E = I$ and $F = -I$, we get $A = -A$. Therefore, $A = \mathbf{0}$.
756 \square

756 A.2.4 BLOCK-SWAP TRANSFORMATION
757758 **Definition 6. Block-Swap Matrix.** We say that a matrix $M \in \mathbb{R}^{2k \times 2k}$ is block-swap if it has the
759 following form:

760
$$M = \begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix}$$

761

762 where $I \in \mathbb{R}^{k \times k}$ is the identity matrix.763 **Proposition 4.** If $M \in \mathbb{R}^{2k \times 2k}$ is a block-swap matrix and $F \in \mathbb{R}^{2k \times 2k}$ is a block-orthogonal
764 matrix, then $FMF^\top = M$.
765766 *Proof.* Case 1. The orthogonal blocks of F are on the main diagonal.
767

768 Assume that

769
$$F = \begin{bmatrix} E & \mathbf{0} \\ \mathbf{0} & E \end{bmatrix}$$

770

771 Then,

772
$$\begin{aligned} FMF^\top &= \begin{bmatrix} E & \mathbf{0} \\ \mathbf{0} & E \end{bmatrix} \begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix} \begin{bmatrix} E^\top & \mathbf{0} \\ \mathbf{0} & E^\top \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{0} & E \\ E & \mathbf{0} \end{bmatrix} \begin{bmatrix} E^\top & \mathbf{0} \\ \mathbf{0} & E^\top \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix} \end{aligned}$$

773
774
775
776
777
778
779

780 Case 2. The orthogonal blocks of F are on the secondary diagonal.
781

782 Assume that

783
$$F = \begin{bmatrix} \mathbf{0} & E \\ E & \mathbf{0} \end{bmatrix}$$

784

785 Then,

786
$$\begin{aligned} FMF^\top &= \begin{bmatrix} \mathbf{0} & E \\ E & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} & E^\top \\ E^\top & \mathbf{0} \end{bmatrix} \\ &= \begin{bmatrix} E & \mathbf{0} \\ \mathbf{0} & E \end{bmatrix} \begin{bmatrix} \mathbf{0} & E^\top \\ E^\top & \mathbf{0} \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix} \end{aligned}$$

787
788
789
790
791
792
793
794
795

□

796 A.3 SETUP
797

798 Recall the architecture and loss:

799
$$U = \left[X \mid \sigma(XW^{(1)}X^\top) X \right] \quad V = \left[U \mid \sigma(UW^{(2)}U^\top) U \right]$$

800

801
$$z = V_{2N+1}W^{(3)} \quad \mathcal{L} = \|y - z\|^2$$

802

803 where σ to denotes the softmax function with causal masking, $[\cdot \mid \cdot]$ denotes matrix concatenation,
804 and

805
$$\begin{aligned} W^{(1)} &\in \mathbb{R}^{2D \times 2D} & W^{(2)} &\in \mathbb{R}^{4D \times 4D} & W^{(3)} &\in \mathbb{R}^{8D \times D} \\ U &\in \mathbb{R}^{(2N+1) \times 4D} & V &\in \mathbb{R}^{(2N+1) \times 8D} & z &\in \mathbb{R}^D \\ X &\in \mathbb{R}^{(2N+1) \times 2D} & y &\in \mathbb{R}^D \end{aligned}$$

806
807
808
809

810 The data is generated as:
 811

812
 813
$$X_{2i-1} = [a_i \mid p_i] \quad X_{2i} = [b_i \mid p_i M] \quad \forall i \in \{1, \dots, N\}$$

 814
 815
$$X_{2N+1} = [a_q \mid 0] \quad y = b_q$$

 816

817 where
 818

819
 820
$$a_i, b_i, p_i \in \mathbb{R}^D \quad q \in \{1, 2, \dots, N\} \quad M = \begin{bmatrix} \mathbf{0} & I \\ I & \mathbf{0} \end{bmatrix}$$

 821

822 All vectors are treated as **row vectors**.
 823

824 A.4 ADDITIONAL NOTATION

825 We introduce
 826

827
$$S = X\mathbf{W}^{(1)}X^\top \quad T = \sigma(S)$$

 828
$$P = U\mathbf{W}^{(2)}U^\top \quad Q = \sigma(P)$$

 829

830 where $S, T, P, Q \in \mathbb{R}^{(2N+1) \times (2N+1)}$. This gives
 831

832
$$U = [X \mid TX] \quad V = [U \mid QU]$$

 833

834 We also introduce notation for all blocks of size D :
 835

836
$$X = [X_1 \quad X_2] \quad U = [U_1 \quad U_2 \quad U_3 \quad U_4]$$

 837
 838
$$V = [V_1 \quad V_2 \quad V_3 \quad V_4 \quad V_5 \quad V_6 \quad V_7 \quad V_8]$$

 839
 840
 841
$$\mathbf{W}^{(1)} = \begin{bmatrix} \mathbf{W}_{11}^{(1)} & \mathbf{W}_{12}^{(1)} \\ \mathbf{W}_{21}^{(1)} & \mathbf{W}_{22}^{(1)} \end{bmatrix} \quad \mathbf{W}^{(2)} = \begin{bmatrix} \mathbf{W}_{11}^{(2)} & \mathbf{W}_{12}^{(2)} & \mathbf{W}_{13}^{(2)} & \mathbf{W}_{14}^{(2)} \\ \mathbf{W}_{11}^{(2)} & \mathbf{W}_{12}^{(2)} & \mathbf{W}_{13}^{(2)} & \mathbf{W}_{14}^{(2)} \\ \mathbf{W}_{11}^{(2)} & \mathbf{W}_{12}^{(2)} & \mathbf{W}_{13}^{(2)} & \mathbf{W}_{14}^{(2)} \\ \mathbf{W}_{11}^{(2)} & \mathbf{W}_{12}^{(2)} & \mathbf{W}_{13}^{(2)} & \mathbf{W}_{14}^{(2)} \end{bmatrix}$$

 842
 843
 844
 845
 846
 847
 848
$$\mathbf{W}^{(3)} = [\mathbf{W}_1^{(3)} \quad \mathbf{W}_2^{(3)} \quad \mathbf{W}_3^{(3)} \quad \mathbf{W}_4^{(3)} \quad \mathbf{W}_5^{(3)} \quad \mathbf{W}_6^{(3)} \quad \mathbf{W}_7^{(3)} \quad \mathbf{W}_8^{(3)}]$$

 849

850 A.5 DATA ROTATIONS

851 We apply an orthogonal transformation E to the items and labels, and a block-orthogonal transfor-
 852 mation F to the positional embeddings:
 853

854
 855
$$a'_i = a_i E \quad b'_i = b_i E \quad p'_i = p_i F \quad \forall i \in \{1, \dots, N\}$$

 856

857 where E and F satisfy Definitions 4 and 5, respectively. We refer to the new variables as $X', y', U',$
 858 V', z' , and \mathcal{L}' .
 859

860 Since the data is isotropic, we have that $\mathbb{E}[\mathcal{L}] = \mathbb{E}[\mathcal{L}']$. By the linearity of expectation and differen-
 861 tiation, we obtain
 862

863
$$\mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{(k)}} \right] = \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}^{(k)}} \right]$$

864 This also holds for all sub-blocks of $\mathbf{W}^{(1)}$, $\mathbf{W}^{(2)}$, and $\mathbf{W}^{(3)}$,

$$866 \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right]$$

869 However, as we show below, our rotation induces specific transformations of the gradient blocks.
870 Using Propositions 1 to 3, we are able to show that each gradient block has the desired structure.

871 Specifically, for each gradient block, we will show that one of the following four conditions holds
872 for all E and F , implying the desired structure:

$$873 \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] = E \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] E^\top \implies \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = \alpha I$$

$$877 \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] = F \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] F^\top \implies \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = \begin{bmatrix} \alpha I & \beta I \\ \beta I & \alpha I \end{bmatrix}$$

$$880 \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] = E \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] F^\top \implies \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = \mathbf{0}$$

$$884 \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] = F \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(k)}} \right] E^\top \implies \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(k)}} \right] = \mathbf{0}$$

887 A.6 FORWARD PASS

889 We will now observe how our rotation changes the intermediate and final results of our model.

890 First, note the rotated inputs and outputs:

$$892 X'_1 = X_1 E \quad X'_2 = X_2 F \quad y' = y E$$

894 Recall that we are assuming that $\mathbf{W}^{(1)}$, $\mathbf{W}^{(2)}$, and $\mathbf{W}^{(3)}$ already have the desired structure, with
895 the goal to prove that the gradient has the same structure:

$$896 W^{(1)} = \left[\begin{array}{c|c} \alpha_1 I & \mathbf{0} \\ \hline \mathbf{0} & \alpha_2 I + \alpha_3 M \end{array} \right]$$

$$899 W^{(2)} = \left[\begin{array}{c|c|c|c} \beta_1 I & \mathbf{0} & \beta_2 I & \mathbf{0} \\ \hline \mathbf{0} & \beta_3 I + \beta_4 M & \mathbf{0} & \beta_5 I + \beta_6 M \\ \hline \beta_7 I & \mathbf{0} & \beta_8 I & \mathbf{0} \\ \hline \mathbf{0} & \beta_9 I + \beta_{10} M & \mathbf{0} & \beta_{11} I + \beta_{12} M \end{array} \right]$$

$$903 W^{(3)} = [\gamma_1 I \mid \mathbf{0} \mid \gamma_2 I \mid \mathbf{0} \mid \gamma_3 I \mid \mathbf{0} \mid \gamma_4 I \mid \mathbf{0}]$$

904 A.6.1 FIRST LAYER

906 The first attention layer gives:

$$908 S = X \mathbf{W}^{(1)} X^\top$$

$$909 = X_1 \mathbf{W}_{11}^{(1)} X_1^\top + X_1 \mathbf{W}_{12}^{(1)} X_2^\top + X_2 \mathbf{W}_{21}^{(1)} X_1^\top + X_2 \mathbf{W}_{22}^{(1)} X_2^\top$$

$$910 = \alpha_1 X_1 X_1^\top + \alpha_2 X_2 X_2^\top + \alpha_3 X_2 M X_2^\top$$

$$912 S' = X' \mathbf{W}^{(1)} X'^\top$$

$$913 = X'_1 \mathbf{W}_{11}^{(1)} X'_1^\top + X'_1 \mathbf{W}_{12}^{(1)} X'_2^\top + X'_2 \mathbf{W}_{21}^{(1)} X'_1^\top + X'_2 \mathbf{W}_{22}^{(1)} X'_2^\top$$

$$914 = \alpha_1 X'_1 X'_1^\top + \alpha_2 X'_2 X'_2^\top + \alpha_3 X'_2 M X'_2^\top$$

$$916 = \alpha_1 X_1 E E^\top X_1^\top + \alpha_2 X_2 F F^\top X_2^\top + \alpha_3 X_2 F M F^\top X_2^\top$$

$$917 = \alpha_1 X_1 X_1^\top + \alpha_2 X_2 X_2^\top + \alpha_3 X_2 M X_2^\top$$

918 Therefore, $S' = S$ and $T' = T = \sigma(S)$. This gives us:
 919

$$920 \quad U'_1 = U_1 E \quad U'_2 = U_2 F \quad U'_3 = U_3 E \quad U'_4 = U_4 F$$

922 **A.6.2 SECOND LAYER**
 923

924 The second attention layer gives:
 925

$$\begin{aligned} P &= U \mathbf{W}^{(2)} U^\top \\ &= \sum U_i \mathbf{W}_{ij}^{(2)} U_j^\top \\ &= \beta_1 U_1 U_1^\top + \beta_2 U_1 U_3^\top + \beta_7 U_3 U_1^\top + \beta_8 U_3 U_3^\top \\ &\quad + \beta_3 U_2 U_2^\top + \beta_5 U_2 U_4^\top + \beta_9 U_4 U_2^\top + \beta_{11} U_4 U_4^\top \\ &\quad + \beta_4 U_2 M U_2^\top + \beta_6 U_2 M U_4^\top + \beta_{10} U_4 M U_2^\top + \beta_{12} U_4 M U_4^\top \\ P' &= U' \mathbf{W}^{(2)} U'^\top \\ &= \sum U'_i \mathbf{W}_{ij}^{(2)} U'_j^\top \\ &= \beta_1 U'_1 U'_1^\top + \beta_2 U'_1 U'_3^\top + \beta_7 U'_3 U'_1^\top + \beta_8 U'_3 U'_3^\top \\ &\quad + \beta_3 U'_2 U'_2^\top + \beta_5 U'_2 U'_4^\top + \beta_9 U'_4 U'_2^\top + \beta_{11} U'_4 U'_4^\top \\ &\quad + \beta_4 U'_2 M U'_2^\top + \beta_6 U'_2 M U'_4^\top + \beta_{10} U'_4 M U'_2^\top + \beta_{12} U'_4 M U'_4^\top \\ &= \beta_1 U_1 E E^\top U_1^\top + \beta_2 U_1 E E^\top U_3^\top + \beta_7 U_3 E E^\top U_1^\top + \beta_8 U_3 E E^\top U_3^\top \\ &\quad + \beta_3 U_2 F F^\top U_2^\top + \beta_5 U_2 F F^\top U_4^\top + \beta_9 U_4 F F^\top U_2^\top + \beta_{11} U_4 F F^\top U_4^\top \\ &\quad + \beta_4 U_2 F M F^\top U_2^\top + \beta_6 U_2 F M F^\top U_4^\top + \beta_{10} U_4 F M F^\top U_2^\top + \beta_{12} F M F^\top U_4^\top \\ &= \beta_1 U_1 U_1^\top + \beta_2 U_1 U_3^\top + \beta_7 U_3 U_1^\top + \beta_8 U_3 U_3^\top \\ &\quad + \beta_3 U_2 U_2^\top + \beta_5 U_2 U_4^\top + \beta_9 U_4 U_2^\top + \beta_{11} U_4 U_4^\top \\ &\quad + \beta_4 U_2 M U_2^\top + \beta_6 U_2 M U_4^\top + \beta_{10} U_4 M U_2^\top + \beta_{12} U_4 M U_4^\top \end{aligned}$$

948 Therefore, $P' = P$ and $Q' = Q = \sigma(P)$. This gives us:
 949

$$\begin{aligned} 950 \quad V'_1 &= V_1 E \quad V'_2 = V_2 F \quad V'_3 = V_3 E \quad V'_4 = V_4 F \\ 951 \quad V'_5 &= V_5 E \quad V'_6 = V_6 F \quad V'_7 = V_7 E \quad V'_8 = V_8 F \\ 953 \end{aligned}$$

954 **A.6.3 OUTPUT LAYER**
 955

956 Finally, the output layer gives:
 957

$$\begin{aligned} z &= V_{2N+1} \mathbf{W}^{(3)} \\ &= \sum (V_i)_{2N+1} \mathbf{W}_i^{(3)} \\ &= \gamma_1 (V_1)_{2N+1} + \gamma_2 (V_3)_{2N+1} + \gamma_3 (V_5)_{2N+1} + \gamma_4 (V_7)_{2N+1} \\ z' &= V'_{2N+1} \mathbf{W}^{(3)} \\ &= \sum (V'_i)_{2N+1} \mathbf{W}_i^{(3)} \\ &= \gamma_1 (V'_1)_{2N+1} + \gamma_2 (V'_3)_{2N+1} + \gamma_3 (V'_5)_{2N+1} + \gamma_4 (V'_7)_{2N+1} \\ &= \gamma_1 (V_1)_{2N+1} E + \gamma_2 (V_3)_{2N+1} E + \gamma_3 (V_5)_{2N+1} E + \gamma_4 (V_7)_{2N+1} E \\ &= z E \end{aligned}$$

969 **A.7 BACKWARD PASS**
 970

971 We now show how the rotation transforms the gradient of each weight block.

972 A.7.1 OUTPUT LAYER
 973

$$\begin{aligned}
 974 \quad \frac{\partial \mathcal{L}}{\partial z} &= 2(z - y) \\
 975 \quad \frac{\partial \mathcal{L}'}{\partial z'} &= 2(z' - y') = 2(zE - yE) = 2(z - y)E = \frac{\partial \mathcal{L}}{\partial z}E \\
 976 \\
 977 \quad \frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} &= ((V_i)_{2N+1})^\top \left(\frac{\partial \mathcal{L}}{\partial z} \right) \\
 978 \quad \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_i^{(3)}} &= ((V'_i)_{2N+1})^\top \left(\frac{\partial \mathcal{L}'}{\partial z'} \right) \\
 979 \\
 980 \\
 981 \\
 982 \\
 983 \\
 984 \\
 985 \\
 986 \\
 987 \quad \text{Scalar Blocks. For all } i \in \{1, 3, 5, 7\}, \text{ we get} \\
 988
 \end{aligned}$$

$$\begin{aligned}
 989 \quad \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_i^{(3)}} &= ((V'_i)_{2N+1})^\top \left(\frac{\partial \mathcal{L}'}{\partial z'} \right) \\
 990 \\
 991 \quad &= E^\top ((V_i)_{2N+1})^\top \left(\frac{\partial \mathcal{L}}{\partial z} \right) E \\
 992 \\
 993 \quad &= E^\top \frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} E \\
 994 \\
 995 \\
 996 \\
 997 \\
 998 \quad \text{Taking the expectation over the entire data distribution, we obtain that the following holds for any} \\
 999 \quad \text{orthogonal transformation } E: \\
 1000
 \end{aligned}$$

$$\begin{aligned}
 1001 \quad \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} \right] &= \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_i^{(3)}} \right] = \mathbb{E} \left[E^\top \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_i^{(3)}} E \right] = E^\top \mathbb{E} \left[\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_i^{(3)}} \right] E \\
 1002 \\
 1003
 \end{aligned}$$

1004 Applying Proposition 1, we get that
 1005

$$\begin{aligned}
 1006 \quad \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} \right] &= \alpha I \\
 1007 \\
 1008 \\
 1009 \\
 1010 \\
 1011 \\
 1012 \quad \text{Zero Blocks. For all } i \in \{2, 4, 6, 8\}, \text{ we get} \\
 1013
 \end{aligned}$$

$$\begin{aligned}
 1014 \quad \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_i^{(3)}} &= ((V'_i)_{2N+1})^\top \left(\frac{\partial \mathcal{L}'}{\partial z'} \right) \\
 1015 \\
 1016 \quad &= F^\top ((V_i)_{2N+1})^\top \left(\frac{\partial \mathcal{L}}{\partial z} \right) E \\
 1017 \\
 1018 \quad &= F^\top \frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} E \\
 1019 \\
 1020 \\
 1021 \quad \text{Taking the expectation over the entire data distribution, we obtain that the following holds for any} \\
 1022 \quad E \text{ and } F: \\
 1023
 \end{aligned}$$

$$\begin{aligned}
 1024 \quad \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} \right] &= F^\top \mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} \right] E \\
 1025
 \end{aligned}$$

1026 Applying Proposition 3, we get that
 1027

$$\mathbb{E} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{W}_i^{(3)}} \right] = \mathbf{0}$$

1030
 1031

1032 **Gradient Propagation** Applying the chain rule, we get
 1033

$$\frac{\partial \mathcal{L}}{\partial V_{2N+1}} = \frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial V_{2N+1}} = 2(z - y) \mathbf{W}^{(3)\top}$$

1036 For all $i \in \{1, 3, 5, 7\}$, we get
 1037

$$\frac{\partial \mathcal{L}'}{\partial (V_i')_{2N+1}} = 2(z' - y') \mathbf{W}_i^{(3)\top} = 2(z - y) E \mathbf{W}_i^{(3)\top} = \frac{\partial \mathcal{L}}{\partial (V_i)_{2N+1}} E$$

1040 For all $i \in \{2, 4, 6, 8\}$, we get
 1041

$$\frac{\partial \mathcal{L}}{\partial (V_i)_{2N+1}} = 2(z - y) \mathbf{W}_i^{(3)} = \mathbf{0}$$

1044 For all $i \in \{1, \dots, 8\}$ and $j \leq 2N$, we get
 1045

$$\frac{\partial \mathcal{L}}{\partial (V_i)_j} = \frac{\partial \mathcal{L}}{\partial (V_i')_j} = \mathbf{0}$$

1048 Putting everything together, the following holds for all $j \leq 2N + 1$
 1049

$$\frac{\partial \mathcal{L}}{\partial (V_i)_j} = \frac{\partial \mathcal{L}'}{\partial (V_i')_j} E \quad \text{if } i \in \{1, 3, 5, 7\} \quad (12)$$

1050
 1051

$$\frac{\partial \mathcal{L}}{\partial (V_i)_j} = \frac{\partial \mathcal{L}'}{\partial (V_i')_j} = \mathbf{0} \quad \text{if } i \in \{2, 4, 6, 8\} \quad (13)$$

1055 A.7.2 SECOND LAYER

1056 Since $V = [U \mid QU]$, we have that
 1057

$$\frac{\partial (V_i)_j}{\partial Q_{jk}} = \begin{cases} U_{i-4} & i > 4 \\ \mathbf{0} & i \leq 4 \end{cases}$$

1058 Therefore,
 1059

$$\frac{\partial \mathcal{L}'}{\partial (V_i')_j} \frac{\partial (V_i')_j}{\partial Q'_{jk}} = \frac{\partial \mathcal{L}}{\partial (V_i)_j} E^\top E \frac{\partial (V_i)_j}{\partial Q_{jk}} = \frac{\partial \mathcal{L}}{\partial (V_i)_j} \frac{\partial (V_i)_j}{\partial Q_{jk}} \quad i \in \{5, 7\}$$

1060
 1061

$$\frac{\partial \mathcal{L}'}{\partial (V_i')_j} \frac{\partial (V_i')_j}{\partial Q'_{jk}} = \frac{\partial \mathcal{L}}{\partial (V_i)_j} \frac{\partial (V_i)_j}{\partial Q_{jk}} = \mathbf{0} \quad i \notin \{5, 7\}$$

1062 Additionally, since $P' = P$ and $Q' = Q$, we have that
 1063

$$\frac{\partial Q'_{jk}}{\partial P'_{jl}} = \frac{\partial Q_{jk}}{\partial P_{jl}}$$

1064 This gives us
 1065

$$\begin{aligned} \frac{\partial \mathcal{L}'}{\partial P'_{kl}} &= \sum_{ij} \frac{\partial \mathcal{L}'}{\partial (V_i')_j} \frac{\partial (V_i')_j}{\partial Q'_{kj}} \frac{\partial Q'_{kj}}{\partial P'_{kl}} \\ &= \sum_{ij} \frac{\partial \mathcal{L}}{\partial (V_i)_k} \frac{\partial (V_i)_k}{\partial Q_{kj}} \frac{\partial Q_{kj}}{\partial P_{kl}} \\ &= \frac{\partial \mathcal{L}}{\partial P_{kl}} \end{aligned}$$

1080 Additionally,

$$1082 \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(2)}} = \sum_{kl} \frac{\partial \mathcal{L}}{\partial P_{kl}} \frac{\partial P_{kl}}{\partial \mathbf{W}_{ij}^{(2)}} = \sum_{kl} \frac{\partial \mathcal{L}}{\partial P_{kl}} (U_i)_k^\top (U_j)_l$$

1084 which gives us the transformed gradient:

$$1086 \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(2)}} = \sum_{kl} \frac{\partial \mathcal{L}'}{\partial P'_{kl}} \frac{\partial P'_{kl}}{\partial \mathbf{W}_{ij}^{(2)}} = \sum_{kl} \frac{\partial \mathcal{L}'}{\partial P_{kl}} (U'_i)_k^\top (U'_j)_l$$

$$1089 \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{ij}^{(2)}} = \begin{cases} E^\top \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(2)}} E & \text{if } i \text{ odd, } j \text{ odd} \\ E^\top \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(2)}} F & \text{if } i \text{ odd, } j \text{ even} \\ F^\top \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(2)}} E & \text{if } i \text{ even, } j \text{ odd} \\ F^\top \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(2)}} F & \text{if } i \text{ even, } j \text{ even} \end{cases}$$

1100 The desired structure follows from computing the expected gradient over the entire distribution and
1101 applying Propositions 1 to 3.

1103

1104 Gradient Propagation

1106 Applying the chain rule, we get

$$1108 \frac{\partial \mathcal{L}'}{\partial (U'_i)_j} = \frac{\partial \mathcal{L}'}{\partial (V'_i)_j} + Q'^\top \frac{\partial \mathcal{L}'}{\partial (V'_{i+4})_j} + \sum_k \frac{\partial \mathcal{L}'}{\partial P'_{jk}} \frac{\partial P'_{jk}}{\partial (U'_i)_j} \quad (14)$$

1111 We also have that

$$1113 \frac{\partial P_{jk}}{\partial (U_i)_j} = (U_i)_k \quad \frac{\partial P'_{jk}}{\partial (U'_i)_j} = (U'_i)_k = \begin{cases} (U_i)_k E & \text{if } i \text{ odd} \\ (U_i)_k F & \text{if } i \text{ even} \end{cases} \quad (15)$$

1116 Combining eqs. (12) to (15), we get

$$1118 \frac{\partial \mathcal{L}'}{\partial (U'_i)_j} = \begin{cases} \frac{\partial \mathcal{L}'}{\partial (U'_i)_j} E & \text{if } i \text{ odd} \\ \frac{\partial \mathcal{L}'}{\partial (U'_i)_j} F & \text{if } i \text{ even} \end{cases}$$

1124 A.7.3 FIRST LAYER

1125 Through similar derivations as before, we obtain

$$1127 \frac{\partial \mathcal{L}'}{\partial S'_{kl}} = \sum_{ij} \frac{\partial \mathcal{L}'}{\partial (U'_i)_j} \frac{\partial (U'_i)_j}{\partial T'_{kj}} \frac{\partial T'_{kj}}{\partial S'_{kl}} \\ 1128 = \sum_{ij} \frac{\partial \mathcal{L}'}{\partial (U_i)_k} \frac{\partial (U_i)_k}{\partial T_{kj}} \frac{\partial T_{kj}}{\partial S_{kl}} \\ 1130 = \frac{\partial \mathcal{L}}{\partial S_{kl}}$$

1134 and

1135
1136
$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}_{ij}^{(1)}} = \sum_{kl} \frac{\partial \mathcal{L}}{\partial S_{kl}} \frac{\partial S_{kl}}{\partial \mathbf{W}_{ij}^{(1)}} = \sum_{kl} \frac{\partial \mathcal{L}}{\partial S_{kl}} (X_i)_k^T (X_j)_l$$
 1137
1138

1139 This gives us the transformed gradient:

1140
1141
$$\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{11}^{(1)}} = E^T \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{11}^{(1)}} E \quad \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{12}^{(1)}} = E^T \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{12}^{(1)}} F$$
 1142
1143
1144
$$\frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{21}^{(1)}} = F^T \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{21}^{(1)}} E \quad \frac{\partial \mathcal{L}'}{\partial \mathbf{W}_{22}^{(1)}} = F^T \frac{\partial \mathcal{L}}{\partial \mathbf{W}_{22}^{(1)}} F$$
 1145
1146

1147 which implies the desired structure.

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188 **B TIGHT BOUND PROOF**
 1189

1190 **B.1 SUMMARY**
 1191

1192 We show that γ is the first parameter to reach the value $1/2$ after a time $T_1 = \Theta(N)$, then remains
 1193 bounded. Later, β reaches $1/2$ after an additional time $T_2 = \Theta(N^2)$. Finally, α reaches $1/2$ after
 1194 an additional time $T_3 = O(N^2)$. This gives the total times $T_\alpha = T_1 = \Theta(N)$, $T_\beta = T_1 + T_2 =$
 1195 $\Theta(N) + \Theta(N^2) = \Theta(N^2)$, and $T_\gamma = T_1 + T_2 + T_3 = \Theta(N) + \Theta(N^2) + O(N^2) = \Theta(N^2)$. Each
 1196 step is proven by appropriately bounding the gradient updates. We give the full proof below.

1197 **B.2 SETUP**
 1198

1199 Recall the architecture and loss:
 1200

$$1202 \quad U = \left[\begin{array}{c|c} X & \sigma(XW^{(1)}X^\top)X \end{array} \right] \quad V = \left[\begin{array}{c|c} U & \sigma(UW^{(2)}U^\top)U \end{array} \right] \\ 1203 \\ 1204 \quad z = V_{2N+1}W^{(3)} \quad \mathcal{L} = \|y - z\|^2$$

1206 where $[\cdot | \cdot]$ denotes matrix concatenation, and
 1207

$$1208 \quad W^{(1)} \in \mathbb{R}^{2D \times 2D} \quad W^{(2)} \in \mathbb{R}^{4D \times 4D} \quad W^{(3)} \in \mathbb{R}^{8D \times D} \\ 1209 \quad U \in \mathbb{R}^{(2N+1) \times 4D} \quad V \in \mathbb{R}^{(2N+1) \times 8D} \quad z \in \mathbb{R}^D \\ 1210 \quad X \in \mathbb{R}^{(2N+1) \times 2D} \quad y \in \mathbb{R}^D$$

1212 We use σ to denote the softmax function with causal masking. We apply a causal mask that prevents
 1213 a position from attending to itself, which is not a standard practice, but it greatly simplifies the
 1214 proofs.
 1215

1216 The data is generated as:
 1217

$$1218 \quad X_{2i-1} = [a_i | p_i] \quad X_{2i} = [b_i | Mp_i] \quad \forall i \in \{1, \dots, N\} \\ 1219 \\ 1220 \quad X_{2N+1} = [a_q | 0] \quad y = b_q$$

1222 where
 1223

$$1224 \quad a_i, b_i, p_i \in \mathbb{R}^D \quad q \in \{1, 2, \dots, N\} \quad M = \left[\begin{array}{c|c} \mathbf{0} & I \\ \hline I & \mathbf{0} \end{array} \right]$$

1228 **B.3 LOSS FUNCTION**

1229 We begin by deriving a closed-form expression of the loss in terms of the three parameters.
 1230

1231 The orthonormal inputs give us the following attention scores in the first layer:
 1232

$$1233 \quad (XW^{(1)}X^\top)_{ij} = \begin{cases} \alpha & i = 2k, j = i - 1 \\ 0 & \text{otherwise} \end{cases}$$

1235 Applying the softmax attention with causal masking gives us:
 1236

$$1237 \quad \sigma(XW^{(1)}X^\top)_{ij} = \begin{cases} \frac{e^\alpha}{i - 2 + e^\alpha} & i = 2k, j = i - 1 \\ \frac{1}{i - 2 + e^\alpha} & i = 2k, j \neq i - 1 \\ \frac{1}{i - 1} & i = 2k + 1 \end{cases}$$

From Assump. 8, the target label is the last element in the sequence, following immediately after the queried item. This means that only the target label will contain the queried item after the first layer. Therefore, the target label will be the only position attended by the query:

$$(UW^{(2)}U^\top)_{2N+1, i} = \begin{cases} \beta \frac{e^\alpha}{2N-2+e^\alpha} & i = 2N \\ 0 & \text{otherwise} \end{cases}$$

Applying the softmax attention gives:

$$\sigma(UW^{(2)}U^\top)_{2N+1, i} = \begin{cases} \frac{s}{s+2N-1} & i = 2N \\ \frac{1}{s+2N-1} & \text{otherwise} \end{cases}$$

where $s = e^{\beta \frac{e^\alpha}{2N-2+e^\alpha}}$.

Applying the output projection layer will give us:

$$z = \frac{\gamma}{s+2N-1} \left(s b_N + a_N + \sum_{i=1}^{N-1} (a_i + b_i) \right)$$

The final loss will be:

$$\begin{aligned} \mathcal{L} &= \|z - b_i\|^2 = \|z\|^2 - 2z^\top b_i + \|b_i\|^2 \\ &= \gamma^2 \frac{s^2 + 2N - 1}{(s+2N-1)^2} - 2\gamma \frac{s}{s+2N-1} + 1 \end{aligned}$$

where $s = e^{\beta \frac{e^\alpha}{2N-2+e^\alpha}}$.

Note that as long as inputs are orthonormal and the target label is in the last position, the loss only depends on α, β, γ , and N . Any distribution over orthonormal inputs will give the same expected loss.

B.4 LOSS GRADIENT

We now proceed to compute the partial derivatives of the loss function with respect to each of the three parameters.

B.4.1 AUXILIARY DEFINITIONS

$$G = e^\alpha + 2N - 2, \quad F = 2N - 1,$$

$$s = \exp\left(\frac{\beta e^\alpha}{G}\right), \quad r = s + F,$$

$$\mathcal{L} = \frac{\gamma^2 (s^2 + F)}{r^2} - 2\gamma \frac{s}{r} + 1.$$

B.4.2 PARTIAL DERIVATIVE W.R.T. γ

$$\frac{\partial \mathcal{L}}{\partial \gamma} = \frac{\partial}{\partial \gamma} \left(\frac{\gamma^2 (s^2 + F)}{r^2} - 2\gamma \frac{s}{r} + 1 \right)$$

$$= 2\gamma \frac{s^2 + F}{r^2} - 2 \frac{s}{r}$$

1296 B.4.3 PARTIAL DERIVATIVE W.R.T. s

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial s} &= \frac{\partial}{\partial s} \left(\frac{\gamma^2(s^2+F)}{r^2} \right) - 2\gamma \frac{\partial}{\partial s} \left(\frac{s}{r} \right) \\ &= \gamma^2 \frac{2s r^2 - (s^2 + F) 2r \frac{\partial r}{\partial s}}{r^4} - 2\gamma \frac{r - s \frac{\partial r}{\partial s}}{r^2} \end{aligned}$$

1303 But since $\partial r / \partial s = 1$,

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial s} &= \frac{2\gamma^2 s r - 2\gamma^2 (s^2 + F)}{r^3} - 2\gamma \frac{r - s}{r^2} \\ &= 2F \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \end{aligned}$$

1312 B.4.4 DERIVATIVES OF s

$$s = \exp \left(\frac{\beta e^\alpha}{G} \right) \implies \begin{cases} \frac{\partial s}{\partial \alpha} = s \frac{\partial}{\partial \alpha} \left(\frac{\beta e^\alpha}{G} \right) = s \frac{\beta e^\alpha (G - e^\alpha)}{G^2} = s \frac{2(N-1) \beta e^\alpha}{G^2} \\ \frac{\partial s}{\partial \beta} = s \frac{\partial}{\partial \beta} \left(\frac{\beta e^\alpha}{G} \right) = s \frac{e^\alpha}{G} \end{cases}$$

1320 B.4.5 APPLYING THE CHAIN-RULE RESULTS

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \alpha} &= \frac{\partial \mathcal{L}}{\partial s} \frac{\partial s}{\partial \alpha} = 2F \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \times s \frac{2(N-1) \beta e^\alpha}{G^2} \\ &= \frac{4\beta(N-1)Fse^\alpha}{G^2} \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \\ \frac{\partial \mathcal{L}}{\partial \beta} &= \frac{\partial \mathcal{L}}{\partial s} \frac{\partial s}{\partial \beta} = 2F \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \times s \frac{e^\alpha}{G} \\ &= \frac{2Fse^\alpha}{G} \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \end{aligned}$$

1335 B.4.6 FINAL RESULTS

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \alpha} &= \frac{4\beta(N-1)Fse^\alpha}{G^2} \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \\ \frac{\partial \mathcal{L}}{\partial \beta} &= \frac{2Fse^\alpha}{G} \left(\frac{\gamma^2(s-1)}{r^3} - \frac{\gamma}{r^2} \right) \\ \frac{\partial \mathcal{L}}{\partial \gamma} &= 2\gamma \frac{s^2 + F}{r^2} - 2 \frac{s}{r} \end{aligned}$$

1347 B.4.7 VERIFICATION

1348 We verify the correctness of the previous results using automated symbolic differentiation with the
1349 SymPy library. The code is provided with this paper.

1350 B.5 EMERGENCE OF IN-CONTEXT LEARNING
13511352 Combining the previously obtained loss derivatives with the zero initialization, we obtain the full set
1353 of constraints that determine our training trajectory:
1354

1355
$$\alpha(0) = \beta(0) = \gamma(0) = 0$$

1356

1357
$$\frac{\partial \alpha}{\partial t} = \frac{2\beta(2N-2)(2N-1)s e^\alpha}{(e^\alpha + 2N-2)^2} \left(\frac{\gamma}{(s+2N-1)^2} - \frac{\gamma^2(s-1)}{(s+2N-1)^3} \right)$$

1358

1361
$$\frac{\partial \beta}{\partial t} = \frac{2(2N-1)s e^\alpha}{e^\alpha + 2N-2} \left(\frac{\gamma}{(s+2N-1)^2} - \frac{\gamma^2(s-1)}{(s+2N-1)^3} \right)$$

1362

1364
$$\frac{\partial \gamma}{\partial t} = 2 \frac{s}{s+2N-1} - 2\gamma \frac{s^2+2N-1}{(s+2N-1)^2}$$

1365

1367 where $s = \exp\left(\beta \frac{e^\alpha}{e^\alpha + 2N-2}\right)$.
1368

1369 We are interested in the first time t_{ICL} when all three parameters are greater than $1/2$. As we show
1370 below, the parameters always reach this value in a specific order: first γ , then β , and finally α .
13711372 We find the total time by breaking it down into three different times, one for each parameter:
1373

1374
$$t_{\text{ICL}} = T_1 + T_2 + T_3$$

1375 We show that γ emerges in $T_1 = \Theta(N)$, β emerges after another $T_2 = \Theta(N^2)$, and finally α
1376 emerges after another $T_3 = O(N^2)$. This gives the total time:
1377

1378
$$t_{\text{ICL}} = \Theta(N) + \Theta(N^2) + O(N^2) = \Theta(N^2)$$

1379

1380 B.6 EMERGENCE OF γ IN $T_1 = \Theta(N)$
13811382 We start in the regime $0 \leq \alpha, \beta, \gamma < \frac{1}{2}$. We show that γ is the first to leave this regime at a time
1383 $T_1 = O(N)$.
13841385 B.6.1 DYNAMICS OF γ
13861387 Using $\alpha, \beta < \frac{1}{2}$, we get:
1388

1389
$$s = \exp\left(\beta \frac{e^\alpha}{e^\alpha + 2N-2}\right) = 1 + O(1/N)$$

1390

1391 Using $\gamma < \frac{1}{2}$, we get:
1392

1393
$$\begin{aligned} \frac{\partial \gamma}{\partial t} &= 2 \frac{s}{s+2N-1} - 2\gamma \frac{s^2+2N-1}{(s+2N-1)^2} \\ 1394 &\geq 2 \frac{s}{s+2N-1} - \frac{s^2+2N-1}{(s+2N-1)^2} \\ 1395 &\geq 2 \frac{1+O(1/N)}{2N+O(1/N)} - \frac{2N+O(1/N)}{(2N+O(1/N))^2} \\ 1396 &\geq \frac{1+O(1/N)}{N} - \frac{2N+O(1/N)}{4N^2} \\ 1397 &\geq \frac{1}{2N} + O(1/N^2) \end{aligned}$$

1398
1399
1400
1401
1402
1403

$$\begin{aligned}
\frac{\partial \gamma}{\partial t} &= 2 \frac{s}{s+2N-1} - 2\gamma \frac{s^2+2N-1}{(s+2N-1)^2} \\
&\leq 2 \frac{s}{s+2N-1} \\
&\leq 2 \frac{1+O(1/N)}{2N+O(1/N)} \\
&\leq \frac{1}{N} + O(1/N^2)
\end{aligned}$$

This gives us

$$\frac{\partial \gamma}{\partial t} = \Theta(1/N)$$

Integrating over time, we obtain:

$$\gamma(T_1) = \int_0^{T_1} \frac{\partial \gamma}{\partial t} dt = T_1 \Theta(1/N)$$

Since $\gamma(T_1) = 1/2$, we get that $T_1 = \Theta(N)$.

B.6.2 DYNAMICS OF α AND β

We are left to show that the condition $\alpha, \beta < \frac{1}{2}$ holds until T_1 .

$$\begin{aligned}
\frac{\partial \alpha}{\partial t} &= \underbrace{\frac{2\beta(2N-2)(2N-1)s e^\alpha}{(e^\alpha+2N-2)^2}}_{O(1)} \left(\underbrace{\frac{\gamma}{(s+2N-1)^2}}_{O(1/N^2)} - \underbrace{\frac{\gamma^2(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right) \\
&= O(1/N^2)
\end{aligned}$$

$$\begin{aligned}
\frac{\partial \beta}{\partial t} &= \underbrace{\frac{2(2N-1)s e^\alpha}{e^\alpha+2N-2}}_{O(1)} \left(\underbrace{\frac{\gamma}{(s+2N-1)^2}}_{O(1/N^2)} - \underbrace{\frac{\gamma^2(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right) \\
&= O(1/N^2)
\end{aligned}$$

Integrating over time, we get $\alpha(T_1) = O(1/N)$ and $\beta(T_1) = O(1/N)$. Therefore, for large enough N , it is guaranteed that α and β will not reach $1/2$ by the time that γ does.

B.6.3 NON-NEGATIVITY

For completeness, we also show that parameters are always increasing within this regime, which guarantees that they will never become negative:

1458
 1459
 1460
$$\frac{\partial \alpha}{\partial t} = \underbrace{\frac{2\beta(2N-2)(2N-1)s e^\alpha \gamma}{(e^\alpha + 2N-2)^2}}_{\geq 0} \left(\underbrace{\frac{1}{(s+2N-1)^2}}_{\Theta(1/N^2)} - \underbrace{\frac{\gamma(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right) \geq 0$$

 1461
 1462
 1463
 1464
 1465
 1466
$$\frac{\partial \beta}{\partial t} = \underbrace{\frac{2(2N-1)s e^\alpha \gamma}{e^\alpha + 2N-2}}_{\geq 0} \left(\underbrace{\frac{1}{(s+2N-1)^2}}_{\Theta(1/N^2)} - \underbrace{\frac{\gamma(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right) \geq 0$$

 1467
 1468
 1469
 1470
 1471
 1472
 1473

B.7 EMERGENCE OF β AFTER $T_2 = \Theta(N^2)$

We have now entered a new regime where $0 \leq \alpha, \beta \leq 1/2$ and $1/2 \leq \gamma \leq 3/2$. We will show that β is the first to leave this regime after an additional time $T_2 = \Theta(N^2)$.

B.7.1 BOUNDING γ

We begin by showing that γ remains bounded below $3/2$. We show that $\partial \gamma / \partial t$ would be negative at $\gamma = 3/2$, which implies that γ will never go above $3/2$. We use the fact that $s = 1 + O(1/N)$ whenever $\alpha, \beta = O(1)$:

1484
$$\frac{\partial \gamma}{\partial t} = 2 \frac{s}{s+2N-1} - 2\gamma \frac{s^2 + 2N-1}{(s+2N-1)^2}$$

 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

$$\begin{aligned} &= 2 \frac{s}{s+2N-1} - 3 \frac{s^2 + 2N-1}{(s+2N-1)^2} \\ &= 2 \frac{1 + O(1/N)}{2N + O(1/N)} - 3 \frac{2N + O(1/N)}{(2N + O(1/N))^2} \\ &= \frac{1 + O(1/N)}{N} - \frac{3N + O(1/N)}{2N^2} \\ &= -\frac{1}{2N} + O(1/N^2) \\ &< 0 \end{aligned}$$

B.7.2 DYNAMICS OF β

Applying the fact that $\gamma = \Theta(1)$ and $s = 1 + O(1/N) = \Theta(1)$ gives us:

$$\frac{\partial \beta}{\partial t} = \underbrace{\frac{2(2N-1)s e^\alpha \gamma}{e^\alpha + 2N-2}}_{\Theta(1)} \left(\underbrace{\frac{1}{(s+2N-1)^2}}_{\Theta(1/N^2)} - \underbrace{\frac{\gamma(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right) = \Theta(1/N^2)$$

By integrating, we obtain the value of β after T_2 :

$$\beta(T_1 + T_2) = \beta(T_1) + \int_{T_1}^{T_1 + T_2} \frac{\partial \beta}{\partial t} dt = O(1/N) + T_2 \Theta(1/N^2)$$

This gives us that $T_2 \Theta(1/N^2) = 1/2$, which implies that $T_2 = \Theta(N^2)$.

1512 B.7.3 DYNAMICS OF α
15131514 For completeness, we must establish that α does not become greater than $1/2$ before β . This comes
1515 from the fact that β is always increasing at a faster rate than α in this regime:
1516

1517
$$\frac{\partial \alpha}{\partial t} = \underbrace{\frac{\beta(2N-2)}{e^\alpha + 2N-2}}_{<1} \frac{\partial \beta}{\partial t}$$

1518
1519
1520

1521 B.8 EMERGENCE OF α IN $T_3 = O(N^2)$
15221523 We have entered our last regime, which we define using the constraints $0 \leq \alpha \leq 1/2$, $1/2 \leq \gamma \leq$
1524 $3/2$, and $1/2 \leq \beta \leq 20$.
15251526 We know from before that γ remains constrained when $\alpha, \beta = \Theta(1)$. We are left to prove that α
1527 becomes greater than $1/2$ in a time $T_3 = O(N^2)$ and it does so before β becomes greater than the
1528 value 20 (chosen arbitrarily to simplify the proofs).
15291530 B.8.1 DYNAMICS OF α
15311532 We establish an upper bound on T_3 using a lower bound on $\partial \alpha / \partial t$:
1533

1534
$$\frac{\partial \alpha}{\partial t} = 2\gamma\beta e^\alpha \underbrace{\frac{(2N-2)(2N-1)s}{(e^\alpha + 2N-2)^2}}_{1+O(1/N)} \left(\underbrace{\frac{1}{(s+2N-1)^2}}_{1/(4N^2)+O(1/N^3)} - \underbrace{\frac{\gamma(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right)$$

1535
1536
1537
1538
1539 $> \frac{1}{8N^2} + O\left(\frac{1}{N^3}\right)$
1540

1541 Integrating over time gives:
1542

1543
$$\alpha(T_1 + T_2 + T_3) = \alpha(T_1 + T_2) + \int_{T_1 + T_2}^{T_1 + T_2 + T_3} \frac{\partial \alpha}{\partial t} dt$$

1544
1545
1546
1547
1548 $> T_3 \left(\frac{1}{8N^2} + O\left(\frac{1}{N^3}\right) \right)$
1549
1550

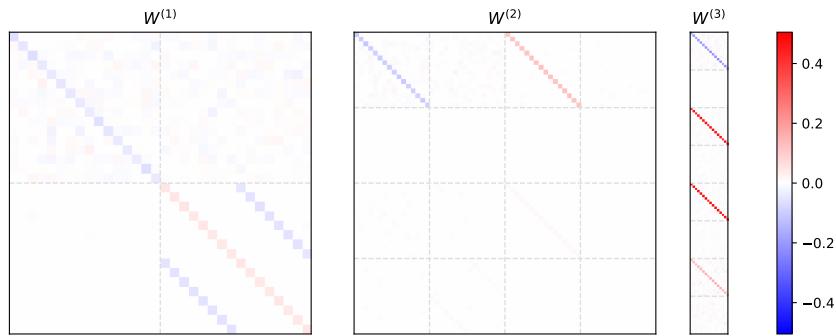
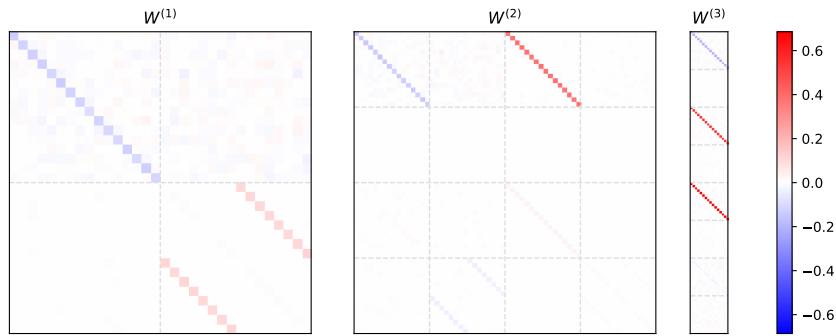
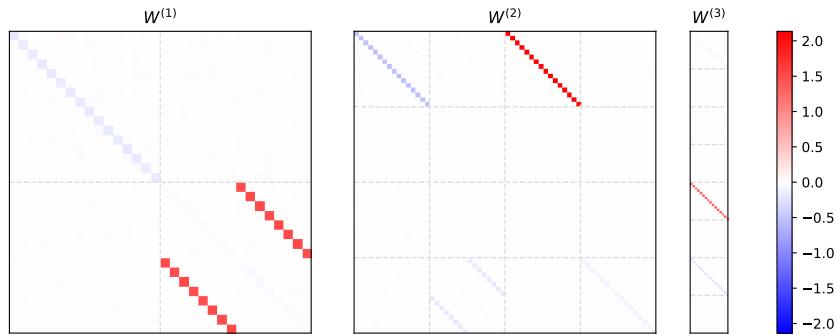
1551 Applying that $\alpha(T_1 + T_2 + T_3) = 1/2$ gives us $T_3 < 4N^2 + O(1/N) = O(N^2)$.
15521553 B.8.2 DYNAMICS OF β
15541555 Finally, we must show that β does not reach 20 during T_3 . We achieve this using an upper bound on
1556 $\partial \beta / \partial t$:
1557

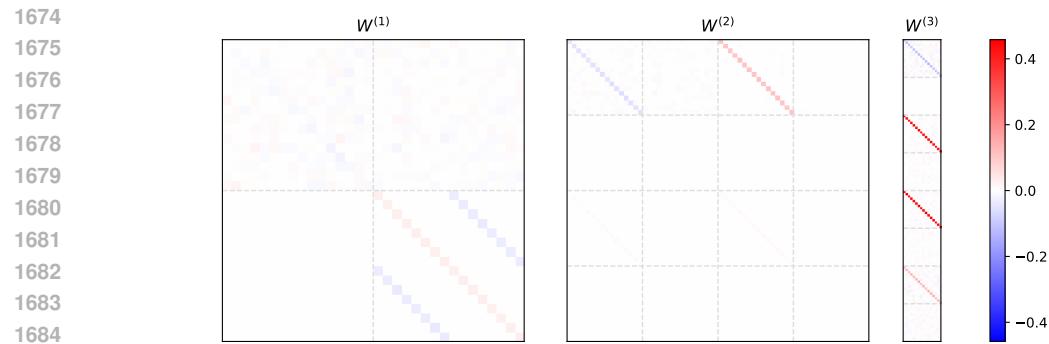
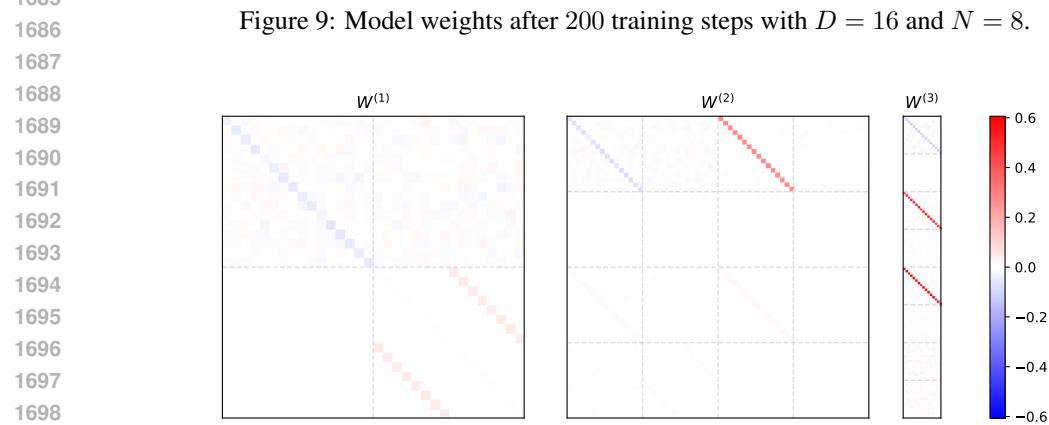
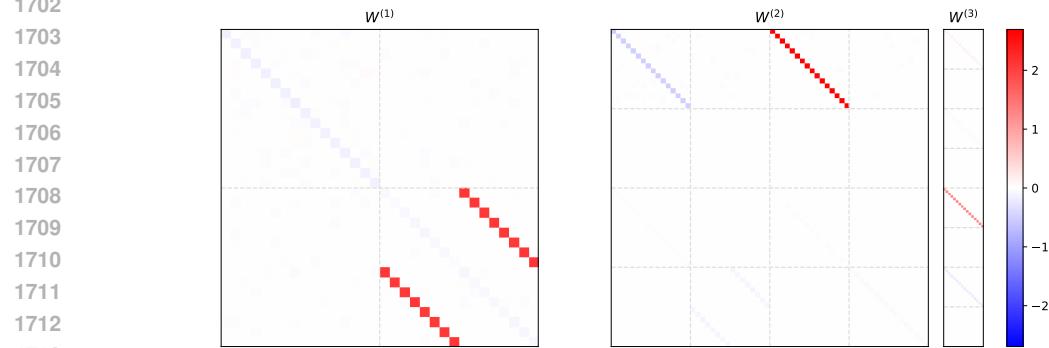
1558
1559
1560
$$\frac{\partial \beta}{\partial t} = 2e^\alpha \gamma \underbrace{\frac{(2N-1)s}{e^\alpha + 2N-2}}_{1+O(1/N)} \left(\underbrace{\frac{1}{(s+2N-1)^2}}_{1/(4N^2)+O(1/N^3)} - \underbrace{\frac{\gamma(s-1)}{(s+2N-1)^3}}_{O(1/N^4)} \right)$$

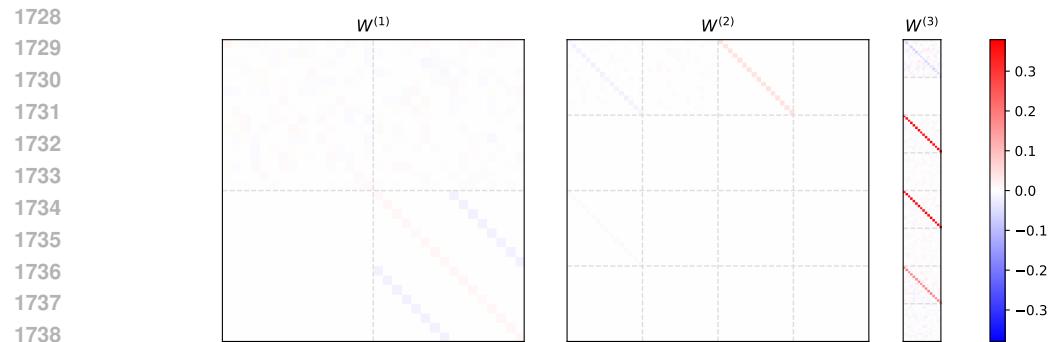
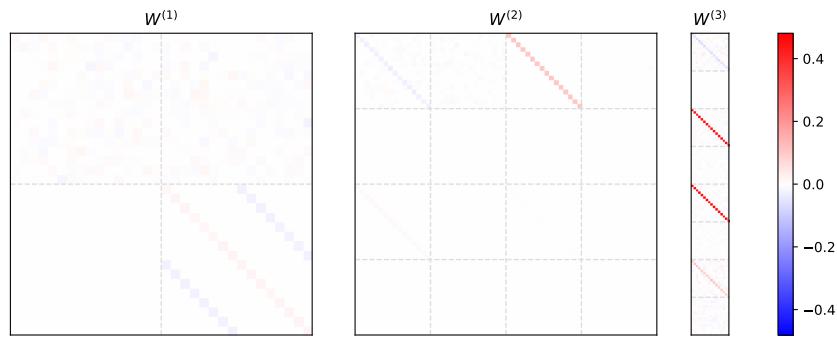
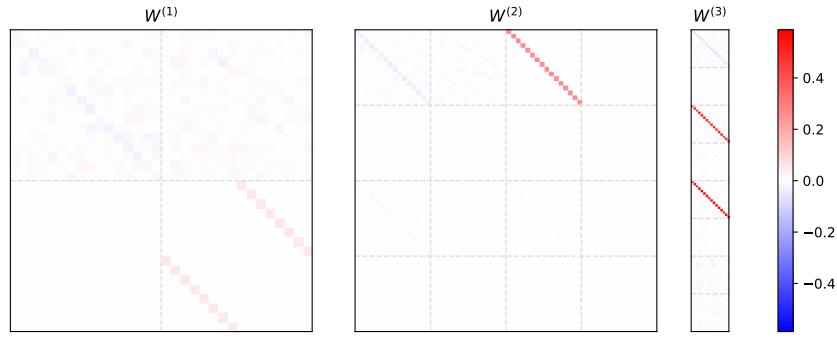
1561
1562
1563
1564
1565 $< \frac{3\sqrt{e}}{4N^2} + O(1/N^3)$

1566 Integrating over time gives:
 1567

$$\begin{aligned}
 1568 \quad \beta(T_1 + T_2 + T_3) &= \beta(T_1 + T_2) + \int_{T_1 + T_2}^{T_1 + T_2 + T_3} \frac{\partial \beta}{\partial t} dt \\
 1569 \\
 1570 \\
 1571 &< \frac{1}{2} + T_3 \left(\frac{3\sqrt{e}}{4N^2} + O(1/N^3) \right) \\
 1572 \\
 1573 &< \frac{1}{2} + \left(4N^2 + O(1/N) \right) \left(\frac{3\sqrt{e}}{4N^2} + O(1/N^3) \right) \\
 1574 \\
 1575 &< \frac{1}{2} + 3\sqrt{e} + O(1/N) \\
 1576 &< 5.45 + O(1/N) \\
 1577 &< 20 \\
 1578 \\
 1579 \\
 1580 \\
 1581 \\
 1582 \\
 1583 \\
 1584 \\
 1585 \\
 1586 \\
 1587 \\
 1588 \\
 1589 \\
 1590 \\
 1591 \\
 1592 \\
 1593 \\
 1594 \\
 1595 \\
 1596 \\
 1597 \\
 1598 \\
 1599 \\
 1600 \\
 1601 \\
 1602 \\
 1603 \\
 1604 \\
 1605 \\
 1606 \\
 1607 \\
 1608 \\
 1609 \\
 1610 \\
 1611 \\
 1612 \\
 1613 \\
 1614 \\
 1615 \\
 1616 \\
 1617 \\
 1618 \\
 1619
 \end{aligned}$$

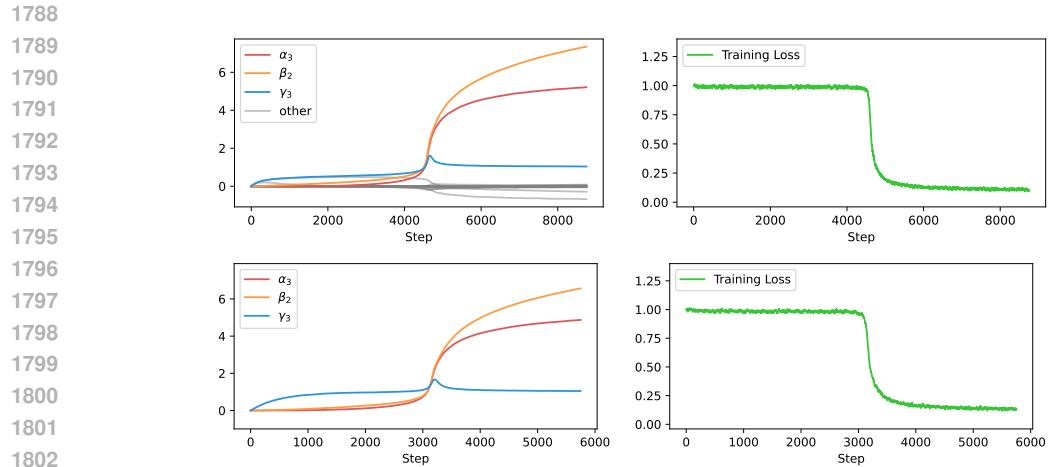
1620 **C WEIGHTS DURING TRAINING**
16211622 We confirm our theoretical result by visualizing the weights during standard training with stochastic
1623 gradient descent. We use learning rate = 1 and batch size $B = 512$.
16241625
1626 Figure 6: Model weights after 100 training steps with $D = 16$ and $N = 4$.
1627
1628
1629
1630
1631
1632
1633
1634
16351636
1637 Figure 7: Model weights after 200 training steps with $D = 16$ and $N = 4$.
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
16491650
1651 Figure 8: Model weights after 400 training steps with $D = 16$ and $N = 4$.
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663



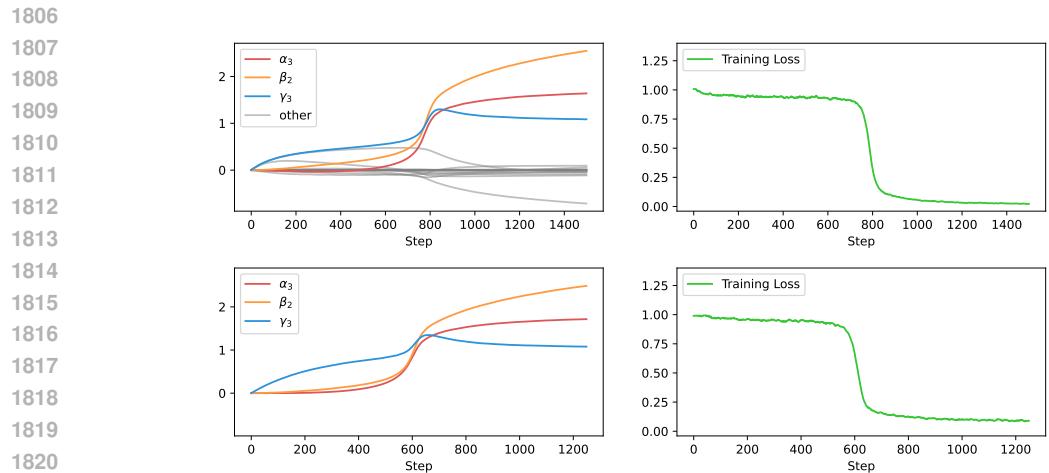
Figure 12: Model weights after 250 training steps with $D = 16$ and $N = 16$.Figure 13: Model weights after 500 training steps with $D = 16$ and $N = 16$.Figure 14: Model weights after 1000 training steps with $D = 16$ and $N = 16$.

1782 **D TRAINING DYNAMICS**
1783

1784 As in the main paper, we visualize the pseudo-parameters and loss during standard training, as well
 1785 as when training only α_3 , β_2 , and γ_3 . We use $D = 32$, $N = 16$, learning rate $\lambda = 1$, and batch
 1786 size $B = 256$. We determine the value of each pseudo-parameter by measuring the magnitude of
 1787 the parameter vector along the corresponding component.



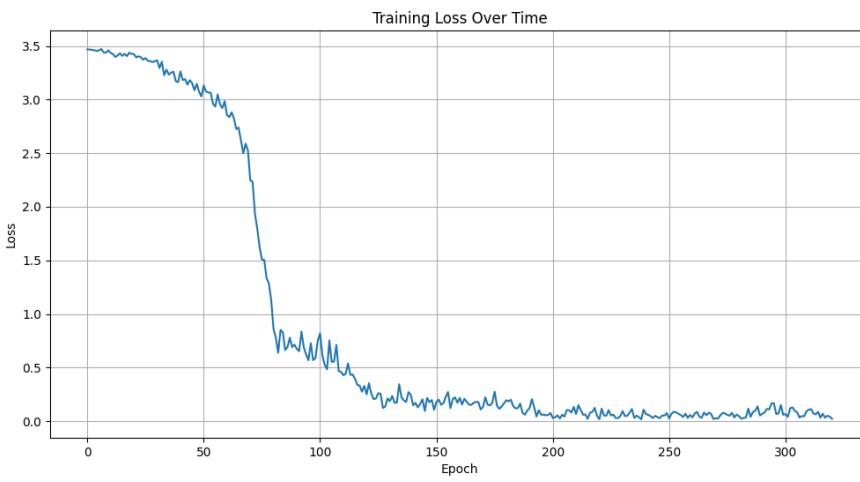
1803
 1804 Figure 15: The pseudo-parameters and training loss during training with $D = 16$ and $N = 32$.
 1805 *Top.* Standard training. *Bottom.* Training only α_3 , β_2 , and γ_3 .



1822
 1823 Figure 16: The pseudo-parameters and training loss during training with $D = 32$ and $N = 8$.
 1824 *Top.* Standard training. *Bottom.* Training only α_3 , β_2 , and γ_3 .

1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836 **E TRAINING DETAILS FOR SECTION 2**
1837

1838 We use token and positional embeddings with a vocabulary size of 32, a block size of 32, and an
1839 embedding dimension of 2048. Since we have only one head per layer, the head dimension is also
1840 2048. We do not use normalization or weight tying. Following standard practice, we train with
1841 AdamW (Loshchilov & Hutter, 2017) with learning rate 0.001 and weight decay 0.01. We train for
1842 300 steps with 512 sequences per step. Every sequence has length 17 (8 item-label pairs and one
1843 query item) and is placed at a random position in the block. We generate new random sequences for
1844 every gradient step as follows: we choose 16 distinct tokens from our vocabulary and group them in
1845 item-label pairs; we choose one of the items to be the query; we use the corresponding label as the
1846 target output. We use the negative log-likelihood loss.


1890 F TRAINING DETAILS FOR SECTION 6
18911892 We empirically validate our theoretical results by measuring the emergence times for different values
1893 of N . We find that emergence times are in accordance with theoretical predictions. Results are
1894 plotted in Fig. 5. We use $D = 256$, $B = 64$, $\lambda = 100$. Following our theoretical assumptions,
1895 we use orthonormal inputs, zero initialization, and $q = N$. We constrain the parameters to the 3-
1896 dimensional space spanned by α_3 , β_2 , and γ_3 . Unlike our theory, we use a threshold of 0.1 for α_3
1897 and β_2 , (rather than 0.5) to better highlight their separation.
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943