
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE EMERGENCE OF INDUCTION HEADS
FOR IN-CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have become the dominant architecture for natural language pro-
cessing. Part of their success is owed to a remarkable capability known as in-
context learning (ICL): they can acquire and apply novel associations solely from
their input context, without any updates to their weights. In this work, we study
the emergence of induction heads, a previously identified mechanism in two-layer
transformers that is particularly important for in-context learning. We uncover a
relatively simple and interpretable structure of the weight matrices implementing
the induction head. We theoretically explain the origin of this structure using a
minimal ICL task formulation and a modified transformer architecture. We give
a formal proof that the training dynamics remain constrained to a 19-dimensional
subspace of the parameter space. Empirically, we validate this constraint while
observing that only 3 dimensions account for the emergence of an induction head.
By further studying the training dynamics inside this 3-dimensional subspace, we
find that the time until the emergence of an induction head follows a tight asymp-
totic bound that is quadratic in the input context length.

1 INTRODUCTION

How does intelligence emerge from gradient descent? Large language models (LLMs) have
achieved highly advanced reasoning abilities, yet we still lack a principled account of how com-
plex reasoning behaviors emerge from this simple learning rule. Understanding the inner workings
of LLMs is an important avenue towards developing novel AI systems with increased reliability and
efficiency.

LLMs possess a remarkable ability known as in-context learning (ICL). A well-trained language
model can learn and apply novel associations from their input context, without additional parameter
updates (Brown et al., 2020). This is in stark contrast to traditional in-weights learning, where novel
associations are directly encoded into the model weights.

Previous work by Olsson et al. (2022) traces back the majority of transformers’ ICL capabilities to a
learned mechanism termed induction head: a pair of two consecutive attention heads that implement
a simple but powerful copying rule [. . . , A,B, . . . , A] → B. Empirical work has shown that the
formation of induction heads co-occurs with a sharp decrease in the training loss and an increase in
ICL accuracy (Olsson et al., 2022; Reddy, 2023). This motivates the question of the current study:

How do induction heads emerge during training?

While a number of theoretical studies have established the emergence of induction heads using
specific staged learning algorithms Nichani et al. (2024a); Bietti et al. (2024), the precise learning
dynamics during standard training remain elusive. To answer this question, we study the training
dynamics of an autoregressive two-layer transformer using a minimal ICL task formulation (defined
in §3) and simplified architecture. We show that in the proposed setup, only 19 dimensions of
parameter space have non-zero gradients and therefore govern the entire learning trajectory. Then,
we empirically show how only 3 dimensions of the parameter space are needed to form an induction
head. In this reduced and interpretable parameter space, we explicitly study the dynamics of the
three pseudo-parameters and analyze the formation of induction heads.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

a1

α3 α3 α3

β2

γ3

aq aq
X

U

V

Y~

bq

bq

?
b1 a2 b2

(1) attention head

(2) attention head

(3) projection

copy

copy

Figure 1: Left: an induction head solving the in-context learning (ICL) task. Given a series of item-
label pairs, the model predicts the correct label for a query item. The first attention head retrieves the
corresponding item for each label, enabling the second attention head to retrieve the correct label.
Each path is modulated by one pseudo-parameter (α3, β2, or γ3). Right: our minimal transformer
architecture. We use two attention-only layers and a linear layer. We disentangle the attention layers
by concatenating the inputs and outputs, rather than adding them together.

Concretely, our contributions are as follows:

1. We train and interpret a standard attention-only transformer on an ICL task (§2). We find a
relatively simple and highly interpretable description of the weight matrices that imple-
ment and induction head.

2. Using a minimal ICL formulation, we give a formal proof that training dynamics induce
a simplified structure of the weights (§4). The evolution of model weights stays within a
19-dimensional subspace of the entire parameter space, regardless of model or task size.
We index this subspace by introducing 19 pseudo-parameters.

3. We empirically find that only 3 pseudo-parameters are learned at the end of training,
corresponding exactly to an induction head (§5). We also find that the emergence of the 3
parameters is self-contained, unaided by the presence of the other 16 parameters.

4. We theoretically study the training dynamics of the induction head, assuming that only the
3 parameters are learnable (§6). We prove that the 3 parameters always emerge in a specific
sequence. We also prove asymptotic bounds for the emergence time for each parameter in
terms of the context length, as well as a tight bound on the total emergence time.

Finally, we also provide empirical validation for our theoretical results.

2 INDUCTION HEADS

Induction heads are attention heads that implement a simple but powerful algorithm. Given a prompt
of the form [. . . , A,B, . . . , A], an induction head predicts the token which follows the previous
occurrence of A, in this case being B. Note that induction heads are not a modified type of attention
head, but rather a mechanism learned by regular attention heads during standard training.

Induction heads are composed of two attention layers. The first attention layer retrieves the value of
A into B by attending to the previous token using positional embeddings. The newly obtained value
enables the second attention layer to retrieve B from the second occurrence of A. Note that two
layers are necessary to solve the task since B and the second A initially have no shared information.

2.1 SETUP

In order to understand how induction heads are implemented, we train an autoregressive transformer
following the recipe of Vaswani et al. (2017). We train the model using synthetic data to predict the
label of a query item based on the preceding item-label pairs, as depicted in Fig. 1 (left). We use
only two attention-only layers with one attention head per layer. We remove MLPs since they are
neither necessary nor useful for the task at hand. We specify the full training details in App. E.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Notation. Our model has token embeddings E ∈ RD×NE and positional embeddings P ∈
RD×NP . The layer l ∈ {1, 2} has the query, key, value, and output matrices W l

Q,W
l
K ,W l

V ∈
RDH×D, and W l

O ∈ RD×DH , respectively. A final linear output layer Wo ∈ RNE×D is applied.
We denote the embedding of token i as ei ∈ RD and the embedding of position i as pi ∈ RD. Our
model is configured with D = DH = 2048 and NE = NP = 32.

2.2 WEIGHT MATRIX STRUCTURE

There are only 4 sub-spaces of the residual stream that are ever activated. First, there is the space
spanned by the initial token and positional embeddings, ei and pi. Second, there is the space where
the first head writes the retrieved embeddings, W 1

O W 1
V ei and W 1

O W 1
V pi. Third, there is the

space where the second head writes the retrieved embeddings, W 2
O W 2

V ei and W 2
O W 2

V pi. Finally,
the second head could retrieve the output of the first head, creating a fourth subspace spanned by
W 2

O W 2
V W 1

O W 1
V ei and W 2

O W 2
V W 1

O W 1
V pi.

Since there are NE tokens and NP positions, each of the four subspaces will have NE + NP di-
mensions. Moreover, each subspace is highly interpretable, as it can be indexed directly by the
corresponding token or positional embedding. Therefore, the residual stream of our attention-only
model always remains constrained to a highly interpretable 4(NE +NP)-dimensional subspace.

Using these intepretable directions, we can understand the mechanism performed by each layer. For
example, p⊺

i W
1
K

⊺ W 1
Q pj corresponds exactly to the attention score paid by position i to position j

during the first layer. In Fig. 2, we visualize the key-query matrix products and final output matrix,
indexed by these highly interpretable dimensions. Note that this picture is a complete description of
the behavior of the model.

T P

T

P

W1
K W1

Q

T P (W1
O W1

V T) (W1
O W1

V P)

T

P

W1
V T

W1
V P

W2
K W2

Q

T

P

W1
O W1

V T

W1
O W1

V P

W2
O W2

V T

W2
O W2

V P

W2
O W2

V W1
O W1

V T

W2
O W2

V W1
O W1

V P

Wo

15

10

5

0

5

10

15

Figure 2: The complete behavior of a two-layer attention-only transformer can be understood using
a highly interpretable transformation of key-query matrix products and output layer. Dots · denote
matrix multiplication. For example, the bottom-right block of the left figure, P ⊺ W 1

K
⊺W 1

QP , is
dominated by the subdiagonal, establishing that each position attends to the previous position during
the first layer. Some noise is present due to the random initialization and stochastic gradient descent.

2.3 INDUCTION HEAD MECHANISM

In Fig. 2, we can see that our weights have a relatively simple and interpretable structure. Each
layer is dominated by a diagonal or subdiagonal within a single block. The first layer attends to the
previous position. The second layer attends to the token retrieved by the first layer. The final layer
output the token retrieved by the second layer. This clarifies the structure of the weight matrices that
underlie the induction head mechanism.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 MINIMAL FORMULATION

In order to understand the emergence of induction heads, we study the training dynamics in a mini-
mal formulation. Inspired by the results of the previous section, we propose a simplified, but equally
powerful, transformer architecture with a disentangled residual stream (Friedman et al., 2023).

3.1 ARCHITECTURE

We use a transformer with two single-head attention-only layers followed by a linear layer. For the
attention layers, we use a merged key-query matrix and no projection layer, directly concatenating
the attention output to the existing residual stream:

H1 =
[
X
∣∣∣ σ(XW (1)X⊺

)
X
]
, H2 =

[
U
∣∣∣ σ(H1W

(2)H⊺
1

)
H1

]
, Ỹ = H2W

(3) ,

(1)

where [· | ·] denotes matrix concatenation, σ to denotes the softmax function with autoregressive
masking. W (1) ∈ R2D×2D, W (2) ∈ R4D×4D, W (3) ∈ R8D×D are the learnable weights and
H1 ∈ R(2N+1)×4D, H2 ∈ R(2N+1)×8D, Ỹ ∈ R(2N+1)×D denote the activations and final output.

Although not used in practice due to computational overhead, merged key-query matrices are com-
monly used in theoretical works (Edelman et al., 2024; Nichani et al., 2024a). MLPs are neither
necessary nor useful for the task at hand. The disentangled residual is equivalent to a very large
residual dimension, where all activations become almost orthogonal.

3.2 DATA DISTRIBUTION

We use a common ICL task that requires labeling an item based on a list of N item-label pairs (Chan
et al., 2022; Reddy, 2023; Hochreiter et al., 2001). The ith pair consists of an item ai ∈ RD and
a label bi ∈ RD with dimensionality D ∈ N. We ask the model to predict the label for one of the
items aq where q ∈ {1, . . . , N}.

We annotate each item with a positional embedding pi ∈ RD and each label with the rotated posi-
tional embedding Mpi, where M ∈ RD×D. The rotation is fixed before training begins to create
a learnable correlation similar to a sinusoidal embedding (Vaswani et al., 2017). This enables the
attention mechanism to connect the corresponding items and labels. We do not use any positional
embedding for the query item.

Assuming that D is even, we use

M =

[
0(D/2)×(D/2) ID/2

ID/2 0(D/2)×(D/2)

]
, (2)

where ID/2 ∈ R(D/2)×(D/2) is the identity matrix.

We concatenate items and labels with their positional embeddings to obtain our data:

X2i−1,: =
[
a⊺
i | p

⊺
i

]⊺
X2i,: =

[
b⊺i | p

⊺
i M

]⊺ ∀i ∈ {1, . . . , N} (3)

X2N+1,: =
[
a⊺
q | 0

]⊺
y = bq q ∈ {1, . . . , N} (4)

where X ∈ R(2N+1)×2D, y ∈ RD, and [· | ·] denotes concatenation.

We assume a lexinvariant language model (Huang et al., 2023) where items, labels, and positional
embeddings are independent and identically distributed. For our theoretical results, we introduce
additional assumptions on the distribution of items, labels, and positional embeddings, as needed.

Only for our experiments, we sample q ∼ unif{1, N}, and we sample items, labels, and positional
embeddings from a multivariate Gaussian:

(ai)j ∼ N (0, 1), (bi)j ∼ N (0, 1), (pi)j ∼ N (0, 1), (5)

for all i ∈ {1, . . . , N} and j ∈ {1, . . . , D}.
We train our model with mean-squared error loss L = ∥y− ỹ ∥2 using only the output of the query
item located at the last position, i.e. ỹ = Ỹ2N+1,:.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 TRAINING DYNAMICS

Our model has a total of 28D2 parameters, which gives a total parameter space[
vec(W (1))⊺

∣∣ vec(W (2))⊺
∣∣ vec(W (3))⊺

]⊺ ∈ R28D2

However, as we show below, the training dynamics on our data distribution remain constrained to a
19-dimensional subspace that we index using 19 pseudo-parameters. Our theoretical result is based
on the following assumptions:
Assumption 1. Zero Initialization. We assume our neural network is initialized with all weights
having value zero, i.e. W (1) = 0, W (2) = 0, and W (3) = 0.

The zero initialization is commonly used in theoretical works (Nichani et al., 2024a; Edelman et al.,
2024), being motivated it as a reasonable approximation for small random initializations.
Assumption 2. Population Loss. We assume the network is trained with gradient descent over the
entire data distribution at every step:

W (k) ←W (k) − λE

[
∂L

∂W (k)

]
,

where λ > 0 is the learning rate.
Assumption 3. Isotropic Data. We assume that the data distribution is invariant to orthogonal
transformations of items, labels, and positional embeddings:

f
(
{ai}, {bi}, {pi}, q

)
= f

(
{Eai}, {Ebi}, {pi}, q

)
= f

(
{ai}, {bi}, {Epi}, q

)
,

for any orthogonal matrix E ∈ RD×D, where f
(
{ai}, {bi}, {pi}, q

)
is the probability density

over the items, labels, positional embeddings, and query index.

Note that this assumption is weaker than, for example, assuming a normal distribution, since a
normal distribution is isotropic.

Under these assumptions, we are able to establish that weight matrices learn the following:
Theorem 1. Assume that we train a disentangled transformer from zero initialization with popu-
lation loss on isotropic data on our ICL task. Then, the weight matrices will have the following
structure throughout the entire training process:

W (1) =

[
α1I 0
0 α2I +α3M

]
(6)

W (2) =


β1I 0 β2I 0
0 β3I + β4M 0 β5I + β6M

β7I 0 β8I 0
0 β9I + β10M 0 β11I + β12M

 (7)

W (3) = [γ1I 0 γ2I 0 γ3I 0 γ4I 0]
⊺
, (8)

where we collect the parameters of each weight matrix in three vectors α ∈ R3, β ∈ R12 and
γ ∈ R4 that vary throughout training.

Proof Sketch. We give an inductive proof by showing that, if weights have the above structure,
then their gradients also have the same structure. Since the zero initialization fits the structure, this
ensures that the structure is preserved during training.

To prove the structure of the gradient, we apply a carefully chosen rotation to the entire data distri-
bution. Since the data distribution is isotropic, the rotation will not change the data distribution, so
the expected gradient will also remain unchanged.

However, we are also able to show that our rotation induces a specific similarity transformation of
the gradient:

E

[
∂L

∂W
(k)
ij

]
= F E

[
∂L

∂W
(k)
ij

]
F ⊺, (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where F is an orthogonal or block-orthogonal matrix and W
(k)
ij is a block of a weight matrix. From

this, we are able to show that the expected gradient must have the desired structure. We give the full
proof in App. A.

W (1)

α3

W (2) W (3)

1.5

1.0

0.5

0.0

0.5

1.0

1.5

β2

γ3

Figure 3: Weights at the end of standard training have the theoretically predicted structure.

Empirical Validation In Fig. 3, we confirm our theoretical result by visualizing the weights at the
end of training with stochastic gradient descent. Full training details in App. C.

5 EMERGENCE OF INDUCTION HEADS

We now proceed to studying the evolution of these 19 pseudo-parameters during training. By ob-
serving or ablating specific parameters, we are able to test two hypotheses regarding the emergence
of induction heads.

Hypothesis 1 (due to Olsson et al. (2022)). Induction Head Phase Transition. Reaching low
training loss on our ICL task coincides with the emergence of an induction head, as defined in §2.

We can already see from Fig. 3 that three parameters have a larger magnitude, namely α3, β2, and
γ3. Interestingly, the mechanism performed by these three parameters together corresponds exactly
to an induction head. In the first layer, α3 makes each label attend to the preceding item. In the
second layer, β2 makes the query item attend to the correct label based on the newly retrieved item.
Finally, γ3 outputs the label retrieved by the second layer. In Fig. 4 (top), we visualize the 19 pseudo-
parameters and loss during training, confirming that the drop in loss is driven by the emergence of
the induction head.

Hypothesis 2. Self-Contained Dynamics. The emergence of the induction head is unaided by the
presence of any other parameter.

By training the model while constraining its parameters to the 3-dimensional subspace spanned by
the three parameters, we uncover very similar dynamics. As depicted in Fig. 4 (bottom), we find that
the emergence of the induction head is unaffected, even slightly accelerated. We show a few more
plots and full training details in App. D.

6 FULL TRAINING DYNAMICS OF INDUCTION HEADS

Motivated by the empirical results in the previous section, we study the training dynamics con-
strained to the 3-dimensional subspace spanned by α3, β2, and γ3, finding several tight bounds for
the emergence of the induction head.

6.1 THEORETICAL RESULTS

We study the emergence of an induction head under the following assumptions:

Assumption 4. Three-learnable Parameters. Only parameters α3,β2, and γ3 are learnable. For
the rest of the proof, we refer to these parameters as simply α, β, and γ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000 3500
Step

0

1

2

3 3

2

3
other

0 500 1000 1500 2000 2500 3000 3500
Step

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss

0 500 1000 1500 2000 2500
Step

0

1

2

3 3

2

3

0 500 1000 1500 2000 2500
Step

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss

Figure 4: Top: The value of the 19 pseudo-parameters during standard training (left) and the associ-
ated training loss (right). Bottom: Ablating all parameters except α3, β2, and γ3 results in strikingly
similar dynamics.

Assumption 5. Gradient Flow. We study the training dynamics under the assumption of a
continuous-time gradient flow with unit learning rate,

∂α

∂t
= −∂L

∂α
,

∂β

∂t
= −∂L

∂β
,

∂γ

∂t
= −∂L

∂γ
,

where α, β, γ : R≥0 → R are the continuous-time trajectories of the three parameters.
Assumption 6. Zero Initialization. We assume our neural network is initialized with all weights
having value zero. Equivalently, α(0) = β(0) = γ(0) = 0.
Assumption 7. Orthonormal Inputs. We assume that all items, labels, and positional embeddings
are orthogonal and have unit norm. Specifically,

∥ai∥ = ∥bi∥ = ∥pi∥ = 1, a⊺
i aj = b⊺i bj = a⊺

i bi = p⊺
i Mpi = p⊺

i pj = p⊺
i Mpj = 0,

for all i, j ∈ {1, 2, . . . , N}, i ̸= j.

Note that this assumption requires D ≥ 2N . There are two ways to motivate this assumption,
either by preprocessing the inputs using a whitening transformation, or by considering a very large
dimension D →∞ and vectors sampled from an i.i.d. Gaussian with variance 1/

√
D.

Assumption 8. Query Last. We assume that the query item always refers to the last item-label pair
present in the sequence, or q = N .

Note that even if the target label’s position is fixed, a full induction head is still required: the model
cannot directly attend to specific positions because positional embeddings are randomly generated
and carry no explicit location information.
Definition 1. Parameter Emergence Time. We say that each of the parameters α, β, or γ has
emerged when its value becomes greater than 1/2 for the first time:

Tα = inf
{
t
∣∣∣ α(t) ≥ 1

2

}
, Tβ = inf

{
t
∣∣∣ β(t) ≥ 1

2

}
, Tγ = inf

{
t
∣∣∣ γ(t) ≥ 1

2

}
,

where t ∈ R≥0.
Theorem 2. Assume that inputs are orthonormal and that only parameters α, β, and γ are learn-
able. In this case, we have that parameters always emerge in the order Tγ < Tβ < Tα and the time
until their emergence asymptotically follows:

Tα = Θ
(
N2
)
, Tβ = Θ

(
N2
)
, Tγ = Θ

(
N
)
, (10)

where N is the number of item-label pairs in the context.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
N

0

200

400

600

800

1000

1200

1400

Em
er

ge
nc

e
st

ep

min{t | 3 > 0.1}
min{t | 2 > 0.1}
min{t | 3 > 0.5}

101 102

N (log)

100

101

102

103

Em
er

ge
nc

e
st

ep
 (l

og
)

min{t | < 0.5}
kN2

Figure 5: Left: The time until the emergence of α3, β2, and γ3 for different values of N .
Right: Time until the emergence of in-context learning (log scale) and its quadratic asymptote.

Proof Sketch. The proof is based on proving bounds for the gradient of each parameter. Before
the emergence of any parameter, we have that ∂γ/∂t = Θ(1/N), while ∂α/∂t = O(1/N2) and
∂β/∂t = O(1/N2). This implies that γ emerges first in Θ(N). Afterwards, we show that ∂β/∂t =
Θ(1/N2) and ∂β/∂t > ∂α/∂t. This implies that β emerges next in Θ(N2). Finally, we show that
∂α/∂t = o(1/N2), which implies that α emerges last in Θ(N2). See the full proof in App. B.

Definition 2. Induction Head. We say that an induction has emerged if all three parameters are
greater than 1/2.
Definition 3. Time until ICL. We say that in-context learning has emerged at the first time when
the induction head is present. Specifically,

tICL = inf
{
t ∈ R≥0

∣∣∣ α(t) ≥ 1
2 , β(t) ≥

1
2 , γ(t) ≥

1
2

}
.

Corollary 1. The time until the emergence of in-context learning asymptotically follows:

tICL = Θ
(
N2
)
, (11)

where N is the number of item-label pairs in the context.

We empirically validate our theoretical results in Fig. 5. Training details in App. F.

7 DISCUSSION

7.1 HOW DO α, β , AND γ EMERGE DURING TRAINING?

The emergence of γ. Even if α and β are completely untrained, the attention layers still return
something: the average of all items and labels in the context. This average achieves a better loss
than predicting zero, and this is exactly what the model learns to predict initially. However, this
solution becomes worse when N is increased. In fact, the gradient towards this solution is inversely
proportional to N , hence why γ emerges in Θ(N).

The emergence of β. After the final layer is in place, there is now a gradient for the second layer
to attend correctly. Because each label follows immediately after its item, the first layer will always
retrieve the item to some extent, even when completely untrained. Taking the causal masking into
account, each item will be retrieved the most by its label. This enables the second layer to learn to
retrieve based on the query item. However, since the first layer returns a very weak signal (inversely
proportional to N), the gradient of β will be inversely proportional to N2.

The emergence of α. Finally, after β and γ have emerged, there is a very strong gradient for the
first layer to attend correctly. This quickly drives the emergence of α.

7.2 THE IMPORTANCE OF CONTEXT LENGTH

We have established that a longer context length slows down the emergence of induction heads. This
fact has interesting implications that are worth exploring in future work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Chan et al. (2022) have empirically established that the emergence of in-context learning is modu-
lated by data distributional properties specific to natural language, such as burstiness (items appear
in clusters rather than being uniformly distributed over time). Our work paves the way for a theoret-
ical understanding of this connection. For example, bustiness could be understood as a modulator of
the effective context length by reducing the distance between items from the same class. We hypoth-
esize that similar gains could be achieved by other means of reducing the effective context length,
such as special positional embeddings (Su et al., 2024).

8 RELATED WORK

In-Context Learning Brown et al. (2020) first observed that LLMs are capable of in-context
learning. Since then, a number of works has delved deep into the phenomenon and its underlying
causes. Chan et al. (2022) empirically showed that the ICL–IWL trade-off is modulated by data
distributional properties specific to natural language, such as a Zipfian distribution over concepts,
burstiness, and within-class variance. One direction is to view the forward pass of a transformer as
performing gradient descent Von Oswald et al. (2023); Ahn et al. (2023). Finally, Lu et al. (2024)
provides an asymptotic analysis of ICL for linear regression and linear attention.

Induction Heads Later, Olsson et al. (2022) attributed this ability to a two-layer Sanford et al.
(2024) mechanism (termed induction head) that emerges abruptly during training. Crucial to our
work, Reddy (2023) proposed a 3-parameter phenomenological model of an induction head by di-
rectly parameterizing the attention scores. The parameters of this model (denoted as β1, α, and
ξ) correspond exactly to our three pseudo-parameters (α3, β2, and γ3). Compared to their work,
we provide a theoretical justification on how these parameters are learned with gradient descent.
Other theoretical works have studied the emergence of induction heads, with different architectures
and distributional assumptions Nichani et al. (2024a); Bietti et al. (2024); Chen et al. (2024); San-
ford et al. (2024); Edelman et al. (2024); Wang et al. (2024a). Among these, Nichani et al. (2024a)
demonstrates that two-layer disentangled transformers can learn to sample Markov chains in-context
through a staged training process, and Bietti et al. (2024) study the transformer training dynamics
from the perspective of associative memories. They show how an induction head can emerge after
three steps of gradient descent. Concurrently, Chen et al. (2024) and Wang et al. (2024a) further
studied staged layer-wise dynamics, reinforcing the staged learning hypothesis for induction head
formation. Edelman et al. (2024) investigated how transformers acquire simple linguistic structures
such as n-grams during training, and Zhang et al. (2025) analyzed training dynamics for linear at-
tention transformers in regression tasks.

Mechanistic Interpretability Mechanistic interpretability seeks to attribute the emergence of par-
ticular behaviors in neural networks to specific patterns in their weights and activations Olah et al.
(2020); Elhage et al. (2021); Doshi-Velez & Kim (2017); Olah et al. (2017); Bereska & Gavves
(2024); Cammarata et al. (2020). Friedman et al. (2023) introduce the disentangled transformer
architecture, which is interpretable by design, but just as expressive. It keeps the residual stream
disentangled by appending the attention output to the residual stream, rather than adding them to-
gether. Several works study transformers from the perspective of associative memories (Bietti et al.,
2024; Nichani et al., 2024b; Chen et al., 2025). Other works focus on multi-step reasoning (Wang
et al., 2024b; Mus, at, 2025; Cabannes et al., 2024), context-free grammars (Allen-Zhu & Li, 2023),
and modular addition (Nanda et al., 2023; Zhong et al., 2023; Gromov, 2023; He et al., 2024). Löwe
et al. (2024) connect abrupt learning in artificial nets with insights in humans (also known as evrika
moments).

9 CONCLUSION

In this paper, we have shown how induction heads emerge in an ICL task. Our work paves the way
for a better theoretical understanding of transformer learning dynamics. We believe that a similar
approach could illuminate other important phenomena in deep learning, such as the in-context vs.
in-weights learning trade-off, abrupt learning, or the emergence of other transformer circuits.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 36:45614–45650, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical lan-
guage structures. arXiv preprint arXiv:2305.13673, 2023.

Leonard Bereska and Efstratios Gavves. Mechanistic interpretability for ai safety–a review. arXiv
preprint arXiv:2404.14082, 2024.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36,
2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Xingyu Yang, Francois Charton, and Julia
Kempe. Iteration head: A mechanistic study of chain-of-thought. Advances in Neural Infor-
mation Processing Systems, 37:109101–109122, 2024.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schubert, Chelsea
Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. Distill, 2020. doi: 10.23915/distill.00024.
https://distill.pub/2020/circuits.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Lei Chen, Joan Bruna, and Alberto Bietti. Distributional associations vs in-context reasoning: A
study of feed-forward and attention layers. In The Thirteenth International Conference on Learn-
ing Representations, 2025.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Provable
training dynamics and feature learning in transformers. arXiv preprint arXiv:2409.10559, 2024.

Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
arXiv preprint arXiv:1702.08608, 2017.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. Advances in
Neural Information Processing Systems, 36:49044–49067, 2023.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Tianyu He, Darshil Doshi, Aritra Das, and Andrey Gromov. Learning to grok: Emergence of in-
context learning and skill composition in modular arithmetic tasks. Advances in Neural Informa-
tion Processing Systems, 37:13244–13273, 2024.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn using gradient descent.
In Georg Dorffner, Horst Bischof, and Kurt Hornik (eds.), Artificial Neural Networks — ICANN
2001, pp. 87–94, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-44668-
2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Qian Huang, Eric Zelikman, Sarah Chen, Yuhuai Wu, Gregory Valiant, and Percy S Liang. Lexin-
variant language models. Advances in Neural Information Processing Systems, 36:23990–24012,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Anika T Löwe, Léo Touzo, Paul S Muhle-Karbe, Andrew M Saxe, Christopher Summerfield, and
Nicolas W Schuck. Abrupt and spontaneous strategy switches emerge in simple regularised neural
networks. PLoS Computational Biology, 20(10):e1012505, 2024.

Yue M Lu, Mary I Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymptotic
theory of in-context learning by linear attention. arXiv preprint arXiv:2405.11751, 2024.

Tiberiu Mus, at. Mechanism and emergence of stacked attention heads in multi-layer transformers.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=rUC7tHecSQ.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024a.

Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via
associative memories. arXiv preprint arXiv:2412.06538, 2024b.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. doi:
10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2023.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induc-
tion heads task. arXiv preprint arXiv:2408.14332, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.127063. URL https://www.
sciencedirect.com/science/article/pii/S0925231223011864.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Mingze Wang, Ruoxi Yu, Lei Wu, et al. How transformers implement induction heads: Approxima-
tion and optimization analysis. arXiv preprint arXiv:2410.11474, 2024a.

Zhiwei Wang, Yunji Wang, Zhongwang Zhang, Zhangchen Zhou, Hui Jin, Tianyang Hu, Jiacheng
Sun, Zhenguo Li, Yaoyu Zhang, and Zhi-Qin John Xu. The buffer mechanism for multi-step
information reasoning in language models. arXiv preprint arXiv:2405.15302, 2024b.

11

https://openreview.net/forum?id=rUC7tHecSQ
https://openreview.net/forum?id=rUC7tHecSQ
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://www.sciencedirect.com/science/article/pii/S0925231223011864

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yedi Zhang, Aaditya K Singh, Peter E Latham, and Andrew Saxe. Training dynamics of in-context
learning in linear attention. arXiv preprint arXiv:2501.16265, 2025.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. Advances in neural information processing
systems, 36:27223–27250, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A WEIGHTS STRUCTURE FULL PROOF

A.1 SUMMARY

Our strategy is to show that if W (1),W (2), and W (3) have this structure, then their gradients also
have the same structure. Since we start from zero initialization, by induction, this means that the
structure is preserved throughout the entire training process.

To prove the structure of the gradient, we apply a carefully chosen rotation to the entire data distri-
bution. Since the data distribution is isotropic, the rotation will not change the data distribution, so
the expected gradient will also remain unchanged.

However, we are also able to show that our rotation induces a specific similarity transformation of
the gradient:

E

[
∂L

∂W
(k)
ij

]
= F E

[
∂L

∂W
(k)
ij

]
F⊤

where F is an orthogonal or block-orthogonal matrix and W
(k)
ij is a block of a weight matrix. From

this we are able to show that the expected gradient must have the desired structure.

A.2 PREREQUISITES

A.2.1 ORTHOGONAL TRANSFORMATIONS

Definition 4. Orthogonal Matrix. We say that a matrix E ∈ Rk×k is orthogonal if it satisfies
EE⊤ = E⊤E = I .

Proposition 1. Let A ∈ Rk×k be some matrix. If EAE⊤ = A holds for all orthogonal matrices
E ∈ Rk×k, then it follows that A = α I for some α ∈ R.

Proof. Step 1. All off-diagonal entries of A vanish.

Fix an index j ∈ {1, . . . , k} and let

E = diag(1, . . . , 1,−1, 1, . . . , 1)

be the diagonal orthogonal matrix with entry −1 in the jth position and +1 elsewhere. Then

(EAE⊤)iℓ = Eii Aiℓ Eℓℓ =


Aiℓ, i, ℓ ̸= j,

−Aiℓ, exactly one of i, ℓ = j,

Ajj , i = ℓ = j.

Since EAE⊤ = A, it follows that −Aij = Aij for every i ̸= j, whence Aij = 0. Varying j shows
all off-diagonal entries vanish, so

A = diag(a11, a22, . . . , akk).

Step 2. All diagonal entries of A coincide.

Let E be any permutation matrix which swaps two coordinates i and j. Then E is orthogonal and

EAE⊤ = diag(. . . , ajj , . . . , aii, . . .),

interchanging the ith and jth diagonal entries of A. By invariance EAE⊤ = A, so aii = ajj . Since
i, j were arbitrary, there exists α ∈ R such that

a11 = a22 = · · · = akk = α,

and hence A = αI .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2.2 BLOCK-ORTHOGONAL TRANSFORMATIONS

Definition 5. Block-Orthogonal Matrix. We say that a matrix F ∈ R2k×2k is block-orthogonal if
it has either of the following two forms:

F =

[
E 0
0 E

]
or F =

[
0 E
E 0

]
where E ∈ Rk×k is an orthogonal matrix.
Proposition 2. Let A ∈ R2k×2k be some matrix. If FAF⊤ = A holds for all block-orthogonal
matrices F ∈ R2k×2k, then it follows that

A =

[
αI βI
βI αI

]
for some α, β ∈ R.
Remark 1. Note that this condition is weaker than the condition stated in Proposition 1, since not
all orthogonal matrices are also block-orthogonal. Hence, the condition in Proposition 2 guarantees
a structure that is less specific than Proposition 1.

Proof. We write

A =

[
A11 A12

A21 A22

]
,

where each block Aij ∈ Rk×k.

Step 1. All blocks are scalar matrices.

For any othogonal matrix E, we can set

F =

[
E 0
0 E

]
.

Then

F AF⊤ =

[
EA11E

⊤ EA12E
⊤

EA21E
⊤ EA22E

⊤

]
=

[
A11 A12

A21 A22

]
= A,

so E Aij E
⊤ = Aij for all i, j. By the previous proposition each block is a scalar multiple of the

identity, Aij = αij Ik, for some αij ∈ R. Therefore,

A =

[
α11 I α12 I
α21 I α22 I

]
.

Step 2. Diagonally opposed blocks coincide. By setting

F =

[
0 I
I 0

]
we obtain

F AF⊤ =

[
A22 A21

A12 A11

]
which yields α11 = α22, α12 = α21. By writing α = α11 and β = α12, we obtain

A =

[
αI βI
βI αI

]

A.2.3 COMBINED TRANSFORMATIONS

Proposition 3. Let A ∈ R2k×2k be some matrix. If EAF = A holds for all orthogonal matrices E
and block-orthogonal matrices F , then A = 0.

Proof. By setting E = I and F = −I , we get A = −A. Therefore, A = 0.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2.4 BLOCK-SWAP TRANSFORMATION

Definition 6. Block-Swap Matrix. We say that a matrix M ∈ R2k×2k is block-swap if it has the
following form:

M =

[
0 I
I 0

]
where I ∈ Rk×k is the identity matrix.
Proposition 4. If M ∈ R2k×2k is a block-swap matrix and F ∈ R2k×2k is a block-orthogonal
matrix, then FMF ⊺ = M .

Proof. Case 1. The orthogonal blocks of F are on the main diagonal.

Assume that

F =

[
E 0
0 E

]
Then,

FMF ⊺ =

[
E 0
0 E

][
0 I
I 0

][
E⊺ 0
0 E⊺

]
=

[
0 E
E 0

][
E⊺ 0
0 E⊺

]
=

[
0 I
I 0

]

Case 2. The orthogonal blocks of F are on the secondary diagonal.

Assume that

F =

[
0 E
E 0

]
Then,

FMF ⊺ =

[
0 E
E 0

][
0 I
I 0

][
0 E⊺

E⊺ 0

]
=

[
E 0
0 E

][
0 E⊺

E⊺ 0

]
=

[
0 I
I 0

]

A.3 SETUP

Recall the architecture and loss:

U =
[
X
∣∣∣ σ(XW (1)X⊺)X

]
V =

[
U
∣∣∣ σ(UW (2)U⊺)U

]
z = V2N+1W

(3) L = ∥y − z∥2

where σ to denotes the softmax function with causal masking, [· | ·] denotes matrix concatenation,
and

W (1) ∈ R2D×2D W (2) ∈ R4D×4D W (3) ∈ R8D×D

U ∈ R(2N+1)×4D V ∈ R(2N+1)×8D z ∈ RD

X ∈ R(2N+1)×2D y ∈ RD

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The data is generated as:

X2i−1 =
[
ai | pi

]
X2i =

[
bi | piM

]
∀i ∈ {1, . . . , N}

X2N+1 =
[
aq | 0

]
y = bq

where

ai, bi, pi ∈ RD q ∈ {1, 2, . . . , N} M =

[
0 I
I 0

]
All vectors are treated as row vectors.

A.4 ADDITIONAL NOTATION

We introduce

S = XW (1)X⊺ T = σ(S)

P = UW (2)U⊺ Q = σ(P)

where S, T, P, Q ∈ R(2N+1)×(2N+1). This gives

U =
[
X
∣∣∣ TX]

V =
[
U
∣∣∣ QU

]
We also introduce notation for all blocks of size D:

X =
[
X1 X2

]
U =

[
U1 U2 U3 U4

]
V =

[
V1 V2 V3 V4 V5 V6 V7 V8

]

W (1) =

W (1)
11 W

(1)
12

W
(1)
21 W

(1)
22

 W (2) =



W
(2)
11 W

(2)
12 W

(2)
13 W

(2)
14

W
(2)
11 W

(2)
12 W

(2)
13 W

(2)
14

W
(2)
11 W

(2)
12 W

(2)
13 W

(2)
14

W
(2)
11 W

(2)
12 W

(2)
13 W

(2)
14


W (3) =

[
W

(3)
1 W

(3)
2 W

(3)
3 W

(3)
4 W

(3)
5 W

(3)
6 W

(3)
7 W

(3)
8

]
A.5 DATA ROTATIONS

We apply an orthogonal transformation E to the items and labels, and a block-orthogonal transfor-
mation F to the positional embeddings:

a′i = aiE b′i = biE p′i = piF ∀i ∈ { 1, . . . , N }

where E and F satisfy Definitions 4 and 5, respectively. We refer to the new variables as X ′, y′, U ′,
V ′, z′, and L′.

Since the data is isotropic, we have that E [L] = E [L′]. By the linearity of expectation and differen-
tiation, we obtain

E
[

∂L
∂W (k)

]
= E

[
∂L′

∂W (k)

]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This also holds for all sub-blocks of W (1), W (2), and W (3),

E

[
∂L

∂W
(k)
ij

]
= E

[
∂L′

∂W
(k)
ij

]

However, as we show below, our rotation induces specific transformations of the gradient blocks.
Using Propositions 1 to 3, we are able to show that each gradient block has the desired structure.

Specifically, for each gradient block, we will show that one of the following four conditions holds
for all E and F , implying the desired structure:

E

[
∂L′

∂W
(k)
ij

]
= E E

[
∂L′

∂W
(k)
ij

]
E⊺ =⇒ E

[
∂L

∂W
(k)
ij

]
= α I

E

[
∂L′

∂W
(k)
ij

]
= F E

[
∂L′

∂W
(k)
ij

]
F ⊺ =⇒ E

[
∂L

∂W
(k)
ij

]
=

[
α I β I

β I α I

]

E

[
∂L′

∂W
(k)
ij

]
= E E

[
∂L′

∂W
(k)
ij

]
F ⊺ =⇒ E

[
∂L

∂W
(k)
ij

]
= 0

E

[
∂L′

∂W
(k)
ij

]
= F E

[
∂L′

∂W
(k)
ij

]
E⊺ =⇒ E

[
∂L

∂W
(k)
ij

]
= 0

A.6 FORWARD PASS

We will now observe how our rotation changes the intermediate and final results of our model.

First, note the rotated inputs and outputs:
X ′

1 = X1E X ′
2 = X2F y′ = yE

Recall that we are assuming that W (1), W (2), and W (3) already have the desired structure, with
the goal to prove that the gradient has the same structure:

W (1) =

[
α1I 0
0 α2I + α3M

]

W (2) =


β1I 0 β2I 0
0 β3I + β4M 0 β5I + β6M
β7I 0 β8I 0
0 β9I + β10M 0 β11I + β12M


W (3) = [γ1I 0 γ2I 0 γ3I 0 γ4I 0]

A.6.1 FIRST LAYER

The first attention layer gives:

S = XW (1)X⊺

= X1W
(1)
11 X⊺

1 +X1W
(1)
12 X⊺

2 +X2W
(1)
21 X⊺

1 +X2W
(1)
22 X⊺

2

= α1X1X
⊺
1 + α2X2X

⊺
2 + α3X2MX⊺

2

S′ = X ′W (1)X ′⊺

= X ′
1W

(1)
11 X ′

1
⊺ +X ′

1W
(1)
12 X ′

2
⊺ +X ′

2W
(1)
21 X ′

1
⊺ +X ′

2W
(1)
22 X ′

2
⊺

= α1X
′
1X

′
1
⊺ + α2X

′
2X

′
2
⊺ + α3X

′
2MX ′

2
⊺

= α1X1EE⊺X⊺
1 + α2X2FF ⊺X⊺

2 + α3X2FMF ⊺X⊺
2

= α1X1X
⊺
1 + α2X2X

⊺
2 + α3X2MX⊺

2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore, S′ = S and T ′ = T = σ(S). This gives us:

U ′
1 = U1E U ′

2 = U2F U ′
3 = U3E U ′

4 = U4F

A.6.2 SECOND LAYER

The second attention layer gives:

P = UW (2)U⊺

=
∑

UiW
(2)
ij Uj

⊺

= β1U1U1
⊺ + β2U1U

⊺
3 + β7U3U

⊺
1 + β8U3U

⊺
3

+ β3U2U
⊺
2 + β5U2U

⊺
4 + β9U4U

⊺
2 + β11U4U

⊺
4

+ β4U2MU⊺
2 + β6U2MU⊺

4 + β10U4MU⊺
2 + β12U4MU⊺

4

P ′ = U ′W (2)U ′⊺

=
∑

U ′
iW

(2)
ij U ′

j
⊺

= β1U
′
1U

′
1
⊺
+ β2U

′
1U

′
3
⊺ + β7U

′
3U

′
1
⊺ + β8U

′
3U

′
3
⊺

+ β3U
′
2U

′
2
⊺ + β5U

′
2U

′
4
⊺ + β9U

′
4U

′
2
⊺ + β11U

′
4U

′
4
⊺

+ β4U
′
2MU ′

2
⊺ + β6U

′
2MU ′

4
⊺ + β10U

′
4MU ′

2
⊺ + β12U

′
4MU ′

4
⊺

= β1U1EE⊺U1
⊺ + β2U1EE⊺U⊺

3 + β7U3EE⊺U⊺
1 + β8U3EE⊺U⊺

3

+ β3U2FF ⊺U⊺
2 + β5U2FF ⊺U⊺

4 + β9U4FF ⊺U⊺
2 + β11U4FF ⊺U⊺

4

+ β4U2FMF ⊺U⊺
2 + β6U2FMF ⊺U⊺

4 + β10U4FMF ⊺U⊺
2 + β12FMF ⊺U⊺

4

= β1U1U1
⊺ + β2U1U

⊺
3 + β7U3U

⊺
1 + β8U3U

⊺
3

+ β3U2U
⊺
2 + β5U2U

⊺
4 + β9U4U

⊺
2 + β11U4U

⊺
4

+ β4U2MU⊺
2 + β6U2MU⊺

4 + β10U4MU⊺
2 + β12U4MU⊺

4

Therefore, P ′ = P and Q′ = Q = σ(P). This gives us:

V ′
1 = V1E V ′

2 = V2F V ′
3 = V3E V ′

4 = V4F

V ′
5 = V5E V ′

6 = V6F V ′
7 = V7E V ′

8 = V8F

A.6.3 OUTPUT LAYER

Finally, the output layer gives:

z = V2N+1W
(3)

=
∑

(Vi)2N+1W
(3)
i

= γ1(V1)2N+1 + γ2(V3)2N+1 + γ3(V5)2N+1 + γ4(V7)2N+1

z′ = V ′
2N+1W

(3)

=
∑

(V ′
i)2N+1W

(3)
i

= γ1(V
′
1)2N+1 + γ2(V

′
3)2N+1 + γ3(V

′
5)2N+1 + γ4(V

′
7)2N+1

= γ1(V1)2N+1E + γ2(V3)2N+1E + γ3(V5)2N+1E + γ4(V7)2N+1E

= zE

A.7 BACKWARD PASS

We now show how the rotation transforms the gradient of each weight block.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.7.1 OUTPUT LAYER

∂L
∂z

= 2(z − y)

∂L′

∂z′
= 2(z′ − y′) = 2(zE − yE) = 2(z − y)E =

∂L
∂z

E

∂L
∂W

(3)
i

=
(
(Vi)2N+1

)⊺(∂L
∂z

)
∂L′

∂W
(3)
i

=
(
(V ′

i)2N+1

)⊺(∂L′

∂z′

)

Scalar Blocks. For all i ∈ {1, 3, 5, 7}, we get

∂L′

∂W
(3)
i

=
(
(V ′

i)2N+1

)⊺(∂L′

∂z′

)
= E⊺

(
(Vi)2N+1

)⊺(∂L
∂z

)
E

= E⊺ ∂L
∂W

(3)
i

E

Taking the expectation over the entire data distribution, we obtain that the following holds for any
orthogonal transformation E:

E

[
∂L

∂W
(3)
i

]
= E

[
∂L′

∂W
(3)
i

]
= E

[
E⊺ ∂L′

∂W
(3)
i

E

]
= E⊺ E

[
∂L

∂W
(3)
i

]
E

Applying Proposition 1, we get that

E

[
∂L

∂W
(3)
i

]
= α I

Zero Blocks. For all i ∈ {2, 4, 6, 8}, we get

∂L′

∂W
(3)
i

=
(
(V ′

i)2N+1

)⊺(∂L′

∂z′

)
= F ⊺

(
(Vi)2N+1

)⊺(∂L
∂z

)
E

= F ⊺ ∂L
∂W

(3)
i

E

Taking the expectation over the entire data distribution, we obtain that the following holds for any
E and F :

E

[
∂L

∂W
(3)
i

]
= F ⊺ E

[
∂L

∂W
(3)
i

]
E

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Applying Proposition 3, we get that

E

[
∂L

∂W
(3)
i

]
= 0

Gradient Propagation Applying the chain rule, we get
∂L

∂V2N+1
=

∂L
∂z

∂z

∂V2N+1
= 2(z − y)W (3)⊺

For all i ∈ {1, 3, 5, 7}, we get
∂L′

∂(V ′
i)2N+1

= 2(z′ − y′)W
(3)
i

⊺
= 2(z − y)EW

(3)
i

⊺
=

∂L
∂(Vi)2N+1

E

For all i ∈ {2, 4, 6, 8}, we get
∂L

∂(Vi)2N+1
= 2(z − y)W

(3)
i = 0

For all i ∈ {1, . . . , 8} and j ≤ 2N , we get
∂L

∂(Vi)j
=

∂L
∂(V ′

i)j
= 0

Putting everything together, the following holds for all j ≤ 2N + 1

∂L
∂(Vi)j

=
∂L′

∂(V ′
i)j

E if i ∈ {1, 3, 5, 7} (12)

∂L
∂(Vi)j

=
∂L′

∂(V ′
i)j

= 0 if i ∈ {2, 4, 6, 8} (13)

A.7.2 SECOND LAYER

Since V = [U | QU], we have that
∂(Vi)j
∂Qjk

=

{
Ui−4 i > 4

0 i ≤ 4

Therefore,
∂L′

∂(V ′
i)j

∂(V ′
i)j

∂Q′
jk

=
∂L

∂(Vi)j
E⊺E

∂(Vi)j
∂Qjk

=
∂L

∂(Vi)j

∂(Vi)j
∂Qjk

i ∈ {5, 7}

∂L′

∂(V ′
i)j

∂(V ′
i)j

∂Q′
jk

=
∂L

∂(Vi)j

∂(Vi)j
∂Qjk

= 0 i ̸∈ {5, 7}

Additionally, since P ′ = P and Q′ = Q, we have that
∂Q′

jk

∂P ′
jl

=
∂Qjk

∂Pjl

This gives us
∂L′

∂P ′
kl

=
∑
ij

∂L′

∂(V ′
i)j

∂(V ′
i)j

∂Q′
kj

∂Q′
kj

∂P ′
kl

=
∑
ij

∂L
∂(Vi)k

∂(Vi)k
∂Qkj

∂Qkj

∂Pkl

=
∂L
∂Pkl

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Additionally,

∂L
∂W

(2)
ij

=
∑
kl

∂L
∂Pkl

∂Pkl

∂W
(2)
ij

=
∑
kl

∂L
∂Pkl

(Ui)
⊺
k (Uj)l

which gives us the transformed gradient:

∂L′

∂W
(2)
ij

=
∑
kl

∂L′

∂P ′
kl

∂P ′
kl

∂W
(2)
ij

=
∑
kl

∂L
∂Pkl

(U ′
i)

⊺
k (U

′
j)l

=



E⊺ ∂L
∂W

(2)
ij

E if i odd, j odd

E⊺ ∂L
∂W

(2)
ij

F if i odd, j even

F ⊺ ∂L
∂W

(2)
ij

E if i even, j odd

F ⊺ ∂L
∂W

(2)
ij

F if i even, j even

The desired structure follows from computing the expected gradient over the entire distribution and
applying Propositions 1 to 3.

Gradient Propagation

Applying the chain rule, we get

∂L′

∂(U ′
i)j

=
∂L′

∂(V ′
i)j

+Q′⊺ ∂L′

∂(V ′
i+4)j

+
∑
k

∂L′

∂P ′
jk

∂P ′
jk

∂(U ′
i)j

(14)

We also have that

∂Pjk

∂(Ui)j
= (Ui)k

∂P ′
jk

∂(U ′
i)j

= (U ′
i)k =

{
(Ui)k E if i odd

(Ui)k F if i even
(15)

Cobmining eqs. (12) to (15), we get

∂L′

∂(U ′
i)j

=


∂L′

∂(U ′
i)j

E if i odd

∂L′

∂(U ′
i)j

F if i even

A.7.3 FIRST LAYER

Through similar derivations as before, we obtain

∂L′

∂S′
kl

=
∑
ij

∂L′

∂(U ′
i)j

∂(U ′
i)j

∂T ′
kj

∂T ′
kj

∂S′
kl

=
∑
ij

∂L
∂(Ui)k

∂(Ui)k
∂Tkj

∂Tkj

∂Skl

=
∂L
∂Skl

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

and
∂L

∂W
(1)
ij

=
∑
kl

∂L
∂Skl

∂Skl

∂W
(1)
ij

=
∑
kl

∂L
∂Skl

(Xi)
⊺
k (Xj)l

This gives us the transformed gradient:

∂L′

∂W
(1)
11

= E⊺ ∂L
∂W

(1)
11

E
∂L′

∂W
(1)
12

= E⊺ ∂L
∂W

(1)
12

F

∂L′

∂W
(1)
21

= F ⊺ ∂L
∂W

(1)
21

E
∂L′

∂W
(1)
22

= F ⊺ ∂L
∂W

(1)
22

F

which implies the desired structure.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B TIGHT BOUND PROOF

B.1 SUMMARY

We show that γ is the first parameter to reach the value 1/2 after a time T1 = Θ(N), then remains
bounded. Later, β reaches 1/2 after an additional time T2 = Θ(N2). Finally, α reaches 1/2 after
an additional time T3 = O(N2). This gives the total times Tα = T1 = Θ(N), Tβ = T1 + T2 =
Θ(N) + Θ(N2) = Θ(N2), and Tγ = T1 + T2 + T3 = Θ(N) + Θ(N2) +O(N2) = Θ(N2). Each
step is proven by appropriately bounding the gradient updates. We give the full proof below.

B.2 SETUP

Recall the architecture and loss:

U =
[
X
∣∣∣ σ(XW (1)X⊺)X

]
V =

[
U
∣∣∣ σ(UW (2)U⊺)U

]
z = V2N+1 W

(3) L = ∥y − z∥2

where [· | ·] denotes matrix concatenation, and

W (1) ∈ R2D×2D W (2) ∈ R4D×4D W (3) ∈ R8D×D

U ∈ R(2N+1)×4D V ∈ R(2N+1)×8D z ∈ RD

X ∈ R(2N+1)×2D y ∈ RD

We use σ to denote the softmax function with causal masking. We apply a causal mask that prevents
a position from attending to itself, which is not a standard practice, but it greatly simplifies the
proofs.

The data is generated as:

X2i−1 =
[
ai | pi

]
X2i =

[
bi |Mpi

]
∀i ∈ {1, . . . , N}

X2N+1 =
[
aq | 0

]
y = bq

where

ai, bi, pi ∈ RD q ∈ {1, 2, . . . , N} M =

[
0 I
I 0

]
B.3 LOSS FUNCTION

We begin by deriving a closed-form expression of the loss in terms of the three parameters.

The orthonormal inputs give us the following attention scores in the first layer:

(XW (1)X⊤)ij =

{
α i = 2k, j = i− 1

0 otherwise

Applying the softmax attention with causal masking gives us:

σ(XW (1)X⊤)ij =



eα

i− 2 + eα
i = 2k, j = i− 1

1

i− 2 + eα
i = 2k, j ̸= i− 1

1

i− 1
i = 2k + 1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

From Assump. 8, the target label is the last element in the sequence, following immediately after the
queried item. This means that only the target label will contain the queried item after the first layer.
Therefore, the target label will be the only position attended by the query:

(UW (2)U⊤)2N+1, i =

{
β eα

2N−2+eα i = 2N

0 otherwise

Applying the softmax attention gives:

σ(UW (2)U⊤)2N+1, i =

{
s

s+2N−1 i = 2N
1

s+2N−1 otherwise

where s = eβ
eα

2N−2+eα .

Applying the output projection layer will give us:

z =
γ

s+ 2N − 1

(
s bN + aN +

N−1∑
i=1

(
ai + bi

))

The final loss will be:

L = ∥z − bi∥2 = ∥z∥2 − 2 z⊤bi + ∥bi∥2

= γ2 s2 + 2N − 1

(s+ 2N − 1)2
− 2γ

s

s+ 2N − 1
+ 1

where s = eβ
eα

2N−2+eα .

Note that as long as inputs are orthonormal and the target label is in the last position, the loss only
depends on α, β, γ, and N . Any distribution over orthonormal inputs will give the same expected
loss.

B.4 LOSS GRADIENT

We now proceed to compute the partial derivatives of the loss function with respect to each of the
three parameters.

B.4.1 AUXILIARY DEFINITIONS

G = eα + 2N − 2, F = 2N − 1,

s = exp
(β eα

G

)
, r = s+ F,

L =
γ2 (s2 + F)

r2
− 2γ

s

r
+ 1.

B.4.2 PARTIAL DERIVATIVE W.R.T. γ

∂L
∂γ

=
∂

∂γ

(
γ2(s2+F)

r2 − 2γ s
r + 1

)
= 2γ

s2 + F

r2
− 2

s

r

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.4.3 PARTIAL DERIVATIVE W.R.T. s

∂L
∂s

=
∂

∂s

(
γ2(s2+F)

r2

)
− 2γ

∂

∂s

(
s
r

)
= γ2 2s r2 − (s2 + F) 2r ∂r

∂s

r4
− 2γ

r − s ∂r
∂s

r2

But since ∂r/∂s = 1,

∂L
∂s

=
2γ2s r − 2γ2(s2 + F)

r3
− 2γ

r − s

r2

= 2F
(γ2(s− 1)

r3
− γ

r2

)

B.4.4 DERIVATIVES OF s

s = exp
(

β eα

G

)
=⇒


∂s

∂α
= s

∂

∂α

(
β eα

G

)
= s

β eα(G− eα)

G2
= s

2(N − 1)β eα

G2

∂s

∂β
= s

∂

∂β

(
β eα

G

)
= s

eα

G

B.4.5 APPLYING THE CHAIN-RULE RESULTS

∂L
∂α

=
∂L
∂s

∂s

∂α
= 2F

(
γ2(s−1)

r3 − γ
r2

)
× s

2(N − 1)β eα

G2

=
4β (N − 1)F s eα

G2

(γ2(s− 1)

r3
− γ

r2

)
∂L
∂β

=
∂L
∂s

∂s

∂β
= 2F

(
γ2(s−1)

r3 − γ
r2

)
× s

eα

G

=
2F s eα

G

(γ2(s− 1)

r3
− γ

r2

)

B.4.6 FINAL RESULTS

∂L
∂α

=
4β (N − 1)F s eα

G2

(γ2(s− 1)

r3
− γ

r2

)
∂L
∂β

=
2F s eα

G

(γ2(s− 1)

r3
− γ

r2

)
∂L
∂γ

= 2γ
s2 + F

r2
− 2

s

r

B.4.7 VERIFICATION

We verify the correctness of the previous results using automated symbolic differentiation with the
SymPy library. The code is provided with this paper.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.5 EMERGENCE OF IN-CONTEXT LEARNING

Combining the previously obtained loss derivatives with the zero initialization, we obtain the full set
of constraints that determine our training trajectory:

α(0) = β(0) = γ(0) = 0

∂α

∂t
=

2β (2N − 2) (2N − 1) s eα

(eα + 2N − 2)2

(
γ

(s+ 2N − 1)2
− γ2(s− 1)

(s+ 2N − 1)3

)

∂β

∂t
=

2 (2N − 1) s eα

eα + 2N − 2

(
γ

(s+ 2N − 1)2
− γ2(s− 1)

(s+ 2N − 1)3

)

∂γ

∂t
= 2

s

s+ 2N − 1
− 2γ

s2 + 2N − 1

(s+ 2N − 1)2

where s = exp
(
β eα

eα+2N−2

)
.

We are interested in the first time tICL when all three parameters are greater than 1/2. As we show
below, the parameters always reach this value in a specific order: first γ, then β, and finally α.

We find the total time by breaking it down into three different times, one for each parameter:

tICL = T1 + T2 + T3

We show that γ emerges in T1 = Θ(N), β emerges after another T2 = Θ(N2), and finally α
emerges after another T3 = O(N2). This gives the total time:

tICL = Θ(N) + Θ(N2) +O(N2) = Θ(N2)

B.6 EMERGENCE OF γ IN T1 = Θ(N)

We start in the regime 0 ≤ α, β, γ < 1
2 . We show that γ is the first to leave this regime at a time

T1 = O(N).

B.6.1 DYNAMICS OF γ

Using α, β < 1
2 , we get:

s = exp
(
β

eα

eα + 2N − 2

)
= 1 +O(1/N)

Using γ < 1
2 , we get:

∂γ

∂t
= 2

s

s+ 2N − 1
− 2γ

s2 + 2N − 1

(s+ 2N − 1)2

≥ 2
s

s+ 2N − 1
− s2 + 2N − 1

(s+ 2N − 1)2

≥ 2
1 +O(1/N)

2N +O(1/N)
− 2N +O(1/N)

(2N +O(1/N))2

≥ 1 +O(1/N)

N
− 2N +O(1/N)

4N2

≥ 1

2N
+ O(1/N2)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

∂γ

∂t
= 2

s

s+ 2N − 1
− 2γ

s2 + 2N − 1

(s+ 2N − 1)2

≤ 2
s

s+ 2N − 1

≤ 2
1 +O(1/N)

2N +O(1/N)

≤ 1

N
+ O(1/N2)

This gives us

∂γ

∂t
= Θ(1/N)

Integrating over time, we obtain:

γ(T1) =

∫ T1

0

∂γ

∂t
dt = T1 Θ(1/N)

Since γ(T1) = 1/2, we get that T1 = Θ(N).

B.6.2 DYNAMICS OF α AND β

We are left to show that the condition α, β < 1
2 holds until T1.

∂α

∂t
=

2β (2N − 2) (2N − 1) s eα

(eα + 2N − 2)2︸ ︷︷ ︸
O(1)

(
γ

(s+ 2N − 1)2︸ ︷︷ ︸
O(1/N2)

− γ2(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)

= O(1/N2)

∂β

∂t
=

2 (2N − 1) s eα

eα + 2N − 2︸ ︷︷ ︸
O(1)

(
γ

(s+ 2N − 1)2︸ ︷︷ ︸
O(1/N2)

− γ2(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)

= O(1/N2)

Integrating over time, we get α(T1) = O(1/N) and β(T1) = O(1/N). Therefore, for large enough
N , it is guaranteed that α and β will not reach 1/2 by the time that γ does.

B.6.3 NON-NEGATIVITY

For completeness, we also show that parameters are always increasing within this regime, which
guarantees that they will never become negative:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

∂α

∂t
=

2β (2N − 2) (2N − 1) s eαγ

(eα + 2N − 2)2︸ ︷︷ ︸
≥0

(
1

(s+ 2N − 1)2︸ ︷︷ ︸
Θ(1/N2)

≥0

− γ(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)
≥ 0

∂β

∂t
=

2 (2N − 1) s eαγ

eα + 2N − 2︸ ︷︷ ︸
≥0

(
1

(s+ 2N − 1)2︸ ︷︷ ︸
Θ(1/N2)

≥0

− γ(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)
≥ 0

B.7 EMERGENCE OF β AFTER T2 = Θ(N2)

We have now entered a new regime where 0 ≤ α, β ≤ 1/2 and 1/2 ≤ γ ≤ 3/2. We will show that
β is the first to leave this regime after an additional time T2 = Θ(N2).

B.7.1 BOUNDING γ

We begin by showing that γ remains bounded below 3/2. We show that ∂γ/∂t would be negative
at γ = 3/2, which implies that γ will never go above 3/2. We use the fact that s = 1 + O(1/N)
whenever α, β = O(1):

∂γ

∂t
= 2

s

s+ 2N − 1
− 2γ

s2 + 2N − 1

(s+ 2N − 1)2

= 2
s

s+ 2N − 1
− 3

s2 + 2N − 1

(s+ 2N − 1)2

= 2
1 +O(1/N)

2N +O(1/N)
− 3

2N +O(1/N)

(2N +O(1/N))2

=
1 +O(1/N)

N
− 3N +O(1/N)

2N2

= − 1

2N
+ O(1/N2)

< 0

B.7.2 DYNAMICS OF β

Applying the fact that γ = Θ(1) and s = 1 +O(1/N) = Θ(1) gives us:

∂β

∂t
=

2 (2N − 1) s eαγ

eα + 2N − 2︸ ︷︷ ︸
Θ(1)

(
1

(s+ 2N − 1)2︸ ︷︷ ︸
Θ(1/N2)

− γ(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)
= Θ(1/N2)

By integrating, we obtain the value of β after T2:

β(T1 + T2) = β(T1) +

∫ T1+T2

T1

∂β

∂t
dt = O(1/N) + T2 Θ(1/N2)

This gives us that T2 Θ(1/N2) = 1/2, which implies that T2 = Θ(N2).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

B.7.3 DYNAMICS OF α

For completeness, we must establish that α does not become greater than 1/2 before β. This comes
from the fact that β is always increasing at a faster rate than α in this regime:

∂α

∂t
=

β(2N − 2)

eα + 2N − 2︸ ︷︷ ︸
< 1

∂β

∂t

B.8 EMERGENCE OF α IN T3 = O(N2)

We have entered our last regime, which we define using the constraints 0 ≤ α ≤ 1/2, 1/2 ≤ γ ≤
3/2, and 1/2 ≤ β ≤ 20.

We know from before that γ remains constrained when α, β = Θ(1). We are left to prove that α
becomes greater than 1/2 in a time T3 = O(N2) and it does so before β becomes greater than the
value 20 (chosen arbitrarily to simplify the proofs).

B.8.1 DYNAMICS OF α

We establish an upper bound on T3 using a lower bound on ∂α/∂t:

∂α

∂t
= 2 γβ eα

(2N − 2) (2N − 1) s

(eα + 2N − 2)2︸ ︷︷ ︸
1+O(1/N)

(
1

(s+ 2N − 1)2︸ ︷︷ ︸
1/(4N2)+O(1/N3)

− γ(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)

>
1

8N2
+O

(1

N3

)
Integrating over time gives:

α(T1 + T2 + T3) = α(T1 + T2) +

∫ T1+T2 +T3

T1 +T2

∂α

∂t
dt

> T3

(
1

8N2
+O

(
1/N3

))

Applying that α(T1 + T2 + T3) = 1/2 gives us T3 < 4N2 +O(1/N) = O(N2).

B.8.2 DYNAMICS OF β

Finally, we must show that β does not reach 20 during T3. We achieve this using an upper bound on
∂β/∂t:

∂β

∂t
= 2 eα γ

(2N − 1) s

eα + 2N − 2︸ ︷︷ ︸
1+O(1/N)

(
1

(s+ 2N − 1)2︸ ︷︷ ︸
1/(4N2)+O(1/N3)

− γ(s− 1)

(s+ 2N − 1)3︸ ︷︷ ︸
O(1/N4)

)

<
3
√
e

4N2
+ O(1/N3)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Integrating over time gives:

β(T1 + T2 + T3) = β(T1 + T2) +

∫ T1+T2 +T3

T1 +T2

∂β

∂t
dt

<
1

2
+ T3

(
3
√
e

4N2
+O

(
1/N3

))

<
1

2
+

(
4N2 +O

(
1/N

))(3
√
e

4N2
+O

(
1/N3

))

<
1

2
+ 3
√
e+O(1/N)

< 5.45 +O(1/N)

< 20

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

C WEIGHTS DURING TRAINING

We confirm our theoretical result by visualizing the weights during standard training with stochastic
gradient descent. We use learning rate = 1 and batch size B = 512.

W(1) W(2) W(3)

0.4

0.2

0.0

0.2

0.4

Figure 6: Model weights after 100 training steps with D = 16 and N = 4.

W(1) W(2) W(3)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 7: Model weights after 200 training steps with D = 16 and N = 4.

W(1) W(2) W(3)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 8: Model weights after 400 training steps with D = 16 and N = 4.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

W(1) W(2) W(3)

0.4

0.2

0.0

0.2

0.4

Figure 9: Model weights after 200 training steps with D = 16 and N = 8.

W(1) W(2) W(3)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 10: Model weights after 400 training steps with D = 16 and N = 8.

W(1) W(2) W(3)

2

1

0

1

2

Figure 11: Model weights after 800 training steps with D = 16 and N = 8.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

W(1) W(2) W(3)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Figure 12: Model weights after 250 training steps with D = 16 and N = 16.

W(1) W(2) W(3)

0.4

0.2

0.0

0.2

0.4

Figure 13: Model weights after 500 training steps with D = 16 and N = 16.

W(1) W(2) W(3)

0.4

0.2

0.0

0.2

0.4

Figure 14: Model weights after 1000 training steps with D = 16 and N = 16.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

D TRAINING DYNAMICS

As in the main paper, we visualize the pseudo-parameters and loss during standard training, as well
as when training only α3, β2, and γ3. We use D = 32, N = 16, learning rate λ = 1, and batch
size B = 256. We determine the value of each pseudo-parameter by measuring the magnitude of
the parameter vector along the corresponding component.

0 2000 4000 6000 8000
Step

0

2

4

6
3

2

3
other

0 2000 4000 6000 8000
Step

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss

0 1000 2000 3000 4000 5000 6000
Step

0

2

4

6
3

2

3

0 1000 2000 3000 4000 5000 6000
Step

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss

Figure 15: The pseudo-parameters and training loss during training with D = 16 and N = 32.
Top. Standard training. Bottom. Training only α3, β2, and γ3.

0 200 400 600 800 1000 1200 1400
Step

0

1

2
3

2

3
other

0 200 400 600 800 1000 1200 1400
Step

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss

0 200 400 600 800 1000 1200
Step

0

1

2
3

2

3

0 200 400 600 800 1000 1200
Step

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss

Figure 16: The pseudo-parameters and training loss during training with D = 32 and N = 8.
Top. Standard training. Bottom. Training only α3, β2, and γ3.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

E TRAINING DETAILS FOR SECTION 2

We use token and positional embeddings with a vocabulary size of 32, a block size of 32, and an
embedding dimension of 2048. Since we have only one head per layer, the head dimension is also
2048. We do not use normalization or weight tying. Following standard practice, we train with
AdamW (Loshchilov & Hutter, 2017) with learning rate 0.001 and weight decay 0.01. We train for
300 steps with 512 sequences per step. Every sequence has length 17 (8 item-label pairs and one
query item) and is placed at a random position in the block. We generate new random sequences for
every gradient step as follows: we choose 16 distinct tokens from our vocabulary and group them in
item-label pairs; we choose one of the items to be the query; we use the corresponding label as the
target output. We use the negative log-likelihood loss.

Figure 17: Training loss for the transformer used in Section 2. Note that every batch is generated
independently, hence the training loss is also a test loss.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F TRAINING DETAILS FOR SECTION 6

We empirically validate our theoretical results by measuring the emergence times for different values
of N . We find that emergence times are in accordance with theoretical predictions. Results are
plotted in Fig. 5. We use D = 256, B = 64, λ = 100. Following our theoretical assumptions,
we use orthonormal inputs, zero initialization, and q = N . We constrain the parameters to the 3-
dimensional space spanned by α3,β2, and γ3. Unlike our theory, we use a threshold of 0.1 for α3

and β2, (rather than 0.5) to better highlight their separation.

36

	Introduction
	Induction Heads
	Setup
	Weight Matrix Structure
	Induction Head Mechanism

	Minimal Formulation
	Architecture
	Data Distribution

	Training Dynamics
	Emergence of Induction Heads
	Full Training Dynamics of Induction Heads
	Theoretical Results

	Discussion
	How do , , and emerge during training?
	The Importance of Context Length

	Related Work
	Conclusion
	Weights Structure Full Proof
	Summary
	Prerequisites
	Orthogonal Transformations
	Block-Orthogonal Transformations
	Combined Transformations
	Block-Swap Transformation

	Setup
	Additional Notation
	Data Rotations
	Forward Pass
	First Layer
	Second Layer
	Output Layer

	Backward Pass
	Output Layer
	Second Layer
	First Layer

	Tight Bound Proof
	Summary
	Setup
	Loss Function
	Loss Gradient
	Auxiliary definitions
	Partial derivative w.r.t.
	Partial derivative w.r.t. s
	Derivatives of s
	Applying the chain‐rule results
	Final results
	Verification

	Emergence of In-Context Learning
	Emergence of in T1 = (N)
	Dynamics of
	Dynamics of and
	Non-negativity

	Emergence of after T2 = (N2)
	Bounding
	Dynamics of
	Dynamics of

	Emergence of in T3 = O(N2)
	Dynamics of
	Dynamics of

	Weights during Training
	Training Dynamics
	Training Details for section 2
	Training Details for section 6

