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ABSTRACT

Large-scale video generative models, capable of creating realistic videos of di-
verse visual concepts, are strong candidates for general-purpose physical world
simulators. However, their adherence to physical commonsense across real-world
actions remains unclear (e.g., playing tennis, backflip). Existing benchmarks suffer
from limitations such as limited size, lack of human evaluation, sim-to-real gaps,
and absence of fine-grained physical rule analysis. To address this, we introduce
VIDEOPHY-2, an action-centric dataset for evaluating physical commonsense in
generated videos. We curate 4000 diverse and detailed prompts for video synthe-
sis from modern generative models. We perform human evaluation that assesses
semantic adherence, physical commonsense, and grounding of physical rules in
the generated videos. Our findings reveal major shortcomings, with even the best
model achieving only 47.7% joint performance (i.e., high semantic and physical
commonsense adherence) on the hard subset of VIDEOPHY-2. We find that the
models particularly struggle with conservation laws like mass and momentum.
Finally, we also develop VIDEOPHY-2-AUTOEVAL, an automatic evaluator for
fast, reliable assessment on our dataset. Overall, VIDEOPHY-2 serves as a rigorous
benchmark, exposing critical gaps in video generative models and guiding future
research in physically-grounded video generation.1

Figure 1: Performance on the
VIDEOPHY-2 dataset using human
evaluation. We evaluate the physical
commonsense and semantic adherence
to text conditioning prompts for diverse
real-world actions. We observe that even the
best-performing model Wan2.2-27B-A14B
(27B total, 14B active params) achieves
47.7% on the hard subset of the data,
created using CogVideoX-5B as a reference
model. * represents the evaluation on a
small subset of the dataset.

1 INTRODUCTION

Recent advancements in large-scale video generative modeling offer the potential to simulate the
physical world accurately [12, 57]. In particular, this capability can enable learning general-purpose
visuomotor policies [35, 18], autonomous driving [1], and game playing [14, 20, 4]. In daily life,
humans rely on their sophisticated physics intuition to interact with the world [19] (e.g., predicting
the trajectory of football after being hit). However, the extent to which existing video models can
generate physically likely worlds across diverse real-world actions remains unclear.

1We will release the dataset, videos, auto-rater model, and code in the camera-ready version.
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Figure 2: VIDEOPHY-2 pipeline. We generate a text prompt from the seed action using an LLM, create a
video with a video model, and caption it with a VLM to extract candidate physical rules. Then, humans rate the
video’s physical likelihood, verify rule violations, suggest missing rules, and assess prompt adherence.

An approach to evaluating generated videos is to compare them with ground-truth physical simulations
[1, 51]. Furthermore, there is a lack of mature methods for rendering diverse real-world materials
[7, 30, 48] and for accurately simulating complex physical interactions [39]. For instance, simulating
a scenario like ‘a child kicking a ball against a wall’ requires precise estimation of the foot’s pose,
and considerations of the ball’s air pressure and material properties. While we focus on evaluating
the physical likelihood of generated videos, an assessment that can often be made by humans without
formal physics education by relying on their real-world experience.

Recent work such as Physics-IQ [47] conditions video models on the first few frames of real videos
and evaluates their similarity by comparing predicted videos with ground-truth completions. However,
this approach faces several challenges: (a) the extent to which it agrees with human judgment remains
unclear, and (b) extending it to more complex scenarios depicting multiple events is non-trivial.
Another work PhyGenBench [39] curates a small set of 160 manually crafted prompts, which is not
scalable. Additionally, their evaluation approach simplifies the problem by designing text prompts
that explicitly associate with a single physical law (e.g., ‘A stone placed on the surface of a water
pool’ is linked to law of Buoyancy). Although, this strict one-to-one association between a prompt
and a physical law is problematic, as video models often exhibit imperfect semantic adherence.
For instance, a video model might generate a video that does not strictly follow the prompt but
still adheres to physical commonsense (e.g., producing a video where ‘a stone is dropped from a
height into the pool’, where gravity is more crucial than buoyancy). We note the difference between
VIDEOPHY-2 and several existing work in Table 1.

To address these gaps, we propose VIDEOPHY-2, a challenging physical commonsense evaluation
dataset for real-world actions. Specifically, we curate a list of 197 actions across diverse physical
activities (e.g., hula-hooping, gymnastics) and object interactions (e.g., bending an object until it
breaks). Then, we generate 3940 detailed prompts from these seed actions using a large language
model (LLM). Further, these prompts are used to synthesize videos with modern video generative
models. Finally, we compile a list of candidate physical rules (and laws) that should be satisfied
in the generated videos, using vision-language models in the loop. For example, in a video of
sportsperson playing tennis, a physical rule would be that ball should follow a parabolic trajectory
under gravity. For gold-standard judgments, we ask human annotators to score each video based on
semantic adherence and physical commonsense, and to mark its compliance with physical rules.

In our experiments, we find that the best-performing model, Wan2.2-27B-A14B [59], achieves a
joint performance score (high semantic adherence and physical commonsense) of only 55.4% while
Wan2.1-14B achieves a score of 32.6%. To further increase the dataset’s difficulty, we create a hard
subset where the performance of Wan2.2-27B-A14B and Wan2.1-14B drops to 47.7% and 22%,
respectively. Moreover, our fine-grained analysis of human-annotated physical rule violations shows
that video models struggle the most with conservation laws (e.g., mass and momentum).

While human evaluation serves as the gold standard for real-world physical commonsense judgment,
it is expensive and difficult to scale. To address this, we train an automatic evaluation model,
VIDEOPHY-2-AUTOEVAL, capable of performing a wide range of tasks—including scoring semantic
adherence, physical commonsense, and classifying physical rule grounding in the generated video.

2
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Table 1: Comparison between VIDEOPHY-2 and several prior work. We highlight the salient features of the
VIDEOPHY-2 and show that its unique contributions. For instance, it is one of the largest datasets for physical
commonsense evaluation, along with violated physical rule (and law) annotations.

Feature VBench[27] PhyGenBench [46] PhysicsIQ [47] EvalCrafter [40] VIDEOPHY [7] VIDEOPHY-2 (Ours)
Num of captions 1746 160 396 700 688 3940
Gold human evaluation ✁ ✁ ✂ ✁ ✁ ✁
Physical commonsense eval. ✂ ✁ ✁ ✂ ✁ ✁
Physical rules and laws annotations ✂ ✁ ✂ ✂ ✂ ✁
Real-world action-centric ✂ ✂ ✂ ✂ ✂ ✁
Long (dense) captions ✂ ✁ ✁ ✂ ✂ ✁
Hard subset ✂ ✂ ✂ ✂ ✂ ✁
Automatic evaluator ✁ ✁ ✁ ✁ ✁ ✁
Release videos and annotations ✁ ✂ ✂ ✁ ✁ ✁
Human feedback type Pairwise Rating - Rating (1-5) Rating (0-1) Rating (1-5)

In our experiments, we find that VIDEOPHY-2-AUTOEVAL outperforms a capable multimodal
foundation model, Gemini-2.0-Flash-Exp [17], with a relative correlation improvement of 81% and
236% on the semantic adherence and physical commonsense tasks, respectively, on the unseen
prompts. Overall, we demonstrate that VIDEOPHY-2 is a high-quality dataset that poses a formidable
challenge for modern video models.

2 VIDEOPHY-2 DATASET

We present the steps for data construction (Figure 2) below:

Seed Actions (Stage 1): We curate a set of actions relevant to physical commonsense evaluation.
Specifically, we compile a diverse list of over 600 actions from popular video datasets that capture
a wide range of real-world activities, particularly those involving sports, physical activities, and
object interactions. These datasets include Kinetics [15], UCF-101 [54], and SSv2 [21]. Next, we
divide the student authors, with undergraduate or more degree in STEM, into two groups, each of
which independently reviews the list and marks actions deemed relevant for physical commonsense
evaluation. Our goal is to include actions that test various physical laws (e.g., gravity, elasticity,
buoyancy, reflection, conservation of mass and momentum). Importantly, we filter out actions that do
not elicit significant motion or are unlikely to be compelling for physical commonsense evaluation
in videos (e.g., typing, applying cream, arguing, auctioning, chewing, playing instruments, petting
a cat). Finally, we retain only the actions deemed relevant by both groups of annotators. After this
filtering process, we obtain a list of 232 actions, which we further refine using Gemini-2.0-Flash-Exp
to remove semantic duplicates, resulting in a final set of 197 actions. Among these, 143 and 54
actions belong to object interactions and physical activities category, respectively. We present the list
in Appendix Table 9.

LLM-Generated Prompts (Stage 2): In this stage, we query the Gemini-2.0-Flash-Exp LLM to
independently generate 20 prompts for each action in our dataset. In particular, we focus on the
depiction of multiple events within a prompt to increase the challenge for modern video generation
models (e.g., we encourage the LLM to generate ‘An archer draws the bowstring back to full tension,
then releases the arrow, which flies straight and strikes a bullseye on a paper target’ instead of a
simpler prompt ‘An archer releases the arrow’). Our prompt generation template is presented in
Appendix F. In total, we curate 3940 prompts covering a wide range of actions. Since the modern
video models can understand long video descriptions, we also generate dense captions from the
original captions using the Mistral-NeMo-12B-Instruct prompt upsampler from [1]. In particular,
these dense captions add more visual details to the original caption without changing its semantic
meaning (e.g., main characters and actions).2

Candidate physical rules and laws (Stage 3): In this stage, we aim to generate candidate physical
rules and associated laws that could be followed (or violated) in the generated video. Since video
models often struggle to adhere to conditioning text prompts, we do not derive physical rules directly
from them. Instead, we first generate videos using generative models conditioned on prompts from
the VIDEOPHY-2 dataset. Then, we create captions for these videos using the strong video captioning
capabilities of Gemini-2.0-Flash-Exp. This ensures that the physical rules are constructed based

2We present some of the generated captions and underlying actions in Appendix Table 11, and the upsampled
captions in Appendix Table 12.
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on details grounded in the video itself.3 Subsequently, we ask Gemini-2.0-Flash-Exp to generate
a set of three physical rules (and laws) that should be followed for a given video. Since a video
may violate physical rules that are not covered in the pre-defined rules, we further ask the human
annotators to write additional violated rules during physical commonsense evaluation. We present the
rule generation prompt in Appendix Table 11.

Construction of the Hard Subset (Stage 4): While we collect diverse and lengthy captions to
make the task more challenging, we further employ a model-based strategy to identify a subset
of particularly difficult actions. Specifically, we generate videos using a strong open video model,
CogVideoX-5B [62], conditioned on captions from the VIDEOPHY-2 dataset. From this, we select 60
actions (out of 197) for which the model fails to generate videos that accurately adhere to the prompts
and follow physical commonsense (Appendix Table 10). On examination, we find that these actions
focus on physics-rich interactions (e.g., momentum transfer in throwing discus or passing football),
state changes (e.g., bending something until it breaks), balancing (e.g., tightrope walking), and
complex motions (e.g., backflip, pole vault, and pizzatossing). In total, we designate 1200 prompts
making the dataset more challenging. We present the list of hard actions in Appendix Table 10.4

Data Analysis: We present the dataset statistics in Appendix Table 7. Specifically, VIDEOPHY-2
contains 3940 captions, which is 5.72→ more than those in the VIDEOPHY dataset. Additionally, the
average lengths of original and upsampled captions are 16 and 138 tokens, respectively—1.88→ and
16.2→ longer than those in VIDEOPHY. Furthermore, VIDEOPHY-2 includes 110K human annota-
tions across various video generative models and their semantic adherence, physical commonsense,
and physical rule annotations. Finally, we show the distribution of the root verbs and direct nouns in
the original captions of VIDEOPHY-2 in Appendix Figure 6, demonstrating the high diversity of the
dataset. We also illustrate the diversity of multiple captions for an action in Appendix Figure 7.

3 EVALUATION

3.1 METRIC

In practice, generated videos must satisfy several constraints, including high video quality [40],
temporal consistency [27], and entity/background consistency [6]. While many of these metrics
are intertwined, it is essential to evaluate each independently to gain a clearer understanding of a
model’s capabilities. In this work, we focus on assessing the extent to which a generated video (1)
adheres to the input text prompt and (2) follows physical commonsense. To quantify these aspects,
we employ a rating-based evaluation using a 5-point Likert scale, a well-established methodology
for capturing human judgments across domains ranging from psychology [36, 2] to large language
model evaluation [49]. This approach has also been adopted in video model evaluation [7, 39, 40].
Unlike ranking-based feedback, which only reflects relative preferences between two outputs, our
rating system measures the absolute degree of a model’s success or failure. Moreover, the 5-point
scale provides more fine-grained feedback than binary labels (e.g., plausible/implausible), enabling a
more nuanced analysis of model performance.

Since human evaluation inherently involves subjectivity, we implemented a rigorous protocol to
ensure reliability. All annotators underwent structured training guided by a detailed rubric with
clear examples, ranging from “very unlikely” (1) to “very likely” (5), to anchor their judgments and
establish a shared understanding of the scale. To further reduce individual bias and capture a stable
consensus, each video was evaluated by three annotators. This process yielded a high inter-annotator
agreement of 80% (comparable to agreement scores reported in prior work [7]), confirming the
consistency and validity of our framework.

Semantic Adherence (SA): Here, we aim to assess whether the input text prompt is semantically
grounded in the generated video. Specifically, it studies whether the entities, actions, and relationships
described in the prompt are accurately depicted in the video (e.g., a person visibly jumping into the

3We observe that prompting Gemini-2.0-Flash-Exp to generate physical rules directly from the video did not
yield high-quality outputs. Therefore, we prefer a two-step process: captioning followed by rule generation.

4We note that a similar model-based strategy is also adopted in recent work like Humanity’s Last Exam [50]
and ZeroBench [53] to collect hard instances for model evaluation.
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water). To measure semantic adherence, annotators rate each video on a 5-point scale, selecting from
the following options: {SA ↑ Very Unlikely (1), Unlikely (2), Neutral (3), Likely (4), Very Likely (5)}.
In this case, very unlikely indicates that the video does not match the prompt at all, and very likely
highlights the video fully adheres to the prompt with no inconsistencies.

Physical Commonsense (PC): Here, our goal is to assess whether the generated video follows
the physical laws of the real-world intuitively (e.g., the football should start moving after impact in
accordance with newton’s first law). We note that the physical commonsense evaluation is independent
of the underlying video generating text prompt. Since a video can follow (or violate) numerous laws,
we are concerned with the holistic sense of the video’s physical commonsense. In particular, the
annotators rate each video on a 5-point scale, selecting from the following options: {PC ↑ Very
Unlikely (1), Unlikely (2), Neutral (3), Likely (4), Very Likely (5)}. Here, very unlikely that the video
contains numerous violations of fundamental physical laws, and very likely indicates that the video
demonstrates a strong understanding of physical commonsense with no violations.

Similar to [7], we compute joint performance as the main evaluation metric, which measures
the fraction of videos that both adhere closely to the text prompt (SA ↓ 4) and follow physical
commonsense to a high degree (PC ↓ 4). We do not report the posterior score (PC >= 4|SA >= 4)
since a bad model can game it.5

Physical Rules (PR): A key feature of the VIDEOPHY-2 dataset is the collection of candidate
physical rules (and their associated laws) that humans evaluate as being followed or violated in the
generated video (e.g., ‘the ball should go down’ is a physical rule associated with the law of gravity).
These rules enable a fine-grained assessment of the video model’s capabilities. Specifically, we
determine whether a candidate physical rule is violated (0), followed (1), or cannot be determined
(CBD) (2) in the generated video.6 Further, we ask human annotators to note more physical rule
violations to ensure comprehensive coverage.

3.2 SCORING

Human Evaluation. In practice, human evaluation serves as a gold standard for assessing the quality
of generative foundation models [42, 63]. In particular, we collect judgments using the Amazon
Mechanical Turk (AMT) platform from a group of 12 human annotators, which were selected after
passing a qualification test. Since physical commonsense is independent of the generated video-
prompt alignment, we evaluate semantic adherence and physical commonsense (including rule-based
judgment) as separate tasks for human annotators. This differs from prior work in VIDEOPHY [7],
which treats semantic adherence and physical commonsense assessment as a single task. It may
introduce evaluation bias, as annotators have access to the prompt while conducting the physical
commonsense evaluation, a scenario we explicitly avoid in this work.

We present the annotation UI for the semantic adherence task in Appendix Figure 17, where the input
consists of a text prompt and the corresponding generated video. Note that human annotators were
shown the original prompt (not the upsampled prompts) to ensure a fair comparison between video
models, regardless of their ability to handle short or long prompts. In the following task, human
annotators are asked to evaluate only the generated video and with regard to adherence to specific
physical rules (followed/violated/CBD), overall physical commonsense, and observable behaviors
that violate physical reality.7 The annotation interface is shown in Appendix Figure 18.

Automatic Evaluation. While human judgments serve as the gold standard, automating the evalua-
tion process is crucial for faster and more cost-effective model assessments. In this study, we evaluate
several video-language foundation models (e.g., Gemini-2.0-Flash-Exp, VideoScore [22]) on two
tasks: semantic adherence and physical commonsense scoring. Specifically, we prompt the models to
score generated videos based on these two criteria and then normalize their predictions to a 5-point

5A video model can adhere to the prompt for only 1 out of 1,000 prompts in the dataset. Now, assume that
this video is also physically realistic. In this case, the posterior performance of the model will be reported as
100%, which is quite misleading for the model builders.

6We include CBD category because LLM-generated physical rules may not be grounded in the video.
7In our instructions to the annotators, we explicitly clarify that the overall physical commonsense judgments

should extend beyond the predefined physical rules listed in the task.
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scale. We provide more details about score computation in Appendix K. Additionally, we introduce a
classification task to determine whether a given physical rule is followed, violated, or CBD in the
generated video, leveraging video-language models such as VideoLLaVA [37]. Here, we prompt the
model to classify each video-rule pair into one of three categories: followed, violated, or CBD.

Our experiments reveal that existing video-language models struggle to achieve strong agreement with
human annotators. This discrepancy primarily arises due to their limited understanding of physical
commonsense and rules, as well as the complexity of the prompts. Hence, we supplement our
benchmark with a video-language model VIDEOPHY-2-AUTOEVAL (7B parameters). Specifically,
we aim to provide more accurate predictions for the generated videos along three axis – semantic
adherence score (1-5), physical commonsense score (1-5), and physical rule classification (0-2). We
follow a data-driven approach to distill human knowledge into a foundation model for these tasks.
Specifically, we fine-tune a video-language model VideoCon-Physics [7] on 50K human annotations
acquired for these tasks. We train a mult-task model to solve the three tasks using a shared backbone,
to allow the inter-task knowledge transfer. We provide the templates and setup used for model
finetuning in Appendix J and Appendix I, respectively.

4 SETUP

Video generative models. In this work, we evaluate a diverse range of state-of-the-art text-to-video
generative models. Specifically, we assess seven open models and two closed models, including
CogVideoX-5B [62], VideoCrafter2 [16], HunyuanVideo-13B [33], Cosmos-Diffusion-7B [1], Stable
Video Diffusion (SVD-I2V) [10], Wan2.1-14B [59], Wan2.2-T2V-27B-A14B (MoE with 27B total and
14B active params) [59], OpenAI Sora [12], and Luma Ray2 [43].8 We prompt these models with
the upsampled captions, except for those that do not support long (dense) captions by design i,e.,
Hunyuan-13B and VideoCrafter2. For SVD-I2V, we first generate an image using Stable Diffusion
and then use it as a conditioning variable to SVD. Additionally, we generate short videos (less than
6s) as they are easier to evaluate and effectively highlight challenges on the VIDEOPHY-2. The model
inference details are provided in Appendix M.

Dataset setup. Similar to [7], we take a data-driven approach and use human annotations across
multiple tasks to train the automatic evaluator. We split the VIDEOPHY-2 dataset into a test set for
benchmarking and a training set for training the VIDEOPHY-2-AUTOEVAL model. Specifically, the
training and testing prompts consist of 3350 (197 actions ! 17 captions per action) and 590 (197
actions ! 3 captions per action) prompts, respectively.

Benchmarking. For every tested model, we generate one video per each test prompt, that is, 591
videos per model.9 After generating the videos, we ask three annotators to evaluate them based
on semantic adherence, overall physical commonsense, and violations of various physical rules.
Annotators can also suggest additional physical rules that may be missing from our list. For every
generated video, we compute the SA and PC scores (1-5) by averaging the three annotators scores
and rounding to the nearest integer. Following this, the joint score is computed to assess the quality of
the generated video. We use the majority voting for determining whether the listed physical rule (and
law) is followed, violated, or cannot be grounded in the generated video. Additional human-written
violations are converted to a statement of a physical rule (and law) using Gemini-2.0-Flash-Exp.
With CogVideoX-5B as a strong reference model, we choose a hard subset of 60 actions for which it
achieved a zero joint performance. In our experiments, we observe that this hard subset leads to big
drop in performances in comparison to the entire data across video models.

Training set for VIDEOPHY-2-AUTOEVAL. Within a limited data collection budget, we sample
1 video per caption from one of the three video models including HunyuanVideo-13B, Cosmos-
Diffusion-7B, and CogVideoX-5B from the training set, of size 3350. All other video models are
used to study the generalization capabilities of the auto-rater. Subsequently, we perform human
annotations in the same way as the benchmarking process i.e., aggregating semantic adherence,

8We exclude other closed models due to lack of API access (e.g., Veo2 [57], Kling [31]).
9For Sora, however, we generate a subset of 60 videos (randomly selected from 591), manually, using Sora

playground (https://openai.com/sora/) due to the lack of an official API, and 394 videos (2 prompts
per action) for Ray2 due to the limited API budget.
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Table 2: Human evaluation results on VIDEOPHY-2. We present the joint performance that focuses on
high semantic adherence and high physical commonsense in the generated videos. PA, OI refer to the physical
activities, and object interactions subsets of the data, respectively. We mark the best performing models in each
column by blue and second best by yellow.

Model Class All Hard PA OI
Wan2.2-27B-A14B [59] Open 55.4 47.7 54.5 58.6
Wan2.1-14B [59] Open 32.6 21.9 31.5 36.2
CogVideoX-5B [62] Open 25.0 0.0 24.6 26.1
Cosmos-Diff-7B [1] Open 24.1 10.9 22.6 27.4
Hunyuan-13B [33] Open 17.2 6.2 17.6 15.9
VideoCrafter-2 [16] Open 10.5 2.9 10.1 13.1
SVD-I2V [16] Open 6.0 3.3 5.2 8.7
Ray2 [43] Closed 20.3 8.3 21.0 18.5
Sora [12] Closed 23.3 5.3 22.2 26.7

physical commonsense and rule judgments across the three annotators. In total, we collect roughly
50K human annotations across the three tasks, and spend $3515 USD on collecting the training data.
Post-training, we compare the performance of VIDEOPHY-2-AUTOEVAL against several baselines on
the semantic adherence and physical commonsense judgments using Pearson’s correlation between
the ground-truth and predicted scores. Further, we compare the joint score prediction accuracy and
F1 score between our auto-rater and selected baselines. In addition, we compare the physical rule
classification accuracy between the VIDEOPHY-2-AUTOEVAL and baselines.

5 EXPERIMENTS

Here, we present the benchmarking results and the fine-grained analysis (§5.1). Then, we note the
usefulness of our auto-rater against modern video-language models (§5.2).

5.1 MAIN RESULTS

Performance on the dataset. We compare the joint performance of various open and closed
text-to-video generative models on the VIDEOPHY-2 dataset in Table 2. Specifically, we present their
performance on the entire dataset, the hard split, and subsets focused on physical activities/sports (PA)
and object interactions (OI). Even the best-performing model, Wan2.2-27B-A14B, achieves 55.4%
and 47.7% (14% relative reduction) on the full and hard splits of our dataset, respectively. On the other
hand, we find that the second-best model, Wan2.1-14B achieves only 32.6% and 21.9% (33% relative
reduction) on the full and hard splits, respectively. This highlights at the effectiveness of higher
model capacity in Wan2.2 in comparison to Wan2.1 without increase in inference cost using mixture-
of-experts for different denoising timesteps. Furthermore, we observe that closed models, such as
Ray2, perform worse than open models like Wan2.2-27B-A14B and CogVideoX-5B. This suggests
that closed models are not necessarily superior to open models in capturing physical commonsense.

Table 3: Correlation analysis between se-
mantic adherence and physical common-
sense with aesthetics and motion video
metrics.

Aesthetics Motion SA
SA 0.1 0.02 1
PC 0.09 0.002 0.14

Additionally, we find that performance on physical ac-
tivities (sports) is generally lower than on object interac-
tions across different video models. This suggests that
future data curation efforts should focus on collecting
high-quality sports activity videos (e.g., tennis, discus
throw, baseball, cricket) to improve performance on the
VIDEOPHY-2 dataset. Finally, we present the correlation
between SA and PC judgments and other video metrics,
including aesthetics (measured using the LAION classi-
fier [34]) and motion quality (measured using optical flow
from RAFT [55]), in Table 3. Our results reveal that phys-
ical commonsense is not well-correlated with any of these video metrics. This indicates that a model
cannot achieve high performance on our dataset simply by optimizing for aesthetics and motion qual-
ity; rather, it requires dedicated efforts to incorporate physical commonsense into video generation.
Overall, our findings suggest that VIDEOPHY-2 presents a significant challenge for modern video
models, with substantial room for improvement in future iterations.
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Figure 3: Comparison of Wan2.2 with other models. The top row shows videos generated by Wan2.2:
(a) For Ray2, the jetski on the left lags behind the other jetski and then starts moving backward. (b) For
Hunyuan-13B, the sledgehammer deforms after the swing, and a broken wooden board appears out of nowhere.
(c) For Cosmos-7B, the javelin expels sand before it even hits the ground.

Figure 4: Illustration of Wan2.2’s bad physical commonsense. Even the best-performing model, Wan2.2,
may struggle to correctly capture physical laws, leading to the generation of unnatural videos. Examples of such
artifacts include: (a) A spinning yo-yo, deforming as it spins, its strings disappearing from view. (b) A balloon
deflating due to an external force despite it being tied up.

Figure 5: Physical laws violation analysis. We present
the violation scores for diverse physical laws based on
human annotations collected from various video genera-
tive models on VIDEOPHY-2.

Fine-grained Analysis. In our human annota-
tions, we create a list of physical rules (and as-
sociated laws) that are violated in each video of
the VIDEOPHY-2 dataset. We then analyze the
fraction of instances in which a physical law is
violated to gain fine-grained insights into model
behavior. For example, if 100 physical rules
are associated with the law of gravity and 25
of them are violated, the violation score would
be 25%. We present the results of physical law
violations in Figure 5. We observe that the con-
servation of momentum and mass are among
the most frequently violated physical laws, with
violation scores of 40%, in the videos from the
VIDEOPHY-2 dataset. Conversely, we find that
reflection and buoyancy are relatively mastered
with violation scores less than 20%.10

Qualitative Analysis. We perform qualitative
analysis to provide visual insights into the model’s mode of failures. We present qualitative examples
in Figure 3 to compare the best-performing model, Wan2.2-27B-A14B, with other video models.
Notably, we observe violations of physical commonsense, such as jetskis moving unnaturally in
reverse and the deformation of a solid sledgehammer, defying the principles of elasticity. However,
even Wan lacks physical commonsense, as shown in Figure 4. In this case, we highlight that a
yo-yo is shown to deform drastically as it spins, defying its material properties. Further, we cover
model-specific poor physical commonsense instances along the caption and human-judged physical
violations in Appendix O. For example, we show that the Sora-generated video violates the physical
rule ‘The frisbee must contact the hand before any upward movement occurs‘ (Appendix Figure 23).
We also provide several qualitative examples across diverse physical law violations across different
models in Appendix P. For example, we highlight that the ‘golf ball does not move after being struck
by the golf club’ for Ray2 (Figure 29).

10We conduct an agreement analysis across different physical laws that are derived from physical rules. We
found that inter-annotator agreement scores ranged from 70% to 80%, with lower agreement for laws like
elasticity, and higher agreement (up to 80%) for laws such as reflection.
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Table 4: Auto-rater evaluation results. We present the pearson’s correlation (→100) between the predicted
scores and ground-truth scores (1-5) on the unseen prompts and unseen video models.

Unseen prompts Unseen video models
Avg. SA PC Avg. SA PC

VideoCon-Physics [7] 28.5 32.0 25.0 26.5 27.0 26.0
VideoCon [5] 12.5 23.0 2.0 8.9 17.0 0.8
VideoLlava [37] 16.0 30.0 2.0 19.0 33.0 5.0
VideoScore [22] 13.5 17.0 10.0 9.0 5.0 13.0
Gemini-2.0-Flash-Exp 18.5 26.0 11.0 21.0 31.0 11.0
VIDEOPHY-2-AUTOEVAL 42.0 47.0 37.0 41.0 45.0 37.0
Rel. to Best (%) +47.4 +46.9 +48.0 +49.0 +36.4 +61.5
Rel. to Gemini (%) +127.0 +80.8 +236.4 +107.1 +45.2 +281.8

Table 5: Auto-rater evaluation on joint score judgments. We present the joint accuracy and F1 score between
the predicted scores and ground-truth scores (0-1) for our VIDEOPHY-2-AUTOEVAL and VideoCon-Physics.

Unseen prompts Unseen models
Method Avg. Acc. F1 Avg. Acc. F1
VideoCon-Physics [7] 39.1 75.6 2.6 39.6 75 4.2
VIDEOPHY-2-AUTOEVAL 65.1 79.1 51.1 62.8 76.3 49.3
Rel. to VideoCon-Physics (%) +66.4 +49.1

5.2 VIDEOPHY-2-AUTOEVAL

To enable scalable judgments, we supplement the dataset with an automatic evaluator VIDEOPHY-
2-AUTOEVAL. We consider two settings: (a) unseen prompts, where we assess the videos
from seen video models generated using unseen (testing) prompts, and (b) unseen video
models, where we assess the videos from unseen video models using unseen prompts.

Table 6: Auto-rater evaluation on physi-
cal rule classification. We present the ac-
curacy results for VIDEOPHY-2-AUTOEVAL
and other video-language models on the rule
classification tasks.

Unseen
prompts

Unseen
models

Random 34.5 31.2
VideoLlava [37] 38.1 38.7
Gemini-2.0-Flash-Exp 59.2 57.1
VIDEOPHY-2-AUTOEVAL 78.7 72.9
Rel. to Best (%) +32.9 +27.7

We compare the correlation performance of
VIDEOPHY-2-AUTOEVAL against several baselines
in Table 4. In particular, VIDEOPHY-2-AUTOEVAL
achieves relative gains of 47.4% and 49% on un-
seen prompts and unseen video models, respectively,
compared to the best-performing baselines. Fur-
ther, our auto-rater outperforms Gemini-2.0-Flash-
Exp, with relative gains of 81% in semantic ad-
herence and 236% in physical commonsense judg-
ments. Further, we evaluate the accuracy and F1
performance of VIDEOPHY-2-AUTOEVAL against
VideoCon-Physics for joint score judgments in Table
5. Our results show that VIDEOPHY-2-AUTOEVAL
maintains a strong balance between joint accuracy
and F1 scores. Finally, we assess the physical rule
classification accuracy of VIDEOPHY-2-AUTOEVAL
against baselines in Table 6. Our model achieves relative gains of 32.9% on unseen prompts and
27.7% on unseen video models compared to Gemini-2.0-Flash-Exp. Thus, our unified auto-rater can
reliably handle a variety of tasks, providing a robust tool for testing on VIDEOPHY-2.

6 CONCLUSION

We introduce VIDEOPHY-2, a benchmark for evaluating physical commonsense in videos generated
by modern models. We reveal a large gap in their ability to align with prompts and generate videos
that follow physical commonsense. Further, we provide physical law violations and an auto-rater for
scalable evaluation. Overall, this dataset advances our understanding of the current state of the video
generative models as general-purpose world simulators.
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