

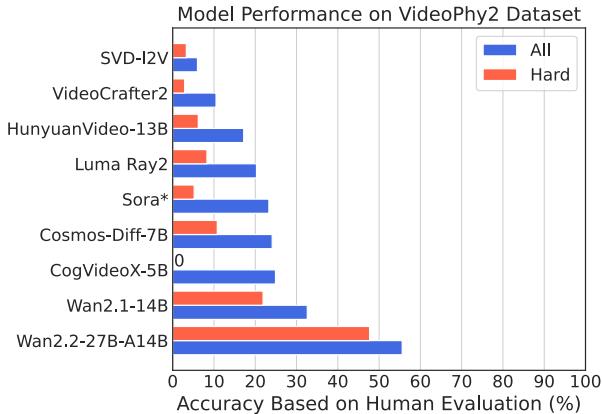
VIDEOPHY-2: A CHALLENGING ACTION-CENTRIC PHYSICAL COMMONSENSE EVALUATION IN VIDEO GENERATION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Large-scale video generative models, capable of creating realistic videos of di-
 014 verse visual concepts, are strong candidates for general-purpose physical world
 015 simulators. However, their adherence to physical commonsense across real-world
 016 actions remains unclear (e.g., playing tennis, backflip). Existing benchmarks suffer
 017 from limitations such as limited size, lack of human evaluation, sim-to-real gaps,
 018 and absence of fine-grained physical rule analysis. To address this, we introduce
 019 VIDEOPHY-2, an action-centric dataset for evaluating physical commonsense in
 020 generated videos. We curate 4000 diverse and detailed prompts for video synthe-
 021 sis from modern generative models. We perform human evaluation that assesses
 022 semantic adherence, physical commonsense, and grounding of physical rules in
 023 the generated videos. Our findings reveal major shortcomings, with even the best
 024 model achieving only 47.7% joint performance (i.e., high semantic and physical
 025 commonsense adherence) on the hard subset of VIDEOPHY-2. We find that the
 026 models particularly struggle with conservation laws like mass and momentum.
 027 Finally, we also develop VIDEOPHY-2-AUTOEVAL, an automatic evaluator for
 028 fast, reliable assessment on our dataset. Overall, VIDEOPHY-2 serves as a rigorous
 029 benchmark, exposing critical gaps in video generative models and guiding future
 030 research in physically-grounded video generation.¹



031 **Figure 1: Performance on the**
 032 **VIDEOPHY-2 dataset using human**
 033 **evaluation.** We evaluate the physical
 034 commonsense and semantic adherence
 035 to text conditioning prompts for diverse
 036 real-world actions. We observe that even the
 037 best-performing model Wan2.2-27B-A14B
 038 (27B total, 14B active params) achieves
 039 47.7% on the hard subset of the data,
 040 created using CogVideoX-5B as a reference
 041 model. * represents the evaluation on a
 042 small subset of the dataset.

1 INTRODUCTION

045 Recent advancements in large-scale video generative modeling offer the potential to simulate the
 046 physical world accurately [12, 57]. In particular, this capability can enable learning general-purpose
 047 visuomotor policies [35, 18], autonomous driving [1], and game playing [14, 20, 4]. In daily life,
 048 humans rely on their sophisticated physics intuition to interact with the world [19] (e.g., predicting
 049 the trajectory of football after being hit). However, the extent to which existing video models can
 050 generate physically likely worlds across diverse real-world actions remains unclear.

051
 052
 053 ¹We will release the dataset, videos, auto-rater model, and code in the camera-ready version.

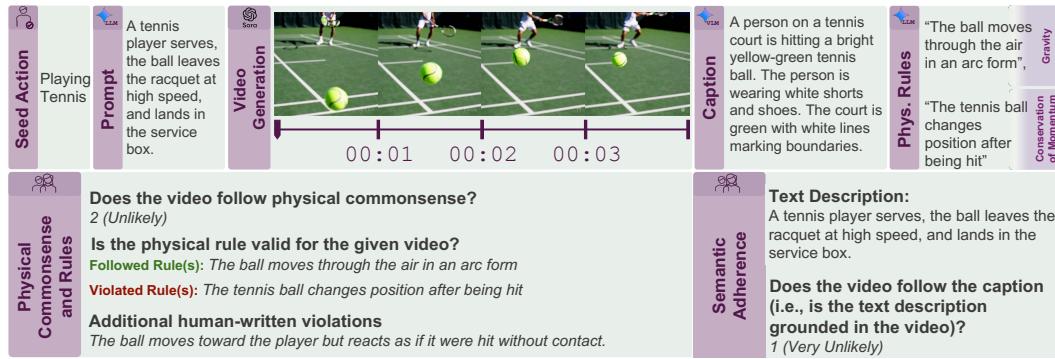


Figure 2: **VIDEOPHY-2 pipeline**. We generate a text prompt from the seed action using an LLM, create a video with a video model, and caption it with a VLM to extract candidate physical rules. Then, humans rate the video’s physical likelihood, verify rule violations, suggest missing rules, and assess prompt adherence.

An approach to evaluating generated videos is to compare them with ground-truth physical simulations [1 51]. Furthermore, there is a lack of mature methods for rendering diverse real-world materials [7 30 48] and for accurately simulating complex physical interactions [39]. For instance, simulating a scenario like ‘a child kicking a ball against a wall’ requires precise estimation of the foot’s pose, and considerations of the ball’s air pressure and material properties. While we focus on evaluating the physical likelihood of generated videos, an assessment that can often be made by humans without formal physics education by relying on their real-world experience.

Recent work such as Physics-IQ [47] conditions video models on the first few frames of real videos and evaluates their similarity by comparing predicted videos with ground-truth completions. However, this approach faces several challenges: (a) the extent to which it agrees with human judgment remains unclear, and (b) extending it to more complex scenarios depicting multiple events is non-trivial. Another work PhyGenBench [39] curates a small set of 160 manually crafted prompts, which is not scalable. Additionally, their evaluation approach simplifies the problem by designing text prompts that explicitly associate with a single physical law (e.g., ‘A stone placed on the surface of a water pool’ is linked to law of Buoyancy). Although, this strict one-to-one association between a prompt and a physical law is problematic, as video models often exhibit imperfect semantic adherence. For instance, a video model might generate a video that does not strictly follow the prompt but still adheres to physical commonsense (e.g., producing a video where ‘a stone is dropped from a height into the pool’, where gravity is more crucial than buoyancy). We note the difference between VIDEOPHY-2 and several existing work in Table I

To address these gaps, we propose VIDEOPHY-2, a challenging physical commonsense evaluation dataset for real-world actions. Specifically, we curate a list of **197 actions** across diverse physical activities (e.g., hula-hooping, gymnastics) and object interactions (e.g., bending an object until it breaks). Then, we generate 3940 detailed prompts from these seed actions using a large language model (LLM). Further, these prompts are used to synthesize videos with modern video generative models. Finally, we compile a list of **candidate physical rules** (and laws) that should be satisfied in the generated videos, using vision-language models in the loop. For example, in a video of *sportsperson playing tennis*, a physical rule would be that *ball should follow a parabolic trajectory under gravity*. For gold-standard judgments, we ask human annotators to score each video based on semantic adherence and physical commonsense, and to mark its compliance with physical rules.

In our experiments, we find that the best-performing model, Wan2.2-27B-A14B [59], achieves a joint performance score (high semantic adherence and physical commonsense) of only 55.4% while Wan2.1-14B achieves a score of 32.6%. To further increase the dataset’s difficulty, we create a **hard subset** where the performance of Wan2.2-27B-A14B and Wan2.1-14B drops to 47.7% and 22%, respectively. Moreover, our fine-grained analysis of human-annotated physical rule violations shows that video models struggle the most with *conservation laws* (e.g., mass and momentum).

While human evaluation serves as the gold standard for real-world physical commonsense judgment, it is expensive and difficult to scale. To address this, we train an automatic evaluation model, **VIDEOPHY-2-AUTOEVAL**, capable of performing a wide range of tasks—including scoring semantic adherence, physical commonsense, and classifying physical rule grounding in the generated video.

108 **Table 1: Comparison between VIDEOPHY-2 and several prior work.** We highlight the salient features of the
 109 VIDEOPHY-2 and show that its unique contributions. For instance, it is one of the largest datasets for physical
 110 commonsense evaluation, along with violated physical rule (and law) annotations.

Feature	VBench [27]	PhyGenBench [46]	PhysicsIQ [47]	EvalCrafter [40]	VIDEOPHY [7]	VIDEOPHY-2 (Ours)
Num of captions	1746	160	396	700	688	3940
Gold human evaluation	✓	✓	✗	✓	✓	✓
Physical commonsense eval.	✗	✓	✓	✗	✓	✓
Physical rules and laws annotations	✗	✓	✗	✗	✗	✓
Real-world action-centric	✗	✗	✗	✗	✗	✓
Long (dense) captions	✗	✓	✓	✗	✗	✓
Hard subset	✗	✗	✗	✗	✗	✓
Automatic evaluator	✓	✓	✗	✓	✓	✓
Release videos and annotations	✓	✗	✗	✓	✓	✓
Human feedback type	Pairwise	Rating	-	Rating (1-5)	Rating (0-1)	Rating (1-5)

119 In our experiments, we find that VIDEOPHY-2-AUTOEVAL outperforms a capable multimodal
 120 foundation model, Gemini-2.0-Flash-Exp [17], with a relative correlation improvement of 81% and
 121 236% on the semantic adherence and physical commonsense tasks, respectively, on the unseen
 122 prompts. Overall, we demonstrate that VIDEOPHY-2 is a high-quality dataset that poses a formidable
 123 challenge for modern video models.

2 VIDEOPHY-2 DATASET

124 We present the steps for data construction (Figure 2) below:

125 **Seed Actions (Stage 1):** We curate a set of actions relevant to physical commonsense evaluation.
 126 Specifically, we compile a diverse list of over 600 actions from popular video datasets that capture
 127 a wide range of real-world activities, particularly those involving sports, physical activities, and
 128 object interactions. These datasets include Kinetics [15], UCF-101 [54], and SSv2 [21]. Next, we
 129 divide the student authors, with undergraduate or more degree in STEM, into two groups, each of
 130 which independently reviews the list and marks actions deemed relevant for physical commonsense
 131 evaluation. Our goal is to include actions that test various physical laws (e.g., gravity, elasticity,
 132 buoyancy, reflection, conservation of mass and momentum). Importantly, we filter out actions that do
 133 not elicit significant motion or are unlikely to be compelling for physical commonsense evaluation
 134 in videos (e.g., typing, applying cream, arguing, auctioning, chewing, playing instruments, petting
 135 a cat). Finally, we retain only the actions deemed relevant by both groups of annotators. After this
 136 filtering process, we obtain a list of 232 actions, which we further refine using Gemini-2.0-Flash-Exp
 137 to remove semantic duplicates, resulting in a final set of 197 actions. Among these, 143 and 54
 138 actions belong to object interactions and physical activities category, respectively. We present the list
 139 in Appendix Table 9.

140 **LLM-Generated Prompts (Stage 2):** In this stage, we query the Gemini-2.0-Flash-Exp LLM to
 141 independently generate 20 prompts for each action in our dataset. In particular, we focus on the
 142 depiction of multiple events within a prompt to increase the challenge for modern video generation
 143 models (e.g., we encourage the LLM to generate ‘An archer draws the bowstring back to full tension,
 144 then releases the arrow, which flies straight and strikes a bullseye on a paper target’ instead of a
 145 simpler prompt ‘An archer releases the arrow’). Our prompt generation template is presented in
 146 Appendix F. In total, we curate 3940 prompts covering a wide range of actions. Since the modern
 147 video models can understand long video descriptions, we also generate dense captions from the
 148 original captions using the Mistral-NeMo-12B-Instruct prompt upsampler from [11]. In particular,
 149 these dense captions add more visual details to the original caption without changing its semantic
 150 meaning (e.g., main characters and actions).²

151 **Candidate physical rules and laws (Stage 3):** In this stage, we aim to generate candidate physical
 152 rules and associated laws that could be followed (or violated) in the generated video. Since video
 153 models often struggle to adhere to conditioning text prompts, we do not derive physical rules directly
 154 from them. Instead, we first generate videos using generative models conditioned on prompts from
 155 the VIDEOPHY-2 dataset. Then, we create captions for these videos using the strong video captioning
 156 capabilities of Gemini-2.0-Flash-Exp. This ensures that the physical rules are constructed based
 157 on the generated captions and underlying actions.

158 ²We present some of the generated captions and underlying actions in Appendix Table 11 and the upsampled
 159 captions in Appendix Table 12.

162 on details grounded in the video itself³ Subsequently, we ask Gemini-2.0-Flash-Exp to generate
 163 a set of three physical rules (and laws) that should be followed for a given video. Since a video
 164 may violate physical rules that are not covered in the pre-defined rules, we further ask the human
 165 annotators to write additional violated rules during physical commonsense evaluation. We present the
 166 rule generation prompt in Appendix Table 11
 167

168 **Construction of the Hard Subset (Stage 4):** While we collect diverse and lengthy captions to
 169 make the task more challenging, we further employ a model-based strategy to identify a subset
 170 of particularly difficult actions. Specifically, we generate videos using a strong open video model,
 171 CogVideoX-5B [62], conditioned on captions from the VIDEOPHY-2 dataset. From this, we select 60
 172 actions (out of 197) for which the model fails to generate videos that accurately adhere to the prompts
 173 and follow physical commonsense (Appendix Table 10). On examination, we find that these actions
 174 focus on physics-rich interactions (e.g., momentum transfer in throwing discus or passing football),
 175 state changes (e.g., bending something until it breaks), balancing (e.g., tightrope walking), and
 176 complex motions (e.g., backflip, pole vault, and pizzatossing). In total, we designate 1200 prompts
 177 making the dataset more challenging. We present the list of hard actions in Appendix Table 10⁴
 178

179 **Data Analysis:** We present the dataset statistics in Appendix Table 7. Specifically, VIDEOPHY-2
 180 contains 3940 captions, which is $5.72 \times$ more than those in the VIDEOPHY dataset. Additionally, the
 181 average lengths of original and upsampled captions are 16 and 138 tokens, respectively— $1.88 \times$ and
 182 $16.2 \times$ longer than those in VIDEOPHY. Furthermore, VIDEOPHY-2 includes 110K human annotations
 183 across various video generative models and their semantic adherence, physical commonsense,
 184 and physical rule annotations. Finally, we show the distribution of the root verbs and direct nouns in
 185 the original captions of VIDEOPHY-2 in Appendix Figure 6 demonstrating the high diversity of the
 186 dataset. We also illustrate the diversity of multiple captions for an action in Appendix Figure 7.
 187

3 EVALUATION

3.1 METRIC

191 In practice, generated videos must satisfy several constraints, including high video quality [40],
 192 temporal consistency [27], and entity/background consistency [6]. While many of these metrics
 193 are intertwined, it is essential to evaluate each independently to gain a clearer understanding of a
 194 model’s capabilities. In this work, we focus on assessing the extent to which a generated video (1)
 195 *adheres to the input text prompt* and (2) *follows physical commonsense*. To quantify these aspects,
 196 we employ a rating-based evaluation using a 5-point Likert scale, a well-established methodology
 197 for capturing human judgments across domains ranging from psychology [36] to large language
 198 model evaluation [49]. This approach has also been adopted in video model evaluation [7] [39] [40].
 199 Unlike ranking-based feedback, which only reflects relative preferences between two outputs, our
 200 rating system measures the absolute degree of a model’s success or failure. Moreover, the 5-point
 201 scale provides more fine-grained feedback than binary labels (e.g., plausible/implausible), enabling a
 202 more nuanced analysis of model performance.

202 Since human evaluation inherently involves subjectivity, we implemented a rigorous protocol to
 203 ensure reliability. All annotators underwent structured training guided by a detailed rubric with
 204 clear examples, ranging from “very unlikely” (1) to “very likely” (5), to anchor their judgments and
 205 establish a shared understanding of the scale. To further reduce individual bias and capture a stable
 206 consensus, each video was evaluated by three annotators. This process yielded a high inter-annotator
 207 agreement of 80% (comparable to agreement scores reported in prior work [7]), confirming the
 208 consistency and validity of our framework.

209 **Semantic Adherence (SA):** Here, we aim to assess whether the input text prompt is semantically
 210 grounded in the generated video. Specifically, it studies whether the entities, actions, and relationships
 211 described in the prompt are accurately depicted in the video (e.g., a person visibly jumping into the

213 ³We observe that prompting Gemini-2.0-Flash-Exp to generate physical rules directly from the video did not
 214 yield high-quality outputs. Therefore, we prefer a two-step process: captioning followed by rule generation.

215 ⁴We note that a similar model-based strategy is also adopted in recent work like Humanity’s Last Exam [50]
 216 and ZeroBench [53] to collect hard instances for model evaluation.

water). To measure semantic adherence, annotators rate each video on a 5-point scale, selecting from the following options: $\{SA \in \text{Very Unlikely (1), Unlikely (2), Neutral (3), Likely (4), Very Likely (5)}\}$. In this case, *very unlikely* indicates that the video does not match the prompt at all, and *very likely* highlights the video fully adheres to the prompt with no inconsistencies.

Physical Commonsense (PC): Here, our goal is to assess whether the generated video follows the physical laws of the real-world intuitively (e.g., the football should start moving after impact in accordance with newton’s first law). We note that the physical commonsense evaluation is independent of the underlying video generating text prompt. Since a video can follow (or violate) numerous laws, we are concerned with the holistic sense of the video’s physical commonsense. In particular, the annotators rate each video on a 5-point scale, selecting from the following options: $\{PC \in \text{Very Unlikely (1), Unlikely (2), Neutral (3), Likely (4), Very Likely (5)}\}$. Here, *very unlikely* that the video contains numerous violations of fundamental physical laws, and *very likely* indicates that the video demonstrates a strong understanding of physical commonsense with no violations.

Similar to [7], we compute **joint performance** as the main evaluation metric, which measures the fraction of videos that both adhere closely to the text prompt ($SA \geq 4$) and follow physical commonsense to a high degree ($PC \geq 4$). We do not report the posterior score ($PC \geq 4 | SA \geq 4$) since a bad model can game it⁵

Physical Rules (PR): A key feature of the VIDEOPHY-2 dataset is the collection of candidate physical rules (and their associated laws) that humans evaluate as being followed or violated in the generated video (e.g., ‘the ball should go down’ is a physical rule associated with the law of gravity). These rules enable a fine-grained assessment of the video model’s capabilities. Specifically, we determine whether a candidate physical rule is *violated* (0), *followed* (1), or *cannot be determined* (CBD) (2) in the generated video⁶. Further, we ask human annotators to note more physical rule violations to ensure comprehensive coverage.

3.2 SCORING

Human Evaluation. In practice, human evaluation serves as a gold standard for assessing the quality of generative foundation models [42] [63]. In particular, we collect judgments using the Amazon Mechanical Turk (AMT) platform from a group of 12 human annotators, which were selected after passing a qualification test. Since physical commonsense is independent of the generated video-prompt alignment, we evaluate semantic adherence and physical commonsense (including rule-based judgment) as separate tasks for human annotators. This differs from prior work in VIDEOPHY [7], which treats semantic adherence and physical commonsense assessment as a single task. It may introduce evaluation bias, as annotators have access to the prompt while conducting the physical commonsense evaluation, a scenario we explicitly avoid in this work.

We present the annotation UI for the semantic adherence task in Appendix Figure [17] where the input consists of a text prompt and the corresponding generated video. Note that human annotators were shown the original prompt (not the upsampled prompts) to ensure a fair comparison between video models, regardless of their ability to handle short or long prompts. In the following task, human annotators are asked to evaluate only the generated video and with regard to adherence to specific physical rules (followed/violated/CBD), overall physical commonsense, and observable behaviors that violate physical reality⁷. The annotation interface is shown in Appendix Figure [18].

Automatic Evaluation. While human judgments serve as the gold standard, automating the evaluation process is crucial for faster and more cost-effective model assessments. In this study, we evaluate several video-language foundation models (e.g., Gemini-2.0-Flash-Exp, VideoScore [22]) on two tasks: semantic adherence and physical commonsense scoring. Specifically, we prompt the models to score generated videos based on these two criteria and then normalize their predictions to a 5-point

⁵A video model can adhere to the prompt for only 1 out of 1,000 prompts in the dataset. Now, assume that this video is also physically realistic. In this case, the posterior performance of the model will be reported as 100%, which is quite misleading for the model builders.

⁶We include CBD category because LLM-generated physical rules may not be grounded in the video.

⁷In our instructions to the annotators, we explicitly clarify that the overall physical commonsense judgments should extend beyond the predefined physical rules listed in the task.

270 scale. We provide more details about score computation in Appendix [K](#). Additionally, we introduce a
 271 classification task to determine whether a given physical rule is followed, violated, or CBD in the
 272 generated video, leveraging video-language models such as VideoLLaVA [\[37\]](#). Here, we prompt the
 273 model to classify each video-rule pair into one of three categories: followed, violated, or CBD.

274 Our experiments reveal that existing video-language models struggle to achieve strong agreement with
 275 human annotators. This discrepancy primarily arises due to their limited understanding of physical
 276 commonsense and rules, as well as the complexity of the prompts. Hence, we supplement our
 277 benchmark with a video-language model VIDEOPHY-2-AUTOEVAL (7B parameters). Specifically,
 278 we aim to provide more accurate predictions for the generated videos along three axis – semantic
 279 adherence score (1-5), physical commonsense score (1-5), and physical rule classification (0-2). We
 280 follow a data-driven approach to distill human knowledge into a foundation model for these tasks.
 281 Specifically, we fine-tune a video-language model VideoCon-Physics [\[7\]](#) on 50K human annotations
 282 acquired for these tasks. We train a multi-task model to solve the three tasks using a shared backbone,
 283 to allow the inter-task knowledge transfer. We provide the templates and setup used for model
 284 finetuning in Appendix [J](#) and Appendix [I](#) respectively.

286 4 SETUP

288 **Video generative models.** In this work, we evaluate a diverse range of state-of-the-art text-to-video
 289 generative models. Specifically, we assess seven open models and two closed models, including
 290 *CogVideoX-5B* [\[62\]](#), *VideoCrafter2* [\[16\]](#), *HunyuanVideo-13B* [\[33\]](#), *Cosmos-Diffusion-7B* [\[1\]](#), *Stable*
 291 *Video Diffusion (SVD-I2V)* [\[10\]](#), *Wan2.1-14B* [\[59\]](#), *Wan2.2-T2V-27B-A14B* (MoE with 27B total and
 292 14B active params) [\[59\]](#), *OpenAI Sora* [\[12\]](#), and *Luma Ray2* [\[43\]](#)⁸. We prompt these models with
 293 the upsampled captions, except for those that do not support long (dense) captions by design i.e.,
 294 *Hunyuan-13B* and *VideoCrafter2*. For *SVD-I2V*, we first generate an image using *Stable Diffusion*
 295 and then use it as a conditioning variable to *SVD*. Additionally, we generate short videos (less than
 296 6s) as they are easier to evaluate and effectively highlight challenges on the VIDEOPHY-2. The model
 297 inference details are provided in Appendix [M](#).

298 **Dataset setup.** Similar to [\[7\]](#), we take a data-driven approach and use human annotations across
 299 multiple tasks to train the automatic evaluator. We split the VIDEOPHY-2 dataset into a test set for
 300 benchmarking and a training set for training the VIDEOPHY-2-AUTOEVAL model. Specifically, the
 301 training and testing prompts consist of 3350 (197 actions \times 17 captions per action) and 590 (197
 302 actions \times 3 captions per action) prompts, respectively.

303 **Benchmarking.** For every tested model, we generate one video per each test prompt, that is, 591
 304 videos per model⁹. After generating the videos, we ask three annotators to evaluate them based
 305 on semantic adherence, overall physical commonsense, and violations of various physical rules.
 306 Annotators can also suggest additional physical rules that may be missing from our list. For every
 307 generated video, we compute the SA and PC scores (1-5) by averaging the three annotators scores
 308 and rounding to the nearest integer. Following this, the joint score is computed to assess the quality of
 309 the generated video. We use the majority voting for determining whether the listed physical rule (and
 310 law) is followed, violated, or cannot be grounded in the generated video. Additional human-written
 311 violations are converted to a statement of a physical rule (and law) using Gemini-2.0-Flash-Exp.
 312 With *CogVideoX-5B* as a strong reference model, we choose a *hard* subset of 60 actions for which it
 313 achieved a zero joint performance. In our experiments, we observe that this hard subset leads to big
 314 drop in performances in comparison to the entire data across video models.

315 **Training set for VIDEOPHY-2-AUTOEVAL.** Within a limited data collection budget, we sample
 316 1 video per caption from one of the three video models including *HunyuanVideo-13B*, *Cosmos*-
 317 *Diffusion-7B*, and *CogVideoX-5B* from the training set, of size 3350. All other video models are
 318 used to study the generalization capabilities of the auto-rater. Subsequently, we perform human
 319 annotations in the same way as the benchmarking process i.e., aggregating semantic adherence,
 320

⁸We exclude other closed models due to lack of API access (e.g., *Veo2* [\[57\]](#), *Kling* [\[31\]](#)).

⁹For *Sora*, however, we generate a subset of 60 videos (randomly selected from 591), manually, using *Sora*
 322 playground (<https://openai.com/sora/>) due to the lack of an official API, and 394 videos (2 prompts
 323 per action) for *Ray2* due to the limited API budget.

324
 325 **Table 2: Human evaluation results on VIDEOPHY-2.** We present the joint performance that focuses on
 326 high semantic adherence and high physical commonsense in the generated videos. PA, OI refer to the physical
 327 activities, and object interactions subsets of the data, respectively. We mark the best performing models in each
 328 column by blue and second best by yellow.

Model	Class	All	Hard	PA	OI
Wan2.2-27B-A14B [59]	Open	55.4	47.7	54.5	58.6
Wan2.1-14B [59]	Open	32.6	21.9	31.5	36.2
CogVideoX-5B [62]	Open	25.0	0.0	24.6	26.1
Cosmos-Diff-7B [1]	Open	24.1	10.9	22.6	27.4
Hunyuan-13B [33]	Open	17.2	6.2	17.6	15.9
VideoCrafter-2 [16]	Open	10.5	2.9	10.1	13.1
SVD-I2V [16]	Open	6.0	3.3	5.2	8.7
Ray2 [43]	Closed	20.3	8.3	21.0	18.5
Sora [12]	Closed	23.3	5.3	22.2	26.7

329 physical commonsense and rule judgments across the three annotators. In total, we collect roughly
 330 50K human annotations across the three tasks, and spend \$3515 USD on collecting the training data.
 331 Post-training, we compare the performance of VIDEOPHY-2-AUTOEVAL against several baselines on
 332 the semantic adherence and physical commonsense judgments using Pearson’s correlation between
 333 the ground-truth and predicted scores. Further, we compare the joint score prediction accuracy and
 334 F1 score between our auto-rater and selected baselines. In addition, we compare the physical rule
 335 classification accuracy between the VIDEOPHY-2-AUTOEVAL and baselines.
 336

337 5 EXPERIMENTS

338 Here, we present the benchmarking results and the fine-grained analysis (§5.1). Then, we note the
 339 usefulness of our auto-rater against modern video-language models (§5.2).
 340

341 5.1 MAIN RESULTS

342 **Performance on the dataset.** We compare the joint performance of various open and closed
 343 text-to-video generative models on the VIDEOPHY-2 dataset in Table 2. Specifically, we present their
 344 performance on the entire dataset, the hard split, and subsets focused on physical activities/sports (PA)
 345 and object interactions (OI). Even the best-performing model, Wan2.2-27B-A14B, achieves 55.4%
 346 and 47.7% (14% relative reduction) on the full and hard splits of our dataset, respectively. On the other
 347 hand, we find that the second-best model, Wan2.1-14B achieves only 32.6% and 21.9% (33% relative
 348 reduction) on the full and hard splits, respectively. This highlights at the effectiveness of higher
 349 model capacity in Wan2.2 in comparison to Wan2.1 without increase in inference cost using mixture-
 350 of-experts for different denoising timesteps. Furthermore, we observe that closed models, such as
 351 Ray2, perform worse than open models like Wan2.2-27B-A14B and CogVideoX-5B. This suggests
 352 that closed models are not necessarily superior to open models in capturing physical commonsense.
 353 Additionally, we find that performance on physical ac-
 354 tivities (sports) is generally lower than on object interac-
 355 tions across different video models. This suggests that
 356 future data curation efforts should focus on collecting
 357 high-quality sports activity videos (e.g., tennis, discuss
 358 throw, baseball, cricket) to improve performance on the
 359 VIDEOPHY-2 dataset. Finally, we present the correlation
 360 between SA and PC judgments and other video metrics,
 361 including aesthetics (measured using the LAION classi-
 362 fier [34]) and motion quality (measured using optical flow
 363 from RAFT [55]), in Table 3. Our results reveal that phys-
 364 ical commonsense is not well-correlated with any of these video metrics. This indicates that a model
 365 cannot achieve high performance on our dataset simply by optimizing for aesthetics and motion qual-
 366 ity; rather, it requires dedicated efforts to incorporate physical commonsense into video generation.
 367 Overall, our findings suggest that VIDEOPHY-2 presents a significant challenge for modern video
 368 models, with substantial room for improvement in future iterations.
 369

370 **Table 3: Correlation analysis between se-
 371 mantic adherence and physical common-
 372 sense with aesthetics and motion video
 373 metrics.**

	Aesthetics	Motion	SA
SA	0.1	0.02	1
PC	0.09	0.002	0.14

Figure 3: **Comparison of Wan2.2 with other models.** The top row shows videos generated by Wan2.2: (a) For Ray2, the jetski on the left lags behind the other jetski and then starts moving backward. (b) For Hunyuan-13B, the sledgehammer deforms after the swing, and a broken wooden board appears out of nowhere. (c) For Cosmos-7B, the javelin expels sand before it even hits the ground.

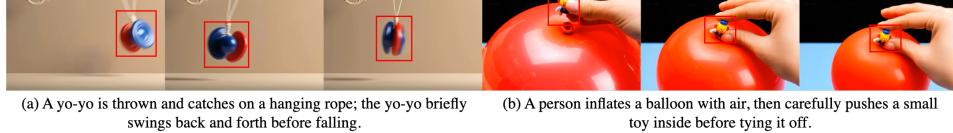


Figure 4: **Illustration of Wan2.2’s bad physical commonsense.** Even the best-performing model, Wan2.2, may struggle to correctly capture physical laws, leading to the generation of unnatural videos. Examples of such artifacts include: (a) A spinning yo-yo, deforming as it spins, its strings disappearing from view. (b) A balloon deflating due to an external force despite it being tied up.

Fine-grained Analysis. In our human annotations, we create a list of physical rules (and associated laws) that are violated in each video of the VIDEOPHY-2 dataset. We then analyze the fraction of instances in which a physical law is violated to gain fine-grained insights into model behavior. For example, if 100 physical rules are associated with the law of gravity and 25 of them are violated, the violation score would be 25%. We present the results of physical law violations in Figure 5. We observe that the conservation of momentum and mass are among the most frequently violated physical laws, with violation scores of 40%, in the videos from the VIDEOPHY-2 dataset. Conversely, we find that reflection and buoyancy are relatively mastered with violation scores less than 20%¹⁰

Qualitative Analysis. We perform qualitative analysis to provide visual insights into the model’s mode of failures. We present qualitative examples in Figure 3 to compare the best-performing model, Wan2.2-27B-A14B, with other video models. Notably, we observe violations of physical commonsense, such as jetskis moving unnaturally in reverse and the deformation of a solid sledgehammer, defying the principles of elasticity. However, even Wan lacks physical commonsense, as shown in Figure 4. In this case, we highlight that a yo-yo is shown to deform drastically as it spins, defying its material properties. Further, we cover model-specific poor physical commonsense instances along the caption and human-judged physical violations in Appendix O. For example, we show that the Sora-generated video violates the physical rule ‘The frisbee must contact the hand before any upward movement occurs’ (Appendix Figure 23). We also provide several qualitative examples across diverse physical law violations across different models in Appendix P. For example, we highlight that the ‘golf ball does not move after being struck by the golf club’ for Ray2 (Figure 29).

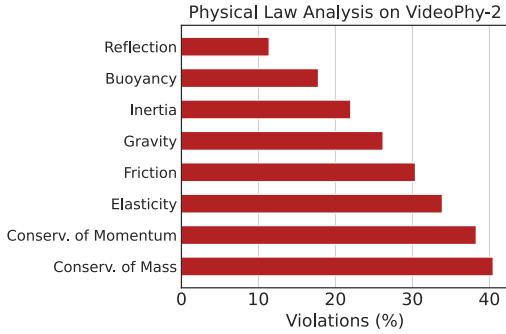


Figure 5: **Physical laws violation analysis.** We present the violation scores for diverse physical laws based on human annotations collected from various video generative models on VIDEOPHY-2.

¹⁰We conduct an agreement analysis across different physical laws that are derived from physical rules. We found that inter-annotator agreement scores ranged from 70% to 80%, with lower agreement for laws like elasticity, and higher agreement (up to 80%) for laws such as reflection.

432 Table 4: **Auto-rater evaluation results.** We present the pearson’s correlation ($\times 100$) between the predicted
 433 scores and ground-truth scores (1-5) on the unseen prompts and unseen video models.

	Unseen prompts			Unseen video models		
	Avg.	SA	PC	Avg.	SA	PC
VideoCon-Physics [7]	28.5	32.0	25.0	26.5	27.0	26.0
VideoCon [5]	12.5	23.0	2.0	8.9	17.0	0.8
VideoLlava [37]	16.0	30.0	2.0	19.0	33.0	5.0
VideoScore [22]	13.5	17.0	10.0	9.0	5.0	13.0
Gemini-2.0-Flash-Exp	18.5	26.0	11.0	21.0	31.0	11.0
VIDEOPHY-2-AUTOEVAL	42.0	47.0	37.0	41.0	45.0	37.0
<i>Rel. to Best (%)</i>	+47.4	+46.9	+48.0	+49.0	+36.4	+61.5
<i>Rel. to Gemini (%)</i>	+127.0	+80.8	+236.4	+107.1	+45.2	+281.8

446 Table 5: **Auto-rater evaluation on joint score judgments.** We present the joint accuracy and F1 score between
 447 the predicted scores and ground-truth scores (0-1) for our VIDEOPHY-2-AUTOEVAL and VideoCon-Physics.

Method	Unseen prompts			Unseen models		
	Avg.	Acc.	F1	Avg.	Acc.	F1
VideoCon-Physics [7]	39.1	75.6	2.6	39.6	75	4.2
VIDEOPHY-2-AUTOEVAL	65.1	79.1	51.1	62.8	76.3	49.3
<i>Rel. to VideoCon-Physics (%)</i>	+66.4			+49.1		

5.2 VIDEOPHY-2-AUTOEVAL

456 To enable scalable judgments, we supplement the dataset with an automatic evaluator VIDEOPHY-
 457 2-AUTOEVAL. We consider two settings: (a) unseen prompts, where we assess the videos
 458 from seen video models generated using unseen (testing) prompts, and (b) unseen video
 459 models, where we assess the videos from unseen video models using unseen prompts.
 460 We compare the correlation performance of
 461 VIDEOPHY-2-AUTOEVAL against several baselines
 462 in Table 4. In particular, VIDEOPHY-2-AUTOEVAL
 463 achieves relative gains of 47.4% and 49% on un-
 464 seen prompts and unseen video models, respectively,
 465 compared to the best-performing baselines. Fur-
 466 ther, our auto-rater outperforms Gemini-2.0-Flash-
 467 Exp, with relative gains of 81% in semantic ad-
 468 herence and 236% in physical commonsense judg-
 469 ments. Further, we evaluate the accuracy and F1
 470 performance of VIDEOPHY-2-AUTOEVAL against
 471 VideoCon-Physics for joint score judgments in Table
 472 5. Our results show that VIDEOPHY-2-AUTOEVAL
 473 maintains a strong balance between joint accuracy
 474 and F1 scores. Finally, we assess the physical rule
 475 classification accuracy of VIDEOPHY-2-AUTOEVAL
 476 against baselines in Table 6. Our model achieves relative gains of 32.9% on unseen prompts and
 477 27.7% on unseen video models compared to Gemini-2.0-Flash-Exp. Thus, our unified auto-rater can
 478 reliably handle a variety of tasks, providing a robust tool for testing on VIDEOPHY-2.

6 CONCLUSION

482 We introduce VIDEOPHY-2, a benchmark for evaluating physical commonsense in videos generated
 483 by modern models. We reveal a large gap in their ability to align with prompts and generate videos
 484 that follow physical commonsense. Further, we provide physical law violations and an auto-rater for
 485 scalable evaluation. Overall, this dataset advances our understanding of the current state of the video
 486 generative models as general-purpose world simulators.

486 REFERENCES
487

488 [1] Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit
489 Chattopadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model
490 platform for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

491 [2] Eren Can Aybek and Cetin Toraman. How many response categories are sufficient for likert
492 type scales? an empirical study based on the item response theory. *International Journal of
493 Assessment Tools in Education*, 9(2):534–547, 2022.

494 [3] Anton Bakhtin, Laurens van der Maaten, Justin Johnson, Laura Gustafson, and Ross Girshick.
495 Phyre: A new benchmark for physical reasoning, 2019. URL <https://arxiv.org/abs/1908.05656>

496 [4] Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter,
497 Agrim Gupta, Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie
500 Limont, Matt McGill, Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy
501 Shar, Stephen Spencer, Omer Tov, Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu,
502 Jordi Berbel, David Bridson, Jake Bruce, Gavin Buttimore, Sarah Chakera, Bilva Chandra, Paul
503 Collins, Alex Cullum, Bogdan Damoc, Vibha Dasagi, Maxime Gazeau, Charles Gbadamosi,
504 Woohyun Han, Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian Kjems, Eva Knoepfel, Vika
505 Koriakin, Jessica Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani, Valeria
506 Oliveira, Fabio Pardo, Jane Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans,
507 Manuel Sanchez, Igor Saprykin, Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton,
508 Hamish Tomlinson, Dimple Vijaykumar, Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu,
509 Christopher Yew, Nick Young, Vadim Zubov, Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu,
510 Demis Hassabis, Zoubin Gharamani, Raia Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian
511 Bolton, Satinder Singh, and Tim Rocktäschel. Genie 3: A new frontier for world models. 2025.

512 [5] Hritik Bansal, Yonatan Bitton, Idan Szpektor, Kai-Wei Chang, and Aditya Grover. Videocon:
513 Robust video-language alignment via contrast captions. In *Proceedings of the IEEE/CVF
514 Conference on Computer Vision and Pattern Recognition*, pp. 13927–13937, 2024.

515 [6] Hritik Bansal, Yonatan Bitton, Michal Yarom, Idan Szpektor, Aditya Grover, and Kai-Wei
516 Chang. Talc: Time-aligned captions for multi-scene text-to-video generation. *arXiv preprint
517 arXiv:2405.04682*, 2024.

518 [7] Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu
519 Jiang, Yizhou Sun, Kai-Wei Chang, and Aditya Grover. Videophy: Evaluating physical
520 commonsense for video generation. In *The Thirteenth International Conference on Learning
521 Representations*, 2025. URL <https://openreview.net/forum?id=9D2Qv0luWj>

523 [8] Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine
524 of physical scene understanding. *Proceedings of the National Academy of Sciences*, 110(45):
525 18327–18332, 2013.

526 [9] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
527 about physical commonsense in natural language, 2019. URL <https://arxiv.org/abs/1911.11641>

530 [10] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
531 minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
532 Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

533 [11] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja
534 Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent
535 diffusion models, 2023. URL <https://arxiv.org/abs/2304.08818>

537 [12] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
538 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
539 generation models as world simulators. 2024. URL <https://openai.com/research/video-generation-models-as-world-simulators>

540 [13] Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
 541 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle,
 542 Feryal Behbahani, Stephanie Chan, Nicolas Heess, Lucy Gonzalez, Simon Osindero, Sherjil
 543 Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas, Satinder
 544 Singh, and Tim Rocktäschel. Genie: Generative interactive environments, 2024. URL <https://arxiv.org/abs/2402.15391>

546 [14] Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
 547 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
 548 interactive environments. In *Forty-first International Conference on Machine Learning*, 2024.

549 [15] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe Hillier, and Andrew Zisserman. A
 550 short note about kinetics-600. *arXiv preprint arXiv:1808.01340*, 2018.

552 [16] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
 553 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models,
 554 2024.

555 [17] Google DeepMind. Introducing Gemini 2.0: our new AI model for the agentic
 556 era — blog.google. [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/)
 557 [google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/), 2025.

559 [18] Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans,
 560 and Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in
 561 Neural Information Processing Systems*, 36, 2024.

562 [19] Jiafei Duan, Arijit Dasgupta, Jason Fischer, and Cheston Tan. A survey on machine learning
 563 approaches for modelling intuitive physics. *arXiv preprint arXiv:2202.06481*, 2022.

565 [20] GoogleDeepMind Genie2. Genie 2: A large-scale foundation world model
 566 — deepmind.google. [https://deepmind.google/discover/blog/](https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/)
 567 [genie-2-a-large-scale-foundation-world-model/](https://deepmind.google/discover/blog/genie-2-a-large-scale-foundation-world-model/), 2024.

568 [21] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne
 569 Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag,
 570 et al. The "something something" video database for learning and evaluating visual common
 571 sense. In *Proceedings of the IEEE international conference on computer vision*, pp. 5842–5850,
 572 2017.

573 [22] Xuan He, Dongfu Jiang, Ge Zhang, Max Ku, Achint Soni, Sherman Siu, Haonan Chen, Abhranil
 574 Chandra, Ziyan Jiang, Aaran Arulraj, et al. Videoscore: Building automatic metrics to simulate
 575 fine-grained human feedback for video generation. *arXiv preprint arXiv:2406.15252*, 2024.

577 [23] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
 578 Diederik P. Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans.
 579 Imagen video: High definition video generation with diffusion models, 2022. URL <https://arxiv.org/abs/2210.02303>

581 [24] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
 582 Fleet. Video diffusion models, 2022. URL <https://arxiv.org/abs/2204.03458>

584 [25] Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 585 pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*,
 586 2022.

587 [26] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
 588 Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1
 589 (2):3, 2022.

591 [27] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang,
 592 Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark
 593 suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 21807–21818, 2024.

[28] Levon Khachatryan, Andranik Mousisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are zero-shot video generators, 2023. URL <https://arxiv.org/abs/2303.13439>.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

[30] Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. Drucker-prager elastoplasticity for sand animation. *ACM Transactions on Graphics (TOG)*, 35(4):1–12, 2016.

[31] KlingAI. KLING AI — klingai.com. <https://www.klingai.com/> 2024.

[32] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, Krishna Somandepalli, Hassan Akbari, Yair Alon, Yong Cheng, Josh Dillon, Agrim Gupta, Meera Hahn, Anja Hauth, David Hendon, Alonso Martinez, David Minnen, Mikhail Sirotenko, Kihyuk Sohn, Xuan Yang, Hartwig Adam, Ming-Hsuan Yang, Irfan Essa, Huisheng Wang, David A. Ross, Bryan Seybold, and Lu Jiang. Videopoet: A large language model for zero-shot video generation, 2024. URL <https://arxiv.org/abs/2312.14125>.

[33] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative models. *arXiv preprint arXiv:2412.03603*, 2024.

[34] Laion. GitHub - LAION-AI/aesthetic-predictor: A linear estimator on top of clip to predict the aesthetic quality of pictures — github.com. <https://github.com/LAION-AI/aesthetic-predictor>.

[35] Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran Song, and Carl Vondrick. Dreamitate: Real-world visuomotor policy learning via video generation. *arXiv preprint arXiv:2406.16862*, 2024.

[36] Rensis Likert. A technique for the measurement of attitudes. *Archives of psychology*, 1932.

[37] Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual representation by alignment before projection. *arXiv preprint arXiv:2311.10122*, 2023.

[38] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation, 2024. URL <https://arxiv.org/abs/2404.01291>

[39] Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shenlong Wang. Physgen: Rigid-body physics-grounded image-to-video generation. In *European Conference on Computer Vision*, pp. 360–378. Springer, 2024.

[40] Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large video generation models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22139–22149, 2024.

[41] Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang, Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and opportunities of large vision models. *arXiv preprint arXiv:2402.17177*, 2024.

[42] lmarena. Chatbot Arena Leaderboard - a Hugging Face Space by lmarena-ai — huggingface.co. <https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard>

[43] LumaAI. Luma Ray2 — lumalabs.ai. <https://lumalabs.ai/ray> 2025.

648 [44] Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-
649 magvit2: An open-source project toward democratizing auto-regressive visual generation, 2025.
650 URL <https://arxiv.org/abs/2409.04410>

651 [45] Michael McCloskey, Allyson Washburn, and Linda Felch. Intuitive physics: the straight-down
652 belief and its origin. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 9
653 (4):636, 1983.

654 [46] Fanqing Meng, Jiaqi Liao, Xinyu Tan, Wenqi Shao, Quanfeng Lu, Kaipeng Zhang, Yu Cheng,
655 Dianqi Li, Yu Qiao, and Ping Luo. Towards world simulator: Crafting physical commonsense-
656 based benchmark for video generation. *arXiv preprint arXiv:2410.05363*, 2024.

657 [47] Saman Motamed, Laura Culp, Kevin Swersky, Priyank Jaini, and Robert Geirhos. Do generative
658 video models learn physical principles from watching videos? *arXiv preprint arXiv:2501.09038*,
659 2025.

660 [48] James F O'brien, Adam W Bargteil, and Jessica K Hodgins. Graphical modeling and animation
661 of ductile fracture. In *Proceedings of the 29th annual conference on Computer graphics and*
662 *interactive techniques*, pp. 291–294, 2002.

663 [49] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
664 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
665 follow instructions with human feedback. *Advances in neural information processing systems*,
666 35:27730–27744, 2022.

667 [50] Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Sean Shi,
668 Michael Choi, Anish Agrawal, Arnav Chopra, et al. Humanity's last exam. *arXiv preprint*
669 *arXiv:2501.14249*, 2025.

670 [51] Yiran Qin, Zhelun Shi, Jiwen Yu, Xijun Wang, Enshen Zhou, Lijun Li, Zhenfei Yin, Xihui
671 Liu, Lu Sheng, Jing Shao, et al. Worldsimbench: Towards video generation models as world
672 simulators. *arXiv preprint arXiv:2410.18072*, 2024.

673 [52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
674 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
675 models from natural language supervision. In *International conference on machine learning*,
676 pp. 8748–8763. PMLR, 2021.

677 [53] Jonathan Roberts, Mohammad Reza Taesiri, Ansh Sharma, Akash Gupta, Samuel Roberts,
678 Ioana Croitoru, Simion-Vlad Bogolin, Jialu Tang, Florian Langer, Vyas Raina, et al. Zerobench:
679 An impossible visual benchmark for contemporary large multimodal models. *arXiv preprint*
680 *arXiv:2502.09696*, 2025.

681 [54] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
682 actions classes from videos in the wild. *arXiv preprint arXiv:1212.0402*, 2012.

683 [55] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In
684 *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
685 Proceedings, Part II 16*, pp. 402–419. Springer, 2020.

686 [56] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
687 and Sylvain Gelly. Towards accurate generative models of video: A new metric and challenges,
688 2019. URL <https://arxiv.org/abs/1812.01717>

689 [57] GoogleDeepMind Veo2. Veo 2 — deepmind.google. <https://deepmind.google/technologies/veo/veo-2/> 2024.

690 [58] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han
691 Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki:
692 Variable length video generation from open domain textual description, 2022. URL <https://arxiv.org/abs/2210.02399>

693 [59] Wan. Wan-AI/Wan2.1-T2V-14B · Hugging Face — huggingface.co/Wan-AI/Wan2.1-T2V-14B 2025. <https://huggingface.co/Wan-AI/Wan2.1-T2V-14B>

702 [60] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang.
703 Modelscope text-to-video technical report, 2023. URL <https://arxiv.org/abs/2308.06571>.

704

705 [61] Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan
706 Yang, Yinan He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming
707 Jiang, Cunjian Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, and Ziwei Liu. Lavie:
708 High-quality video generation with cascaded latent diffusion models, 2023. URL <https://arxiv.org/abs/2309.15103>.

709

710 [62] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming
711 Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion
712 models with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

713

714 [63] Michal Yarom, Yonatan Bitton, Soravit Changpinyo, Roee Aharoni, Jonathan Herzig, Oran
715 Lang, Eran Ofek, and Idan Szpektor. What you see is what you read? improving text-image
716 alignment evaluation. *Advances in Neural Information Processing Systems*, 36:1601–1619,
717 2023.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755