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ABSTRACT

Watermarking is a principled approach for tracing the provenance of large language
model (LLM) outputs, but its deployment in practice is hindered by inference
inefficiency. Speculative sampling accelerates inference, with efficiency improving
as the acceptance rate between draft and target models increases. Yet recent work
reveals a fundamental trade-off: higher watermark strength reduces acceptance,
preventing their simultaneous achievement. We revisit this trade-off and show it
is not absolute. We introduce a quantitative measure of watermark strength that
governs statistical detectability and is maximized when tokens are deterministic
functions of pseudorandom numbers. Using this measure, we fully characterize the
trade-off as a constrained optimization problem and derive explicit Pareto curves for
two existing watermarking schemes. Finally, we introduce a principled mechanism
that injects pseudorandomness into draft-token acceptance, ensuring maximal
watermark strength while maintaining speculative sampling efficiency. Experiments
further show that this approach improves detectability without sacrificing efficiency.
Our findings uncover a principle that unites speculative sampling and watermarking,
paving the way for their efficient and practical deployment.

1 INTRODUCTION

In the era of generative AI, data provenance has become a pressing concern in academia, journalism,
and everyday content creation, where ensuring authenticity is both responsible and critical (Weidinger
et al., 2022; Starbird, 2019; Milano et al., 2023; Shumailov et al., 2024). Watermarking offers
a principled solution: it embeds verifiable signals into generated text by modifying the token
sampling process with a recoverable pseudorandom number and a carefully designed sampling
strategy (Aaronson, 2023; Kirchenbauer et al., 2023; Kuditipudi et al., 2024). A good watermarking
scheme should embed a strong watermark signal, namely the dependence between sampled tokens and
pseudorandom numbers. The degree of this dependence, referred to as watermark strength, directly
affects detection efficiency (Li et al., 2025;+). However, deploying watermarking in large-scale
LLM inference faces two major bottlenecks: tokens are generated sequentially, each requiring a full
forward pass, and the lack of parallelization leaves GPUs underutilized. Together, these bottlenecks
make watermarking slow and inefficient in real-world deployment.

Speculative sampling addresses these bottlenecks by accelerating autoregressive generation without
compromising quality (Chen et al., 2023; Leviathan et al., 2023; Xu et al., 2024). It employs two
models: a lightweight draft model that rapidly proposes multiple candidate tokens, and a larger target
model that verifies them in parallel. If most draft tokens are accepted, computation is greatly reduced;
if not, the target model must regenerate them, negating the speedup. The acceptance process is
stochastic, with its probability determined by how closely the draft model’s proposals align with the
target model’s distribution (Yin et al., 2024). Thus, high efficiency requires the two distributions to
be sufficiently similar, ensuring a high acceptance rate. Unfortunately, Hu & Huang (2024) show that,
when watermarking is combined with speculative sampling, it is impossible to simultaneously achieve
both the highest acceptance rate and the strongest watermarking strength—a rather discouraging
result that suggests a fundamental trade-off between watermark strength and sampling efficiency.
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In this work, we ask whether and how this seemingly unavoidable trade-off can be overcome, trying
to pave the way for more efficient deployment of watermarking under speculative sampling. We
revisit the impossibility result and identify a potential path forward. A key limitation in (Hu & Huang,
2024) is that watermark strength is defined in a binary manner: watermarking is considered preserved
if and only if each token’s distribution exactly matches a designated watermarked distribution. This
definition, however, doesn’t quantify how each token is coupled with a recoverable pseudorandom
number. As a result, it overlooks intermediate levels of watermark strength, preventing a nuanced
characterization of the trade-off and leaving open the possibility for improvement.
Contributions. Building on this observation, we make the following contributions:

• Quantifying watermark strength. We introduce a quantitative measure of watermark strength
for unbiased watermarks, defined as the expected KL divergence between the watermarked and
original token distributions. We show that this measure governs the decay rate of p-values, is upper
bounded by the entropy of the original distribution, and attains its maximum precisely when tokens
are deterministic functions of pseudorandom numbers. Notably, both OpenAI’s (Aaronson, 2023)
and Google’s (Dathathri et al., 2024) watermarking schemes achieve this maximal strength.

• Characterizing the trade-off. Based on this measure, we formalize the trade-off curve as the
Pareto frontier between watermark strength and (speculative) sampling efficiency. Here, sam-
pling efficiency is quantified by the acceptance rate, following prior work (Hu et al., 2024). For
illustration, we show that when both the draft and target models are “linearly” watermarked, this
frontier can be characterized by solving a constrained convex optimization problem that maximizes
watermark strength subject to a sampling efficiency requirement. Importantly, this formulation is
general and can be applied in a plug-and-play manner to any watermarking schemes. As examples,
we illustrate the trade-off curves for OpenAI’s and Google’s watermarking methods.

• Breaking the trade-off. Finally, we propose a principled mechanism to overcome this trade-off
by applying pseudorandom draft-token acceptance. We prove that it achieves maximal watermark
strength while preserving speculative sampling efficiency, and empirically verify that it improves
detectability under the same efficiency, offering a constructive path toward practical deployment.

Paper organization. The remainder of this paper is organized as follows. Section 2 reviews
preliminaries on watermarking, speculative sampling, and the previous trade-off. Section 3 introduces
a quantitative measure of watermark strength and uses it to fully characterize the trade-off. Section 4
presents our mechanism for breaking the trade-off. Section 5 presents experimental results that
validate our mechanism. Due to space constraints, we defer the discussion of related work to
Appendix A, and provide all proofs in Appendix B and D.

2 PRELIMINARIES

For a token w in the vocabularyW , let P denote its distribution. A watermarking scheme can be
viewed as a tractable way to modify P using pseudorandomness (Hu et al., 2024). Specifically,
it samples w ∼ Pζ from a modified distribution Pζ := S(P , ζ), where ζ is a pseudorandom
variable and S is a carefully designed decoding function. A scheme (or decoder) is said to be
unbiased if averaging over pseudorandomness recovers the original distribution, i.e., Eζ [Pζ ] = P .
During detection, the task is to decide whether an observed token sequence comes from the original
distribution or its watermarked modification. This naturally leads to the hypothesis testing problem:

H0 : w ∼ P and w ⊥ ζ versus H1 : w ∼ Pζ = S(P , ζ). (1)

The key idea is to test for statistical dependence between w and the pseudorandom number ζ. Under
H0, no watermark is embedded and w is independent of ζ, while under H1 the watermarking
mechanism induces a structured dependence. In what follows, we illustrate this framework with two
popular watermarking schemes.
Gumbel-max watermark. The most influential unbiased watermark is the Gumbel-max watermark
(Aaronson, 2023). It is built on the Gumbel-max trick, a widely used sampling method for multinomial
distributions (Gumbel, 1948; Maddison et al., 2014; Jang et al., 2016). The trick generates a set
of independent uniform random variables ζ = (Uw)w∈W for each token in the vocabularyW , and
ensures that argmaxw∈W

logUw

Pw
follows the original distribution P ≡ (Pw)w∈W . Building on this
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observation, Aaronson (2023) proposed the following decoder: Pζ = Sgum(P , ζ) where

(Sgum(P , ζ))(w) =

{
1, if w = argmaxw′∈W

logUw′
Pw′

,

0, otherwise.
(2)

By construction, this watermarking scheme is unbiased (Li et al., 2025).
SynthID watermark. The SynthID watermark, proposed by Google (Dathathri et al., 2024), is
based on a novel categorical sampling rule called tournament sampling. For a given number of
tournament rounds m, the pseudorandom numbers is a collection of m random vectors, given by
ζ = (gi)

m
i=1, where each gi = (gi,w)w∈W is a binary vector with entries independently drawn from

Bernoulli(0.5). Under the two-candidate version of SynthID (the version we use throughout all
discussions), the modified distribution can be defined as Pζ = Ssyn(P , ζ), with

Ssyn(P , ζ) = Tgm
◦ · · · ◦ Tg1

(P ), (3)

where Tg is the operator

(Tg(P ))(w) = Pw ·
(
1 + gw −

∑
w′:gw′=1

Pw′

)
. (4)

Dathathri et al. (2024) show that Tg(P ) corresponds to the distribution of the winner in a one-versus-
one match: two tokens w1, w2 are drawn independently from P , and the winner is the one with the
larger pseudorandom bit value gw. If gw1

= gw2
, the tie is broken uniformly at random. Repeating

this tournament for m rounds with independent vectors gi yields Ssyn(P , ζ) as the distribution of
the final winner token.
Speculative sampling. Speculative sampling accelerates LLM inference by first drawing a draft
token w′ from Q and then checking it against the target distribution P (Chen et al., 2023). The draft
token is accepted with probability min{1, Pw′/Qw′}; if it is rejected, a replacement token is sampled
from a residual distribution proportional to the excess mass of P over Q. This accept/reject process
induces a transition kernel on top of Q:

A(w|w′) =

min
(
1, Pw

Qw

)
, if w′ = w,

(Pw−Qw)+∑
z(Pz−Qz)+

·
(
1− Pw′

Qw′

)
+
, if w′ ̸= w,

(5)

where (x)+ := max{x, 0}. We denote this kernel as Aspec(Q,P ). By construction, applying it on
top of Q recovers the target distribution: P = Aspec(Q,P ) ◦Q. The acceptance rate under this
scheme is P(the inital w′ is not rejected) =

∑
w min{Pw, Qw}, which is the maximum achievable

among all kernels that preserve P (see Lemma 3.1).
Definition 2.1 (Sampling efficiency). Given a draft Qζ and transition kernel Aζ ,1 the sampling
efficiency is the expected acceptance rate:

SE(Qζ ,Aζ) = Eζ [
∑
w∈W

Aζ(w|w)Qζ,w].

An “inevitable” trade-off. Hu & Huang (2024) prove that speculative sampling cannot simulta-
neously maintain watermark strength and achieve maximal efficiency. Efficiency is measured by
the expected acceptance rate (Def. 2.1), while watermark strength is defined in a binary manner.
For any target distribution P and an unbiased decoder S, let Pζ = S(P , ζ) be the watermarked
token distribution. Watermark strength is preserved only if there exists a pair (S ′,Aζ) such that
Aζ ◦ Qζ = Pζ exactly for all pairs (Q,P ) with Qζ = S ′(Q, ζ). Here, the decoder S ′ could
be different from S. Under this condition, the sampling efficiency is strictly below the maximum
achievable: there must exists a pair (Q,P ) such that

SE(Qζ ,Aζ) < sup
(Q′

ζ ,A
′
ζ)

{
SE(Q′

ζ ,A′
ζ) : Eζ [Q

′
ζ ] = Q, Eζ [A′

ζ ◦Q′
ζ ] = P

}
. (6)

Conversely, if equality holds in (6) for all pairs (Q,P ), watermark strength is necessarily lost, i.e.,
Aζ ◦Qζ ̸= Pζ for some pair (Q,P ).

1We use Aζ to denote a general transition kernel, which is not necessarily dependent on pseudorandomness.
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3 COMPLETE THE TRADE-OFF CURVE

3.1 QUANTIFICATION OF WATERMARK STRENGTH

As introduced in Section 2, prior work (Hu & Huang, 2024) does not fully characterize the trade-off,
as it lacks a quantitative notion of watermark strength. Their framework defines strength in a binary
way: it is considered preserved only if the actual token distribution exactly matches a designated
watermarked distribution. This overlooks the essential idea that strength should capture how strongly
each token depends on pseudorandomness, rather than just distributional equivalence. Consequently,
intermediate levels of strength cannot be represented, preventing a more nuanced trade-off analysis.
Our first contribution is to introduce a quantitative definition of watermark strength, enabling a precise
and continuous characterization of this trade-off.
Definition 3.1. For a watermarking scheme that samples tokens from the modified distribution
Pζ = S(P , ζ), its watermark strength is defined as

WS(Pζ) = Eζ [DKL(Pζ ∥P )] = Eζ

[∑
w∈W

Pζ,w log
Pζ,w

Pw

]
. (7)

where DKL(Pζ∥P ) denotes the Kullback-Leibler (KL) divergence between the watermarked distribu-
tion Pζ and the original distribution P . From an information theory perspective, this definition can
also be viewed as the conditional KL divergence, and under the unbiasedness condition Eζ [Pζ ] = P ,
it is equivalent to the mutual information I(w; ζ).

Remark 3.1. Watermark strength is conceptually different from the detection efficiency studied
in (Li et al., 2025). Watermark strength quantifies the ideal detectability assuming the true token
distributions Pt are known, whereas the latter considers worst-case efficiency when each Pt is
believed to fall into a prior class without this assumption. As a result, two schemes with comparable
watermark strength may still differ in detection efficiency, depending on their sensitivity around the
true token distribution. In practice, the Bayesian posterior detection rule in (Dathathri et al., 2024)
may help bridge this gap, as it implicitly learns the token distributions from prior data.

Interpretation in terms of sample complexity. We now explain why the notion of watermark
strength in Def. 3.1 is meaningful: it directly quantifies the difficulty of watermark detection. In
particular, detection can be formulated as a hypothesis testing problem (cf. Eq. (1)), where the task
is to distinguish the original distribution P from its watermarked version Pζ . Intuitively, greater
watermark strength makes this test easier. The next theorem formalizes this intuition by showing
that the average watermark strength determines the exponential decay rate of the p-value under the
uniformly most powerful test (i.e., the likelihood ratio test), and thus the sample complexity required
to reach a prescribed significance level.
Theorem 3.1 (Sample complexity via p-value decay). Let α ∈ (0, 1) and w1:n = (w1, . . . , wn).
Consider the hypothesis testing problem based on n independent samples:

H0 : w1:n ∼ P1 ⊗ · · · ⊗ Pn with wt ⊥ ζt ∀t versus H1 : w1:n ∼ P1,ζ1 ⊗ · · · ⊗ Pn,ζn ,

where each ζt is i.i.d., and the log-likelihood ratios Zt := log
Pt,ζt (wt)

Pt(wt)
are independent, uni-

formly bounded, and admit a common neighborhood around zero where their moment gen-
erating functions are finite. Assume that the average KL divergence converges: D :=
lim
n→∞

1
n

∑n
t=1 Eζ [DKL(Pt,ζ∥Pt)] < ∞. Then, under H1, the p-value of the likelihood ratio test,

which is the uniformly most powerful (UMP) test, satisfies

lim
n→∞

− 1

n
log(p-value) = D, in probability.

In particular, to guarantee the p-value ≤ α, it is necessary that n ≥ 1
D log

(
1
α

)
(1 + o(1)).

Maximum watermark strength. A natural question is which watermarking schemes achieve
the largest watermark strength, as defined in Def. 3.1. The next theorem shows that for unbiased
watermarks, the maximum is attained if and only if the modified token distribution Pζ is degenerate—
namely, for each pseudorandom number ζ, all probability mass is placed on a single token, so the
generated token is a deterministic function of ζ.

4
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Theorem 3.2 (Maximum watermark strength). If Eζ [Pζ ] = P , it follows that

WS(Pζ) = Ent(P )− Eζ [Ent(Pζ)] ≤ Ent(P ) := −
∑
w∈W

Pw logPw.

Equality holds if and only if Ent(Pζ) = 0 almost surely.

Interestingly, both the Gumbel-max watermark and the SynthID watermark (in the limit as m→∞)
attain this upper bound.
Theorem 3.3. The Gumbel-max watermark and the SynthID watermark (as m→∞) achieve the
maximum watermark strength in Thm. 3.2.

3.2 TRADE-OFF CURVES AND EXAMPLES

Formulation of trade-off curves. Suppose the unwatermarked draft model is Q and the unwa-
termarked target model is P . An unbiased decoder from a family Qdraft transforms Q into a
watermarked draft Qζ := Sdraft(Q, ζ), where ζ is a pseudorandom number. A transition kernel Aζ

then rectifies Qζ so that the final distribution Pζ := Aζ ◦Qζ remains unbiased, i.e., Eζ [Pζ ] = P .
With these components in place, we can now introduce the trade-off curve, which is defined in terms
of watermark strength (Def. 3.1) and sampling efficiency (Def. 2.1).
Definition 3.2 (Trade-off curve). The trade-off curve is a function T that maps an efficiency require-
ment r (a lower bound on the sampling efficiency) to the largest achievable watermark strength:

L(r) = max
Sdraft∈Qdraft, Aζ

WS(Pζ) s.t. Pζ = Aζ ◦Qζ , Eζ [Pζ ] = P , SE(Qζ ,Aζ) ≥ r.

Lemma 3.1 (Speculative sampling is optimal). Fix a draft model Qζ and a target model Pζ , we
define the speculative sampling efficiency (SSE) between them as

SSE(Qζ ,Pζ) := sup
Aζ

{SE(Qζ ,Aζ) : Pζ = Aζ ◦Qζ} = SE(Qζ ,Aspec(Qζ ,Pζ)).

If Eζ [Qζ ] = Q and Eζ [Pζ ] = P , then SSE(Qζ ,Pζ) ≤ 1− TV(Q,P ) = SSE(Q,P ).

As a high level, Def. 3.2 defines the trade-off curve as the Pareto frontier of the achievable region in
the plane of watermark strength versus sampling efficiency. Each boundary point gives the strongest
watermark attainable under an efficiency requirement r. While the definition allows arbitrary kernels
Aζ , the objective depends only on the induced distribution Pζ = Aζ ◦Qζ . Lemma 3.1 shows that
for any fixed Pζ , the speculative sampler Aspec(Qζ ,Pζ) achieves the maximal efficiency among all
Aζ realizing Pζ . Thus, replacing Aζ with Aspec(Qζ ,Pζ) preserves watermark strength and never
decreases the efficiency. Therefore, without loss of generality, the trade-off curve can be studied by
restricting to Aζ = Aspec(Qζ ,Pζ) and working directly with Pζ .

Conceptually, we can view Pζ as the output of an unbiased decoder Starget from a family Qtarget (in
parallel to Qζ). With this simplification, the trade-off curve can be reformulated as

L(r) = max
Sdraft∈Qdraft, Starget∈Qtarget

WS(Pζ) s.t. SSE(Qζ ,Pζ) ≥ r. (8)

This formulation is clean and implementation-friendly: once the families Qdraft and Qtarget are
specified, solving (8) yields a concrete visualization of the complete trade-off curve.
Remark 3.2. In many cases, the final distribution Pζ := Aζ ◦Qζ admits an explicit closed form. For
instance, in (Hu & Huang, 2024), it uses Pζ := Aspec(Q,P ) ◦Qζ to achieve the highest sampling
efficiency. Such an explicit formula can naturally be regarded as defining a decoder Starget, and all
schemes of this type can be collected into the family Qtarget.

An example trade-off curve. Now we turn to visualizing the trade-off curve in (8) for two popular
watermarking schemes. As discussed earlier, it suffices to specify two families of unbiased decoders
for Q and P , respectively. To make this concrete, we consider the linearly watermarked classes

Qdraft = {(1− θ)Id+ θ Sdraft : θ ∈ [0, 1]}, Qtarget = {(1− γ)Id+ γ Starget : γ ∈ [0, 1]}, (9)

where Id denotes the identity decoder that leaves the distribution unchanged, and Sdraft,Starget
are prescribed unbiased decoders. In this construction, if we write Qζ := Sdraft(Q, ζ) and Pζ :=

5
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Figure 1: Trade-off curves between watermark strength and sampling efficiency for simulated (Q,P )
pairs. Left: Curves for the linearly watermarked classes (9). Right: Curves for other classes,
including Hu’s class (Hu & Huang, 2024) and Google’s class (Dathathri et al., 2024). Orange and
blue denote Gumbel-max and SynthID, respectively. Here, solid, dashed, and dotted lines correspond
to different classes. Markers indicate the boundary point of each curve.

Starget(P , ζ), then identifying the trade-off curve (r, L(r)) amounts to finding its inverse curve
(L−1(ρ), ρ), where L−1(ρ) is given by

L−1(ρ) = 1− 1
2 min

γ,θ
Eζ∥(1− θ)Q+ θQζ − (1− γ)P − γPζ∥1

s.t. Eζ

[
Ent((1− γ)P + γPζ)

]
≤ ρ.

(10)

One can derive this formulation (10) by combining Defs. 2.1 and 3.1 with the transition kernel in (5)
and the identity

∑
w min{Pw, Qw} = 1− TV(P ,Q)= 1− 1

2∥P −Q∥1.

The map (γ, θ) 7→ ∥(1− θ)Q+ θQζ − (1− γ)P − γPζ∥1 is convex, since it is the ℓ1 norm of an
affine function. By contrast, entropy is concave, so the feasible set of (10) is not convex in general.
Yet when Starget is degenerate (so Pζ is almost surely a point mass), Eζ [Ent((1 − γ)P + γPζ)]
decreases monotonically in γ. In this case, the constraint reduces to γ ≥ γ0, where γ0 is the unique
threshold satisfying Eζ [Ent((1− γ0)P + γ0Pζ)] = ρ, and the problem (10) simplifies to

L−1(ρ) = 1− 1
2 min

θ∈[0,1], γ∈[γ0,1]
Eζ∥(1− θ)Q+ θQζ − (1− γ)P − γPζ∥1 .

Comparisons of trade-off curves. In Fig. 1, we plot the trade-off curves for simulated Q and
P (see Appendix C.1 for the details). The left panel shows the curve for the linearly watermarked
classes (9). The green cross at the lower right marks the sampling efficiency of standard speculative
sampling, and the two blue points mark the watermark strengths achieved by Gumbel-max and
SynthID, respectively. Unless stated otherwise, we set tournament rounds m =∞ for SynthID. As
shown in Thm. 3.3, both watermarks attain the same maximal watermark strength, so the blue points
lie on the same horizontal line.

The right panel shows trade-off curves for two additional classes: one from Hu & Huang (2024)
(“Hu’s class”) and one from Dathathri et al. (2024) (“Google’s class”). While the original works
describe how to attain the endpoints of these curves, our framework connects them via a similar
linearly interpolated class (see Appendix C.2 for explicit expressions), enabling direct comparison.
The results show that Google’s class achieves higher watermark strength than Hu’s at matched
sampling efficiency, yet neither reaches the theoretical optimum (red star). Moreover, when we set
m = 30—a practical choice for SynthID—and apply it to Google’s class, the watermark strength
drops below that of Gumbel-max (see the lower gray curve), consistent with Thm. 3.3. This is
expected, as the maximal watermark strength is attained only in the limit m→∞.

4 BREAKING THE TRADE-OFF CURVE

4.1 BREAKING THE TRADE-OFF THROUGH PSEUDORANDOM ACCEPTANCE

Motivation. With the complete trade-off curve established in Section 3, we now ask whether it can
be broken—that is, whether speculative sampling can be used in watermarking to simultaneously
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Algorithm 1 Fast watermarked speculative sampling with pseudorandom acceptance

1: Given: lookahead K, output length N , target model P , draft model Q, initial prompt
w1:n, watermarked models QζD := S(Q, ζD) and PζT := S(P , ζT ), residual sampler
(P −Q)+,ζT := S((P −Q)+, ζ

T ), and pseudorandom generator G.
2: while n < N do ▷ Draft K tokens under the watermarked draft model
3: for s = 1 to K do
4: Sample draft token w̃s ∼ QζD

n+s
(· | w1:n, w̃1:s−1).

5: end for
6: In parallel: compute K + 1 sets of target logits from draft tokens, i.e., P (· | w1:n), P (· |
w1:n, w̃1), . . . , P (· | w1:n, w̃1:K).

7: for s = 1 to K do ▷ Sequentially try to accept each draft token
8: Compute pseudorandom U(0, 1) variable: un+s ← G(ζRn+s) ∈ (0, 1).

9: if un+s < min
{
1, P (w̃s|w1:n)

Q(w̃s|w1:n)

}
then

10: Accept: set wn+1 ← w̃s; n← n+ 1.
11: else
12: Reject: sample wn+1 ∼ (P −Q)+,ζT

n
(· | w1:n); n← n+ 1; break.

13: end if
14: end for
15: if all w̃1, . . . , w̃K were accepted then ▷ Bonus step as in speculative decoding
16: Sample one extra token wn+1 ∼ PζT

n
(· | w1:n); n← n+ 1.

17: end if
18: end while

attain the largest watermark strength and the highest sampling efficiency (SSE). From Lemma 3.1, the
maximal SSE for a draft–target pair (Q,P ) is 1− TV(Q,P ). Existing approaches that achieve this
bound rely on the transition kernelAspec(Q,P ) in (5), which accepts a draft tokenw′ with probability
min{1, Pw′/Qw′} (Hu & Huang, 2024; Dathathri et al., 2024). However, this mechanism leaves
residual randomness: even with full knowledge of the pseudorandomness in both the watermarked
draft and target models, the final token is not predetermined, since it may or may not be the draft
token depending on the acceptance coin flip. This inherent randomness weakens watermark strength,
because under Def. 2.1, any distribution attaining maximal watermark strength must be degenerate,
placing all its mass on a single token. Motivated by this observation, we propose a new approach
that preserves both goals: we make the acceptance decision itself pseudorandom, so that the entire
generation process becomes a deterministic function of pseudorandom variables.
Algorithm description. We formally present our method in Alg. 1. The algorithm is driven by a
pseudorandom variable with three components ζ = (ζD, ζT , ζR). The first two components, ζD and
ζT , determine the watermarked distributions: ζD controls sampling from the draft model QζD , while
ζT controls sampling from the target model PζT and from the residual distribution (P −Q)+,ζT

when draft tokens are rejected. The third component, ζR, governs acceptance decisions for draft
tokens. In particular, at each step s, we compute the acceptance variable ut = G(ζRt ), where G is a
pseudorandom number generator producing values uniformly in [0, 1]. Additionally, to further ensure
the unbiasedness of the entire generated sequence, we apply repeated context masking (Hu et al.,
2024; Dathathri et al., 2024; Hu & Huang, 2024) in Alg. 1, which skips watermarking for repeated
contexts.

The key difference from (Dathathri et al., 2024) is that the acceptance variable u is now pseudorandom
rather than truly random (line 8). As a result, Alg. 1 becomes a fully deterministic function of
pseudorandom variables, with no external randomness involved. We show that this modification
preserves unbiasedness and, in theory, attains the maximal possible SSE (Thm. 4.1).

Theorem 4.1. Focus on a single intermediate step s and omit the index for brevity. Let P be a target
model and Q a draft model. Assume the decoder S is unbiased and achieves the largest watermark
strength (hence it is degenerate by Thm. 3.2). Define the target and draft watermarked distributions by
PζT = S(P , ζT ) and QζD = S(Q, ζD) respectively. LetAζ denote the transition kernel introduced
in Alg. 1, and let P ′

ζ denote the distribution of the output token with ζ := (ζD, ζT , ζR). Suppose
ζD, ζT , and ζR are independent. Then the following properties hold:
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(a) Unbiasedness: for every token w ∈ W , we have Eζ [P
′
ζ(w)] = P (w).

(b) Maximum sampling efficiency: SE(QζD ,Aζ) = 1− TV(Q,P ).

(c) Maximum watermark strength: WS(P ′
ζ) = Ent(P ).

4.2 DETECTION UNDER PSEUDORANDOM ACCEPTANCE

Alg. 1 introduces a new pseudorandom component ζR, which can also be used to enhance watermark
detection. As discussed in Remark 3.1, watermark strength is conceptually distinct from detection
efficiency (detectability). While Thm. 4.1 shows that our algorithm attains the maximum watermark
strength, this does not guarantee optimal detection efficiency. In principle, the most powerful
detector is the log-likelihood ratio test, but it is impractical since it requires access to the true token
distributions Pt (Huang et al., 2023; Li et al., 2025). Nonetheless, the extra information encoded in
ζR reduces uncertainty about the token generation process and can therefore improve detectability.
Next, we show how to use ζR to improve detectability for Gumbel-max and SynthID. In Section 5,
we provide empirical evidence that our method indeed enhances detection efficiency.
Gumbel-max watermark. As described in Section 2, the pseudorandom variables for the Gumbel-
max watermark (i.e., ζDt , ζ

T
t ) assign i.i.d. U(0, 1) values to all tokens, and the decoder selects the

token wt that solves the argmax in (2). For detection, the corresponding U(0, 1) value is extracted as
a test statistic (Aaronson, 2023). When watermarked, it tends to concentrate near one; otherwise, it
remains uniform. With speculative sampling, however, two candidate statistics arise for each token
wt: one from the draft model (yDt ∈ R) and one from the target model or the residual distribution
(yTt ∈ R). In our algorithm, wt comes from the draft model iff ut = G(ζRt ) ≤ τ (see line 9 in
Alg. 1)2, we naturally select yt by

yt = yDt 1G(ζR
t )<τ + yTt 1G(ζR

t )≥τ , (11)

where τ is calibrated on a held-out validation set by grid-searching over candidate values and selecting
the one that achieves the highest true positive rate (TPR) under the desired false positive rate (FPR).
In contrast, without access to ut, one must rely on the empirical acceptance rate (Dathathri et al.,
2024), selecting

yt = yDt with probability p, yt = yTt with probability 1− p, (12)
where p is estimated from observed acceptance rates. After yt is chosen, detection proceeds by
applying the classic test of Aaronson (2023), which flags watermarking when

∑
t− log(1− yt) is

stochastically larger than expected. We refer to the detector based on rule (11) as Ars-τ and the one
based on rule (12) as Ars-Prior. Empirically, the two differ in efficiency.
SynthID watermark. A similar challenge of selecting the correct test statistic (i.e., the pseudo-
random numbers that generated token wt) also arises in the SynthID watermark. Recall that each
pseudorandom variable ζDt = (gD

t,i)
m
i=1 consists of m random binary vectors, and the test statistic

is defined as yDt = (gD
t,1(wt), . . . , g

D
t,m(wt)) ∈ Rm, which collects the wt-th components of all

vectors; the counterpart yTt ∈ Rm is defined analogously. The key detection principle is that, for
the correct pseudorandom variable (e.g., yDt ), entries are biased toward one, while for the incorrect
one they remain uniformly random in {0, 1}. This bias stems from the tournament sampling process:
since the winning token must repeatedly have larger g-values across m rounds, the final wt tends to
carry more ones in its associated vector.

In the prior detection of Dathathri et al. (2024), a Bayesian scoring neural network in Rm is trained,
and under speculative sampling, the two scores from yDt and yTt are combined through a simple
weighted average (see Appendix E for the details). This averaging dilutes the signal and reduces
detection efficiency. In contrast, our algorithm has access to the acceptance variable ut, which,
while not directly revealing the source model of wt, carries signals about whether the token was
generated by the draft or target model. Since the exact threshold (i.e., min{1, Pw/Qw}) separating
the two cases is unknown, we treat this as a binary classification problem: given (yDt , y

T
t ) and ut, a

three-layer perceptron (MLP) is trained to select the correct statistic rather than averaging. We refer
to this enhanced method as Bayes-MLP, and to the prior approach as Bayes-Prior.

2Note that the tokens generated during bonus steps are not controlled by the acceptance variable. However,
as long as the lookahead K is not very small (e.g., K = 1), the sampling process rarely enters a bonus step, so
its impact on detection is negligible in practice.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS
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Figure 2: Left: Average Accepted Tokens Per Step (AATPS) of Alg. 1 applied to the Gumbel-max
and SynthID watermarks, compared with Standard Speculative Sampling (Std. SpecSampl). Error
bars mark the 95% confidence intervals. Middle and Right: Watermark detectability (TPR at FPR =
1%) for Alg. 1 on the Gumbel-max (middle) and SynthID (right). Orange curves show our method,
blue curves show the prior-based method, and black curves represent the ideal detector (Oracle) that
always selects the correct test statistic. Shaded regions indicate the 95% confidence intervals.

In this section, we show that Alg. 1 simultaneously improves watermark detectability and attains
the highest speculative-sampling efficiency. We evaluate Gumbel-max and SynthID (m = 30)
on the ELI5 dataset (Fan et al., 2019) and use two draft–target model pairs: Llama-68M &
Llama-7B (Miao et al., 2024; Touvron et al., 2023) and Gemma-2B & Gemma-7B (Team et al.,
2024). In each pair, the larger model serves as the target and the smaller model as the draft. We report
results for the Llama pair in the main text and defer the Gemma results to the Appendix (see Fig. 3).
We compare our methods, Ars-τ and Bayes-MLP, against the baselines Ars-Prior and Bayes-Prior
(see Section 4.2 for definitions). Besides, we also evaluate Alg. 1 on the C4 dataset (Raffel et al.,
2020) with the same model settings, and the results are provided in Appendix F.2.

Following (Hu & Huang, 2024), we measure sampling efficiency by Average Accepted Tokens per
Step (AATPS) from Alg. 1. From the algorithm, at least one token is generated each step, so AATPS
lies in [1,K+1]. We report results for K ∈ {2, 3, 4}, with larger AATPS indicating higher efficiency.
We measure watermark detectability using the true positive rate (TPR) at a fixed false positive rate
(FPR) of 1%. To make the results more pronounced, we use lower temperatures: 0.5 for Gumbel-max
and 0.7 for SynthID. Since all detection methods in Section 4.2 require training data, each experiment
generates 2,000 watermarked texts, split into 1,000 for training and 1,000 for testing. For SynthID,
for which the null-score distribution lacks a closed form, we additionally sample two disjoint sets of
1,000 human-written texts from ELI5 as unwatermarked training and test data.

Sampling efficiency is maintained. The left panel of Figure 2 shows that, for both Gumbel-max
and SynthID, Alg. 1 preserves sampling efficiency: the measured AATPS closely matches the standard
speculative-sampling baseline. Exact numbers are provided in the Appendix (see Table 1).

Improved detectability. The middle and right panels of Figure 2 show that, for both watermarks,
our method attains higher TPR with fewer tokens, demonstrating that pseudorandom acceptance vari-
ables enhance watermark detectability. Also, we present the corresponding ROC curves in Figure 4,
which further corroborate this improvement by providing a more comprehensive characterization
of detection performance. Besides, we include an oracle-performance curve representing an ideal
detector that always selects the correct test statistic. The results show a gap between our method and
this theoretical upper bound—consistent with the analysis in Section 4.2—but the gap is not large,
and our method approaches the oracle performance at a token length of 200.

Additionally, we report the Per Token Time (PTT) in milliseconds to evaluate empirical runtime, and
the results confirm that Alg. 1 indeed provides acceleration compared to basic unbiased watermarking
methods (without speculative sampling). We also compute the Log Perplexity (LOGPPL) to verify the
unbiasedness property of Alg. 1; the results show that it preserves the underlying output distribution
and therefore does not degrade the language model’s output quality. All results are presented in
Table 1.
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6 CONCLUSION

In this work, we revisited the trade-off between watermark strength and speculative sampling
efficiency. We introduced a quantitative notion of watermark strength that links directly to statistical
detectability, moving beyond prior binary definitions. With this measure, we cast the trade-off as a
constrained optimization problem and derived explicit Pareto curves for existing schemes. Building
on these insights, we proposed a principled mechanism that injects pseudorandomness into draft-
token acceptance. We proved it achieves maximal watermark strength while preserving speculative
sampling efficiency, and we empirically verified improved detectability at the same efficiency.

Our findings suggest several practical directions. First, although we focus on standard speculative
sampling, the framework naturally extends to variants such as tree-based methods (Miao et al., 2024;
Cai et al., 2024), which could further accelerate generation. Second, while we consider several
common decoder classes, future work can explore broader (Qdraft,Qtarget) choices—for example,
using different decoders for the draft and target models. Third, our current work directly applies
to unbiased degenerate watermarks, but it is an open and interesting direction to investigate how to
extend our framework and establish similar improvements to non-degenerate watermarks and even
biased ones. In this way, one might have a larger toolbox to trade off generation quality for stronger
detection in the context of speculative sampling. Finally, the broader impacts of pseudorandom
acceptance on text quality, calibration, and robustness remain an open question.

ETHICS STATEMENT

This work studies the interaction between watermarking and speculative sampling in large language
models (LLMs). Our research does not involve human subjects or personally identifiable information,
and all experiments are conducted using publicly available models and datasets. The purpose of this
work is to improve the transparency, traceability, and efficiency of LLM outputs, which we believe
aligns with responsible AI development. We are not aware of any foreseeable negative societal
impacts from this research.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All theoretical claims are
stated with clear assumptions, and full proofs are provided in Appendix B and D. The experimental
setup, including model pairs, datasets, and evaluation protocols, is described in detail in Section 4.2
and 5, with additional details provided in Appendix C, E, and F. To further support reproducibility,
we provide anonymized source code for running experiments as supplementary material.
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A RELATED WORK

Speculative sampling. A major challenge in deploying large language models (LLMs) lies in the
high inference latency caused by autoregressive decoding, where tokens are generated one by one.
Speculative sampling (also referred to as speculative decoding) has emerged as a powerful strategy to
mitigate this bottleneck by adopting a draft-then-verify paradigm (Stern et al., 2018; Xia et al., 2023;
Leviathan et al., 2023; Chen et al., 2023).

Recent advances have expanded this paradigm through diverse improvements. Some works improve
drafting strategies, including independent drafters trained via knowledge distillation (Zhou et al.,
2023; Miao et al., 2023; Liu et al., 2024; Kim et al., 2023), and self-drafting methods that reuse parts
of the target model, such as Medusa (Cai et al., 2024) and EAGLE (Li et al., 2024). Others explore
verification mechanisms, extending beyond token-level checks to sequence-level or tree-structured
verification (Yang et al., 2024; Miao et al., 2024; Spector & Re, 2023; Sun et al., 2023; He et al., 2024;
Cai et al., 2024; Li et al., 2024). Collectively, these innovations have produced Pareto improvements
in both acceptance rate and throughput (Xia et al., 2024).

Our work builds on this growing body of research but explores a new dimension: how speculative
sampling interacts with watermarking. Thus, in this work, we focus on the basic speculative sampling
method. Importantly, our approach does not rely on any assumptions about the draft or target models,
which means the underlying idea can naturally extend to more advanced variants.

Watermarking techniques. Recent studies have proposed a diverse set of watermarking
schemes (Kirchenbauer et al., 2024; Fernandez et al., 2023; Kuditipudi et al., 2024; Hu et al., 2024;
Wu et al., 2024; Zhao et al., 2025; 2024; Liu & Bu, 2024; Giboulot & Teddy, 2024; Fu et al., 2024;
Xie et al., 2025; Dathathri et al., 2024)(He et al., 2025). Most approaches operate by introducing pseu-
dorandomness into the next-token prediction process, so that the randomness—once seeded—creates
statistical patterns that can later be detected to verify the presence of a watermark. Besides, recent
works have also studied watermarking from an information-theoretic and optimization-based per-
spective to design stronger watermark schemes (Tsur et al., 2025a;b). Importantly, a watermarking
decoder is called unbiased when its token distribution remains identical to the underlying token
distribution (Li et al., 2025).

Our work focuses on the unbiased watermark and formally quantifies the watermark strength. Build-
ing on this foundation, we revisit the trade-off between sampling efficiency and watermark strength
identified by Hu & Huang (2024), and break this trade-off by extending the one-dimensional pseudo-
random seed in traditional watermarks into a multi-dimensional design.

B PROOF FOR SECTION 3

B.1 PROOF THEOREM 3.1

Proof of Theorem 3.1. UnderH1, the random variablesZ1, . . . , Zn are independent, with EH1
[Zt] =

Dt := Eζt [DKL(Pt,ζt∥Pt)]. Let Λn :=
∑n

t=1 Zt and define the empirical average Dn :=
1
n

∑n
t=1Dt. By assumption, Dn → D as n → ∞. Since the Zt are independent with bounded

moments, the weak law of large numbers gives:
1

n
Λn

P−→ D, under H1.

Let Λobs
n := Λn denote the observed log-likelihood ratio under H1, and define the p-value as

pvaln := PH0(Λn ≥ Λobs
n ).

To evaluate this, we apply the non-i.i.d. version of Cramér’s theorem (e.g., Section 2.6 in (Durrett,
2013)). Define the averaged log moment generating function under H0:

ψn(s) :=
1

n

n∑
t=1

logEH0 [e
sZt ],

and the corresponding rate function:
In(x) := sup

s∈R
(sx− ψn(s)) .

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma B.1 (Uniform control of log-MGFs). Let {Zt}nt=1 be independent random variables such
that for some constant M > 0, each Zt satisfies |Zt| ≤ M almost surely. Define the log-moment
generating functions ψt(s) := logE[esZt ] and their average ψn(s) :=

1
n

∑n
t=1 ψt(s). Then:

1. For any compact interval K ⊂ R, we have supt≤n, s∈K |ψt(s)| <∞.

2. ψn(s) converges uniformly on compact intervals to a limiting convex function ψ(s).

3. The corresponding sequence of convex conjugates In(x) := sups∈R{sx−ψn(s)} converges
pointwise to I(x) := sups∈R{sx− ψ(s)}.

By Lemma B.1, the sequence {ψn(s)} of averaged log-MGFs is uniformly controlled, and the
corresponding rate functions In(·) converge pointwise to a limiting convex function I(·). Hence,
the non-i.i.d. version of Cramér’s theorem applies to the sum Λn :=

∑n
t=1 Zt, and a large deviation

principle holds with rate function I(·).
Since Λobs

n = nD + op(n) under H1, the large deviation estimate gives:

PH0
(Λn ≥ Λobs

n ) = exp(−nIn(D) + o(n)).

By Lemma B.1, we have In(D)→ I(D) as n→∞. Moreover, because each Zt is a log-likelihood
ratio satisfying EH0

[eZt ] = 1, the rate function achieves its maximum at s = 1, implying that:

I(D) = D.

Therefore,

− 1

n
log pvaln → D in probability under H1,

which implies that
pvaln = exp(−nD + o(n)).

To guarantee pvaln ≤ α, it is necessary that

exp(−nD + o(n)) ≤ α ⇒ n ≥ 1

D
log

(
1

α

)
(1 + o(1)).

This completes the proof.

We conclude by providing the proof of Lemma B.1 below.

Proof of Lemma B.1. Since |Zt| ≤M almost surely, for any s ∈ R we have

e−M |s| ≤ esZt ≤ eM |s|,

which implies that the moment generating function E[esZt ] exists and is bounded by eM |s| for all t
and s ∈ R. In particular, for any compact interval K ⊂ R, there exists a constant CK <∞ such that

sup
t≤n, s∈K

|ψt(s)| = sup
t≤n, s∈K

∣∣logE[esZt ]
∣∣ ≤ CK .

This proves the first part.

Next, observe that each ψt(s) is convex (as the log of an MGF) and differentiable. Moreover, since
|Zt| ≤M , we have ∣∣∣∣ ddsψt(s)

∣∣∣∣ = ∣∣∣∣E[Zte
sZt ]

E[esZt ]

∣∣∣∣ ≤M,

so each ψt(s) is Lipschitz continuous with Lipschitz constant at most M on all of R. Hence, the
sequence ψn(s) is equicontinuous and uniformly bounded on compact sets. By the Arzelà–Ascoli
theorem, the sequence ψn(s) has a uniformly convergent subsequence on each compact interval.
Since the pointwise limit

ψ(s) := lim
n→∞

ψn(s)

15
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exists by the law of large numbers, we conclude that the convergence is in fact uniform on compacts.
This proves the second part.

Finally, since each ψn(s) is convex and converges uniformly on compact sets to a convex function
ψ(s), the corresponding convex conjugates (rate functions) In(x) := sups∈R{sx− ψn(s)} converge
pointwise to I(x) := sups∈R{sx−ψ(s)} by standard results from convex analysis (e.g., Rockafellar’s
theorem on epi-convergence of convex conjugates (Rockafellar, 1997)). This proves the last part.

B.2 PROOF OF THEOREM 3.2

Proof of Theorem 3.2. By definition,

WS(Pζ) = Eζ [DKL(Pζ∥P )] = Eζ

∑
w

Pw,ζ log
Pw,ζ

Pw
= Ent(P )− Eζ [Ent(Pζ)] ≤ Ent(P ).

When the equality holds, we must have Eζ [Ent(Pζ)] = 0 so that Ent(Pζ) = 0 for any ζ.

B.3 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. The decoder for the Gumbel-max watermark is deterministic and always
produces a degenerate distribution. Therefore, it trivially achieves the maximum watermark strength.

We now prove the result for the SynthID watermark. Recall that the m-layer decoder is defined in (3):

Ssyn(P , ζ) = Tgm ◦ · · · ◦ Tg1(P ), (3)

where each Tg is a vectorized operator defined by

(Tg(P ))(w) = Pw ·

1 + gw −
∑

w′:gw′=1

Pw′

 . (4)

A direct calculation shows that this transformation preserves expectation:

Eg[Tg(P )] = P . (13)

Let us define
P̂t := Tgt

◦ · · · ◦ Tg1
(P ),

and let Ft := σ({gl}tl=1) be the sigma-field generated by all pseudorandom masks up to layer t. By
construction and the unbiasedness in (13), we have

E[P̂t | Ft−1] = P̂t−1.

This shows that the sequence {P̂t} forms a non-negative, vector-valued martingale adapted to the
filtration {Ft}. Moreover, each P̂t is a valid categorical distribution.

By the martingale convergence theorem (e.g., (Durrett, 2013, Section 5.2)), the sequence P̂t converges
almost surely to a limiting distribution, which we denote by P̂ . We assert that P̂ must be a fixed point
of the operator Tg for every possible value of g due to the above almost sure convergence. By the
definition in (4), this is only possible if P̂ assigns all mass to a single token—that is, P̂ is degenerate.
If this were not the case, then applying Tg would change the distribution for some choices of g.
Therefore, the SynthID decoder also converges to a degenerate distribution and achieves maximum
watermark strength. This completes the proof.

B.4 PROOF OF LEMMA 3.1

Proof of Lemma 3.1. We first prove the first part. For any fixed ζ, we can write

Pζ,w′ =
∑
w∈W

Aζ(w
′ | w)Qζ,w.

In particular, this implies

Pζ,w′ ≥ Aζ(w
′ | w′)Qζ,w′

16
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⇒ Aζ(w
′ | w′) ≤ Pζ,w′

Qζ,w′

⇒ Aζ(w
′ | w′)Qζ,w′ ≤ Qζ,w′ ·min

(
1,
Pζ,w′

Qζ,w′

)
.

Summing over w′ ∈ W , we obtain∑
w′∈W

Aζ(w
′ | w′)Qζ,w′ ≤

∑
w′∈W

Qζ,w′ ·min

(
1,
Pζ,w′

Qζ,w′

)
=
∑
w∈W

min (Qζ,w, Pζ,w) .

Therefore, the sampling efficiency satisfies

SE(Qζ ,Aζ) ≤ Eζ

[∑
w∈W

min (Qζ,w, Pζ,w)

]
.

Finally, note that equality holds when Aζ = Aspec(Qζ ,Pζ), completing the proof of the first part.

For the second part, we note that the total variation distance satisfies the following characterization:

TV(Q,P ) = inf{P(X ̸= Y ) : X ∼ Q, Y ∼ P },
where the infimum is taken over all couplings (X,Y ) such that their marginal distributions are Q and
P , respectively. Let Aζ = Aspec(Qζ ,Pζ). Since (X,Y ) ∼ (Qζ ,Aζ ◦Qζ) forms a valid coupling
of Q and P ,

TV(Q,P ) ≤ Pζ(X ̸= Y ; (X,Y ) ∼ (Qζ ,Aζ ◦Qζ))

= 1− Eζ [
∑
w∈W

Aζ(w|w)Qζ,w)]

= 1− SE(Qζ ,Aspec(Qζ ,Pζ))

= 1− SSE(Qζ ,Pζ).

C EXAMPLES OF TRADE-OFF CURVES

C.1 SIMULATION SETUP

To get the numerical result of the trade-off curves,we manually specify 10-dimensional token distri-
butions for the draft and target models:

Q = (0.4, 0.10, 0.12, 0.11, 0.08, 0.06, 0.05, 0.035, 0.025, 0.02)

P = (0.1, 0.13, 0.155, 0.115, 0.235, 0.065, 0.055, 0.05, 0.06, 0.035)

These distributions mimic a common pattern observed in practice: the draft model Q concentrates
more probability mass on a single token, whereas the target model P exhibits higher entropy.
Although the actual vocabulary size in LLMs is far larger than 10, in practice most of the probability
mass is concentrated on a small set of high-probability tokens. This is consistent with the intuition
behind top-k sampling, where only a handful of tokens dominate the distribution. Thus, while
simplified, our simulation setting captures the essential structure of real-world scenarios.

To approximate expectations without a simple closed-form expression (e.g., sampling efficiency), we
employ Monte Carlo estimation using 107 pseudorandom seeds and report the resulting empirical
mean.

Implementation of SynthID (m =∞). According to Thm. 3.3, the SynthID decoder converges
almost surely to a degenerate distribution as the tournament rounds m→∞. In practice, however,
we cannot really set m to infinity. Empirically, we observe that at m = 30, the distribution is
already highly concentrated on a single token, though not yet fully degenerate. By the convergence
guarantee, the remaining probability mass will collapse onto this token as m increases further. Thus,
in implementation, we approximate the limit distribution by constructing a one-hot vector for that
token.

17
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C.2 OTHER WATERMARKED CLASSES

In Section 3.2, we used the linearly watermarked classes (9) as a simple example to illustrate trade-
off curves. More generally, different choices of the watermarked classes Qdraft and Qtarget yield
different curves. These choices can be highly customized, highlighting the flexibility and scalability
of our framework.

Here, we detail the classes used in the right part of Fig. 1. We begin with the transition kernel from
(Dathathri et al., 2024):

Aξ(w|w′) =

min
(
1, Pw

Qw

)
, if w′ = w,

S
(
(P −Q)+, ξ

)
(w) ·

(
1− Pw′

Qw′

)
+
, if w′ ̸= w,

(14)

where (P −Q)+ denotes the normalized excess mass of P over Q and S is an unbiased decoder.
We denote this kernel as Aξ(Q,P ). Importantly, given the independence of ζ and ξ, we have
Eζ,ξ[Aξ(Q,P ) ◦ Qζ ] = P (Dathathri et al., 2024). By Remark 3.2, this transformation can be
treated as an unbiased decoder, denoted Sgoogle(P , ζ, ξ) := Aξ(Q,P )◦Qζ . We then define Google’s
class (Dathathri et al., 2024) as:

Qdraft = {Sdraft}, Qtarget = {(1− γ)Sgoogle + γ Starget : γ ∈ [0, 1]}.

Similarly, we denote Shu(P , ζ) := Aspec(Q,P ) ◦Qζ and define Hu’s class (Hu & Huang, 2024)
as:

Qdraft = {Sdraft}, Qtarget = {(1− γ)Shu + γ Starget : γ ∈ [0, 1]}.
In both cases, Sdraft and Starget denote prescribed unbiased decoders (e.g., Sgum or Ssyn in our
experiments). In the above definition, the draft decoder is fixed, and the target decoder is controlled
solely by the variable γ. Hence, by simply iterating over γ and applying Monte Carlo estimation, we
can compute the sampling efficiency and watermark strength for each value and plot the corresponding
trade-off curve.

D PROOF OF THEOREM 4.1

Proof of Theorem 4.1. We first show (a). For Alg. 1, tokens can be generated in two cases. Case 1:
The token is sampled from the accept and reject loop on lines 7 to 14. By definition,

P ′
ζ(w) = QζD (w)1

G(ζR)<min{1,
P (w)
Q(w)}

+

(
1−

∑
w∈W

QζD (w)1
G(ζR)<min{1,

P (w)
Q(w)}

)
(P −Q)+,ζT (w).

(15)

The first term corresponds to the probability of sampling w from the draft model and accepting it.
The second term corresponds to the probability of rejecting any token from the draft model, then
sampling w from the residual distribution. Since the watermark decoder S is unbiased, we have,

E[QζD ] = Q,E[PζT ] = P , and E[(P −Q)+,ζT ] = (P −Q)+.

By the definition of G(ζR), we also have,

E[1
G(ζR)<min{1,P (w)

Q(w)
}] = min

{
1,

P (w)

Q(w)

}
.

Since ζD, ζT , and ζR are independent, it then follows that,

Eζ=(ζD,ζT ,ζR)[P
′
ζ(w)] = Q(w) min

{
1,

P (w)

Q(w)

}

+

(
1−

∑
w∈W

Q(w) min
{
1, P (w)

Q(w)

})
(P −Q)+(w).
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This expression is equal to the probability distribution of the next token generated by standard
speculative sampling, and Chen et al. (2023) has shown it is equal to the target distribution P (w).
Case 2: The token is sampled from PζT (e.g., the bonus step on line 16). Since S is unbiased, we
also have E[PζT ] = P . Thus we prove the unbiasedness.

We then show (b). From Alg. 1, we find that the self-transition probability is Aζ(w | w) =
1G(ζR)<min{1,P (w)/Q(w)}. Hence, by Def. 2.1,

SE(QζD ,Aζ) = Eζ=(ζD,ζT ,ζR)[
∑
w∈W

Aζ(w|w)QζD (w)]

= Eζ=(ζD,ζT ,ζR)[
∑
w∈W

QζD (w) · 1G(ζR)<min{1,P (w)/Q(w)}]

=
∑
w∈W

EζD [QζD ] · EζR [1G(ζR)<min{1,P (w)/Q(w)}]

=
∑
w∈W

Q(w) ·min

{
1,

P (w)

Q(w)

}
= 1− TV(Q,P ),

where independence of ζD and ζR is used in the third equality. Thus, Alg. 1 can preserve the sampling
efficiency.

Finally, we show (c). Recall from the proof of (a) that there are two cases. Case 1: The expression of
P ′

ζ is given by 15. Since S achieves the largest watermark strength, we have QζD = S(Q, ζD) as a
degenerate distribution. It then follows that

P ′
ζ(w) = QζD (w) · 1

G(ζR)<min{1,P (w′)
Q(w′)}

+ (P −Q)+,ζT (w) · 1
G(ζR)≥min{1,P (w′)

Q(w′)}
,

where w′ is the token sampled by QζD . Moreover, (P −Q)+, ζT is also degenerate, which implies
that P ′ζ is always degenerate and that WS(P ′

ζ) = Ent(P ). Case 2: PζT is itself degenerate.

Therefore, in both cases, the final distribution produced by Alg. 1 is always degenerate, and hence the
watermark strength is preserved.

E BAYESIAN SCORING FUNCTIONS FOR SYNTHID

Here we introduce the details of the Bayesian scoring function mentioned in Section 4.2. For a given
text, we have two hypotheses: unwatermarked (H0) and watermarked (H1). Our target is to estimate
the posterior P(H1|yD, yT , u), which is the probability that the text is watermarked given its g-values
and acceptance variable. Formally,

P(H1 | yD, yT , u) = σ
(
logP(yD, yT | H1, u)− logP(yD, yT | H0, u)

+ logP(H1 | u)− logP(H0 | u)
) (16)

where σ(·) is the sigmoid function. There are two terms that need to be estimated in equation 16.
First, the prior P(H1 | u), which can be learned empirically. Actually, u does not influence the
existence of the watermark, so P(H1 | u) = P(H1) (also P(H0 | u) = P(H0)), which is the prior
probability that a text is watermarked (or not). Following the setting in Dathathri et al. (2024), we set
this prior to 0.5 in our experiments. Second, the likelihood P(yD, yT | H1, u) and P(yD, yT | H0, u).
To illustrate, we fix step t and tournament layer l. Due to the independence across tokens and layers,
once the odds are determined for a fixed step and layer, they can be multiplied to obtain the odds
for the entire sequence. Recall that for step t, we denote yDt = (gD

t,1(wt), . . . , g
D
t,m(wt)) ∈ Rm

with a corresponding definition for yTt . For notational simplicity, we write gDt,l = gD
t,1(wt). The

unwatermarked likelihood is then given by

P(gDt,l, gTt,l | H0, ut) = fg(g
D
t,l)fg(g

T
t,l),

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where fg denotes the probability mass function of the g-value. In our setting, g-values follow
Bernoulli(0.5), so fg = 0.5. For the watermarked likelihoods, we have:

P(gDt,l, gTt,l | H1, ut) =
∑

κ∈{D,T}

P(gDt,l, gTt,l | ζt = ζκt , H1, ut)P(ζt = ζκt | H1, ut)

= P(gDt,l | ζt = ζDt ) fg(g
T
t,l)P(ζt = ζDt | ut)

+ P(gTt,l | ζt = ζTt ) fg(g
D
t,l)
(
1− P(ζt = ζDt | ut)

)
,

(17)

where ζt = ζDt indicates that the token at step t was watermarked with pseudorandom seed ζD. Two
terms in equation 17 require estimation. First, P(ζt = ζDt | ut), which means given the acceptance
variable, the probability that the token comes from the draft. Second, P(gκt,l | ζt = ζκt ), which is the
likelihood of the g-values under a specific pseudorandom seed. Following Dathathri et al. (2024),
when SynthID employs two-sample tournament sampling, we can factorize P(gκt,l | ζt = ζκt ) and
then have,

P(gDt,l, gTt,l | H1, ut) = P(gDt,l | ζt = ζDt ) fg(g
T
t,l)P(ζt = ζDt | ut)

+ P(gTt,l | ζt = ζTt ) fg(g
D
t,l)
(
1− P(ζt = ζDt | ut)

)
= 1

4

[
(gDt,l − 1

2 )P(ψ
D
t,l = 2 | gDt,<l) + 1

]
P(ζt = ζDt | ut)

+ 1
4

[
(gTt,l − 1

2 )P(ψ
T
t,l = 2 | gTt,<l) + 1

] (
1− P(ζt = ζDt | ut)

)
,

where ψt,l is a random variable denoting the number of unique tokens appearing in the tournament
match at layer l and step t. We model P(ψκ

t,l = 2 | gκt,<l) using logistic regression:

P
(
ψκ
t,l = 2 | gκt,<l

)
= σ

(
βκ
l +

l−1∑
j=1

δκl,jg
κ
t,j

)
,

where σ(·) is the sigmoid function. Here, βκ
l ∈ R is the bias term for layer l, and δκl,j ∈ R

represents the influence of gκt,j on the probability that ψκ
t,l = 2. The remaining term to estimate

is P(ζt = ζDt | ut). Without access to the acceptance variable, Dathathri et al. (2024) treats this
probability as a prior, estimated directly from the acceptance rate of speculative sampling; we refer
to this approach as Bayes-Prior. In our method, we leverage the acceptance variable and train a
three-layer MLP to perform the estimation:

P(ζt = ζDt | ut) =

{
σ
(
α(τt − ut)

)
, for training,

1ut≤τt , for inference,

where σ(·) is the sigmoid function, α is a scaling parameter, and τt = MLP(xt) with input xt =
[ gDt,1, . . . , g

D
t,30, g

T
t,1, . . . , g

T
t,30 ] ∈ R60. We denote our method as Bayes-MLP.

In summary, Bayes-Prior relies solely on the g-values for detection:

Bayes-Prior(yD, yT ) = P(H1 | yD, yT ),
whereas Bayes-MLP additionally incorporates the pseudorandom variable u:

Bayes-MLP(yD, yT , u) = P(H1 | yD, yT , u),
with yD, yT ∈ Rm×N and u ∈ RN , where N denotes the token sequence length.

F EXPERIMENT DETAILS AND RESULTS

F.1 IMPLEMENTATION DETAILS

Implementation of Ars-τ . In Section 4.2, we introduced the use of the pseudorandom variable
u and proposed Ars-τ for the Gumbel-max watermark. Recall that the selection rule for Ars-τ is
defined as

yt = yDt 1G(ζR
t )<τ + yTt 1G(ζR

t )≥τ .
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where τ ∈ [0, 1]. To determine the optimal τ , we adopt a straightforward approach: on the training
set, we evaluate 100 evenly spaced values of τ over [0, 1] and select the one that performs best, which
is then applied to the test set.

Implementation of Bayes-MLP. Details are provided in Appendix E.

F.2 ADDITIONAL EXPERIMENTAL RESULTS
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Figure 3: Experimental results for Gemma models on the ELI5 dataset. Left: Average Accepted
Tokens Per Step (AATPS) of Alg. 1 applied to the Gumbel-max and SynthID watermarks, compared
with Standard Speculative Sampling (Std. SpecSampl). Error bars mark the 95% confidence intervals.
Middle and Right: Watermark detectability (TPR at FPR = 1%) for Alg. 1 on the Gumbel-max
(middle) and SynthID (right). Orange curves show our method, blue curves show the prior-based
method, and black curves represent the ideal detector (Oracle) that always selects the correct test
statistic. Shaded regions indicate the 95% confidence intervals.

Table 1: Results of Alg. 1 applied to the Gumbel-max and SynthID watermarks on the ELI5 dataset,
compared with Standard Speculative Sampling (Std. SpecSampl.) and basic watermarks. AATPS:
Average Accepted Tokens Per Step; PTT: Per Token Time in millisecond; LOGPPL: Log Perplexity.

Models Lookahead Method AATPS PTT LOGPPL

L
l
a
m
a
-
7
b

/L
l
a
m
a
-
6
8
m basic Gumbel-max 1.0± 0.0 22.09± 0.151 2.08± 0.024

SynthID 1.0± 0.0 44.94± 0.477 2.10± 0.017

K = 2
Gumbel-max 1.7707± 0.0058 17.04± 0.121 2.16± 0.025
SynthID 1.7645± 0.0042 37.15± 0.419 2.12± 0.014
Std. SpecSampl. 1.7666± 0.0099 14.98± 0.167 2.18± 0.023

K = 3
Gumbel-max 1.9650± 0.0082 17.00± 0.131 2.14± 0.024
SynthID 1.9584± 0.0066 40.75± 0.554 2.13± 0.015
Std. SpecSampl. 1.9577± 0.0070 15.77± 0.059 2.07± 0.022

K = 4
Gumbel-max 2.0987± 0.0095 17.96± 0.141 2.16± 0.024
SynthID 2.0927± 0.0078 41.74± 0.658 2.15± 0.014
Std. SpecSampl. 2.0988± 0.0094 15.56± 0.074 2.19± 0.022

G
e
m
m
a
-
7
b

/G
e
m
m
a
-
2
b basic Gumbel-max 1.0± 0.0 29.20± 0.072 1.79± 0.053

SynthID 1.0± 0.0 41.32± 0.179 1.69± 0.037

K = 2
Gumbel-max 2.3637± 0.0085 25.98± 0.175 1.69± 0.055
SynthID 2.3794± 0.0089 38.10± 0.522 1.74± 0.036
Std. SpecSampl. 2.3773± 0.0080 22.74± 0.082 1.66± 0.057

K = 3
Gumbel-max 2.9146± 0.0144 26.83± 0.204 1.75± 0.053
SynthID 2.9108± 0.0142 35.62± 0.291 1.75± 0.035
Std. SpecSampl. 2.9140± 0.0140 23.84± 0.121 1.69± 0.051

K = 4
Gumbel-max 3.2923± 0.0203 28.94± 0.245 1.75± 0.052
SynthID 3.2920± 0.0190 41.06± 0.444 1.73± 0.037
Std. SpecSampl. 3.2930± 0.0213 26.05± 0.179 1.72± 0.053
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Figure 4: ROC curves for watermark detection on the ELI5 dataset. Gumbel-max performance is
evaluated at a token length of 200, while SynthID performance is evaluated at a token length of 100.
Orange curves show our method, and blue curves show the prior-based method.
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Figure 5: Experimental results for Llama models on the C4 dataset. Left: Average Accepted Tokens
Per Step (AATPS) of Alg. 1 applied to the Gumbel-max and SynthID watermarks, compared with
Standard Speculative Sampling (Std. SpecSampl). Error bars mark the 95% confidence intervals.
Middle and Right: Watermark detectability (TPR at FPR = 1%) for Alg. 1 on the Gumbel-max
(middle) and SynthID (right). Orange curves show our method, blue curves show the prior-based
method, and black curves represent the ideal detector (Oracle) that always selects the correct test
statistic. Shaded regions indicate the 95% confidence intervals.
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Figure 6: Experimental results for Gemma models on the C4 dataset. Left: Average Accepted Tokens
Per Step (AATPS) of Alg. 1 applied to the Gumbel-max and SynthID watermarks, compared with
Standard Speculative Sampling (Std. SpecSampl). Error bars mark the 95% confidence intervals.
Middle and Right: Watermark detectability (TPR at FPR = 1%) for Alg. 1 on the Gumbel-max
(middle) and SynthID (right). Orange curves show our method, blue curves show the prior-based
method, and black curves represent the ideal detector (Oracle) that always selects the correct test
statistic. Shaded regions indicate the 95% confidence intervals.
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Figure 7: ROC curves for watermark detection on the C4 dataset. Gumbel-max performance is
evaluated at a token length of 200, while SynthID performance is evaluated at a token length of 100.
Orange curves show our method, and blue curves show the prior-based method.
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Table 2: Results of Alg. 1 applied to the Gumbel-max and SynthID watermarks on the C4 dataset,
compared with Standard Speculative Sampling (Std. SpecSampl.) and basic watermarks. AATPS:
Average Accepted Tokens Per Step; PTT: Per Token Time in millisecond; LOGPPL: Log Perplexity.

Models Lookahead Method AATPS PTT LOGPPL
L
l
a
m
a
-
7
b

/L
l
a
m
a
-
6
8
m basic Gumbel-max 1.0± 0.0 22.98± 0.040 2.22± 0.023

SynthID 1.0± 0.0 40.27± 0.307 2.29± 0.015

K = 2
Gumbel-max 1.8112± 0.0080 17.65± 0.062 2.21± 0.023
SynthID 1.8228± 0.0081 35.44± 0.404 2.24± 0.016
Std. SpecSampl. 1.8200± 0.0071 16.01± 0.044 2.28± 0.023

K = 3
Gumbel-max 1.9610± 0.0099 17.70± 0.070 2.22± 0.025
SynthID 1.9662± 0.0106 39.62± 0.552 2.25± 0.015
Std. SpecSampl. 1.9663± 0.0101 15.69± 0.056 2.26± 0.022

K = 4
Gumbel-max 2.0836± 0.0125 18.21± 0.081 2.22± 0.024
SynthID 2.0917± 0.0135 39.48± 0.672 2.24± 0.015
Std. SpecSampl. 2.0847± 0.0128 15.83± 0.068 2.23± 0.023

G
e
m
m
a
-
7
b

/G
e
m
m
a
-
2
b basic Gumbel-max 1.0± 0.0 29.19± 0.006 2.52± 0.026

SynthID 1.0± 0.0 37.92± 0.193 2.56± 0.013

K = 2
Gumbel-max 2.3415± 0.0077 25.67± 0.061 2.53± 0.026
SynthID 2.3468± 0.0070 35.61± 0.396 2.58± 0.014
Std. SpecSampl. 2.3427± 0.0074 23.57± 0.054 2.60± 0.027

K = 3
Gumbel-max 2.8473± 0.0127 28.19± 0.110 2.53± 0.026
SynthID 2.8450± 0.0119 33.14± 0.441 2.59± 0.014
Std. SpecSampl. 2.8442± 0.0129 2.50± 0.026 2.50± 0.026

K = 4
Gumbel-max 3.1529± 0.0176 28.98± 0.145 2.53± 0.027
SynthID 3.1499± 0.0165 36.84± 0.472 2.59± 0.015
Std. SpecSampl. 3.1494± 0.0164 26.61± 0.100 2.60± 0.027

F.3 THEORETICAL SPEEDUP VS. EMPIRICAL RUNTIMES

Both Average Accepted Tokens Per Step (AATPS) and Per Token Time (PTT) reported in Table 1, 2
reflect how much Alg. 1 accelerates the generation process, but they capture different aspects of
performance. AATPS measures the number of accepted tokens in each generation loop and thus
reflects the theoretical speedup, focusing primarily on the draft token acceptance rate, to which Alg. 1
directly contributes. Ideally, a higher acceptance rate leads to a greater overall speedup. In contrast,
PTT empirically measures the actual runtime of generation and can be affected by various factors,
including (but not limited to) watermark sampling, token verification, and model switching (when
using a single GPU). Therefore, the observed speedup based on PTT may not perfectly align with
that implied by AATPS. We do not further investigate this discrepancy, as it falls beyond the scope of
this work.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

The LLMs were used solely to polish the writing, including grammar correction and improvements
in clarity and style. The research contributions, including the design of methods, implementation,
experiments, and analysis, were carried out entirely by the authors.
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