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WMADAPTER: ADDING WATERMARK CONTROL TO
LATENT DIFFUSION MODELS

Anonymous authors
Paper under double-blind review
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Figure 1: WMAdapter introduces minimal artifacts, providing better accuracy-quality tradeoff.

ABSTRACT

Watermarking is essential for protecting the copyright of AI-generated images.
We propose WMAdapter, a diffusion model watermark plugin that embeds user-
specified watermark information seamlessly during the diffusion generation process.
Unlike previous methods that modify diffusion modules to incorporate watermarks,
WMAdapter is designed to keep all diffusion components intact, resulting in sharp,
artifact-free images. To achieve this, we introduce two key innovations: (1) We
develop a contextual adapter that conditions on the content of the cover image
to generate adaptive watermark embeddings. (2) We implement an additional
finetuning step and a hybrid finetuning strategy that suppresses noticeable artifacts
while preserving the integrity of the diffusion components. Empirical results show
that WMAdapter provides strong flexibility, superior image quality, and competitive
watermark robustness.

1 INTRODUCTION

With the widespread adoption of diffusion models (Ho et al., 2020; Podell et al., 2023; Song et al.,
2020; Rombach et al., 2022; Ci et al., 2023; Zhang et al., 2023a), diffusion-generated images are
proliferating across media and the internet. While these models meet the demand for high-quality
creative content, their misuse raises significant concerns about copyright protection and the security of
images against deepfakes (Westerlund, 2019). Watermarking technology (Cox et al., 2007) provides
a tailored solution for resolving copyright disputes and identifying the sources of forgeries.

Previous watermarking methods added watermarks to images in a post-hoc way through frequency
domain transformations (Cox et al., 2007; Lin et al., 2001; Xia et al., 1998) or encoder-decoder
networks (Zhu et al., 2018; Tancik et al., 2020; Zhang et al., 2019). However, in the context of
watermarking diffusion images, post-hoc methods introduce additional workflows and unable to fully
leverage the rich latent space provided by the image generation process. Recently, more efforts (Zhao
et al., 2023b; Fernandez et al., 2023; Min et al., 2024; Xiong et al., 2023; Lei et al., 2024; Meng et al.,
2024; Yang et al., 2024; Ci et al., 2024) have focused on leveraging the characteristics of the diffusion
process to seamlessly integrate watermarking into the diffusion pipeline, known as diffusion-native
watermarking. Among these, Stable Signature (Fernandez et al., 2023) proposed a method that
fine-tunes the VAE decoder of a latent diffusion model (Rombach et al., 2022) using a pretrained
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watermark decoder (Zhu et al., 2018). This approach has shown promising results. However, it
requires fine-tuning a separate VAE decoder for each unique watermark, making it difficult to scale to
millions of keys as required in large-scale commercial scenarios where each user may need a unique
key. Additionally, the tuning of VAE decoder on a small amount of data results in blurry and lens
flare-like artifacts (see Fig. 7).

Recent works (Bui et al., 2023; Xiong et al., 2023; Min et al., 2024; Meng et al., 2024; Zhang et al.,
2024; Kim et al., 2023; Nguyen et al., 2023) have explored watermark plugins for diffusion models.
These plugins accept arbitrary watermark keys and generate watermark embeddings without requiring
per-watermark finetuning, thereby addressing the scalability issue. However, these methods typically
generate watermark embeddings without considering the image content (Kim et al., 2023; Xiong
et al., 2023; Bui et al., 2023) (i.e., they are context-less) and often require finetuning or modifying
diffusion modules to incorporate the watermark embeddings (Kim et al., 2023; Xiong et al., 2023;
Feng et al., 2024) . Tab. 1 compares several watermarking methods. Unfortunately, finetuning the
original diffusion pipeline or making intrusive modifications often leads to a significant drop in image
quality, resulting in blurriness or noticeable artifacts. Fig. 1 illustrates the image quality of different
methods, where artifacts introduced by other methods are evident. Find more examples in Fig. 13.

Table 1: Comparison of several diffusion watermarking methods. They all tend to introduce noticeable
artifacts or produce blurry images.

Modified Diffusion Modules Scalable Imperceptible

AquaLoRA (Feng et al., 2024) UNet Backbone ✓ ✗
StableSig (Fernandez et al., 2023) VAE Decoder ✗ ✗
WOUAF (Kim et al., 2023) VAE Decoder ✓ ✗
RoSteALS (Bui et al., 2023) No ✓ ✗
Ours No ✓ ✓

We propose an innovative watermark plugin solution — WMAdapter (Fig. 2). Its core design
philosophy focuses on preserving the integrity of the original diffusion pipeline to produce high-
quality images. We do not modify any parameters of the pretrained diffusion modules. So how do we
conceal the watermark information and ensure its robustness? We introduce two key innovations:
(1) We propose a novel Contextual Adapter structure that conditions on the cover image features
to generate content-aware watermark embeddings (hence "contextual"). Intuitively, this allows the
adapter to better identify areas of the image that are more suitable for hiding the watermark, enhancing
concealment and robustness. To fully leverage diffusion features while reducing computational
overhead, our Contextual Adapter extracts image features from the intermediate layers of the diffusion
VAE decoder. Unlike ControlNet plugins (Zhang et al., 2023b; Min et al., 2024), which use a heavy
UNet structure (Ronneberger et al., 2015), the Contextual Adapter is lightweight, totaling only 1.3MB
in parameters, and enables watermarking an image in just 30ms. (2) We introduce an additional
finetuning stage with a novel Hybrid Finetuning strategy to further enhance image quality. To
preserve the original diffusion modules, our Hybrid Finetuning strategy involves jointly finetuning the
adapter and the diffusion VAE decoder during training for alignment, and then using the original VAE
decoder during inference. This approach effectively suppresses noticeable artifacts and significantly
improves image sharpness. We summarize our contributions as follows:

1. We introduce WMAdapter, a novel diffusion watermarking solution with an innovative
design philosophy. It embeds watermarks non-intrusively during the diffusion process,
thereby preserving the integrity of the diffusion pipeline and producing high-quality images.

2. Methodologically, we propose Contextual Adapter and Hybrid Finetuning to achieve
non-intrusive watermarking, ensuring both watermark robustness and generation quality.

3. Experimental results demonstrate that WMAdapter effectively suppresses noticeable artifacts
and offers better accuracy-quality tradeoffs compared to prior post-hoc and diffusion-native
watermarking methods.
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Figure 2: Framework overview. WMAdapter is plugged onto the VAE decoder. It takes user input
watermark bits and image features from the VAE decoder, imprinting the watermark on-the-fly during
VAE decoding. In contrast, traditional context-less adapters take only watermark conditions as input.
The image and icons credit to (Anonymous, 2024; Freepik-Flaticon, 2024).

2 RELATED WORK

2.1 POST-HOC WATERMARKING

Post-hoc methods include traditional frequency domain transformation methods (Cox et al., 2007),
optimization-based methods (Fernandez et al., 2022b; Kishore et al., 2021), and encoder-decoder
methods (Zhu et al., 2018; Tancik et al., 2020; Jia et al., 2021). Different methods have different
aims. For instance, Kishore et al. (2021) emphasizes hiding more bits, Zhu et al. (2018) and Jia
et al. (2021) prioritizes robustness against JPEG compression.

2.2 DIFFUSION-NATIVE WATERMARKING

According to the location of the watermark, we classify diffusion-native watermarking methods
into two categories. Adding to initial noise: Tree-Ring (Wen et al., 2023) adds watermarks to
the frequency of initial noise, achieving remarkable robustness. Subsequent methods (Yang et al.,
2024; Ci et al., 2024; Lei et al., 2024) improves its multi-key identification capabilities. However,
these methods significantly alter the layout of the generated images, which is not desirable in some
production scenarios. Adding to latent space: Other methods leverage the latent space of the
VAE (Bui et al., 2023; Meng et al., 2024; Zhang et al., 2024; Xiong et al., 2023; Kim et al., 2023;
Fernandez et al., 2023) or diffusion backbone (Feng et al., 2024). However, they either generate
content-agnostic watermark embeddings or modify the original diffusion modules, often resulting
in lower image quality. In contrast, WMAdapter prioritizes image quality through novel contextual
designs while preserving the integrity of the entire diffusion pipeline. Stable Messenger (Nguyen
et al., 2023) is a recent method that also generates content-aware watermarks. However, they mainly
focus on improving message accuracy and their model design is different from ours.

3 METHOD

In this section, we will introduce the framework of WMAdapter, detail its contextual structure, and
discuss the training and fine-tuning strategies.

3.1 FRAMEWORK OVERVIEW

Fig.2 illustrates the overall framework of WMAdapter. WMAdapter is a plug-and-play watermark
module that can be directly attached to the VAE decoder of a latent diffusion model (Rombach
et al., 2022). It imprints the watermark during image generation, seamlessly integrating into the
diffusion generation workflow. WMAdapter employs a novel contextual adapter structure, which
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Figure 3: The architecture of WMAdapter. Left: The structure of WMAdapter. It comprises several
independent Fusers with identical structures. Right: The structure of Fuser. It consists of a watermark
Embedding module and a Fusing module.

takes both watermark bits and image features from the VAE decoder as input and outputs feature
residuals containing watermark information. Watermarked images can be directly fed into a pretrained
watermark decoder, such as HiDDeN (Zhu et al., 2018), to retrieve the watermark information.

The training of WMAdapter consists of two stages: large-scale training and fast finetuning. In the
training stage, we freeze the VAE decoder and the watermark decoder and train only the Adapter
on a large scale dataset. We then finetune the Adapter and VAE decoder on a small amount of data.
Specifically, we present a novel hybrid finetuning strategy that is able to suppress tiny artifacts and
significantly enhance generation quality. We also discuss several different strategies concerning
different tradeoffs between robustness and quality.

3.2 CONTEXTUAL ADAPTERS

In this section, we provide a detailed overview of the contextual structure of WMAdapter. Fig. 3
(Left) illustrates the internal structure of WMAdapter, which comprises a series of independent Fuser
modules. Each Fuser ϕi(·) is attached before a corresponding VAE decoder block i. It receives
both VAE feature fi and watermark bits w as inputs, and outputs a feature residual yi to update fi.
Formally,

yi = ϕi (fi, w) ,

f ′
i = fi + yi.

(1)

We put a total of 6 Fusers before the Conv Block, Middle Block and four Up Blocks in the kl-f8 VAE
decoder used by Stable Diffusion (Rombach et al., 2022).

Fig. 3 (Right) illustrates the internal structure of an Fuser. An Fuser consists of two main components:
the Embedding module and the Fusing module. The Embedding module maps the 01 bit sequence
into a 48-dimensional watermark feature vector. This feature vector is then expanded along the width
and height dimensions to produce a watermark feature map with the same dimensions as the image
feature. The image feature and watermark feature are concatenated along the channel dimension and
fed into the Fusing module, which outputs the image feature residuals. Keeping lightweight in mind,
we use two MLPs with 256 intermediate feature channels for the Embedding module, and two 1x1
convolutions with half the image feature channels c

2 as intermediates for the Fusing module. We
employ LeakyReLU as the non-linearity. The total parameters of WMAdapter are only 1.3M, making
it a small and efficient plugin.

3.3 TRAINING

In the training stage, we use a pretrained watermark decoder to decode watermark bits from the
watermarked images. We freeze the watermark decoder and the VAE decoder, and only train the
Adapter. Why do we use a pretrained decoder instead of training a watermark decoder from scratch
along with the Adapter? We observe that training an encoder/decoder pair from scratch, as post-hoc
methods do, typically requires significant training effort. For example, HiDDeN takes 300 epochs
to converge on the COCO dataset. The situation gets worse when trained with a diffusion pipeline.
WOUAF (Kim et al., 2023) takes about 10 days. Using a pretrained post-hoc decoder facilitates
efficient knowledge transfer, allowing WMAdapter to converge in just 1-2 epochs. Note that this will
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Figure 4: Illustration of 3 different finetunig strategies. They differ in how to treat the VAE decoder.

not bring serious security risks, because there are hundreds of different open-source decoders. We
use two types of losses as our objective: the consistency loss between the watermarked image xw and
the unwatermarked image x, and the accuracy of decoded bits. The total loss function is defined as:

L = λ1Lmae (x, xw) + λ2Llpips (x, xw) + λ3Lvgg (x, xw) + λ4Lbce (w,w
′) (2)

where the first three terms represent image consistency losses. We use MAE and LPIPS loss (Zhang
et al., 2018) to maintain consistency with VAE pretraining (Rombach et al., 2022). Additionally, we
include a Watson-VGG loss (Czolbe et al., 2020) similar to Stable Signature (Fernandez et al., 2023)
to enhance human visual preference. For watermark decoding accuracy, we use binary cross-entropy
loss bewteen decoded bits w′ and input bits w. We empirically set λ1, λ2, λ3, λ4 to 0.2, 0.2, 0.08,
1.0, respectively.

3.4 HYBRID FINETUNING

After the training stage, we obtain a watermark adapter that performs well in both accuracy and image
quality (Sec. 4.4.2). However, when we zoom in on the generated images, grid-like artifacts can
sometimes be observed (Fig. 6). To further improve image quality and eliminate these tiny artifacts,
we introduce a fine-tuning stage on a small amount of data. On top of the first stage training losses,
we incorporate an additional total variation loss (et al, 2024) on the watermarked images to enhance
smoothness, setting its weight to 0.02.

Further, we present a novel Hybrid Finetuning strategy. Concretely, we finetune both the Adapter and
the VAE decoder, but use the fine-tuned Adapter and the original VAE decoder for inference. Fig. 4
distinguishes this strategy from two other classic finetuning strategies: Fixed and Joint Finetuning.
The Fixed Finetuning strategy uses the same training approach as in the first stage, fixing the VAE
decoder and quickly finetuning the Adapter with a high learning rate. The Joint Finetuning strategy
jointly finetunes the Adapter and the VAE decoder, using both finetuned copies for inference.

Sec. 4.4.2 will give a side-by-side comparison between these three finetuning strategies. In short,
Hybrid Finetuning can effectively suppress noticeable artifacts and, by keeping the VAE intact,
produces the sharpest and clearest images while maintaining the plug-and-play advantage, making it
ideal for commercial image generation products which require high image quality.

3.5 DISCUSSION

WMAdapter is designed with a strong emphasis on image quality, particularly in suppressing notice-
able artifacts in generated images. We introduce the Contextual Adapter and the Hybrid Finetuning,
non-intrusive watermarking methods that achieve this goal by preserving the integrity of the diffusion
pipeline. This fundamentally distinguishes our approach from other diffusion watermarking methods
that embed watermarks at the expense of image quality and introduce noticeable artifacts. We want
to highlight the importance of high-quality, artifact-free watermarked images for generative products,
as no user wants to receive images with visible flaws. The Experiment Section demonstrates that our
method successfully combines scalability, high-quality image generation, and watermark robustness.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Model and dataset We experiment with a popular latent diffusion model Stable Diffusion 2.1 (Rom-
bach et al., 2022) and its associated kl-f8 VAE. We adopt the pretrained watermark decoder from
HiDDeN (Zhu et al., 2018). The checkpoint we use was pretrained by (Fernandez et al., 2023),
encoding 48-bits watermark information. This checkpoint is also used to finetune Stable Signa-
ture (Fernandez et al., 2023). Thus, our adapter can be directly compared with (Fernandez et al.,
2023). ALL training and finetuning steps are performed on MS-COCO 2017 (Lin et al., 2014) training
set. Validation is performed on COCO 2017 validation set. We train and evaluate our adapters on
images at resolution 512× 512. For images smaller than this size, we resize their shorter edge to 512,
then center crop to get a 512× 512 image.

Training strategies For the first stage training, we adopt 8 × NVIDIA A5000 GPUs of 24 GB
memory, with per-GPU batchsize of 2, AdamW optimizer (Loshchilov & Hutter, 2017), a learning
rate of 5e-4. We train the model for 2 epochs, taking about 5 hours. For the second stage finetuning,
we use a single A5000 GPU. We set the mini-batch to 2. We also use the AdamW optimizer and a
start learning rate of 5e-4. However, we adopt a per-step cosine learning rate decay with 20 warm-up
steps. Unless otherwise specified, the total fine-tuning process defaults to 2,000 steps, lasting for
about 50 minutes. Different finetuning strategies result in several different adapter variants. We use
Adapter-B, Adapter-F, Adapter-V, and Adapter-I to denote the adapters obtained by No Finetuning,
Fixed Finetuning, Joint Finetuning and Hybrid Finetuning, respectively.

Evaluation metric Following previous conventions (Zhu et al., 2018; Fernandez et al., 2022b;
2023), we use average bit accuracy to evaluate the watermarking performance of our adapter. Bit
accuracy is defined by the ratio of correctly decoded bits in a 48-bit watermark sequence. Apart from
the bit accuracy, we also report the tracing accuracy among different numbers of users following
concurrent works (Min et al., 2024; Ci et al., 2024). We adopt the evaluation protocol of (Min et al.,
2024). Concretely, we construct user pools of different sizes, ranging from 104 to 106, to evaluate the
accuracy of user tracing at different scales. Each user is assigned a unique key. For each user pool.
we randomly select 1,000 users and watermark 5 images per user, resulting in 5,000 watermarked
images. For each of the 5,000 images, we find the best match among the user pool and check if it’s a
correct match. Tracing accuracy is then averaged over all 5,000 images. To evaluate the detection
performance, we report TPR@FPR10−6. Concretely, we assume the bits decoded from the natural
images following Bernoulli distribution with parameter 0.5. Then the number of matched bits M
follows a binomial distribution with parameters (48, 0.5). So we have the false detection rate as a
function of threshold τ : FPR (τ) = P (M > τ) = I0.5 (τ + 1, 48− τ), where I is the incomplete
beta function. We control FPR = 10−6 and calculate the corresponding τ , then we evaluate TPR
with this threshold.

In addition to accuracy measurements, we are also interested in the watermark’s invisibility and
image generation quality. We report the Peak Signal-Noise-Ratio (PSNR) between images before and
after watermarking and Fréchet Inception Distance (FID) (Heusel et al., 2017) between watermarked
images and images from coco val set. Typically, higher PSNR leading to sharper and clearer images.
While lower FID means the watermarked images have higher fidelity and more closely resemble the
real images in terms of appearance and variety.

4.2 COMPARISON WITH OTHER METHODS

Accuracy and image quality We compare our method with three post-hoc watermarking methods
SSL (Fernandez et al., 2022b), StegaStamp (Tancik et al., 2020), and HiDDeN (Zhu et al., 2018). SSL
bases on iterative optimization to get the watermark, while StegaStamp and HiDDeN are encoder-
decoder based methods. For HiDDeN, we use the model provided by (Fernandez et al., 2023), which
is enhanced with a JND mask (Fernandez et al., 2022a) for better image quality. We also compare
with three recent diffusion-native watermarking methods RoSteALS (Bui et al., 2023), WOUAF (Kim
et al., 2023) and Stable Signature (Fernandez et al., 2023). Note that all these methods do not alter
the image layout during watermarking.
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Table 2: Comparison with other watermarking methods on generation quality and robustness. All
methods are evaluated on COCO 2017 val set (Lin et al., 2014) with image size 512× 512. Since
Stable Signature (Fernandez et al., 2023) requires finetuning of separate VAE decoders to embed
different keys, we report its average results on 10 randomly sampled keys. We report TPR@FPR10−6

for detection performance. For robustness, we use Crop 0.3, JPEG 80, Brightness 1.5.

Bit Accuracy ↑
Method PSNR ↑ FID ↓ TPR ↑ None JPEG Crop Bright Comb

Po
st

SSL 33.0 14.8 1.00 1.00 0.99 0.97 0.98 0.88
HiDDeN 34.1 3.1 0.99 0.98 0.84 0.97 0.98 0.85
StegaStamp 29.3 9.9 1.00 0.96 0.96 0.49 0.94 0.49

N
at

iv
e

RoSteALS 30.4 5.5 1.00 0.99 0.99 0.50 0.96 0.50
WOUAF 25.3 13.5 0.97 0.99 0.99 0.94 0.97 0.93
Stable Signature 29.7 3.2 0.99 0.99 0.93 0.99 0.99 0.93
WMAdapter-F 33.1 2.7 1.00 0.99 0.92 0.99 0.99 0.92
WMAdapter-I 34.8 2.5 1.00 0.98 0.90 0.97 0.97 0.90

As shown in Tab. 2, WMAdapter-I achieves the best image quality among all methods, excelling in
both PSNR and FID. Its PSNR and FID improve over the baseline, Stable Signature, by approximately
17% and 22%, respectively. In contrast, Stable Signature produces blurrier images with lens flare
artifacts (Sec. 4.5) due to fine-tuning of the VAE decoder, resulting in lower PSNR and FID scores.
WMAdapter-I shows even greater improvements compared to SSL (5% and 83%), RoSteALS (14%
and 55%), and WOUAF (38% and 81%), as these methods introduce larger artifacts greatly degrading
quality metrics (See Fig. 13 for artifacts).

In terms of watermark detection performance, our methods achieve perfect TPR, outperforming
HiDDeN, WOUAF, and Stable Signature. For bit accuracy, while SSL excels in single attack scenario,
it is more sensitive to combined attacks. Both WMAdapter-F and WMAdapter-I surpass SSL,
HiDDeN and RoSteALS under combined attacks, trailing the top-performing methods by only 0.01
and 0.03, respectively, while still maintaining competitive robustness. Fig. 1 (right) shows that
WMAdapter provides a better robustness-quality tradeoff.

Tracing accuracy Since certain watermarking methods, such as Wen et al. (2023), don’t incorporate
the concept of bits or use tracing accuracy as an alternative evaluation protocol (Min et al., 2024), we
further compare the tracing accuracy in Tab. 3. We can see that our adapters achieve nearly perfect
tracing accuracy with different scales of users. Tree-Ring (Wen et al., 2023) achieves zero tracing
accuracy due to its design flaws uncovered by Ci et al. (2024). WADIFF (Min et al., 2024) is a
concurrent effort, which employs HiDDeN decoder to finetune a UNet watermark plugin for diffusion
models. We can see that its tracing accuracy gradually drops as the scale grows despite they employ a
heavier adapter (∼900MB params). Both ours and Stable Signature perform consistently at different
user scales. Notably, Stable Signature has higher average bit accuracy but gets slightly worse tracing
accuracy than ours. We attribute this to its larger performance variance among different keys.

Summary Unlike other methods with significant drawbacks—such as RoSteALS, SSL, and
WOUAF, which introduce noticeable artifacts and result in significantly lower FID scores, or Sta-
bleSignature, which lacks scalability—our approach delivers high image quality, scalability, and
competitive accuracy simultaneously. In all three aspects, WMAdapter-I consistently outperforms
HiDDeN, providing a better overall tradeoff.

4.3 ROBUSTNESS TO MORE ATTACKS

Other transformations and intensities Fig. 8 evaluates against more image transformations and
intensities. Our adapters achieve comparable performance to the baseline Stable Signature under
various levels of attacks, while offering flexibility, scalability and higher image quality.
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Table 3: Accuracy of tracing different numbers
of keys. All methods are evaluated on COCO
dataset (Lin et al., 2014). For WADIFF∗ (Min et al.,
2024), the number is reported by its original paper.

Method Trace 104 Trace 105 Trace 106

WADIFF∗ 0.982 0.968 0.934
Tree-Ring 0.000 0.000 0.000
Stable Signature 0.999 0.999 0.998
WMAdapter-F 1.000 1.000 1.000
WMAdapter-I 1.000 0.999 0.999
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Figure 5: Against various adaptive attacks.
SS: Stable Signature.

Regeneration attack Recent work (Zhao et al., 2023a) has demonstrated the potential of regenera-
tion attacks in watermark removal. We evaluate the robustness of WMAdapter against three different
regeneration methods introduced in Zhao et al. (2023a): one diffusion-based (Zhao et al., 2023a)
and two VAE-based methods (Ballé et al., 2018; Cheng et al., 2020). For Ballé et al. (2018); Cheng
et al. (2020), we assess performance at compression rates of 1-6 and 1-8, respectively. Fig. 5 presents
the Accuracy-PSNR curve. We observe that the three regeneration attacks require a PSNR drop of
4-6 dB to successfully remove our watermark. In contrast, only a 2 dB reduction in image quality is
needed to remove the watermark of Stable Signature. This demonstrates that our method exhibits
better robustness against regeneration attacks.

Adversarial attack Adversarial attack relies on PGD (Madry, 2017) optimization to generate
adversarial noise targeting the watermark decoder. Based on access to the watermark decoder, these
attacks are categorized as white-box and black-box. In black-box settings, a binary classifier is trained
to identify watermarked images, and adversarial noise is then optimized to mislead this classifier,
disrupting the watermark. This is commonly referred to as a surrogate detector attack (Saberi et al.,
2023; Jiang et al., 2023; An et al., 2024). We follow the implementation of An et al. (2024) and
demonstrate our method’s robustness against both white-box (An’24-wb △) and black-box attacks
(An’24 ▽) in Fig. 5. Notably, both WMAdapter and Stable Signature exhibit strong robustness against
black-box adversarial attacks, with a bit accuracy drop of about 0.02 and TPR drop less than 0.01. In
white-box scenarios, where attackers have full access to the watermark decoders, the watermarks can
be easily disrupted with minimal impact on image quality.

Query-based attack Another common black-box attack is the query-based attack, which defines
a blending process that transitions from a random image to a given watermarked image. During
this process, it repeatedly queries the watermark decoder API to determine whether the current
blended image contains a watermark, aiming to identify the image with the minimal perturbation
that successfully removes the watermark. We adopt the WEvade-B-Q approach from Jiang et al.
(2023) and set the detection threshold τ to control FPR = 10−6. Our observations show that the
query-based attack can successfully evade watermark detection for both WMAdapter and Stable
Signature, achieving a success rate of 1.0 (i.e., TPR = 0). However, this method results in significant
image quality degradation, with the final attacked images averaging a PSNR of approximately 8 dB.1

4.4 ABLATION STUDY

4.4.1 WHY CONTEXTUAL ADAPTER?

Tab. 4 compares different adapter variants after the first stage training. We can find that using the
contextual adapter structure is crucial for both watermark accuracy and image quality, improving
bit accuracy by 0.02 and PSNR by a significant number of 4.1 db compared with the context-less
structure. This result well supports our motivation that the watermark encoder should be aware of the

1We did not include this method in Fig. 5 because the resulting image quality is far outside the scope of the
comparisons shown in the figure.
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Original Adapter-B Adapter-F Adapter-I Adapter-V

Figure 6: Qualitative comparison between different finetuning strategies. Adapter-B and Adapter-
F produces tiny grid-like artifacts. Finetuning with VAE (Adapter-I and -V) alleviates this issue.
Using fintuned VAE at inference time (Adapter-V) leads to lens flare artifact. Using original VAE
(Adapter-I) achieves the most visually appealing results. Zoom in for best view.

cover image content to generate high quality embedding. Note that SOTA watermarking methods
still use the context-less structure to encode watermark (Xiong et al., 2023; Kim et al., 2023; Bui
et al., 2023). Contextual adapter provides a simple yet promising approach for further improvement.
Another key design is to use 1x1 conv in the adapter, because we found that 3x3 conv suffers from
unstable training.

4.4.2 ROLE OF FINETUNING

Table 4: Comparison between adapter structures.

Contextual Context-less Conv 3× 3

Bit Acc 0.99 0.97 0.49
PSNR 32.8 28.7 12.0

Tab. 5 and Fig. 6 compare different fine-
tuning strategies quantitatively and qual-
itatively. From Tab. 5, we can see that
Adapter-B achieves good numerical results.
However, upon closer inspection of the gen-
erated images, subtle grid-like artifacts be-
come noticeable. If we freeze the VAE
decoder and perform a quick fine-tuning
for 2k steps using a large learning rate, resulting in Adapter-F. We find that PSNR and SSIM metrics
further improve, though the artifacts persisted.

Hybrid Finetuning (Adapter-I) further suppresses artifacts. Since the VAE remains unaltered during
inference, it produces the sharpest and most visually appealing images, with PSNR improving
significantly to 34.8 dB. This improvement comes at the minor cost of a 0.02 decrease in bit accuracy
under combined attacks.

Joint Finetuning (Adapter-V) significantly degrades all image quality metrics. As shown in Fig. 6,
Joint Finetuning results in smoother but blurrier images. It also introduces noticeable lens flare
artifacts, which are commonly observed in methods such as Stable Signature (Fernandez et al., 2023),
FSW (Xiong et al., 2023), AquaLoRA (Feng et al., 2024), and WOUAF (Kim et al., 2023), as they
all modify diffusion components to embed the watermark. This observation supports our core idea
that preserving the integrity of the original diffusion pipeline is crucial for high-quality generation.

Considering both numerical results and visual artifacts, Adapter-F and Adapter-I offer better accuracy-
quality tradeoffs. Therefore, we adopt these two as our default choices. Note that all adapter variants
incorporate an additional total variation loss during the second stage finetuning. While this loss helps
produce visually smoother images and provides a 0.1 PSNR improvement, it does not reduce artifacts
(Fig. 6). Applying it during the first stage training can lead to overly smoothed images.

4.5 QUALITATIVE RESULTS

We qualitatively compare WMAdapter with the baseline method, Stable Signature (Fernandez et al.,
2023) in Fig. 7. We can observe that Stable Signature tends to produce lens flare artifacts, as

9
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Table 5: Comparison between different finetuning strategies. "Adapter-B" means no extra finetuning.
Bit Acc is evaluated under combined attacks.

Bit Acc PSNR SSIM FID

Adapter-B 0.92 32.8 0.94 2.7

Adapter-F 0.92 33.1 0.95 2.7
Adapter-I 0.90 34.8 0.96 2.5
Adapter-V 0.92 29.9 0.87 3.1

indicated by the yellow arrows. We attribute this issue to the modification of VAE decoder. In
contrast, Adapter-F and Adapter-I greatly suppress this noticeable artifact by preserving the integrity
of all diffusion components. As shown in columns (c)(d), our adapters produce sharper images
with clearer text edges, which is also supported by the higher PSNR metric. In short, compared
to StbaleSignature, WMAdapter produces higher quality images with fewer noticeable artifacts.
Appendices A.7, A.8, A.9 provide additional comparisons across more datasets.
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Figure 7: Comparison between WMAdapter and StableSignature (Fernandez et al., 2023). Yellow
arrows point to the generated artifacts. (b)(d)(f) show the difference after watermarking. View in
color and zoom in.

5 CONCLUSION AND LIMITATION

In this paper, we introduce WMAdapter, a plug-and-play watermarking plugin that enables latent dif-
fusion models to embed arbitrary bit information during image generation. Our adapter is lightweight,
easy to train, and offers a superior accuracy-quality trade-off with significantly fewer noticeable
artifacts compared to previous post-hoc and diffusion-native watermarking methods. One limitation is
that the Adapter-F variant occasionally produces grid-like artifacts that become visible upon zooming
in. In summary, WMAdapter provides a simple yet powerful baseline for further exploration on
diffusion watermarking.
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A APPENDIX

A.1 EXPERIMENT STATISTICAL SIGNIFICANCE

For the first training stage, we ran 3 independent training and found the standard deviation of average
validation bit accuracy across 3 runs to be 0.0006, and the standard deviation of validation PSNR to
be 0.03 dB.

For the second finetuning stage, we also ran 3 independent trials. The standard deviation of average
validation bit accuracy across 3 runs was also 0.0006, and the std of validation PSNR was 0.04 db.
The small standard deviation at both stages demonstrates the stability of our method. Since the
standard deviation is too small to be clearly viewed in Fig. 8, we report the numbers in text.

A.2 BROADER IMPACTS

The proposed diffusion watermarking technique offers significant positive societal impacts, such
as enhancing copyright protection for digital creators and helping to prevent the spread of fake
news by enabling the authentication of images. However, it also poses potential negative impacts,
including privacy concerns, the risk of misuse for malicious purposes, technical challenges that may
disadvantage smaller creators, and possible degradation of image quality. Balancing these benefits
and drawbacks is crucial to ensure the responsible and effective use of this technology.

In terms of applications, our proposed WMAdapter can also be directly applied to video generation
models such as AnimateDiff (Guo et al., 2023) and StableVideoDiffusion (Blattmann et al., 2023),
which share the same VAE architecture as image Diffusion models. We leave further exploration on
video to the future work.

A.3 EVALUATION ON VARIOUS DISTORTION INTENSITIES

Fig. 8 evaluates our method under larger ranges of distortion intensities and more attacks. We can
see that our adapters remain comparable robustness to Stable Signature (Fernandez et al., 2023)
over range of attack intensities. Note that all three methods exhibit limited robustness to significant
Gaussian noise. This limitation arises because the pretrained HiDDeN checkpoint (Fernandez et al.,
2023) was not specifically trained to handle noise attacks. To provide a comprehensive evaluation of
the different methods, we still present their results under Gaussian noise.

A.4 MORE RESULTS ON ADAPTIVE ATTACKS

A.5 RESULTS ON DIFFERENT VAES

We train several watermark adapters for VAEs used by SD1.5&2.1 (Rombach et al., 2022),
SDXL (Podell et al., 2023) and DiT (Peebles & Xie, 2023) (kl-f8-mse) at resolution 512 × 512.
We compare the adapters before the finetuning stage. Tab. 6 shows the results. We observe that
WMAdapter consistently performs well across various VAEs, making it applicable in a wide range
of contexts. The PSNR of SDXL adapter is lower compared to SD2.1 and DiT VAE. This may be
caused by the resolution mismatch.

Table 6: Evaluation on VAEs from different models.

SD1.5 SD2.1 SDXL DiT

Bit Acc 0.99 0.99 0.99 0.99
PSNR 32.1 32.8 31.2 32.4

We further evaluate the ability of WMAdapter to zero-shot transfer to different VAEs. Specifically,
we apply the adapter trained on SD2.1 directly to SD1.5 VAE and find that it is able to handle SD1.5
image latents with little performance loss. This empirical result demonstrates the zero-shot transfer
potential of WMAdapter to different customized SD VAEs.
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Figure 8: Robustness comparison over various distortion intensities.

Original Crop 0.3 JPEG50 Contrast 3.0Brightness3.0

Noise 0.1 Resize 0.5 Sharpness 3.0Saturation 3.0

Figure 9: Visualization of different augmentations.

A.6 VISUALIZATION OF ATTACKS

Fig. 9 shows different attacks evaluated in the paper.

A.7 MORE QUALITATIVE RESULTS ON COCO

Fig. 11 shows the watermarked images and their difference with the original images. We find that both
WMAdapter-F and WMAdapter-I can adaptively embed watermark information into regions with
significant color variations and richer textures in the images, significantly enhancing their invisibility.
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A.8 GENERALIZATION TO IDEOGRAM DATASET

Fig. 12 shows our results on images generated by Ideogram (Ideogram.ai, 2024). These images
exhibit completely different styles. However, our WMAdapter, trained on COCO, transfers seamlessly
to them.

A.9 COMPARISON WITH OTHER METHODS

Fig. 13 compares various watermarking methods. We observe that our method introduces minimal
noticeable artifacts to the images. Thanks to the dedicated design of the contextual adapter, the
modifications adapt more effectively to the cover image content.

While the JND enhancement (Fernandez et al., 2022a) used by HiDDeN* can also adapt the watermark
post-hoc. However, such post-hoc methods compromises robustness and tends to alter the background.
In contrast, our contextual adapter is trained end-to-end, offering a better robustness-quality tradeoff
(see Tab. 2 and Fig. 1).

Original Original_cropped Conv_out Conv_norm_out Up_blocks.3

Up_blocks.2 Up_blocks.1 Up_blocks.0 Mid_block Conv_in

Up_blocks.2 (weight)Up_blocks.2 (bias)

Figure 10: The impact of VAE decoder parameters on lens flare artifacts. We start from the output
layer of the VAE decoder and replace the finetuned VAE decoder parameters with the pretrained VAE
decoder parameters layer by layer. This figure shows watermarked images generated with different
layers replaced. For example, "Up blocks.2" indicates all layers after "Up blocks.2" (included) are
replaced. We also compare the effects of replacing bias against weight.

A.10 FURTHER INVESTIGATION ON LENS-FLARE ARTIFACTS

Lens flare artifacts are commonly observed in watermarking methods utilizing finetuned VAE
decoders, such as Stable Signature (Fernandez et al., 2023) and FSW (Xiong et al., 2023). This
suggests that parameter changes in the VAE decoder contribute to the occurrence of these artifacts.

In this section, we further investigate the influence of different parameters in the VAE decoder on lens
flare artifacts. Starting from the output layer,“conv out”, we progressively replaced the finetuned VAE
decoder parameters with the pretrained VAE decoder parameters, proceeding layer by layer toward
the input layer. The VAE decoder comprises the following layers (from output to input): “conv out”,
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“conv norm out”, “up blocks” x 4, ‘mid block”, and “conv in”. The corresponding generated images
are presented in Fig. 10.

We can observe that lens flare artifacts almost disappear in the “Up blocks.2”, indicating that changes
in the parameters of the “conv out”, “conv norm out”, "up block.3”, and "up block.2” 4 layers were
responsible for their occurrence. To investigate further, we replace only the bias or weight parameters
of these four layers. The results show that replacing only the weight parameters effectively suppresses
the lens flare artifacts, suggesting that their occurrence is solely attributed to changes in the weight
parameters of these layers. Further detailed investigation of the mechanism behind lens flare artifacts
generation is beyond the scope of this paper and is left for future work.
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Original Adapter-F Difference Adapter-I Difference

Figure 11: Qualitative results on COCO dataset at resolution 512.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Original Adapter-F Difference Adapter-I Difference

Figure 12: Qualitative results on Ideogram (Ideogram.ai, 2024) at resolution 512.
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AquaLoRA StableSigWOUAF RoSteALSOriginal SSL HiDDeN* WMAdatper-I

“Downtown Beijing at sunrise. detailed ink wash”

“a cat sitting on a box with a drawing of an elephant on it”

“robots meditating in a vipassana retreat”

“a tree growing out of the middle of an intersection”

“a marina without any boats in it”

Figure 13: Watermarking images generated with given prompts. For HiDDeN* (Zhu et al., 2018), we
use a post-hoc just noticeable difference (JND) mask to enhance invisibility (Fernandez et al., 2022a).
Zoom in for best view.
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