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Abstract. Multimodal image alignment involves finding spatial corre-
spondences between volumes varying in appearance and structure. Au-
tomated alignment methods are often based on local optimization that
can be highly sensitive to initialization. We propose a novel efficient al-
gorithm for computing similarity of normalized gradient fields (NGF) in
the frequency domain, which we globally optimize to achieve rigid mul-
timodal 3D image alignment. We validate the method experimentally
on a dataset comprised of 20 brain volumes acquired in four modalities
(T1w, Flair, CT, [18F] FDG PET), synthetically displaced with known
transformations. The proposed method exhibits excellent performance
on all six possible modality combinations and outperforms the four con-
sidered reference methods by a large margin. An important advantage
of the method is its speed; global rigid alignment of 3.4Mvoxel volumes
requires approximately 40 seconds of computation, and the proposed al-
gorithm outperforms a direct algorithm for the same task by more than
three orders of magnitude. Open-source code is provided.

Keywords: Image registration · global · exhaustive search · NGF · FFT
· matching · GPU implementation.

1 Introduction

Multimodal image alignment (also known as registration) involves finding cor-
respondences between images with varying degrees of difference of appearance
and structure [18], often applied with the goal of combining the complementary
information of each modality via image fusion. Alignment of large displacements
is particularly challenging since correspondences to be inferred are far apart and
presence of multiple local optima becomes increasingly problematic as the search
space grows, thereby often requiring global contextual and spatial information.

A large number of methods exist for multimodal alignment [14], including
local optimization methods based on mutual information (MI) [17,8] or nor-
malized gradient fields (NGF) [13,3], and representation extraction techniques
based on local self-similarities [4] or Deep Feature Learning [12,5]. Most of the
(intensity-based) methods are based on some form of local optimization, which



2 J. Öfverstedt et al.

A

B

Find max of CSNGF

Warp B into space of A

...ϴ1

ϴ2

ϴ3 ϴ4

NGF of A

NGF of B

(ϴ, χ)

(a) Illustration of the global image volume alignment method.
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Fig. 1: Main steps of one level of the multi-level rigid alignment method (a), and
examples of the modalities considered in the evaluation (b) (images from [9]).
(a) Two image volumes of modalities A (here [18F] FDG PET), and B (T1
weighted MR), are used as input. For a set of 3D rotations θ, the similarity
measure sANGF between the NGF of A and the NGF of B (rotated), (here shown
as RGB images where each color channel represents one component of the 3D
vector field n1(⋅;A), n2(⋅;A), n3(⋅;A)) is computed for all 3D displacements. The

rigid alignment (θ̂, χ̂) is found by locating the maximum sANGF.

usually require a good initial guess to work well. However, several global align-
ment methods do exist, including [6,1] as well as a recently proposed method
based on the cross-mutual information function (CMIF) [10].

We propose a new global alignment method based on NGF that is fast and
exhibits excellent performance on a rigid multimodal 3D medical image align-
ment task. Our evaluation on 6 pairs of modality combinations shows that it
outperforms well known methods which rely on local optimization of MI [17,8]
and NGF [3] as well as the recently proposed approach based on global opti-
mization of CMIF [10]. Figure 1 illustrates the general idea of the method.

A fast PyTorch-based implementation of the method is shared as open-source
at http://github.com/MIDA-group/cross sim ngf.

2 Background

The (regularized) normalized gradient field [3], for image A at point x, is

n⃗(x;A) = ∇A(x)
√
∥∇A(x)∥22 + ϵ2

, (1)

where ϵ is a small constant to reduce the impact of gradients with very small mag-
nitude and avoid division by zero. In this work we use ϵ = 10−5 for A(x) ∈ [0,1],
selected empirically; higher values yielded more failed alignments and lower val-
ues mostly made the measure more noisy.

https://github.com/MIDA-group/cross_sim_ngf
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The main assumption of NGF-based alignment is that parts of images (ac-
quired by different modalities) are in correspondence when the directions of their
intensity changes are parallel or anti-parallel. A local similarity of NGF (SNGF)
based on the squared dot-product of the elements of the NGF is defined as

sNGF(x;A,B) = ⟨n⃗(x;A), n⃗(x;B)⟩2. (2)

Orientation correlation (OC) and squared orientation correlation (SOC) of-
fer an efficient way of computing SNGF of 2D images for all discrete displace-
ments [1]. In 2D, the vectors n⃗(⋅; ⋅) are represented as complex numbers. A fast
algorithm utilizing log-polar Fourier transform for OC-based alignment w.r.t.
rotation and scaling is proposed in [16]. A computationally efficient extension to
3D [2] required a modification of the similarity measure; the authors proposed
to, instead of (2), use its unsquared version:

sUS-NGF(x;A,B) = ⟨n⃗(x;A), n⃗(x;B)⟩. (3)

By observing three separable components of the (unsquared) dot-product in (3),
the authors [2] formulated an algorithm for efficiently computing the measure for
all discrete displacements using cross-correlation in the frequency domain. None
of the existing work, however, describes a method for computing similarities of
NGF using the squared measure (2) efficiently in the frequency domain for 3D
volumes, a gap which we aim to fill with this work.

The ability to use the squared measure rather than the unsquared measure
is beneficial for multimodal image alignment [1]. Eq. (3), similarly to (the un-
squared) OC [1], exhibits useful properties such as invariance to changes of con-
trast and absolute intensity levels, which are suitable for monomodal registration
tasks. However, multimodal scenarios are often characterized by the appearance
of parts of a sample that are dark in one modality and bright in another; in such
cases, aligned samples actually minimize sUS-NGF.

3 Method

Here we define a similarity measure between NGF based on (2), a cross-similarity
(c.f . cross-correlation) formulation of the measure, and propose an algorithm for
computing it efficiently in the frequency domain for all 3D discrete displacements.

In [3], the point-wise contributions of sNGF (2) are aggregated by summation.
A downside of this choice is that it imposes a strong bias towards full overlap
of the images which can be especially problematic for global optimization. We
instead formulate a scaled similarity measure that is applied to selected regions
of the images A∶XA → R and B∶XB → R, defined by indicator functions (masks)
MA∶XA → {0,1} and MB ∶XB → {0,1}, ignoring the parts of the finite rectan-
gular domains where either MA or MB are zero-valued. The average similarity
of NGF is

sANGF(A,B;MA,MB) =
1

∑xMA(x)MB(x)
∑
x

MA(x)MB(x)sNGF(x;A,B) .

(4)
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Based on sANGF, we define the Cross Similarity of NGF

CSNGF(χ;A,B,MA,MB) =
1

N(χ)∑x
MA(x)MB(x + χ)sNGF(x;A(x),B(x+χ)),

(5)
where χ ∈ S is a discrete translation from the set S representing all the considered
discrete translations and N(χ) is the number of overlapping voxels (where MA

and MB intersect) as a function of χ. N(χ) can be computed as the cross-
correlation between the mask images N(χ) = (MA ⋆MB)(χ). An analogous
approach is taken in [10] to compute CMIF. Masks are essential for computation
of CSNGF, for any choice of S which results in a partial overlap of the images.
Figure 1 illustrates CSNGF as a part of a rigid 3D alignment method.

A direct method for computing CSNGF for all χ ∈ S involves looping over each
χ, and compute and aggregate sNGF for all overlapping voxels. If ∣S∣ = O(∣XA∣),
then the run-time complexity of the direct method is O(∣XA∣∣XB ∣) which for
equisized images A and B gives a quadratic run-time complexity in the size of
the images, which is not feasible for volumes of realistic sizes.

We propose a more efficient algorithm for computing CSNGF for all χ ∈ S in
3D. By reformulating (2), and expanding the squared dot-product,

sNGF(x;A,B) =
3

∑
i=1

(n⃗i(x;A)2n⃗i(x;B)2 + 2
3

∑
j=i+1

n⃗i(x;A)n⃗j(x;A)n⃗i(x;B)n⃗j(x;B)),

(6)
we express it as 6 separable parts comprising 3 squared components (i ∈ {1,2,3}),
as well as products of 3 pairs of components ((i, j) ∈ {(1,2), (1,3), (2,3)}), of
the NGF vector fields (see Fig. 1a), which can be computed independently for
all χ using cross-correlation. Let n⃗M

i denote a modified NGF scaled by the
associated mask, n⃗M

i (x ;A) = MA(x) n⃗i(x;A). The required cross-correlations
((n⃗M

i (⋅ ;A)2) ⋆ (n⃗M
i (⋅ ;B)2)) and ((n⃗M

i (⋅ ;A)n⃗M
j (⋅ ;A)) ⋆ (n⃗M

i (⋅ ;B)n⃗M
j (⋅ ;B)))

are efficiently computed in the frequency domain; (n⃗M
i (⋅ ;A)2 ⋆ n⃗M

i (⋅ ;B)2) =
F−1(F(n⃗M

i (⋅ ;A)2)⊙F(n⃗
M
i (⋅ ;B)2)), where F(⋅) denotes the Fourier transform,

z denotes complex conjugation and ⊙ denotes element-wise multiplication. For
efficiency, the 6 separable parts are aggregated in the Fourier domain. Comput-
ing CSNGF involves 14 real-valued FFTs (6 per image plus 1 mask per image)
and 2 inverse FFTs. Generalization to nD is straightforward.

3.1 Method for Global 3D Rigid Alignment

The fast algorithm for computing CSNGF for all χ ∈ S provides direct means
of global optimization of sANGF w.r.t. axis-aligned shifts. To reach global op-
timization w.r.t. rigid transformations, we adopt a hybrid approach where the
space of 3D rotations θ = (θx, θy, θz) (represented as Euler angles) is explored
via a multi-stage combination of Gaussian pyramids, random search, and global
optimization of sANGF. One stage of this coarse-to-fine method is illustrated in
Fig. 1. This multi-stage approach facilitates global search at the lowest consid-
ered resolution, followed by more local search to refine the alignment.
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Initially, a Gaussian resolution pyramid with m levels is constructed through
the application of Gaussian blur and downsampling. For each level k ∈ {1 . . .m},
a random search is performed in a coarse-to-fine sequence, by sampling angles θ
either (a) as random rotations from the set of all possible rotations, for the first
level (k = 1), or (b) as rotations close to one of the pk−1 best solutions of the pre-
vious level, for levels k ∈ {2, . . . ,m}. An angle “close to” is realized by perturbing
the previous solution by a change in rotation around axes (x, y, z), sampled from
U(−uk−1, uk−1) for each axis. For each θ, the corresponding transformation Tθ

is applied to the floating image Bθ = B ○ Tθ using trilinear interpolation and
its mask MBθ

=MB ○ Tθ using nearest neighbor interpolation. n⃗(⋅ ;Bθ) is com-
puted, followed by computation of argmaxχCSNGF(χ;A,Bθ,MA,MBθ

) for all
χ ∈ S, where S is the set of displacements satisfying a user-selected amount of
minimum overlap γ. A suitable zero padding scheme is used to enable partial
overlaps (following [10]). For k > 1, the pk−1 best solutions of the previous level
are also evaluated unmodified to not risk discarding good solutions. For k = m,
the best rotation and displacement are taken as the final rigid transformation.

The method is parameterized by blur-levels σ = (σ1, . . . , σm), downsampling
factors d = (d1, . . . dm), largest allowed steps u = (u1, . . . um−1), number of rota-
tions a = (a1, . . .am), and number of kept best solutions p = (p1, . . . , pm−1). For
all related experiments, d = (4,2,2,1), a = (5000,3000,300,0), u = (10,3,0), and
p = (20,3,1). We use γ = 0.5 everywhere in this study.

4 Performance Analysis

The empirical evaluation of the proposed method is based on the CERMEP-
IDB-MRXFDG dataset [9], available upon request from the authors. The dataset
consists of images of brains of 33 subjects acquired by 4 different modalities: T1
weighted MR, Flair MRI, Computed Tomography (CT), [18F] FDG PET, all
mapped to the standard MNI space (see Fig. 1b), thus providing ground-truth
for image alignment method evaluation, and a possibility to consider 6 different
combinations of modalities, enabling evaluation of the generality of the methods.

4.1 Similarity landscape of the average SNGF

First, we perform an empirical analysis of how (4) is affected by spatial transfor-
mations of the observed images. The aim is to provide evidence of the relevance
of global optimization for multimodal image alignment. We consider two images
acquired with the modalities FLAIR and PET and study the similarity land-
scape as the PET volume is rotated around a single axis of rotation; the result is
shown in Fig. 2. We observe that the similarity landscape exhibits characteristics
that impede local methods without a good initial guess for all parameters.

4.2 Multimodal Brain Image Volume Alignment

We compare the proposed method with two global and two local alignment
methods on the task of recovering rigid transformations of brain image volumes.
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Fig. 2: Similarity landscape of sANGF for a pair of FLAIR and PET images of
a brain (blur: σ = 5), w.r.t. the rotation angle θy. Two scenarios are presented:
(a) with no additional transformation, i.e., all transformation parameters other
than θy have their correct values, and (b) when the FLAIR image has been
rotated by 5° around a random axis (other than y) and translated by 20 vx in a
randomly direction. The vertical dashed lines mark the sought angle. We observe
that, (a) even without displacement, the convergence region of the sought angle
has a limited size, with local maxima near the global maximum, and that (b)
displacements along multiple dimensions make the search using local approaches
further challenging; here the sought angle (dashed line) is between local optima.

For each of the twelve (ordered) pairs of modalities (six unordered modality
combinations) included in the CERMEP-IDB-MRXFDG dataset, and for each
of the first 20 subjects (the last 13 used for parameter tuning), we randomly
(uniformly) sample a 3D rotation θ, and an axis-aligned shift χi ∈ [−30 vx,+30 vx]
for each axis i. These transformations are applied, using inverse mapping and
bicubic interpolation, to the first image volume of each pair. The transformed
image is taken as reference image and the untransformed image as floating image
in the alignment task. Finally, a block of size 151 × 151 × 151 vx (c.f . original
size 207 × 243 × 226) at the center of the volume is extracted, retaining most
of the content of interest, while omitting most of the background and avoiding
padding introduced by inverse mapping outside the image domain. This setup
enables evaluation of the accuracy of the proposed method w.r.t. alignment of
multimodal 3D images by recovering these known transformations.

With the aim to evaluate the benefit of the proposed algorithm, based on
the original similarity of NGF (2), compared to the one proposed in [2], we let
USNGF refer to an alignment method similar to CSNGF, but with sNGF in (5)
replaced by sUS-NGF. We evaluate both USNGF and “USNGF-”, where the lat-
ter denotes USNGF but with an intensity-inverted floating image, to observe the
sensitivity of USNGF to the sign of the gradients [1]. We also include the re-
cently proposed CMIF-based global alignment method [10], which has exhibited
excellent performance and outperformed several recent Deep Learning meth-
ods (including [12]) on multiple biomedical datasets. The selected global opti-
mization methods are implemented in Python/PyTorch [11] with CUDA/GPU-
acceleration.
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We also compare with local optimization-based methods using MI and NGF
as objective functions, relying on open-source implementations Elastix [8] and
AIRLab [15] respectively.

We use the mean Euclidean distance between the corresponding corner points
of the extracted block before and after the performed (recovered) alignment as
a displacement measure, denoted dE . We consider an alignment successful if
dE < 5 vx, which is approximately 2% of the length of the diagonal of the blocks.

For CMIF we use k = 16 (for the k-means clustering), and σ = (3.0,1.5,1.0,0.0).
For NGF, USNGF (and USNGF-), we use σ = (5.0,3.0,2.0,1.5). For local opti-
mization MI (LO-MI) [17,8], we use 6 pyramid levels, the Adaptive Stochastic
Gradient Descent optimizer [7], 4096 maximum iterations for each level. For
local optimization NGF (LO-NGF) [3], we use 5 pyramid levels, ADAM opti-
mizer, iteration counts according to the schedule (4096, 4096, 1024, 100, 50),
with downsampling factors (16, 8, 4, 2, 1) and Gaussian smoothing parameters
(15.0, 9.0, 5.0, 3.0, 1.0), with learning-rate 0.01. Trilinear interpolation is used.

Results The results of the evaluation of the 6 considered methods on the mul-
timodal brain image dataset are presented in Tab. 1. The proposed method
provides overall excellent performance, and is the best choice for all observed
modality combinations. Most of the competitors show generally poor perfor-
mance, completely failing on one or more modality combinations. Near-successes
are also of interest, since those solutions may be refined with a local optimization
method; therefore, we plot the distribution up to the threshold dE < 20 as Fig. 3.

Table 1: Image alignment performance presented in terms of success-rate, where
the threshold of success is set to 5 vx. The modality names are abbreviated in
the headings (T: T1, F: Flair, C: CT, P: [18F] FDG PET).

Method
Modalities

T/F T/C T/P F/C F/P C/P

LO-MI 0.05 0.025 0.075 0.025 0.1 0.075
LO-NGF 0.025 0.00 0.00 0.00 0.00 0.00

CMIF 0.675 0.30 0.325 0.80 0.85 0.525
USNGF 0.225 0.00 0.00 0.00 0.925 0.10
USNGF- 0.00 0.275 0.00 0.00 0.00 0.00
CSNGF 1.00 0.95 0.925 0.90 0.925 0.95

4.3 Time Analysis

We compare the run-times of the global rigid registration methods, as well as the
run-times of the novel Cross-Sim-NGF algorithm with a direct (not FFT-based)
approach. The reported results are obtained on a Nvidia GeForce RTX 3090.

Both the FFT-based algorithm and the direct method are implemented in
Python/PyTorch using GPU-acceleration; the direct method consists of a loop
over all axis-aligned shifts χ ∈ S, and computation of the squared dot-products.
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Fig. 3: Success-rate of each considered method as a function of the acceptable
displacement error t (fraction of the 240 alignments where dE < t); the results
for all modality combinations are aggregated. Up and to the left is better.

The average run-times of the methods CMIF, USNGF, and CSNGF are 569 s,
33 s, and 41 s, respectively. Comparison of the run-times of the FFT-based algo-
rithm and the direct method, as a function of image size, is presented in Tab. 2.
We observe that for size 128, the here proposed algorithm is approximately 6275
times (more than three orders of magnitude) faster.

Table 2: Run-time (s) comparison of FFT-based CSNGF and a direct algorithm
for computing CSNGF, for all χ ∈ S where the overlap is 50% or higher, on cube
image volumes of increasing size (expressed as side-length).

Method
Size

8 16 32 64 128

Direct algorithm 0.129 0.557 3.537 27.07 502.4
FFT-based alg. 0.002 0.002 0.002 0.008 0.088

5 Conclusion

We propose a novel NGF-based method for global rigid 3D multimodal align-
ment, which extends a well-performing method for 2D image alignment, outper-
forming a previous extension that relies on an unsquared version of the simi-
larity measure. We confirm both its great performance and its high efficiency.
Through the comparison with CMIF-based alignment [10], the method is indi-
rectly compared with several approaches based on deep learning while leaving a
more comprehensive comparative study as future work. The method does not use
any training (data), which is a large advantage for (bio)medical applications [5].
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