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Abstract. Some MRI acquisitions, such as Sodium imaging, produce
data with very low signal-to-noise ratio (SNR) and meaningful analysis
may require several images to be averaged. As the data contains sub-
stantial noise, motion correction using standard registration tools may
not be effective. This paper employs a simple generative model for the
data, where the error is described as following a Rician distribution,
which more accurately characterised the image noise. Maximum a poste-
riori inference is enabled by a differentiable approximation to the Rician
log-likelihood function. We find that this approach substantially outper-
forms a Gaussian log-likelihood baseline on synthetic data that has been
corrupted by Rician noise of varying degrees. We show results of our ap-
proach on real Sodium MRI data, and demonstrate that we can reduces
the effects of substantial motion.
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1 Introduction

Motion correction is an essential pre-processing step in an analysis pipeline to
enable meaningful measurement of voxelwise properties. Existing linear regis-
tration tools, e.g. [4][8][2] are generally very effective for images with reasonable
signal to noise ratio (SNR). However, relatively little research has been con-
ducted into the registration of extremely noisy MRI data, such as acquired from
Sodium MRI sequences. Most structural MR images have high SNR, in which
case the acquisition noise is well described as following a Gaussian distribution.
However, in situations where the SNR is very low it actually follows a Rician
distribution [3]. This distinction can become significant for for image registration
and motion correction; the Rician distribution is not symmetric and cost func-
tion derived from a Gaussian distribution (such as sum-of-squared differences)
may fare poorly.

This paper introduces a linear motion correction algorithm, using a simple
generative model of the data, which is heavily inspired by the seminal “Unified
Segmentation” paper [1]. A diagram of our approach is given in fig 1. In this
work, we parameterise our model using the means of different tissue classes and
rigidly register this template to each observed image. A Rician likelihood drives
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Fig. 1. Illustration of the model. A simple generative model, parameterised by mean
tissue intensities and pre-calculated tissue maps provides predictions of the noisy ob-
servation data. The error in model prediction is described using a Rician likelihood,
which is used to drive the transformation estimation. This allows us to arrive at a sharp
motion corrected average image.

the alignment between the model and the data. However, as this distribution does
not have a form that enables closed form updates we employ an approximation
to the log-probability, and rely on automatic differentiation to provide gradients
for optimisation [9].

We apply this approach to motion correct Sodium MRI data, which is an
emerging imaging modality with many potential biomedical applications [6][11].
One limiting factor with such acquisitions is that they tend to have very poor
signal-to-noise ratio, due to the relatively low concentration and magnetic sus-
ceptibility of Sodium. To compensate for this issue, multiple image acquisitions
may be collected and subsequently averaged to provide improved SNR. In this
context, subject motion can be very problematic as each individual image con-
tains little useful information to drive alignment.

The contribution of this work is a generative inference framework for motion
correction of Sodium (or other very noisy) MRI using a differentiable approx-
imation of the Rician log likelihood. To the best of our knowledge, a Rician
likelihood has not previously been used for image registration although recent
works have shown it’s benefits for regression[12]. We demonstrate that this ap-
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proach is effective in removing substantial motion high noise situations, while
aligning images such that the average is co-registered with the segmentation.

2 Background

2.1 Rician distribution

The noise distribution of low SNR MR images is known to follow a Rice distri-
bution [3]:

p(y|ŷ, σ) = Rice(y; ŷ, σ) =
y
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2σ2

)
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(
yŷ
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where I0 is a modified Bessel function of the first kind with order zero (de-
scribed in section 3.2). Unlike the Gaussian, this distribution is not symmetric
with respect to it’s first parameter, ŷ. It also does not fulfill any of the conjugacy
properties that would allow straightforward application in inference methodolo-
gies. It also does not provide an obvious cost function for comparing two images,
as it requires a parameterisation in terms of the clean signal, ŷ. Generative mod-
els can be used to provide such a parameterisation, and have been successfully
used for image registration for many years [1].

3 Method

We consider a generative model for the image data based on tissue maps. The
basis for this model is a set of 5 probabilistic tissue segmentation map, G derived
from the high resolution T1 image, which are co-registered with the data being
motion corrected. We denote G as a matrix of size N×5 containing tissue proba-
bilities, where N corresponds to the number of voxels and 5 the number of tissue
classes. The intensity of any voxel can be predicted by matrix multiplication with
x, a vector containing the intensity for each tissue class.

As we are considering a motion correction problem, we are optimising for ge-
ometric transformations. Accordingly, we predict the data through the following
model:

ŷ = P(T(Gx, t, θ)) (2)

where T corresponds to a rigid transformation, with translation t and rotation
parameters given by θ. P corresponds to the point-spread function of the acqui-
sition sequence, which is empirically estimated a-priori.

These predictions ŷ can now be fit to the data using an appropriate log-
likelihood function, such as the Rician distribution or the Normal distribution.

3.1 Priors

In this problem, we are considering the registration of noisy data. Accordingly,
the model requires the specification of prior knowledge to enable robust inference.
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We choose a Gaussian prior over the tissue intensities

p(x) = N ([40, 30, 80, 50, 50], [4, 4, 5, 10, 10]2) (3)

The means were derived using rounded average values for a given tissue class
from the dataset and variances were chosen empirically.

The translations have a Normal prior, with a fixed variance specified in mm.
The rotations, which are described through an axis-angle representation, also
employ a Normal distribution:

p(ti) = N (0, 2.52)

p(θi) = N (0, 0.052)

3.2 Approximating the Rician Log-Likelihood

Most of the Rician likelihood (eq 1) are amenable to efficient calculation in a
differentiable manner. However, there is an infinite series, which requires ap-
proximating: I0, which corresponds to a modified Bessel function of the first
kind with order zero [13]. I0 can be written as:

I0(z) =

∞∑
k=0

( 14z
2)k

(k!)2
(4)

We can approximate this series as a sum of the first Nk terms. However, we
still require a differentiable form for the factorial in the denominator. By noting
both that k! = Γ (k + 1), where Γ is the Gamma function, and that we only
require the log probability, we can write an approximation for log I0(z) as:

log I0(z) ≈ logsumexp(k(log(0.25) + 2 ∗ log(z))− 2 lnΓ (k+ 1)) (5)

where logsumexp is a popular trick for calculating the logarithm of sum of expo-
nentiated terms in a numerically stable fashion and lnΓ refers to the log Gamma
function. k is a vector containing values from 0 to Nk, which is summed over.
This implementation is empirically robust, and relatively computationally effi-
cient. It is however inefficient in terms of memory, as we require multiplying each
voxel by Nk values. We find that Nk = 50 provided sufficient precision for our
data.

3.3 Inference

We perform maximum-a-posteriori (MAP) inference on the model parameters
Θ = {x, t, θ, σ}, with the following cost function:

L = −
N∑
i

[log p(yi|x, ti, θi, σ) + log p(ti) + log p(θi)] + log p(x) (6)
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Updates alternated between two groups of parameters, those that are shared
for all images Θ1 = {x, σ} and those that vary per image Θ2 = {t, θ}. The
updates for Θ1 were calculated using batches of 5 images at a time, and Θ2 were
updated per image. To account for the batching in updating Θ1, we perform two
update steps on these parameters for every step for Θ2. The Adam [5] optimiser
was used to optimise the model parameters, and a fixed learning rate of 1e−2 was
found to be effective and convergence occurred withing 60 rounds of iterations.

4 Experiments

4.1 Synthetic Data

We generate synthetic data from our generative model with known tissue param-
eters, with voxelwise variability characterised by the prior distributions. These
were then transformed to simulate random motion, with translations sampled
from N (0, 5mm2) and angles from N (0, 0.12). Each of these images was then
corrupted with Rician noise at various levels. We then try to correct for the
simulated motion using our model with either a Gaussian or Rician likelihood.
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Fig. 2. Synthetic data experiments where the ground truth translation (mean euclidean
distance) and rotation error (mean Frobenius norm of the difference of log matrices)
are given in the above plots for varying Rician noise level. The dashed line indicates the
average initial error. As can be seen, the error when using a Gaussian likelihood rises
very quickly, whereas the Rician likelihood is more robust against high noise levels.
σ = 40 is roughly equivalent to the Sodium MRI data.
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Figure 2 illustrates that using the correct likelihood model has a substantial
impact on registration performance, particularly in scenarios where high levels
of noise are evident.

4.2 Sodium MRI

23NA MR images were acquired using a dual-tuned, 2-channel (one channel for
sodium and one for proton) birdcage 23Na 1H coil developed by RAPID Biomed-
ical GmbH (Rimpar, Germany). Sodium images were acquired using the FLO-
RET sequence [10] with a resolution of 4mm3. The k-space data were transferred
offline and image reconstruction was performed in Matlab (MathWorks, Natick,
MA, USA) using 3D re-gridding [10] with density compensation [14].

A low-resolution T1-weighted image (4mm3), matching the resolution of the
Na image was acquired using the dual-tuned sodium coil as well as a higher
resolution T1-weighted image (2mm3). These images were used for preparing
tissue segmentation maps using SPM12 and co-registration with the uncorrected
average Sodium image.
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Fig. 3. Bar chart showing the mean voxelwise standard deviation over the set of ac-
quired images for 4 subjects either sleeping (s) or awake (a). We compare our approach
to the original uncorrected data and FLIRT. We find for sequences corrupted by mo-
tion (higher original std-dev) our approach tends to work well.

In the acquired data, we examine 4 subjects with images taken either when
they are asleep (32 images) or awake (16 images). The data acquired when sleep-
ing is much more likely to contain motion artefacts both due to the length of
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Fig. 4. Example average images calculated by averaging 32 Sodium MRI acquisition.
Std refers to the mean voxelwise standard deviation at each voxel within the brain
region. In this example, where a lot of motion was detected, our approach leads to a
sharper average image.

the scan and unintentional movements during sleep. We consider motion cor-
recting the individual sodium magnitude images using either “mcflirt”[4] or our
approach.

We provide some quantification of the motion correction efficacy in fig 3.
Here, we can see that in some sleeping subjects (1, 3 and 4) the original im-
age data contains a high degree of voxel variation induced by apparent subject
motion. Our approach successfully reduces the variation, leading to sharper av-
erage images, see fig 4 for the results on subject 3. FLIRT generally performs
well for data with lower motion, whereas our approach makes some low motion
examples slightly worse (subjects 2 and 4 when awake). Although the estimated
transformation is only very small for those cases, with average translation 1.7mm
(0.4mm) and average rotation norm 0.03 (1e-3), compared to an estimated trans-
lation of 7.75mm (6.49mm) and rotation norm of 0.145 (0.12) for subject 3’s
sleeping data.

5 Discussion

This work has not investigated the use of preprocessing the data using denoising
methods [7]; although such approaches might produce cleaner representations
for aligning the data, they also manipulate the underlying image statistics being
modelled, which may lead to biased results.

We found that in some cases where low motion was observed, our algorithm
over estimated the level of movement. This would likely be improved by speci-
fying transformation priors that varied based on the expected level of motion,
e.g. a tighter angle prior on the awake subjects.

We employed nearest neighbour interpolation to calculate the average images.
This was required to avoid drastically changing the image statistics through
linear interpolation. Future work will investigate using higher order interpolants
with other methods, which are already available in FLIRT.
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6 Conclusions

This paper has introduced a unified model for data modelling and co-registration
of noisy MRI data with a Rician likelihood. We have shown the importance of
choosing the right log-likelihood for generative models for motion correction, as
the Gaussian distribution performs very poorly where the errors take a different
form.

Our results provide qualitative support on real Sodium data, and show that
we can resolve some substantial motion artefacts. Although our restricted pa-
rameterisation has some benefits in reducing overfitting, it also does not explain
the data particularly well, which may be a further cause of estimating motion
where none is present. Future work will investigate using more flexible model
parameterisations, such as voxelwise/mixture distributions, which may better
describe the image data and permit more accurate alignment.
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L., Robles, M.: Mri denoising using non-local means. Medical image analysis 12(4),
514–523 (2008)

8. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3d
structure from serial histological sections. Image and vision computing 19(1-2),
25–31 (2001)

9. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)

10. Pipe, J.G., Zwart, N.R., Aboussouan, E.A., Robison, R.K., Devaraj, A., John-
son, K.O.: A new design and rationale for 3d orthogonally oversampled k-space
trajectories. Magnetic resonance in medicine 66(5), 1303–1311 (2011)

11. Rose, A.M., Valdes Jr, R.: Understanding the sodium pump and its relevance to
disease. Clinical chemistry 40(9), 1674–1685 (1994)

12. Wegmann, B., Eklund, A., Villani, M.: Bayesian rician regression for neuroimaging.
Frontiers in neuroscience 11, 586 (2017)

13. Wolfram Mathworld: Modified bessel function of the first kind,
https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html



Title Suppressed Due to Excessive Length 9

14. Zwart, N.R., Johnson, K.O., Pipe, J.G.: Efficient sample density estimation by
combining gridding and an optimized kernel. Magnetic resonance in medicine
67(3), 701–710 (2012)


