STAR: Improving Low-Resource Information
Extraction by Structure-to-Text Data Generation with
Large Language Models

Mingyu Derek Ma" Xiaoxuan Wang' Po-Nien Kung’
P. Jeffrey Brantingham* Nanyun Peng' Wei Wang'
"Department of Computer Science *Department of Anthropology
University of California, Los Angeles
{ma, xw27,ponienkung,violetpeng,weiwang}@cs.ucla.edu branting@ucla.edu

Abstract

Information extraction tasks such as event extraction require an in-depth under-
standing of the output structure and sub-task dependencies. They heavily rely on
task-specific training data in the form of (passage, target structure) pairs to obtain
reasonable performance. However, obtaining such data through human annota-
tion is costly, leading to a pressing need for low-resource information extraction
approaches that require minimal human labeling for real-world applications. Fine-
tuning supervised models with synthesized training data would be a generalizable
method, but the existing data generation methods either still rely on large-scale
ground-truth data or cannot be applied to complicated IE tasks due to their poor
performance. To address these challenges, we propose STAR, a data generation
method that leverages Large Language Models (LLMs) to synthesize data instances
given limited seed demonstrations, thereby boosting low-resource information
extraction performance. Our approach involves generating target structures (Y")
followed by generating passages (X), we further reduce errors and improve data
quality through self-reflection error identification and self-refinement with iterative
revision. Our experiments show that the data generated by STAR significantly
improves the performance of low-resource event extraction and relation extraction
tasks, even surpassing the effectiveness of human-curated data. Human assessment
of the data quality shows STAR-generated data exhibits higher passage quality and
better align with the task definitions compared with the human-curated data.

1 Introduction

Information extraction (IE) aims to extract knowledge of certain perspectives from natural language
and consolidate it into an output structure [21]]. To induce the target structure, the IE models need
to understand fine-grained task requirements and constraints. Taking event extraction (EE), which
is a component for IE systems to identify event triggers, event types, and their related details as
arguments, as an example, task-specific rules include the predicted spans should be subsequences of
the input passage, and arguments should be participants or attributes of the event. EE models are also
expected to be aware of the dynamic skeleton of the event structure because the different predicted
event types result in their respective sets of argument roles being filled in. Supervised models learn
the implicit requirement and ontology knowledge from training data in the form of (passage, target
structure) pairs. Prompt-based inference-only approaches with Large Language Models (LLMs)
are shown to be unable to solve these complicated IE tasks [14} 4] [7]. In real-world applications,
text from various sources and domains contains a broad range of output spaces and label definitions.
It is costly and rigid to annotate sufficient training data, thus, performing IE given minimal seed
data instances is of particular interest for realistic IE applications.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Target Structure Generation Inverse Initial Passage Generation Self-refinement by Self-reflection

Justice:Appeal Justice:Conviction
candidate pool (Event instance) (Event instance)

/ \ appealed Former Malaysian deputy prime
ruling (Event trigger conviction o minister Anwar lbrahim has been
ent trigger

| .
o
o
L)
. . —_— (Ev 99 (Event trigger) —>ARY] -s—» granted a final chance to appeal K‘ —
Y l his conviction and five-year —
Py Argument o Sourt laysia X sentence on sodomy charges .. >
Adjudicator Piace srgument)

candidte poo e ot Y/
() ment) " Anwar Ibrahim o

Figure 1: The STAR inverse data generation strategy using event extraction task as an example.

Synthesizing additional training data to fine-tune supervised models would be a generalizable method
and has demonstrated its success for tasks like sentiment analysis [32] and relation extraction [[10].
Some works annotate unlabeled examples with existing models as weak annotators (X ,;q — Y) [8,12],
produce analogous input (X g0;¢ - X ') [11L12]], or generate input assuming the labels are available
(Ygora — X) (24,15, [10]. However, these works require ground-truth X ;o4 or Y014, limiting their
generalizability and scalability. What’s more, they are designed for classification or straightforward
IE tasks, and the performance drops significantly as the task complexity increases. Applying them to
complicated IE tasks with sub-task dependencies and dynamic output structures such as EE produces
noisy data that may impair task performance.

In this paper, we present STAR, a Structure-to-Text DatA GeneRation pipeline to produce dependable
data instances for low-resource IE. Instead of using existing models to produce silver target structures
Y derived from the input passages X (i.e. X404 — Y) to enrich the training data, we propose to
generate data instances inversely by producing target structures from scratch first and then prompting
the LLM to generate a passage (i.e. Y — X)) containing the target structure information. This inverse
design reformulates the synthetic data generation task from structure induction, where models often
struggle, to conditional text generation, where LLMs excel. STAR contains three components.
First, STAR generates diverse target structures Y from scratch, requiring minimal human efforts to
initiate the data generation. In addition, with the ability to customize target structures and control
their distribution, we can mitigate data imbalance and improve data diversity by producing target
structures encompassing a broader range of triggers, event types and arguments, as well as their
various combinations. Second, STAR performs instruction-guided data generation to prompt the LLM
about the fine-grained task definition and constraints to produce passage X . Third, STAR detects
errors in the generated data instances via self-reflection and provides hindsight natural language
intervention to self-refine the generated data without additional human efforts.

Experimental results on event extraction (EE) and relation extraction (RE) tasks show that STAR
is capable of generating human-level IE data instances given a couple of exemplar instances as
demonstrations without the need for additional ground-truth passage or target structures. For EE,
training the supervised model on STAR-generated data improves the argument classification sub-task
by up to 12.91 points in F1 score on the ACEQO5 dataset, 2.9 points higher than using the same amount
of human-curated data. For RE, we observe 5.41 points F1 score improvement on the TACRED
dataset, which is comparable to using the human-curated data. The improvements brought by STAR-
generated data to multiple supervised models across multiple IE tasks demonstrate the generalizability
and compatibility of STAR. Our manual data examination indicates STAR-produced data exhibits
higher passage quality and better aligns with the task definitions compared with human-curated data.

We further conduct a detailed analysis of different methods for using LLMs to improve EE perfor-
mance, and we show that training the supervised models on STAR-generated data yields at least 27.51
points higher F1 score for argument classification over the best inference-only LLM formulation.

2 STAR: Structure-to-Text Data Generation

We introduce the method design of STAR as illustrated in Figure[I] We use event extraction (EE) as
the exemplar IE task in this section as it covers more method details. The goal is to create N new data
instances (X, Y) based on k demonstration instances to be used as additional training resources for
supervised IE models. Each data instance is composed of a natural language passage X containing
event information and a target structure Y containing 0 to any number of events, each contains an
event trigger, its event type and O to any number of (argument mention, argument role) pairs.

2.1 Target Structure Generation

The output distribution of the dataset largely determines the generalizability and robustness of the
model fine-tuned on it. We first generate a pool of valid seed words for triggers of each event type,
and for arguments of each (event type, argument role) combination. We then create target structures.

Trigger candidate generation. We prompt the LLM with 1) a definition of the selected event type;
and 2) a few passages that contain event triggers of the selected event type as demonstrations. We
use special tags to wrap the trigger word in the demonstration passages and prompt the LLM to
continuously generate more passages with trigger words wrapped within tag pairs. Then we parse the
response and extract the trigger candidate words.

Argument candidate generation. We find reasonable arguments for a certain pair of event type and
argument role by prompting LLM with: 1) definition of the argument role under this specific event
type; 2) the entity type we are looking for (e.g. a vehicle). The prompt would be like “Given the
definition of Instrument argument as ‘The device used to inflict the harm’, what are some possible
vehicle names that can be used as Instrument?” for INSTRUMENT argument of LIFE:INJURE event
type. The allowed entity types of arguments are provided in an event ontology, and we merge
generated word pools returned from separate queries if there are multiple allowed entity types for an
argument role. For example, the ORIGIN argument of the MOVEMENT: TRANSPORT event type could
be of entity types GPE (geopolitical entity), LOC (location), or FAC (facility name). We further parse
the numbered/bullet lists generated by LLM to get argument candidate words.

Creating target structure and distribution control. We randomly sample trigger and argument
candidates to create target structure Y. However, unbalanced label distribution and the prevalence of
dominant labels pose challenges in many existing human-curated datasets [36}[1,135]]. In EE, a single
dominant trigger word eclipses other relevant terms, leading to an unbalanced representation [27].
We address the issues of imbalanced event type and trigger distribution by evenly generating data
instances and significantly expanding the pool size for trigger candidates to 100, which is 1.4x to
50x larger for various event types compared to the human-curated ACEOS dataset. Additionally,
we balance the argument hallucination ratio in the generated data. This involves ensuring that
the generated dataset contains events with both many arguments and few arguments by uniformly
replacing argument value with None across different argument hallucination ratios. Furthermore, we
balance the event density in passage X by providing target structure Y with O to 5 events.

2.2 Instruction-Guided Passage Generation

We use task instruction from multiple task granularities to provide recipes for the LLM to generate
passages containing structured event information. The instruction is appended to k in-context learning
examples verbalized by our instance verbalizer. Finally, we provide the verbalized target structure
information based on the target structure Y to prompt the LLM to generate the initial passage Xg.
Task-level instruction. We provide task-related instruction following the annotation guideline
curated by experts to guide the human annotation process of the ACEO5 dataset [3]]. Specifically, we
provide: 1) a definition of “event”, “trigger”, “participant arguments’ and “attribute arguments”; 2)
an overall task requirement that the goal is to generate a sentence containing the event trigger words
and arguments; 3) hallucination clarification that instructs the model not to generate arguments of
certain roles if we explicitly provide that “the argument is None”; 4) multiple event clarification that
information from multiple events should be contained in a single passage.

Event type-level instruction. In this segment, we introduce meta-information provided by pre-
defined event ontology for a specific event type, including the name and definition of the event type
and each possible argument roles. We provide all possible argument roles instead of the ones with
existing values to ensure the generated passage X does not contain hallucinated arguments that
should not appear according to the output structure Y.

Instance-level verbalizer. We verbalize exemplar data instances and target structure Y into natural
language sequences with three segments: 1) the number of events in the passage; 2) the content of the
event target structure; 3) the passage X with tags wrapping triggers and arguments to explicit hint the
LLM about the roles and positions of the keywords, e.g. “<Plaintiff>He</Plaintiff> threatened to
<Trigger>sue</Trigger> the company.” could provide an explicit indicator to the LLM that “he” is
served as a PLAINTIFF argument for the event triggered by “sue”.

2.3 Self-refinement by Self-reflection

After the initial passage X is generated, the self-refinement mechanism evaluates the quality and
identifies potential errors and further improves X through iterative updates [23l 29, [16]]. In the
t-th refinement iteration, we first identify the potential quality issues of X;_; from a diverse set
of quality dimensions (e.g. the passage contains CRIME argument information, but it should be
“None” according to Y'), then the issues are feedback to the LLM by providing a template-based
natural language intervention (e.g. “The passage contains a hallucinated argument CRIME incorrectly,
remove CRIME information for event triggered by ‘jailed’.”) along with the generated passage of the
previous iteration X;_1, so that the LLM could refine the passage and produce X;.

We define a set of quality dimensions and their intervention template manually. For EE, they include
1) whether the trigger/argument mention is a subsequence of the passage; 2) whether a trigger is used
to initiate an occurrence; 3) whether an argument is used as an event participant or attribute of the
specific event; 4) whether the argument is serving the required argument role; 5) whether the passage
contains information that could be served as an argument that should not appear; 6) whether POS
tags of the argument mentions in the passage context match the provided ones.

For each quality dimension, we query LLM with questions like “Is ‘Syria’ a DESTINATION argument
describing the event triggered by ‘flee’?””. We then standardize LL.M’s response to a binary error
identification flag by checking whether the response entails a confirmative phrase “Yes, it is.” with a
Natural Language Inference model fine-tuned on MultiNLI [30]] based on BART-large [13]]. If a quality
issue is flagged, we use the intervention template corresponding to the selected quality dimension
as part of the feedback to the LLM for iterative revision. Such a self-reflection design makes the self-
refinement process generalizable and robust since the entire error identification process through self-
reflection and the revision process are done by the LLM itself without external add-on components.

2.4 Adaptation to Relation Extraction

RE’s relation type would be the equivalent concept of “event type” in EE. For target structure
generation, we generate entity candidates using seed data instances’ entities as in-context examples.
We then randomly pair entity candidates and assign a relation between the two entities. For initial
passage generation, we use relation type definition instead. For self-refinement, we use the quality
dimensions: 1) whether the given entities are contained in the generated passage, 2) whether there is
a relation between them, and 3) whether they hold the certain relation provided in Y.

3 Experiments on Event Extraction

3.1 Baselines

We use two types of models as our baselines: the inference-only methods, and the supervised models
fine-tuned on data created by various data creation strategies.

Inference-only EE methods. We use LLM GPT-3.5 [25] and GPT-4 [26]] to perform inference.
We adopt different EE input-target formulations to prompt LLMs, including formulations inspired
by generative supervised models (1-3) and LLM prompting methods specifically designed for EE
proposed by recent works (4-6). The formulations include: 1) Examples & 10 (Text2Event) [20]
uses a concise but unnatural template to represent event structure. 2) Examples & 10 (DEGREE) [9]
generates a filled-in natural language template. 3) Examples & 10 (DICE) [22] is similar to
DEGREE but uses separate queries for different argument roles. 4) Task Instruction [[14] provides
task description and pre-defined event type names. 5) Instruction+Examples [4] provides
event type definitions and positive and negative examples, in addition to the task description. 6)
Code4Struct [28] formulates task definition, event type definition and examples in Python code.
For baselines 1-3, we follow the original input and target formulations and additionally provide k
demonstration input-target pairs contained in the input prompt for in-context learning. Baselines
4 and 5 only support Tri-I and Tri-C, and baseline 6 only supports Arg-I and Arg-C.

Supervised EE models. We use two representative EE models as the testbed to evaluate the quality
of the generated data. OnelE [13] is a multi-task sequence-tagging model trained with global
features based on RoBERTa-large [[17]. DEGREE [9] is a prompt-based model that fills in event
type-specific human written templates based on a BART-large pre-trained model [[13]].

Data creation strategies. We introduce two other approaches to obtain training data. Weakly
Supervision: we use the best inference-only model for EE to predict event structure Y’ from passage
X, and the (X, Y) pairs are used as training data. Human: data instances randomly sampled from
the ACEO5 dataset, which requires much more human efforts, as an ideal but unrealistic setting.

3.2 Experimental Setup

We denote k as the number of demonstration examples of each event type used as in-context
demonstrations for the inference-only methods and data creation strategies, and N as the number of
data instances per event type created by data creation strategies. Supervised models are trained on
k + N data instances per event type. We use the full test set for evaluation. We use the event ontology
and data instances from the widely used sentence-level English event extraction dataset ACEOS [3]].

We follow previous EE works [15] and report F1 scores for four tasks. 1) Trigger Identification:
identified trigger span is correct. 2) Trigger Classification: its predicted event type is also correct.
3) Argument Identification: identified argument span is correct. 4) Argument Classification: its

Table 1: Event extraction performance (F1, %). Inference-only methods and data creation methods
use the same set of k£ examples for each event type to prompt LLM to perform EE and generate data
instances respectively. Supervised EE models are trained on k + N data instances per event type.

Boldface indicates the best performance among each group without additional human efforts. Gray

background indicate using human-curated data, thus it is not comparable with other lines. Green
background indicate STAR-generated data improve EE performance more than human-curated data.

| k=0 5 10| k=0 5 10| k=0 5 10| k=0 5 10

| Trigger Iden. | Trigger Clas. | ArgumentIden. | Argument Clas.
Inference-only Methods
LLM Formulation ‘

1 E&IO (Text2Event) | 0.00 923 11.30 | 0.00 2.12 347 | 000 0.87 1.03| 000 031 044

2 E&IO (DEGREE) 0.00 1439 17.52| 0.00 3.17 621 | 000 1.02 247 | 000 092 198

3 GPT-35 E&IO (DI}CE) 0.00 15.13 1694 | 0.00 4.11 7.09 | 000 0.71 1.65| 0.00 033 097

4 i Task Inst.} 18.31 1831 18.31 837 837 837 — —

5 Inst.+Examples 2944 4724 59.71 | 21.56 40.57 53.29 — —

6 Code4Struct — — 12.33 1834 23.74| 9.72 1485 19.10

7 GPT-4 Inst.+Examples 3431 5255 62.12 | 27.35 46.57 56.46 — —

8 Code4Struct — — 17.51 24.50 27.62 | 11.89 24.28 25.48

Supervised Models (N = 50 except line 9 & 14)
EE Model Data Creation ‘

9 None (N =0) 0.00 57.24 60.55| 0.00 5238 54.84 | 0.00 29.06 36.45| 0.00 25.85 33.56
10 Weak Sup. 2948 49.23 51.66 | 23.61 45.02 4523 | 16.19 2435 26.84 | 1047 19.14 2294
11 OnelE STAR (GPT-3.5) 42.61 63.08 64.12 | 36.65 56.61 5729 | 30.32 39.76 43.40 | 2436 36.17 4093
12 STAR (QPT—4) 4542 64.63 66.77 | 39.15 58.84 60.76 | 32.23 42.76 46.22 | 27.47 39.53 43.25
13 Human'® 65.62 65.62 65.62 | 60.10 60.10 60.10 44.76 44.76 44.76 | 41.60 41.60 41.60
14 None (N =0) 0.00 55.62 57.65| 0.00 50.69 5249 | 0.00 31.77 4229 | 0.00 30.19 40.08
15 Weak Sup. 27.51 46.48 49.70 | 22.23 41.65 43.55 | 18.14 32.53 3333 | 13.45 27.38 30.01
16 DEGREE STAR (GPT-3.5) 43.74 6139 63.57 | 3890 56.41 59.10 | 32.32 48.73 53.06 | 28.21 46.55 50.97
17 STAR (GPT-4) 46.69 64.47 65.17 | 41.75 59.92 61.42 | 3585 51.92 54.56 | 32.09 50.74 52.99
18 Human'® 63.49 6349 6349 | 58.86 58.86 58.86 52.47 5247 5247 |50.09 50.09 50.09

predicted argument role is also correct. Note that each task is dependent on the output of the previous
task. We report the medium result for three runs of different random seeds.

3.3 Effectiveness of Data Generation

Table[l|shows the EE performance when using various numbers (k) of demonstrations and Figure
further shows the effects of various amounts (/V) of augmented data instances. We show qualitative
analysis, common error cases and more experimental results in Appendix ??.

STAR boosts low-resource EE performance. Table[I|shows that data generated by STAR signifi-
cantly improve the supervised models’ performance (line 9 vs 11-12, and line 14 vs 16-17) across all
tasks. The F1 scores of Arg-C are improved by 9.69 and 12.91 for OnelE and DEGREE when £ = 10.
Data produced by STAR is more effective than human-curated ones given sufficient examples.
Compared to human-curated data instances (line 13 and 18 in Table[I)), training supervised models
with STAR-generated data leads to better performance when 5 or more demonstrations are used
for STAR and the supervised model is DEGREE except for Arg-I (indicated by underlined results
in line 17). We also observe a similar trend for OnelE when 10 demonstrations are used for STAR
(underlined results in line 12). This indicates we could boost low-resource EE performance as if
we had additional ground-truth data without paying the human annotation efforts. Figure 2] further
shows the superiority of STAR-generated data over human-curated ones regardless of the number
of augmented data instances (V) using 10 demonstrations (k = 10) for all supervised models.

3.4 Ablation Studies

Structure generation method. The diversity and balanced distribution of the generated target
structures produced by our target structure generation component (§2.1)) result in an almost 4-point
higher Arg-C F1 score compared to using human-annotated target structures sampled from the ACEQS5.

Trigger Identification Trigger Classification Argument Identification Argument Classification
“ 7‘_;,/ . 74*’*‘.__,/_—/ 50 //.———*'"" 50 /,4/4—"/
60 55 M—/*’A 40 PEESE_
40
50 — -~
55 . 30
50 45 2
N=0 N=10 N=20 N=30 N=40 N=50 N=0 N=10 N=20 N=30 N=40 N=50 N=0 N=10N=20 N=30 N=40 N=50 N=0 N=10 N=20 N=30 N=40 N=50
OnelE+Human —+— OnelE+STAR OnelE+Weak Sup DEGREE+Human —— DEGREE+STAR DEGREE+Weak Sup

Figure 2: Event extraction performance (F1, %) when the EE models are trained on N augmented
training data on top of 10 data points (k = 10) for each event type.

Error identification strategy. = We also Table 2: Ablation study on DEGREE’s EE results
investigate the error identification capabilities while k = 10 and N = 10.
of our self-reflection module with LLM as
the backbone (§2.3). We compare it with two
alternative methods and we utilize the same
template to provide feedback on the identified
errors. Rule-based checking uses heuristics
to check whether a trigger/argument is a sub- Error Identification Strategies
sequence of the generated passage and uses an None 58.33 52.94 4218 39.85
external NER module [31]] to check whether a Rule-based checking | 5942 53.37 43.77 41.26

. . . . Self-reflection (NLI) | 59.89 54.02 46.11 43.54
trigger/argument functions as the desired entity Self-reflection (LLM) | 60.52 54.80 48.00 45.73
type. Self-reflection (NLI) uses the generated
passage as the premier and a statement of a quality dimension as the hypothesis. We use entailment
prediction of the NLI module used in §2.3|to identify whether a certain quality issue exists. The
results are in lines 4-6 of Table[2] Our observations demonstrate both alternative methods help (line 3
vs 4-5), and self-reflection with LLM exhibits the highest effectiveness in error identification (line 6).
Notably, the results underscore the effectiveness of the self-reflection design, resulting in a substantial
6-point increase in the F1 score for Arg-C without the need for additional annotation efforts.

Method Variant \Tri-I Tri-C Arg-I Arg-C

Target Structure Y Generation Methods

Ground-truth Y 59.21 54.03 44.13 41.77
2 LLM generation 60.52 54.80 48.00 45.73

NN AW

4 Experiments on Relation Extraction

To assess the generalizability Qf our proposed Taple 3: Relation extraction performance (%)
method, we conduct experiments on the given 10 seed data instances k = 10.

sentence-level relation extraction (RE) task.

We use relation definitions and seed examples ~ _# REModel Data Gen | N=0 10 40
in the widely-used TACRED dataset [34]. 1 GPT-3.5 — | 2791 2791 2791
In this task, we generate (subject, relation, 2 Weak Sup. 28.02 28.32
object) tuples from scratch, providing additional 3 SURE STAR (GPT3.5) | 27.61 30.50 33.02
training data. The RE task aims to identify the 4 Human 0.1 35.62
relation between the given subject and object Z GenpT ‘Sﬂf:l}: (S(L;I};'T 35 | 3338 gggg ;%?
.- s . en 13, . . K
entities within a context passage. We train two 7 Human® 671 3761

representative RE models on the generated data
instances. SURE [[18]] converts the task into a summarization formulation to leverage the indirect
supervision with PEGASUS-large as the pre-trained encoder [33]]. GenPT [0] transforms RE into
an infilling problem with a RoBERTa-large model as backbone [17]. We use the same set of data
creation baselines as in the EE experiments. We report micro F1 score across all relations (except
for the “no relation” class) following prior works [18} [19].Table 3| presents the RE performance. The
STAR-generated data significantly enhance the performance across the board compared to N = 0,
with improvements of 5.4 and 3.6 F1 points when using SURE and GenPT respectively.

5 Quality Verification

Two annotators who are familiar with the EE

- Table 4: Human assessment satisfactory rate (%).
task manually assess the quality of the EE data

generated by STAR and curated by humans Quality Dimension | STAR Human
sampled from the ACEOQO5 dataset for data Grammaticality of X 96 90
instances in 100 sentences. Table @ shows both ~ Informativeness of X 79 78
sets of data demonstrate high satisfactory levels. Commonsense of X 95 o3
STAR-generated data exhibits higher passage Erigge; shan describes event occurtence gg gg
quality and better follows the task definition A\rlgﬁingntos‘gzlf‘éf:c;yg; - :\IIEI?F 100 9
for most metrics, suggesting STAR produces Argument associated with correct trigger 98 95
EE annotations with comparable or even better Argument follows role definition 98 99

quality than human annotators.

6 Conclusion

We present STAR, an inverse data generation pipeline designed for low-resource IE that generates
complicated output structure first and then curates input passage containing structure content, all with
LLMs. STAR also contains self-refinement capabilities to fix self-identified error cases. Experimental
results on EE and RE show that the generated data instances could significantly improve the
performance and they are even more effective than human-curated data.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

Y. Cao, Y. Pruksachatkun, K.-W. Chang, R. Gupta, V. Kumar, J. Dhamala, and A. Galstyan. On
the intrinsic and extrinsic fairness evaluation metrics for contextualized language representations.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 561-570, Dublin, Ireland, May 2022. Association for Compu-
tational Linguistics. URL https://aclanthology.org/2022.acl-short.62,

Y. K. Chia, L. Bing, S. Poria, and L. Si. RelationPrompt: Leveraging Prompts to Gener-
ate Synthetic Data for Zero-Shot Relation Triplet Extraction. In Findings of the Associa-
tion for Computational Linguistics: ACL 2022, pages 45-57, Dublin, Ireland, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.5. URL
https://aclanthology.org/2022.findings—-acl.5.

G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw, S. Strassel, and R. Weischedel. The
automatic content extraction (ACE) program — tasks, data, and evaluation. In Proceedings
of the Fourth International Conference on Language Resources and Evaluation (LREC’04),
Lisbon, Portugal, May 2004. European Language Resources Association (ELRA). URL
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf.

J. Gao, H. Zhao, C. Yu, and R. Xu. Exploring the Feasibility of ChatGPT for Event Extraction,
Mar. 2023. URL http://arxiv.org/abs/2303.03836.

T. Gao, A. Fisch, and D. Chen. Making Pre-trained Language Models Better Few-shot Learners.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 3816-3830, Online, Aug. 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.
acl-long.295.

J. Han, S. Zhao, B. Cheng, S. Ma, and W. Lu. Generative prompt tuning for relation classification.
arXiv preprint arXiv:2210.12435, 2022.

R. Han, T. Peng, C. Yang, B. Wang, L. Liu, and X. Wan. Is Information Extraction Solved by
ChatGPT? An Analysis of Performance, Evaluation Criteria, Robustness and Errors, May 2023.
URLhttp://arxiv.org/abs/2305.14450.

X. He, I. Nassar, J. R. Kiros, G. Haffari, and M. Norouzi. Generate, Annotate, and Learn:
Generative Models Advance Self-Training and Knowledge Distillation. Oct. 2021. URL
https://openreview.net/forum?id=0C12z81kbrU.

I.-H. Hsu, K.-H. Huang, E. Boschee, S. Miller, P. Natarajan, K.-W. Chang, and N. Peng.
DEGREE: A Data-Efficient Generation-Based Event Extraction Model. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1890-1908, Seattle, United States, July
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.138. URL
https://aclanthology.org/2022.naacl-main. 138\

M. Josifoski, M. Sakota, M. Peyrard, and R. West. Exploiting Asymmetry for Synthetic
Training Data Generation: SynthlE and the Case of Information Extraction, Mar. 2023. URL
http://arxiv.org/abs/2303.04132,

V. Kumar, A. Choudhary, and E. Cho. Data Augmentation using Pre-trained Transformer
Models. In Proceedings of the 2nd Workshop on Life-long Learning for Spoken Language
Systems, pages 18-26, Suzhou, China, Dec. 2020. Association for Computational Linguistics.
URLhttps://aclanthology.org/2020.1ifelongnlp—-1.3.

K. Lee, K. Guu, L. He, T. Dozat, and H. W. Chung. Neural data augmentation via example
extrapolation. arXiv preprint 2102.01335, 2021.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and
L. Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for Natural Lan-
guage Generation, Translation, and Comprehension. In Proceedings of the 58th Annual

https://aclanthology.org/2022.acl-short.62
https://aclanthology.org/2022.findings-acl.5
http://www.lrec-conf.org/proceedings/lrec2004/pdf/5.pdf
http://arxiv.org/abs/2303.03836
https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295
http://arxiv.org/abs/2305.14450
https://openreview.net/forum?id=oC12z8lkbrU
https://aclanthology.org/2022.naacl-main.138
http://arxiv.org/abs/2303.04132
https://aclanthology.org/2020.lifelongnlp-1.3

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Meeting of the Association for Computational Linguistics, pages 7871-7880, Online, July
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL
https://aclanthology.org/2020.acl-main. 703}

B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang. Evaluating ChatGPT’s
Information Extraction Capabilities: An Assessment of Performance, Explainability, Calibration,
and Faithfulness, Apr. 2023. URL http://arxiv.org/abs/2304.11633\

Y. Lin, H. Ji, F. Huang, and L. Wu. A Joint Neural Model for Information Extraction with
Global Features. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 7999-8009, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.713. URL https://aclanthology.org/
2020.acl-main. 713l

H. Liu, C. Sferrazza, and P. Abbeel. Chain of Hindsight Aligns Language Models with Feedback,
Mar. 2023. URL http://arxiv.org/abs/2302.02676.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. RoBERTa: A Robustly Optimized BERT Pretraining Approach, July 2019. URL
http://arxiv.org/abs/1907.11692,

K. Lu, I.-H. Hsu, W. Zhou, M. D. Ma, M. Chen, et al. Summarization as indirect supervision
for relation extraction. In EMNLP - Findings, 2022.

K. Lu, I.-H. Hsu, W. Zhou, M. D. Ma, and M. Chen. Multi-hop evidence retrieval for cross-
document relation extraction. In Findings of the Association for Computational Linguistics:
ACL 2023, pages 10336-10351, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-acl.657. URL https://aclanthology!
org/2023.findings—-acl.657.

Y. Lu, H. Lin, J. Xu, X. Han, J. Tang, A. Li, L. Sun, M. Liao, and S. Chen. Text2Event:
Controllable Sequence-to-Structure Generation for End-to-end Event Extraction. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages
2795-2806, Online, Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.acl-long.217. URL https://aclanthology.org/2021.acl-1long.217.

M. D. Ma, J. Sun, M. Yang, K.-H. Huang, N. Wen, S. Singh, R. Han, and N. Peng. EventPlus:
A Temporal Event Understanding Pipeline. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies: Demonstrations, pages 56—65, Online, June 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-demos.7. URL https://aclanthology.org/
2021 .naacl-demos. 7.

M. D. Ma, A. K. Taylor, W. Wang, and N. Peng. DICE: Data-Efficient Clinical Event Extraction
with Generative Models. In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics. arXiv, Aug. 2022. URL http://arxiv.org/abs/2208|
07989.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri,
S. Prabhumoye, Y. Yang, S. Welleck, B. P. Majumder, S. Gupta, A. Yazdanbakhsh, and P. Clark.
Self-Refine: Iterative Refinement with Self-Feedback, Mar. 2023. URL http://arxivl
org/abs/2303.17651.

Y. Meng, J. Huang, Y. Zhang, and J. Han. Generating Training Data with Language Models:
Towards Zero-Shot Language Understanding, Oct. 2022. URL http://arxiv.org/abs/
2202.04538.

OpenAl. Chatgpt: Optimizing language models for dialogue. https://openai.com/
blog/chatgpt/ .} 2022.

OpenAl. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

https://aclanthology.org/2020.acl-main.703
http://arxiv.org/abs/2304.11633
https://aclanthology.org/2020.acl-main.713
https://aclanthology.org/2020.acl-main.713
http://arxiv.org/abs/2302.02676
http://arxiv.org/abs/1907.11692
https://aclanthology.org/2023.findings-acl.657
https://aclanthology.org/2023.findings-acl.657
https://aclanthology.org/2021.acl-long.217
https://aclanthology.org/2021.naacl-demos.7
https://aclanthology.org/2021.naacl-demos.7
http://arxiv.org/abs/2208.07989
http://arxiv.org/abs/2208.07989
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2202.04538
http://arxiv.org/abs/2202.04538
https: //openai.com/blog/chatgpt/.
https: //openai.com/blog/chatgpt/.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. Tong, B. Xu, S. Wang, M. Han, Y. Cao, J. Zhu, S. Chen, L. Hou, and J. Li. DocEE: A
Large-Scale and Fine-grained Benchmark for Document-level Event Extraction. In Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 3970-3982, Seattle, United States, July
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.291. URL
https://aclanthology.org/2022.naacl-main.291.

X. Wang, S. Li, and H. Ji. Code4Struct: Code Generation for Few-Shot Event Structure
Prediction, May 2023. URL http://arxiv.org/abs/2210.12810.

Y. Wang, Y. Kordi, S. Mishra, A. Liu, N. A. Smith, D. Khashabi, and H. Hajishirzi. Self-
Instruct: Aligning Language Model with Self Generated Instructions, Dec. 2022. URL http:
//arxiv.org/abs/2212.10560l

A. Williams, N. Nangia, and S. Bowman. A Broad-Coverage Challenge Corpus for Sentence
Understanding through Inference. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1112—1122, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https://aclanthology!
orqg/N18-1101l

I. Yamada, A. Asai, H. Shindo, H. Takeda, and Y. Matsumoto. LUKE: Deep Contextualized
Entity Representations with Entity-aware Self-attention. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages 6442-6454, Online,
Nov. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.523.
URLhttps://aclanthology.org/2020.emnlp—-main.523.

J. Ye, J. Gao, Q. Li, H. Xu, J. Feng, Z. Wu, T. Yu, and L. Kong. ZeroGen: Efficient Zero-
shot Learning via Dataset Generation, Oct. 2022. URL http://arxiv.org/abs/2202,
07922.

J. Zhang, Y. Zhao, M. Saleh, and P. Liu. Pegasus: Pre-training with extracted gap-sentences
for abstractive summarization. In International Conference on Machine Learning, pages
11328-11339. PMLR, 2020.

Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning. Position-aware Attention and
Supervised Data Improve Slot Filling. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 35—45, Copenhagen, Denmark, Sept. 2017.
Association for Computational Linguistics. doi: 10.18653/v1/D17-1004. URL https://
aclanthology.org/D17-1004.

J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K.-W. Chang. Gender bias in coreference
resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15-20, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics. doi: 10.18653/v1/N18-2003. URL https://
aclanthology.org/N18-2003.

Y. Zhou, M. Kaneko, and D. Bollegala. Sense embeddings are also biased — evaluating social
biases in static and contextualised sense embeddings. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
1924-1935, Dublin, Ireland, May 2022. Association for Computational Linguistics. URL
https://aclanthology.org/2022.acl-1long.135/

https://aclanthology.org/2022.naacl-main.291
http://arxiv.org/abs/2210.12810
http://arxiv.org/abs/2212.10560
http://arxiv.org/abs/2212.10560
https://aclanthology.org/N18-1101
https://aclanthology.org/N18-1101
https://aclanthology.org/2020.emnlp-main.523
http://arxiv.org/abs/2202.07922
http://arxiv.org/abs/2202.07922
https://aclanthology.org/D17-1004
https://aclanthology.org/D17-1004
https://aclanthology.org/N18-2003
https://aclanthology.org/N18-2003
https://aclanthology.org/2022.acl-long.135

	Introduction
	Star: Structure-to-Text Data Generation
	Target Structure Generation
	Instruction-Guided Passage Generation
	Self-refinement by Self-reflection
	Adaptation to Relation Extraction

	Experiments on Event Extraction
	Baselines
	Experimental Setup
	Effectiveness of Data Generation
	Ablation Studies

	Experiments on Relation Extraction
	Quality Verification
	Conclusion

