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ABSTRACT

In order to integrate digital avatars into people’s lives, efficiently generating com-
plete, realistic, and animatable avatars is a very important requirement. However,
with the increasing parameter counts and model sizes, efficiency such as training
speed and model sizes are challenged when the models are deployed on devices,
while the graphical rule-based micro-renderers, which simplify real-world pho-
torealistic mechanisms such as illumination and reflections, are unable to gener-
ate photorealistic images. Based on these issues, we propose a two-stage model
compression optimization architecture, where the first stage uses our proposed
distillation architecture to compress the model, and the second stage uses our pro-
posed generative adversarial renderer to customize its inverse version to the stu-
dent network to further improve the realism of digital avatars. Specifically, in the
knowledge distillation process, multi-scale feature fusion is achieved by concate-
nating the output features of RandLA-Net and GCN to combine global and local
information to better capture the details and contextual information of the point
cloud. We construct assisted supervision, which enables point-level supervision
by building the graph topology of the entire point cloud. We also propose to feed
the extracted point cloud features as latent codes into our well-designed neural
renderer to render more realistic facial images. Experiments show that the method
not only improves the network performance but also reduces the parameters and
computation of the whole network compared to existing SOTA methods, and our
method reduces the number of parameters of the teacher model by about 95% and
90% of the computation in knowledge distillation.

1 INTRODUCTION

Efficiently creating complete, realistic, and animatable digital avatars is crucial for their integration
into daily life. However, achieving all these requirements simultaneously is challenging. Monocular
avatar creation is not suitable as it struggles with the complex task of reconstructing articulated fa-
cial structures and modeling intricate facial appearances. Traditional methods rely on 3D morphing
models (3DMMs) (Li et al. (2017); Paysan et al. (2009)) to represent facial geometry and appear-
ance. While useful for various applications, including avatar generation (Cao et al. (2016); Garrido
et al. (2016); Ichim et al. (2015)), 3DMMs have limitations in capturing object-specific static and
dynamic details like hair, glasses, and fine facial expressions such as wrinkles due to their linear
model constraints. In contrast, neural implicit representations (Mescheder et al. (2019); Mildenhall
et al. (2021); Park et al. (2019)) excel at capturing finer details such as hair and eyeglasses but re-
quire extensive computational resources for pixel rendering. Recently, deformable point-based rep-
resentations Zheng et al. (2023) have been used for modeling 3D heads. Point clouds offer greater
flexibility and versatility compared to meshes, allowing adaptation to accessories like eyeglasses
and representation of complex volumetric structures like hair.

However, when the amount of network parameters is too large, the number of point clouds, if in-
creased, will lead to a large amount of computational cost for subsequent optimization and even
lead to environmental problems Patterson et al. (2021).Neural network compression techniques like
knowledge distillation (Hinton et al. (2015); Romero et al. (2014); Xu et al. (2017)) and pruning
(Frankle & Carbin (2018); Han et al. (2015); LeCun et al. (1989); Li et al. (2016)) offer solutions.
Knowledge distillation (KD) Hinton et al. (2015) compresses models by transferring features from
larger networks to smaller ones. While accurate teacher models seem ideal, research by Cho and
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Figure 1: Comparison with state-of-the-art head renderers. The second line of output is the normal
map and the first line is the corresponding rendered image. Graphics-based renderer outputs are
unrealistic, and our approach faithfully renders a realistic image that agrees with the input.

Figure 2: Our method achieves competitive performance while substantially reducing parameters
and model size.

Hariharan Cho & Hariharan (2019) suggests simpler teachers can be more effective, especially for
smaller student networks (Mirzadeh et al. (2020); Park et al. (2021)). Our enhanced knowledge dis-
tillation method features two key improvements: 1) Efficiently building a global point graph topol-
ogy by concatenating RandLA-Net and GCN output features, enhancing the teacher’s model ex-
pressiveness through fusion and enabling the student model to benefit from the teacher’s knowledge
as a second-stage renderer input. 2) Designing auxiliary supervision for disordered point clouds,
creating a structured point graph topology for distillation. RandLA-Net handles local point cloud
features and context, while GCN addresses global point cloud structure and relationships. This dual
approach helps the teacher model learn a richer point cloud feature representation. Point-level su-
pervision enhances the student model’s understanding of geometric and semantic features for more
accurate representations.

On the other hand, In digital avatar reconstruction, differentiable renderers have been prevalent.
However, they have limitations, including unrealistic images due to handcrafted rendering rules and
challenges in optimization and training. We propose a self-supervised conditional neural renderer
as an alternative to traditional graph-based micro-renderers.

By concatenating RandLA-Net and GCN features, we obtain a rich 3D point cloud representation.
This is used as input for a neural renderer based on the generative adversarial network framework,
generating realistic 2D images. The renderer is self-supervised, rendering real face images accu-
rately. The optimization process is more stable due to a larger receptive field. As shown in Figure 1,
the neural renderer proposed in this paper is able to faithfully render real face images based on
the input latent codes. Meanwhile, Inspired by the GAN inversion technique Bau et al. (2019), we
design an inversion network to enhance the model’s digital avatar performance.

In summary, the main contributions of the proposed method are three-fold:

1. Our enhanced knowledge distillation method optimizes digital avatar generation by improving the
teacher model’s performance and effectively guiding and optimizing the student network, achieving
a novel multi-scale feature fusion and point-level supervision.

2. Our Generative Adversarial Renderer produces highly realistic images and employs Renderer
Inverting for further model optimization, resulting in cutting-edge digital avatar realism.

2



Under review as a conference paper at ICLR 2024

3. Our two-stage compression optimization approach outperforms state-of-the-art methods, offering
strong controllability and generating sharp, detailed renderings. Additionally, it reduces the teacher
model’s parameters by about 95% and computation by 90%, making the student network lightweight
and efficient for deployment on devices.

2 RELATED WORK

Head Avatars From 2D. Creating realistic head avatar from 2D observations is a thriving area in
computer vision. Recent progress builds on 3DMMs (Li et al. (2017); Paysan et al. (2009)). Works
like (Grassal et al. (2022); Kim et al. (2018)) use neural rendering to capture complex facial ap-
pearance and head geometry. This concept extends to generative or disposable avatars in (Bühler
et al. (2021); Khakhulin et al. (2022)). Another approach involves neural implicit representations.
NerFace Gafni et al. (2021) extends Neural Radiation Fields (NeRFs) Mildenhall et al. (2021) to
simulate dynamic head geometries and view-dependent appearances. IMavatar Zheng et al. (2022)
uses Neural Implicit Surfaces (Kellnhofer et al. (2021); Mescheder et al. (2019); Park et al. (2019);
Yariv et al. (2020)) for generic animation. Implicit avatars are also extended to multi-subject scenes
(Bergman et al. (2022); Hong et al. (2022)). pointAvatar Zheng et al. (2023) pioneers point-based de-
formable head avatars by partitioning RGB colors into albedo and shading. However, these methods
have limitations in efficiency, animability, realism, and completeness. Point cloud-based methods
excel in drawing and deformation but face GPU memory challenges with large-scale point clouds.
Our approach addresses this with two-stage compression optimization after point cloud-based head
reconstruction, preventing GPU memory overload.

Knowledge Distillation. Knowledge distillation (KD) Hinton et al. (2015) transfers knowledge
from a powerful teacher network to a smaller student network. The student network is trained using
soft goals and some intermediate features provided by the teacher network (Romero et al. (2014);
Yang et al. (2020b); Zagoruyko & Komodakis (2016)).There are variations of KD, such as KD using
GAN Xu et al. (2017), Jacobi matching KD (Czarnecki et al. (2017); Srinivas & Fleuret (2018)),
activation boundary distillation Heo et al. (2019), comparison distillation Tian et al. (2019), and
distillation from graph neural networks (Jing et al. (2021); Yang et al. (2020b)). In recent years,
many studies have reported the problem of degradation of student network performance due to the
large gap between students and teachers.Cho and Hariharan showed that a network lacking training
transfers better knowledge to a smaller network Yang et al. (2020a).Park et al. Park et al. (2021)
proposed a student-centered approach to teacher learning in order to efficiently transfer the teacher’s
knowledge. In this paper, we provide a very simple approach to transfer teachers’ knowledge effec-
tively.

3 METHOD

Our goal is to compress the model before improving the digital avatar’s fidelity. Starting with a
monocular RGB video capturing diverse expressions and poses, we generate a color point cloud
through PointAvatar. The teacher model processes this point cloud via RandLA-Net and GCN layers,
concatenating their output features. We enhance the image and extract image features using Resnet.
These two feature sets are fused to generate the final fusion-optimized point cloud using the fusion
network. This fusion of features from different domains boosts the model’s expressive capacity,
benefiting both the teacher and student models. During knowledge distillation, we establish a point-
level supervised distillation process through graph topology. Additionally, the concatenated features
serve as latent codes for the second-stage generative adversarial renderer, denoted as G, which
produces more realistic face images. Importantly, G is trained in a self-supervised manner and
doesn’t rely on labeled data. The renderer G and the renderer inversion network R are fixed after
training to further optimize the model using the gap between the inverted output latent codes and
the input latent codes to produce more realistic digital avatars. In our experiments, after initially
training the renderer G and the renderer inversion network R, we alternate between optimization and
rendering (both G and R) training: every S iterations, we perform 1 step of optimization training
and S-1 steps of rendering training. In Figure 3, we provide an overview of the methodology.
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Figure 3: Based on monocular RGB video, we extract the color point cloud by PointAvatar and
use RandLA-Net and GCN layers for feature concatenation. Meanwhile, the point-level supervised
assisted distillation is realized through graph topology, which integrates the point cloud and image
information to enhance the model representation. After renderer G and renderer inversion network R
training, we alternate optimization and rendering training to generate more realistic digital avatars.

3.1 TEACHER MODEL

In our teacher model, there are two networks: the RandLA-Net Hu et al. (2020) and the Graph
Convolutional Network (GCN). For GCN, we choose EdgeConv Wang et al. (2019), where GCN
can be represented as:

Egcn(xk
i ) = F({xi ⊕

(
xi − xk

i

)
|xk

i ∈ N (xi)}; Θ) (1)

where N (xi) is the local neighborhood of point xi, simply constructed by the K nearest-neighbor
algorithm based on the Euclidean distance, and ⊕ denotes the feature concatenation. F is a function
with a set of learnable parameters Θ. We then use the Max-pooling operation to aggregate the local
features. Thus, a GCN can be represented as:

G(xi; Θ) = max
xk
i ∈N (xi)

Egcn(xk
i ) (2)

In our head avatar creation task, we aim to enhance model generalization and capture finer details. To
achieve this, we design the teacher model to fuse 3D point cloud data with 2D image information.
This fusion leverages the visual features, such as color and texture, from the image to refine and
augment the point cloud data, resulting in higher-quality, more realistic point cloud results. We
preprocess the dataset using an image super-resolution strategy, increasing image resolution and
detail clarity to aid the network in learning local details. Figure 3 illustrates the process: we first
improve image textures with image super-segmentation. Then, we pass the point cloud through
RandLA-Net and GCN layers, followed by concatenating their output features. These features are
combined with 2D features extracted from ResNet through an MLP. This fusion effectively utilizes
information from both the point cloud and image domains, enhancing the model’s expressive and
generalization capabilities.

3.2 KNOWLEDGE DISTILLATION

The improved model after Section 3.1. performs better in the head avatar task, but the increase in
parameters and computation leads to a prominent memory footprint problem. To address this diffi-
culty, we adopt a model compression strategy to adapt to the actual deployment requirements and
reduce the cost. In order to design a lightweight and efficient student model, we performed com-
pression based on the teacher model. First, the color point clouds are acquired by the compressed
S PointAvatar model, which contains three compressed MLPs.Then, these point clouds are passed
through compressed versions of S RandLA-Net and S GCN layers to extract and integrate local and
global features, respectively. These network layers are streamlined, simplified or merged to reduce
the number of parameters and computational complexity. For the knowledge distillation process, we
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constructed point-level supervised assisted distillation using graph topology. Specifically, we use the
point cloud and point cloud features generated by the teacher model as auxiliary labels and compare
them with the output of the student model. By using distribution consistency loss and feature con-
sistency loss, we guide the student model to be consistent with the teacher model in generating the
point cloud, while ensuring that the extracted features are as representative of the entire point cloud
as possible. In this way, the student model can benefit from the knowledge of the teacher model and
gradually learn better representation and optimized point cloud generation. We use distributional
consistency loss between the output point clouds: represented as:

Lkl = KL(P||Q) (3)

Where the point cloud distribution of the teacher model is denoted as P and the point cloud dis-
tribution generated by the student model is denoted as Q. In calculating the loss of distribution
consistency, we use the KL scatter as a measure to calculate the difference between the two distri-
butions. KL(P||Q) denotes the KL scatter of the teacher model distribution P with respect to the
student model distribution Q, which can be calculated by the following formula:

KL(P||Q) =
∑

P (x) log(P (x)/Q(x)) (4)

For the point cloud features extracted from the teacher and student models, we use feature consis-
tency loss:

Lce = 1− (T S) / (∥T ∥ ∥S∥) (5)

Where the output features of the teacher model are denoted as T and the output features of the
student model are denoted as S.

Our distillation method aims to ensure that the student model fully absorbs the knowledge of the
teacher model while exploiting its own capabilities, improve the performance of the student model,
and reduce the computational load and storage requirements. To this end, we employ a distillation
method based on the consistency of the point cloud output distribution and the characteristic cross-
entropy loss function to achieve an accurate graph topology for the entire point cloud. Instead
of emphasizing the reconstruction accuracy of both models, we focus on ensuring reconstruction
consistency between the teacher model and the student model. This method helps to improve the
performance of the student model for better applicability, and at the same time ensures that the
extracted features are representative of the entire point cloud as a well initialized latent code input
to the renderer in the second stage.

3.3 GENERATE ADVERSARIAL RENDERER

Our proposed generative adversarial renderer G is composed of a series of rendering blocks, based
on StyleGan v2 Karras et al. (2020), as shown in Figure 3. Each block corresponds to a specific
resolution and contains convolutions of varying styles. The modulation and demodulation of the
stylized kernel parameter k by the latent code z is defined as:

k′cij = wckcij/

√∑
c,j

(wckcij)2 + ϵ (6)

w = M(z) (7)

where kcij is the initial kernel parameter of the c-th channel at spatial location (i, j), k′cij is the
modulated kernel parameter, and wc is the modulation parameter of the c-th instance channel pre-
dicted by the 8-layer MLP M from the latent code z as shown in Equation 7. Here ϵ is used to avoid
dividing numbers by zero. The input feature mapping fcxy is convolved with the modulation kernel
to f ′

lxy

f ′
lxy =

∑
i,j

klcijfc,x+i,y+j , (8)

where f ′
lxy indicates the feature map pixel at (x, y) in the l-th channel.

In addition to the commonly used GAN loss Goodfellow et al. (2014) that encourages image vivid-
ness, perceptual loss Johnson et al. (2016) was used to refine the rendered results, significantly
improving detail and realism.
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3.4 OPTIMIZATION USING RENDERER INVERSION

While fine images with high-frequency details can be obtained using a generative adversarial ren-
derer, it is not enough to generate more realistic 2D images, we also need to use this to optimize our
3D head incarnation. Inspired by Bau et al. (2019), we design a renderer inversion network R that
solves this problem with a gradient-based optimization latent code z (as shown by the blue arrow in
Figure 3). The renderer inversion network R and the generative adversarial renderer G are trained
in a coupled fashion, where the output of the neural renderer (the generated face image Iout) is fed
into R to transform the image back into a latent code z′. Ideally, the reconstructed latent code z′

should be close to the input latent code z. The latent code z is estimated using the statistical mean
and variance of the feature mappings, and is given the same as in the style transfer MLP for each
layer with the same depth and channel. the resulting feature mapping of the inverse network should
have the same spatial size as the feature mapping of the corresponding layer of the neural renderer.
The reconstructed latent code z′ is estimated based on the concatenation of the statistical mean and
standardized variance of each layer, and then based on the MLP. Therefore, the loss function for
training the renderer inversion network:

Lz(R) =∥MLP([µ(Ri(Iout));σ(Ri(Iout))])− z∥22
+
∑
i

∥Gi(z, θ)−Ri(Iout)∥ (9)

where Iout = G(z, noise) is the face image generated by the neural renderer, Ri and Gi are the
feature maps of the ith layer of R and G, respectively, and µ, σ are the mean and variance of the
feature maps in R.

3.5 TRAINING

Training strategy: In our experiments, after initially training the renderer G and the renderer in-
version network R, we alternate between optimization and rendering (both G and R) training (200
iterations for each). When optimizing the 3D avatar avatar, we fix the renderer and the inverse
renderer, and for rendering training we fix S Pointavatar. Figure 4 shows the advantages of this
alternating learning.

Figure 4: Our generative adversarial renderer produces realistic images while being trained in two
stages to effectively enhance the head avatar.

Losses: In the first stage, the teacher and student models are reconstructed as 3D head avatars, which
are rendered as 2D images. For the 3D head avatars we guide the student model to be consistent
with the teacher model in generating the point cloud by using a distribution consistency loss and a
feature consistency loss. For 2D images, we follow previous work and use the IMavatar loss:

Lvgg (C) =
∥∥Fvgg(C)− Fvgg(C

T)
∥∥ (10)

Lflame =
1

N

N∑
i=1

(λe∥Ei − Êi∥2 + λp∥Pi − P̂i∥2 + λw∥Wi − Ŵi∥2) (11)

Lmask =
∥∥M−MT

∥∥ (12)
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Here, CT, MT, Ê , P̂ and Ŵ are obtained from the teacher modeling, and the total loss in our first
stage is:

Lstage1 = Lkl + λcLce + λvLvgg + λfLflame + λmLmask (13)

The second stage alternates training optimization and rendering, and the loss function for rendering
training is a combination of GAN loss Goodfellow et al. (2014) and perception loss (Dosovitskiy &
Brox (2016); Gatys et al. (2016); Johnson et al. (2016)). The loss function for optimizing the 3D
head avatar uses feature consistency loss.

4 EXPERIMENTS

Dataset: To demonstrate the performance of the model, we used the three subject datasets provided
by Pointavatar as well as the publicly available dataset from NerFace. One of the NerFace subjects
captured videos using a DSLR camera, while the three Pointavatar subjects captured videos using a
DSLR camera and a handheld smartphone. We compared our method with the current state-of-the-
art (SOTA) method. It is important to note that as handheld smartphones present some limitations in
terms of automatic exposure adjustments and image resolution, which pose new challenges for the
virtual image approach, our method focuses on addressing these challenging contexts. In all sub-
jects, we used the same facial tracking results and evaluated them in comparison with the individual
comparison methods.

Implementation Details: Our model was implemented in PyTorch and the first stage was trained
by Adam Optimizer optimizer with an initial learning rate of 0.001 and momentum of 0.9. During
the second stage of Generative Adversarial Renderer training, we optimized the parameters using
Adam solver with a learning rate of 0.01. The first stage trained 60 epochs and the second stage
trained 20 epochs. we used 6 attributes (i.e., XYZ coordinates and RGB colors) as inputs for each
point, and the entire training time was about 7 hours.

4.1 COMPARISON OF METHODOLOGICAL EFFICIENCY WITH EXISTING METHODS

As shown in Table 1, we demonstrate the comparison of our method with the state-of-the-art methods
for head avatars. Our method achieves the smallest network parameters and computation. Compared
to the teacher model, our parameters and computation are reduced by 95% and 90%, respectively.
Also, with a much reduced number of parameters, our method improves accuracy and achieves op-
timization. This illustrates the effectiveness of our method, especially on the dataset of smartphone
shots. As can be seen in Table 1, our method strikes the best balance between reconstruction accu-
racy, time consistency, and cost compared to Pointavatar. In addition, our method’s GPU memory
usage is about one-sixth of that of the teacher’s model, still the smallest among existing methods.

Parameters(M) MACs(T) FLOPs(T) Runtime Memory(MB)

Teacher Model 29 1.02 2.05 26429
IMavatar 3 0.86 1.73 6473

PointAvatar 1 0.6 1.2 4835
Ours 1.2 0.12 0.24 4017

Table 1: Comparison of parametric quantities, computation and Runtime Memory of models.

4.2 COMPARISON TO THE STATE OF THE ART

Quantitative Results. Table 2 quantitatively juxtaposes our approach with a state-of-the-art baseline
(SOTA), utilizing standard metrics such as L1, LPIPS, Zhang et al. (2018), SSIM and PSNR. It is
worth noting that in the case of NHA Grassal et al. (2022), its scope is limited to the simulation of the
head region; therefore, our comparison with NHA applies only to the head region and excludes the
garment domain. Impressively, our method obtained the most favorable metrics across all methods,
including lab-captured DSLR camera sequences and handheld smartphones.

Qualitative Results. An example of an image rendered by our method can be seen in Figure 4,
which demonstrates that our proposed generative adversarial renderer can generate face images of
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Figure 5: Qualitative comparison. Our method produces photo-realistic and detailed appearance
compared to SOTA methods, especially apparent in skin details and hair textures.

L1↓ LPIPS↓ SSIM↑ PSNR↑

IMavatar 0.033; 0.050 0.178; 0.261 0.874; 0.770 22.4; 18.7
NerFace 0.030; 0.045 0.126; 0.187 0.877; 0.782 22.7; 19.6

PointAvatar 0.021; 0.036 0.094; 0.145 0.899; 0.802 26.6; 22.3
Ours 0.015; 0.019 0.042; 0.057 0.962; 0.931 32.7; 28.7

NHA 0.022; 0.029 0.086; 0.123 0.890; 0.837 25.7; 21.6
PointAvatar (no cloth) 0.017; 0.021 0.077; 0.100 0.912; 0.863 28.6; 25.8

Ours (no cloth) 0.011; 0.012 0.031; 0.048 0.978; 0.969 36.8; 35.4

Table 2: Quantitative comparison. The first and second numbers in each cell represent the scores
of videos captured by digital SLRs and videos captured by smartphones, respectively. Our head
avatar method highlights superior advantages in quantitative analysis that integrates several key
performance metrics.

much higher visual quality than traditional graph-based renderers, with hair, glasses, and other at-
tributes being generated well. Our rendered image is very close to the input image as we significantly
reduce the gap between the rendered image and the real image.

Figure 5 shows the qualitative results of our method on smartphone and DSLR data, where our
method excels on several fronts, with a particular focus on capturing complex hair details and im-
proving overall image realism. Focusing more on maintaining the integrity of the reconstructed
avatar, our method demonstrates the ability to preserve detail, which is particularly evident in the
ability to accurately reconstruct hair details, a challenging achievement that is often overlooked by
existing methods.

4.3 ABLATION STUDY

In this section, we present the results of an ablation study that investigated different components of
our proposed two-stage head avatar, and the experimental results are shown in Table 3. We refer to
the pre-trained model provided by PointAvatar as ”pre-trained”. Because the second stage needs to
use the extracted point cloud features as latent codes, it is not possible to directly replace the baseline
micro-renderer with the generative adversarial renderer, and it is necessary to train a teacher model,
but the teacher model cannot be trained alternately in the second stage without compression with
our equipment, so the ablation experiment is not considered without the first stage. From the table,
we can see that each of the proposed modules and losses are valid.
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Method L1↓ LPIPS↓ SSIM↑ PSNR↑

Pretrained 0.024; 0.029 0.098; 0.100 0.874; 0.821 25.1; 22.8
w/o stage 2 0.019; 0.026 0.069; 0.085 0.919; 0.831 26.7; 23.7

w/o Lce 0.016; 0.021 0.047; 0.065 0.932; 0.901 30.6; 26.3
w/o Lkl 0.017; 0.023 0.056; 0.071 0.912; 0.878 28.5; 25.1

w/o initial 0.094; 0.098 0.384; 0.396 0.484; 0.425 15.6; 13.1
Ours full 0.015; 0.019 0.042; 0.057 0.962; 0.931 32.7; 28.7

Table 3: Ablation study of DSLR and smartphone video.

Effectiveness of point cloud processing network. We validate the effectiveness of the point cloud
processing network by conducting experiments. Figure 6 (a) presents the results, demonstrating that
concatenating the output features of RandLA-Net and GCN in the first stage effectively establishes a
global point graph topology and enhances feature representation. However, when using PointNet++
Qi et al. (2017) as the point cloud processing network, the results are unsatisfactory, as it is not
suitable for our dynamic point cloud model. PointNet, another option, doesn’t perform as well as
RandLA-Net and leads to a higher parameter count. Furthermore, Figure 6 (b) reveals that removing
GCN diminishes the effectiveness of the model, with only a marginal reduction in parameters.

Figure 6: Effectiveness ablation study of GCN and point cloud processing networks(PCPNet).

Effectiveness of distillation losses. In the process of knowledge distillation, we use graph topology
to construct a point-level supervised assisted distillation. We experimentally demonstrate the role
of distribution consistency loss and feature consistency loss, as shown in Table 3. Without these
two losses, the student model does not align well with the instructor’s model in generating the point
cloud, which will affect the student model’s ability to learn to express itself better.

Effectiveness of two-stage optimization. As shown in row 3 and row 4 of Table 3, the student
model at the time of distillation that directly uses the generative adversarial renderer instead of the
microscopic renderer, which does not have a proper initialization of the latent code, shows a serious
increase in reconstruction errors and may not converge for specific facets.

5 CONCLUSION

In this paper, we propose a two-stage model compression optimization architecture that achieves sig-
nificant results in digital avatar generation through a combined approach of knowledge distillation
and generative adversarial renderer. Compared to the current state-of-the-art methods, this approach
not only improves the network performance, but also drastically reduces the parameters and compu-
tation of the whole network. In addition, the effectiveness of the designed distillation loss and point
cloud processing network is also validated by the ablation study. The results further indicate that
additional supervised and graph topology learning is important for improving the header incarnation
of large-scale point clouds.
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