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ABSTRACT

Geometric deep learning endows graph neural networks (GNNs) with some sym-
metry aesthetics from the inherent principles of the underlying graph structures.
However, conventional modeling in Euclidean or hyperbolic geometry, often pre-
supposes specific geometric properties for graphs, thereby neglecting the intricate
actual structures. To address this limitation, this study generalizes the founda-
tional components of GNNs to the Symmetric Positive Definite (SPD) manifold.
This manifold theoretically endowed with a rich geometric structure that encom-
passes both Euclidean and hyperbolic projection subspaces. Motivated by this,
we reconstruct GNNs with manifold-preserving linear transformation, neighbor-
hood aggregation, non-linear activation, and multinomial logistic regression. In
this framework, the Log-Cholesky metric is employed to derive the closed-form
Fréchet mean representation for neighborhood aggregation, ensuring computa-
tional tractability in learning geometric embeddings. Experiments demonstrate
that the SPDGNN can learn superior representations for grid and hierarchical
structures, leading to significant performance improvements in subsequent clas-
sifications compared to the Euclidean and hyperbolic analogs.

1 INTRODUCTION

zz

Figure 1: The SPD manifold S2
+ (w.r.t. Eqn. 1)

could be approximately integrated by its manifold slice
(hyperboloid H) over Euclidean observation direction
(dz), and then be sequentially projected into the non-
Euclidean Poincaré ball B. From geometry perspective,
SPD contains Euclidean and hyperbolic entailments.

Geometric deep learning seeks to extend the ap-
plication of deep learning techniques beyond
Euclidean domains, encompassing graphs and
manifolds (Bronstein et al., 2021). Graph neu-
ral networks (GNNs) represent a specific cat-
egory of geometric deep learning models tai-
lored for graph data. Capitalizing on the in-
trinsic geometric properties of graphs, these
networks effectively encode extensive informa-
tion concerning both node attributes and graph
topology. Within diverse learning communi-
ties, the embeddings derived through GNNs
have demonstrated noteworthy success across
various graph-related tasks, including the link
prediction (Chami et al., 2019), graph classi-
fication (Xu et al., 2018), and node classifica-
tion (Kipf & Welling, 2017).

Despite the success of Euclidean embeddings,
recent research (Bronstein et al., 2021) has
brought to light that many complex graph datasets manifest characteristics that surpass the purview
of conventional Euclidean analysis. In such circumstances, the utilization of Euclidean space in-
evitably introduces geometric induction bias into the graph representation. Conversely, hyperbolic
space has emerged as a viable alternative to Euclidean space, demonstrating efficacy in embedding
tree structures with minimal distortion (Ganea et al., 2018; Chami et al., 2019; Zhang et al., 2021b).
However, whether modeling in Euclidean, hyperbolic, or their Cartesian product spaces, it typi-
cally entails hypothesizing that the structural properties of the graph adhere to specific geometric
preferences, thereby distorting the genuine graph structure.
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To transcend the intrinsic geometric preferences imposed on graph data by Euclidean or hyperbolic
embedding spaces, it is valuable to explore a more solid framework for geometric representations.
The Symmetric Positive Definite (SPD) manifold, theoretically endowed with a rich geometric struc-
ture that encompasses both Euclidean and hyperbolic projection subspaces, is a promising avenue
for investigation (Helgason, 1979). From a geometry decomposition perspective, SPD may be ap-
proximated by integrating Euclidean and hyperbolic geometric structures, as illustrated in Fig. 1.
Embedding graphs into the SPD manifold offers significant advantages, as it allows for the con-
current modeling of hierarchical structures in hyperbolic subspaces and grid structures in Euclidean
subspaces. This versatility overcomes the constraints inherent in exclusively relying on either hyper-
bolic or Euclidean spaces. Notably, the distinctive sub-manifold geometry enables the identification
and differentiation of substructures within the graph (López et al., 2021a;b).

In this paper, we present a novel reconstruction of GNNs termed SPDGNN, which generalizes
the fundamental components of GNNs onto the SPD manifold. Our innovative approach encom-
passes manifold-preserving linear transformation, neighborhood aggregation, non-linear activation,
and multinomial logistic regression. Notably, the utilization of the Log-Cholesky metric (Lin,
2019) in this framework facilitates the derivation of the closed-form Fréchet mean representation
for neighborhood aggregation, ensuring computational tractability in learning geometric embed-
dings. To evaluate the performance of SPDGNN, we conduct experiments on four publicly available
real-world datasets for the task of semi-supervised node classification. The experimental results
demonstrate the effectiveness of our proposed SPDGNN in acquiring enhanced representations for
Euclidean and hyperbolic geometries.

2 GEOMETRY OF THE SPD MANIFOLD WITH LOG-CHOLESKY METRIC

Riemannian geometry. A manifoldM with n dimensions is a topological space that can be lo-
cally approximated by an n-dimensional real space Rn at any point p ∈ M, known as the tangent
space TpM. A Riemannian manifold L is a differentiable manifold M endowed with a Rieman-
nian metric tensor field ĝ, expressed as L = (M, ĝ). Given two points u,v ∈ TpM, Riemannian
metric ĝ defines an inner product on the tangent space TpM such that ĝp(u,v) := ⟨u,v⟩p. Let
γ : [0, 1] → M be a smooth parameterized curve onM with velocity vector at t ∈ [0, 1] denoted
as γ̇t ∈ Tγ(t)M, where ∥ · ∥γt

denotes the Riemannian norm. The length of curve γ is defined as
Lγ =

∫ 1

0
∥γ̇t∥γt

dt =
∫ 1

0

√
ĝγ(t)(γ̇t, γ̇t)dt. Any two points p, q ∈ M can be joined by a unique

length-minimizing curve, called a geodesic dM(p, q). Moreover, for each point p ∈ M and a tan-
gent vector v ∈ TpM, the Riemannian exponential map Expp : TpM → M maps the tangent
vector v onto the manifoldM. The Riemannian logarithmic map is the reverse map that maps the
point Expp(v) back to the tangent space at p such that Logp(Expp(v)) = v. Another pivotal op-
eration is the parallel transport Pp→q : TpM → TqM, enabling the transportation of the tangent
vectors from point p to q along the unique geodesic while preserving the metric tensor ĝ.

SPD manifold. A symmetric matrix is deemed positive definite if all its eigenvalues are positive.
The space of n× n SPD matrices (Helgason, 1979) is denoted by

Sn+ = {A ∈ Rn×n|A = A⊤,A ≻ 0}, (1)

where A⊤ denotes the transpose of matrix A, and A ≻ 0 indicates that all eigenvalues of A are pos-
itive. The space of SPD matrices Sn+ constitutes a convex smooth manifold in the Euclidean space
Rn×(n+1)/2, and various inherited metrics further transform Sn+ into a Riemannian manifold (Pen-
nec et al., 2006; Arsigny et al., 2007; Lin, 2019). The tangent space at any point P ∈ Sn+ can be
identified as the vector space of symmetric matrices Sn, denoted as TPSn+. The standard matrix
exponential and logarithm of matrix P are represented as exp(P ) and log(P ), respectively, serving
as a diffeomorphism between manifolds Sn+ and Sn.

Log-Cholesky metric. We formally introduce the concept of a Riemannian manifold (Sn+, g)
wherein a n-dimensional SPD manifold Sn+ is endowed with a Log-Cholesky metric g (Lin, 2019).
The underlying principle of the Log-Cholesky metric lies in introducing a novel metric for the
Cholesky manifold of lower triangular matrices with positive diagonal elements, denoted as Ln

+,
and subsequently projecting it onto the SPD manifold Sn+ through Cholesky decomposition. The
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Cholesky decomposition represents P ∈ Sn+ as the product of L ∈ Ln
+ and its transpose, i.e.,

P = LL⊤. The smooth map between these two manifolds is defined as the Cholesky map
L : Sn+ → Ln

+, and its inverse map is denoted as S . Notably, these two maps establish a dif-
feomorphism between Ln

+ and Sn+ (Lin, 2019). The differential DLS : TLLn
+ → TS (L)Sn+ of map

S at point L is given by
DLS : Z 7→ LZ⊤ +ZL⊤, (2)

and the differential DP L : TPSn+ → TL (P )Ln
+ of map L at point P is given by

DP L : U 7→ L (P )
(
L (P )−1UL (P )−⊤)

1
2

, (3)

where A−⊤1 denotes the inverse of A⊤ and A 1
2

denotes the lower triangular part of A with the
diagonal elements halved. With the diffeomorphism between Ln

+ and Sn+, the Riemannian metric on
Sn+ can be derived from Ln

+. Given Y ,Z ∈ TLLn
+, Riemannian metric g̃ at L ∈ Ln

+ is defined as

g̃L(Y ,Z) := ⟨Y ,Z⟩L
= ⟨⌊Y ⌋, ⌊Z⌋⟩F + ⟨D(L)−1D(Y ),D(L)−1D(Z)⟩F

=
∑
i>j

YijZij +
n∑

j=1

YjjZjjL
−2
jj ,

(4)

where ⟨·, ·⟩F denotes the Frobenius inner product and ⌊A⌋ denotes a n × n strict low-triangular
matrix. For i > j, the elements in (i, j) of ⌊A⌋ are represented by Aij ; otherwise, the elements
are set to 0. Moreover, D(A) denotes a m × m diagonal matrix, with the diagonal elements cor-
responding to Aii. Subsequently, we can transform the Riemannian metric from Ln

+ to Sn+. Give
U ,V ∈ TPSn+, the Riemannian metric g at P ∈ Sn+ is defined as

gP (U ,V ) := ⟨U ,V ⟩P = g̃L (P )((DP L )(U), (DP L )(V )). (5)

Geodesic distance on a manifold generalizes the concept of straight lines in Euclidean geometry.
The definition of geodesic distance holds significant importance in graph embedding, where the op-
timization objective frequently involves minimizing the geodesic distance between adjacent nodes.
We formally define the geodesic distance dSn

+
between points P ,Q ∈ Sn+ through the geodesic

distance dLn
+

between points L,K ∈ Ln
+, denoted as

dSn
+
(P ,Q) = dLn

+
(L (P ),L (Q)), (6)

dLn
+
(L,K) = (∥⌊L⌋ − ⌊K⌋∥2F + ∥ logD(L)− logD(K)∥2F )1/2, (7)

where ∥A∥F := ⟨A,A⟩1/2F denotes the Frobenius norm. The mapping between the tangent space
TPSn+ and Sn+ undergoes a transformation via Riemannian Exponential and Logarithmic maps.
We have the explicit expressions for the Riemannian exponential map on Sn+, which maps points on
the SPD manifold Sn+ to the tangent space TPSn+ at P ∈ Sn+ through the Riemannian exponential
map on Ln

+. The expression is given by

ExpP (V ) =
(

˜ExpL (P )((DP L )(V ))
)(

˜ExpL (P )((DP L )(V ))
)⊤

, (8)

˜ExpL(Z) = ⌊L⌋+ ⌊Z⌋+ D(L) exp(D(Z)D(L)−1). (9)
Likewise, the Riemannian logarithmic map on Sn+ is also derived from the Riemannian logarithmic
map on Ln

+:
LogPQ = (DL (P )S )( ˜LogL (P )L (Q)), (10)

˜LogLK = ⌊K⌋ − ⌊L⌋+ D(L) log(D(L)−1D(K)). (11)

Rationale for the choice of the Log-Cholesky metric. (1) Aggregation analytics. In the con-
text of neighborhood aggregation of GNNs, the Fréchet mean of aggregated node neighborhoods
serves as an efficient surrogate expression for information transmission, with its closed-form analyt-
ics being pivotal. When considering metrics on the SPD manifold, both Log-Cholesky metric (Lin,

1Concisely, we may abuse the symbol A to introduce the operations defined on matrices.
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2019) and LEM (Arsigny et al., 2007) provide closed-form expressions for the Fréchet mean, while
AIM (Pennec et al., 2006) necessitates incremental analytics for approximation. (2) Computational
tractability. Despite LEM (Arsigny et al., 2007) possessing desirable properties such as Rieman-
nian symmetry, geodesic completeness, and inverse consistency, the computation of Riemannian
exponential and logarithmic maps for this metric involves evaluating an infinite series, incurring
substantial computational costs. In summary, considering these factors, the Log-Cholesky metric is
chosen due to its satisfaction of our requirements. This metric provides a closed-form expression
for the Fréchet mean and computational efficiency, aligning well with the objectives of our research.

3 RIEMANNIAN GNNS WITH LOG-CHOLESKY METRIC

In this section, we reconstruct GNNs on the SPD manifold with the Log-Cholesky metric, encom-
passing feature transformation, neighborhood aggregation, non-linear activation, and multiclass lo-
gistic regression. Before this reconstruction process, fundamental components of GNNs are intro-
duced through the classical Graph Convolutional Networks (GCN) model as an illustrative example.

3.1 BACKGROUND ON GRAPH NEURAL NETWORKS

Problem setting. Consider the graph G = (V, E), where V denotes the node set and E denotes
the edge set. Additionally, let (xE

i )i∈V denote the d-dimensional node features in Euclidean space,
denoted by the superscript E. Moreover, a subset of nodes Vt ⊂ V is associated with class labels
{yi}i∈Vt

. The objective of the semi-supervised node classification task is to predict the labels for
nodes without labels {yi}i∈V\Vt

or even for newly introduced nodes in the graph.

Graph Convolutional Neural Networks (GCN). Let N (i) = {j : (i, j) ∈ E} denote the set of
neighbors of node i, W ℓ be weights for layer ℓ, and σ(·) denote a non-linear activation function.
The general GCN message-passing scheme at layer ℓ for node i consists of

hℓ,E
i = W ℓxℓ−1,E

i , (Feature Transformation)

xℓ,E
i = σ

 ∑
j∈N (i)∪i

wijh
ℓ,E
j

 , (Neighborhood Aggregation)
(12)

where aggregation weights wi,j can be computed using various mechanisms (Kipf & Welling, 2017;
Veličković et al., 2018). Message passing is performed over multiple layers to iteratively propagate
messages across neighborhoods.

Subsequently, we systematically elucidate the generalization of GNN components onto the SPD
manifold. For brevity and without loss of generality, we eschew the use of superscripts to denote the
number of layers and subscripts for node indices. Formally, we define the vector feature of a node
in Euclidean space as xE , the matrix feature on Ln

+ as XL, and the matrix feature on Sn+ as XS .
Furthermore, the matrix feature following the application of each component is denoted as X̂S .

3.2 MAPPING FEATURES FROM EUCLIDEAN TO SPD MANIFOLD

For GNN operations, the initial mapping of each node’s input feature xE ∈ Rd onto the SPD
manifold Sn+ is essential. This involves a linear transformation, parameterized by W , to map the
input feature xE onto the Euclidean space Rn(n+1)/2. Subsequently, the Rectified Linear Unit
(ReLU) activation function σ is applied to ensure that the elements remain positive. The resulting
feature is then reshaped into n × n lower triangular matrices, essentially formulated as a mapping
φ : Rn(n+1)/2 → Ln

+:

φ : x 7→


x1 0 · · · 0
x2 x3 · · · 0
...

...
. . .

...
xn(n−1)/2+1 xn(n−1)/2+2 · · · xn(n+1)/2

 , (13)
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where xi denotes the i-th element of the vector x. Finally, the Cholesky inverse map S is applied
to map features from Ln

+ onto Sn+. The initial mapping process can be formally summarized as

XS = S (XL) = XL(XL)⊤,XL = φ(σ(WxE)). (14)

3.3 FEATURE TRANSFORMATION

In Euclidean GNNs, the feature transformation typically involves mapping node features from one
layer’s vector space to the subsequent layer’s vector space. Unfortunately, the SPD manifold Sn+
lacks a well-defined algebraic structure akin to a vector space. Instead of resorting to Euclidean
transformations on the tangent space TXSn+, we adopt a more fundamental approach achieving two
simultaneous objectives: dimensional transformation and preservation of the manifold structure.

The prototypical symmetries of SPD manifold are parameterized by elements of the General Linear
(GL) Group GL(n;R): any invertible matrix M ∈ Rn×n defines a symmetry P 7→MPM⊤, op-
erating on points P ∈ Sn+, encompassing operations like translation, rotation, and reflection (López
et al., 2021b). However, as an invertible squared matrix M ∈ Rn×n typically preserves the dimen-
sion of the matrix P , we consider a more general concept of row full-rank matrices M ∈ Rp×n,
where n ≥ p, ensuring the positive definiteness of the transformed matrices. Nonetheless, due to
the non-compact nature of the space of row full-rank matrices, direct optimization becomes imprac-
tical (Huang & Van Gool, 2017). To address this, we further constrain the space to be orthogonal,
yielding M ∈ SO(n) \ SO(n − p), where SO(n) denotes the n × n Special Orthogonal (SO)
Group (James, 1976). This space resides within the Stiefel manifold St(p, n), where n ≥ p. Con-
sequently, we formally define the manifold-preserving feature transformation as

X̂S = MXSM⊤,XS ∈ Sn+, X̂S ∈ Sp+, (15)

where M ∈ St(p, n) denotes the Riemannian parameters on the Stiefel manifold St(p, n) . This
feature transformation enables the transformation of the feature X from Sn+ to Sp+.

3.4 NEIGHBORHOOD AGGREGATION

Neighborhood aggregation is a pivotal step in GNNs, serving to capture crucial neighborhood struc-
tures and features. Fundamentally, it calculates the Euclidean mean of the neighborhood features,
a concept naturally extending to the Fréchet mean (Fréchet, 1948; Lou et al., 2020) for computing
the centroid of neighborhood features on the Riemannian manifold. The core concept behind the
Fréchet mean is to minimize an expectation of squared geodesic distances within a set of points P ,
formulated as F (C) =

∑m
i=1 d

2
M(C,Pi), where C denotes the expected centroid and dM denotes

the geodesic distance function on the manifoldM. The Log-Cholesky metric theoretically provides
a closed and easily computable form for the Fréchet mean on the SPD manifold.
Proposition 1. (Lin, 2019) Given a collection of points {P1, · · · ,Pm} ∈ Sn+, the Fréchet mean on
the SPD manifold Sn+ of these points, denoted by F́S(·), can be formulated as

F́S(P1, · · · ,Pm) = F́L(L (P1), · · · ,L (Pm)
)
F́L(L (P1), · · · ,L (Pm)

)⊤
, (16)

F́L(L1, · · · ,Lm) =
1

m

m∑
i=1

⌊Li⌋+ exp
( 1

m

m∑
i=1

logD(Li)
)
. (17)

Proposition 1 demonstrates that the closed-form Fréchet mean F́S of a collection of points on Sn+
can be derived from the mean representation F́L of the corresponding points on Ln

+. With this
proposition, we formally define the neighborhood aggregation of XS ∈ Sn+ as

X̂S = F́S(N (XS)), (18)

where N (XS) denotes the set of neighborhood representations of XS ∈ Sn+.

3.5 NON-LINEAR ACTIVATION

In the realm of deep neural networks, various ReLUs have been proposed to enhance discriminative
performance (Jarrett et al., 2009; Nair & Hinton, 2010). Consequently, it is crucial to incorporate
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ReLU-like layers to introduce non-linearity into GNNs on the SPD manifold. Drawing inspiration
from the concept of the point-wise non-linear activation max(0, x) , we devise a non-linear function
σS(·) to rectify the SPD matrix XS ∈ Sn+ by amplifying its small positive eigenvalues:

X̂S = σS(XS) =
(
σL(L (XS))

)(
σL(L (XS))

)⊤
, (19)

σL(XL) = ⌊XL⌋+max(ϵI,D(XL)), (20)
where I denotes the identity matrix, and ϵ denotes the rectification threshold. It is essential to
underline that the Cholesky decomposition XL = L (XS) typically guarantees that the elements
of D(XL) are inherently positive. Consequently, the ReLU operation σS(·) defined on the SPD
manifold does not inherently induce sparsity. In other words, by increasing the values of D(XL),
our objective is to enhance the determinant of XS and thus elevate the eigenvalues collectively.
Practically, the non-linear operation in Eqn. 20 can be integrated into Eqn. 17, thereby eliminating
the computational overhead for a separate Cholesky decomposition.

3.6 MULTICLASS LOGISTIC REGRESSION ON SPD MANIFOLDS

ା
ଶ  Space

Hyperplane

Figure 2: A 3D example of the SPD hy-
perplane on S2

+. The gray convex conical
point cloud delineates the S2

+ space. The
green points, sampled within S2

+, outline the
SPD hyperplane. Notably, this hyperplane
is orthogonal to the red normal vector V ∈
TPS2

+ and passes through the point P ∈ S2
+.

In conventional GNNs, the routine utilization of lin-
ear classifiers critically hinges on the presupposition
that data adheres to the principles of Euclidean geom-
etry. However, if the data or features in question lack
a Euclidean structure, the rationale for employing lin-
ear classifiers become less compelling, as highlighted
by (Lebanon & Lafferty, 2004). Hyperplane classi-
fiers present an appealing solution for harmonizing these
two objectives: effectively fitting the training data while
achieving improved geometric generalization.

Given an input x ∈ Rn, the multiclass logistic regression
(MLR) serves as an operation for predicting the proba-
bilities of all target outcomes k ∈ {1, 2, · · · ,K} for the
objective variable y , expressed as follows:

p(y = k|x) ∝ exp(vk(x)), (21)

where vk(x) = ⟨ak,x⟩ − bk, with ak ∈ Rn denoting a
parameterized vector and bk ∈ R denoting a scalar shift.
As demonstrated in (Lebanon & Lafferty, 2004; Ganea et al., 2018), Euclidean MLR can be refor-
mulated geometrically in terms of distances to hyperplanes:

p(y = k|x) ∝ exp(sign(⟨ak,x⟩ − bk)∥ak∥d(x, Hak,bk)), (22)

where Hak,bk = {x ∈ Rn|⟨ak,x⟩ − bk = 0} denotes the hyperplane parameterized by the normal
vector ak ∈ Rn \ {0} and the scalar shift bk ∈ R. Additionally, d(x, Hak,bk) denotes the margin
distance from the point x to the hyperplane Hak,bk . Theoretically, it is natural to generalize the
Euclidean hyperplane to the SPD setting through the tangent space:
Definition 1 (SPD Hyperplane). Given P ∈ Sn+, V ∈ TPSn+ \ {0}, SPD hyperplane is defined as

HV ,P = {S ∈ Sn+ : ⟨LogP (S),V ⟩P = 0}. (23)

The hyperplane HV ,P denotes the union of points S ∈ Sn+ that their tangent vectors LogP (S) ∈
TPSn+ are orthogonal to the normal vector V ∈ TPSn+ at point P ∈ Sn+. Notice that our definition
matches that of hypergyroplanes (Nguyen & Yang, 2023). A illustrative example of a 3D hyperplane
on S2+ is depicted in Fig. 2.

Subsequently, given an input X ∈ Sn+, the generalization of MLR on the SPD manifold can be
described as

p(y = k|X) ∝ exp(sign(⟨Vk,LogPk
(X)⟩Pk

)∥Vk∥Pk
d(X, HVk,Pk

)), (24)

where ⟨·, ·⟩Pk
and ∥ · ∥Pk

denote the Riemannian inner product and norm at Pk. For the calculation
of d(X, HVk,Pk

), we provide Proposition 2 whose proof is deferred to Appendix A.1.
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Proposition 2. Given an input X ∈ Sn+ and a hyperplane HV ,P parameterized by P ∈ Sn+ and
V ∈ TPSn+ \ {0} on Sn+, the margin distance from X to hyperplane HV ,P can be formulated as

d(X, HV ,P ) =

|⟨⌊L (X)⌋ − ⌊L (P )⌋+ log
(
D(L (P ))−1D(L (X))

)
, ⌊Ṽ ⌋+ D(L (P ))−1D(Ṽ )⟩F |

∥V ∥P
,

(25)

where Ṽ = L (P )
(
L (P )−1V L (P )−⊤)

1
2

.

In prior works (Lebanon & Lafferty, 2004; Ganea et al., 2018), MLR has been generalized to spher-
ical and hyperbolic geometries. Here, we focus on the generalization of MLR to the SPD manifold,
as established by Theorem 1, whose proof is provided in Appendix A.2.

Theorem 1. Given a set of data {X : X ∈ Sn+} that could be divided into K classes s.t.
{1, · · · ,K} under MLR discrimination from the SPD manifold, let Vk ∈ TPk

Sn+ \ {0} denote the
normal vector of the hyperplane HVk,Pk

, and Pk ∈ Sn+ denote the hyperplane bias. The probability
of X belonging to the class k can be approximately defined as

p(y = k|X) ∝ exp(⟨⌊L (X)⌋ − ⌊L (Pk)⌋+ log
(
D(L (Pk))

−1D(L (X))
)
,

⌊Ṽk⌋+ D(L (Pk))
−1D(Ṽk)⟩F ),

(26)

where Ṽk = L (Pk)
(
L (Pk)

−1VkL (Pk)
−⊤)

1
2

.

Theorem 1 posits that the probability of node X belong to the class k is proportional to the Rieman-
nian inner product between the tangent vector of node X at Pk and the normal vector Vk , which
can be considered as a geometric generalization of the prototypical MLR presented in Eqn. 21.

4 EXPERIMENTS

In this section, we conduct experiments on a variety of real-world graphs to assess the efficacy of the
proposed SPDGNN in the domain of semi-supervised node classification. We systematically com-
pare the performance of SPDGNN against several Euclidean and hyperbolic GNNs. Additionally,
we leverage the visualization of node embeddings and class hyperplanes to investigate the expres-
siveness of SPDGNN for modeling both Euclidean and hyperbolic geometries.

4.1 EXPERIMENTAL SETUP

Datasets. Our experiments employ four real-world datasets: Disease, Airport, PubMed, and
Cora, recognized as benchmarks for the node classification task. These datasets have undergone
preprocessing by Chami et al. (2019) and are accessible in their code repository2. Comprehensive
statistics for these datasets are presented in Table 3, with δ-hyperbolicity vales determined according
to Chami et al. (2019). A lower δ signifies a more hyperbolic nature of the graph. Further, detailed
information regarding the datasets and their splits can be found in Appendix C.1.

Implementation details. In our following experiments, we employ the standard GNN framework
to learn the node representations, utilizing components defined on SPD manifold (refer to Sec-
tion 3). Subsequently, these representations are fed to the MLR module (see Section 3.6), yield-
ing probability for each class. Additionally, we incorporate the margin ranking loss, defined as
Loss = max(p − p̂ + m, 0). In this expression, p denotes the probability for the correct class, p̂
denotes the probabilities for the incorrect classes, and m is a non-negative margin hyper-parameter.
Furthermore, we optimize our SPDGNN model using Riemannian Adam (Kochurov et al., 2020).
The presented averages and standard deviations were derived from 10 independent runs. Detailed
implementations are provided in Appendix C.2.

2https://github.com/HazyResearch/hgcn
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Table 1: Evaluation results and comparison with competitive methods. F1 scores (%) are reported.
Dataset Disease Airport PubMed Cora
Method δ = 0 δ = 1 δ = 3.5 δ = 11

E
uc

lid
ea

n GCN 69.7±0.4 81.4±0.6 78.1±0.2 81.3±0.3
GAT 70.4±0.4 81.5±0.3 79.0±0.3 83.0±0.7

SAGE 69.1±0.6 82.1±0.5 77.4±2.2 77.9±2.4
SGC 69.5±0.2 80.6±0.1 78.9±0.0 81.0±0.1

H
yp

er
bo

lic HGCN 82.8±0.8 90.6±0.2 78.4±0.4 81.3±0.6
HAT 83.6±0.9 – 78.6±0.5 83.1±0.6

LGCN 84.4±0.8 90.9±1.7 78.6±0.7 83.3±0.7
HYPONET 96.0±1.0 90.9±1.4 78.0±1.0 80.2±1.3
SPD4GCN 91.1±3.5 65.8±3.4 78.1±0.6 80.2±1.4
SPDGNN 96.9±0.9 94.9±1.3 79.3±0.7 80.5±3.2

Competitors. We compare our SPDGNN against three categories of methods: (1) Euclidean GNN
models, namely GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), SAGE (Hamilton
et al., 2017), and SGC (Wu et al., 2019). (2) Hyperbolic GNNs, including HGCN (Chami et al.,
2019), HAT (Zhang et al., 2021a), LGCN (Zhang et al., 2021b), HYPONET (Chen et al., 2022).
(3) SPD4GCN (Zhao et al., 2023). To ensure fairness, we reproduce the outcomes of the first
two categories as reported in (Chen et al., 2022). Meanwhile, the results of SPD4GCN3 and our
SPDGNN are obtained using the identical experimental settings and data split, aligning with the
details in (Chami et al., 2019; Chen et al., 2022).

4.2 COMPARATIVE RESULTS

Performance evaluation of SPDGNN against competitors. Table 1 displays the experimental
results, comparing between SPDGNN and other competitive models. Notably, SPDGNN consis-
tently outperform all competitors on datasets with low hyperbolicity, underscoring the efficacy of
SPDGNN in learning node representations adaptable to grid and hierarchical structures. Particu-
larly noteworthy is SPDGNN’s comprehensive superiority over SPD4GCN in terms of effectiveness.
Moreover, we compare the training and inference times, as detailed in Table 5 within Appendix D.
It is evident that SPDGNN is much faster than the SPD4GCN during both training and inference.
Collectively, these results demonstrate the promising effectiveness and efficiency of SPDGNN.

Table 2: Ablation results of SPDGNN and its variants.
Model Disease Airport PubMed Cora

w/o Stiefel Linear 93.1±2.6 90.3±1.2 77.5±1.4 76.3±2.3
w/o Non-Linear 89.2±2.2 90.8±1.4 77.1±0.7 75.3±3.1
w/o SPD MLR 93.8±3.8 90.8±1.9 76.7±0.3 73.6±3.6

SPDGNN 96.9±0.9 94.9±1.3 79.3±0.7 80.5±3.2

Enhancing node representations: evaluating component contributions. We assess the impact
of proposed components of GNNs on the SPD manifold by systematically examining variations de-
rived from removing each component individually from SPDGNN. Specifically, we replace Stiefel
linear (refer to Section 3.3) with the IsometryQR (López et al., 2021b; Zhao et al., 2023), directly
omit non-linear layer (refer to Section 3.5), and replace the SPD MLR (refer to Section 3.6) with the
Euclidean MLR. Results presented in Table 2 consistently reveal conspicuous performance degra-
dation upon the removal of each component, thereby substantiating the effectiveness of the fully
restructured SPDGNN. To thoroughly examine the effectiveness of SPD MLR, we showcase the 3D
visual representations of class hyperplanes and node embeddings derived through Euclidean MLR
and SPD MLR, as depicted in Fig. 3. Observing the illustration, it becomes apparent that, in contrast
to the flat Euclidean hyperplanes portrayed in Figs 3(a), 3(c), the SPD hyperplanes in Figs 3(b), 3(d)
encapsulate both flat and curved hyperplanes. These correspond, respectively, to the geometric struc-
tures of Euclidean and hyperbolic spaces. With these comprehensive hyperplanes, node embeddings

3https://github.com/andyweizhao/SPD4GNNs
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from distinct catalogs are clearly separated. This substantiates the effectiveness of SPD MLR to
simultaneously incorporate both Euclidean and hyperbolic geometries for classification. Additional
perspectives of these hyperplanes are elucidated in Appendix D, providing a vivid illustration of the
SPD manifold’s rich geometric properties.

(a) Euclidean hyperplanes and node embeddings on
Disease

(b) SPD hyperplanes and node embeddings on
Disease

(c) Euclidean hyperplanes and node embeddings on
PubMed

(d) SPD hyperplanes and node embeddings on
PubMed

Figure 3: Direct Euclidean vs SPD MLR used to classify nodes on Disease and PubMed. In
each subfigure, the left panel displays the class hyperplanes, while the right one exhibits the node
embeddings. The node colors correspond to their respective catalogs. From a geometric perspective,
subfigures (a) and (c) showcase Euclidean hyperplanes (depicting a flat observation) and node em-
beddings derived through Euclidean MLR. In contrast, subfigures (b) and (d) depict non-Euclidean
hyperplanes (manifesting as curved surfaces) and node embeddings derived through SPD MLR.

4.3 ANALYSIS OF HYPER-PARAMETERS

Impact of propagation depth on classification performance. In Fig. 4 (left column), the out-
comes of SPDGNN are depicted as the propagation steps range from 2 to 6. The results reveal
that F1 scores reach optimal levels with shallow depths and gradually diminish as the number of
propagation steps increases. This trend is attributed to the effectiveness of a moderate number of
propagation steps in harnessing structural dependencies to enhance node representations. However,
with an increase in propagation depth, there is a risk of over-smoothing, leading to the homogeniza-
tion of node representations and making them indistinguishable across different categories.

Impact of weight decay and margin on training. Given the incorporation of multiple Rieman-
nian parameters in SPDGNN, we study the performance nuances concerning weight decay and mar-
gin settings, as presented in Fig. 4 (middle and right columns, respectively). Our observations
indicate that the performance of SPDGNN is notably dependent on the values assigned to weight
decay and margin. Moreover, optimal values exhibit variability across different datasets.

5 CONCLUSIONS

In this study, we have reconstructed the formulation of graph neural networks (GNNs) on the sym-
metric positive definite (SPD) manifold, encompassing both Euclidean and hyperbolic entailments.
Within this geometry-rich Riemannian structure, we have reformulated fundamental components,
including linear transformation, neighborhood aggregation, non-linear activation, and multinomial
logistic regression layers, incorporating novel geometric insights. Analysis and experimental results
demonstrate the effectiveness and efficiency of the reconstructed SPDGNN in generating superior
representations for both Euclidean and hyperbolic geometries, thereby enhancing the performance
of the node classification task.
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A DETAILED PROOFS

A.1 PROOF FOR PROPOSITION 2

Proof. Obviously,
d(X, HV ,P ) := inf

Q∈HV ,P

dSn
+
(X,Q). (27)

Recall the geodesic distance in Eqn. 6
dSn

+
(X,Q) = dLn

+
(L (X),L (Q)) (28)

and the formula of distance between a point and a plane, we can rewrite Eqn. 27 as
d(X, HV ,P ) = d(L (X), H(DP L )(V ),L (P ))

=
|⟨ ˜LogL (P )(L (X)), (DP L )(V )⟩L (P )|

∥(DP L )(V )∥L (P )

(29)

Concisely, we focus solely on deriving the numerator and omit the denominator and absolute value.

Based the Riemannian logarithmic map on Ln
+ and the differential of Cholesky map L in Eqns. 11

and 3, respectively, we can expand the numerator in Eqn. 29 as
⟨ ˜LogL (P )(L (X)), (DP L )(V )⟩L (P )

= ⟨⌊L (X)⌋ − ⌊L (P )⌋+ D(L (P )) log
(
D(L (P ))−1D(L (X))

)
,

L (P )
(
L (P )−1V L (P )−⊤)

1
2

⟩L (P ).

(30)

Concisely, let Ṽ := L (P )
(
L (P )−1V L (P )−⊤)

1
2

.

Based the Riemannian metric on Ln
+ in Eqn. 4, we can expand Eqn. 30 as

⟨⌊L (X)⌋ − ⌊L (P )⌋+ D(L (P )) log
(
D(L (P ))−1D(L (X))

)
, Ṽ ⟩L (P )

= ⟨⌊L (X)⌋ − ⌊L (P )⌋+ log
(
D(L (P ))−1D(L (X))

)
, ⌊Ṽ ⌋+ D(L (P ))−1D(Ṽ )⟩F .

(31)

Besides, based the Riemannian metric on Sn+ in Eqn. 5, we can rewritten the denominator in Eqn. 29
as

|(DP L )(V )∥L (P ) = ∥V ∥P . (32)

Thus, we can obtain
d(X, HV ,P ) =

|⟨⌊L (X)⌋ − ⌊L (P )⌋+ log
(
D(L (P ))−1D(L (X))

)
, ⌊Ṽ ⌋+ D(L (P ))−1D(Ṽ )⟩F |

∥V ∥P
,

(33)

where Ṽ = L (P )
(
L (P )−1V L (P )−⊤)

1
2

.
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A.2 PROOF FOR THEOREM 1

Proof. Recall the generalization of MLR on the SPD manifold in Eqn. 24

p(y = k|X) ∝ exp(sign(⟨Vk,LogPk
(X)⟩Pk

)∥Vk∥Pk
d(X, HVk,Pk

)), (34)

and the distance in Proposition 2

d(X, HV ,P ) =

|⟨⌊L (X)⌋ − ⌊L (P )⌋+ log
(
D(L (P ))−1D(L (X))

)
, ⌊Ṽ ⌋+ D(L (P ))−1D(Ṽ )⟩F |

∥V ∥P
,

(35)

where Ṽ = L (P )
(
L (P )−1V L (P )−⊤)

1
2

.

Combining expression 34 and 35, we thus have

p(y = k|X) ∝ exp(⟨⌊L (X)⌋ − ⌊L (Pk)⌋+ log
(
D(L (Pk))

−1D(L (X))
)
,

⌊Ṽk⌋+ D(L (Pk))
−1D(Ṽk)⟩F ),

(36)

where Ṽk = L (Pk)
(
L (Pk)

−1VkL (Pk)
−⊤)

1
2

.

B RELATED WORKS

Graph neural networks. Graph neural networks have expanded the capabilities of deep neural
networks in handling graph data (Zhang et al., 2020). Kipf & Welling (2017) made groundbreak-
ing contributions by introducing GCN, enabling the learning of node representations through iter-
ative feature propagation on the graph structure. Subsequent to this pioneering work, numerous
GNN methods have been proposed for diverse tasks, including node classification (Veličković et al.,
2018; Wu et al., 2019; Gasteiger et al., 2018; Pei et al., 2019), link prediction (Zhang & Chen,
2018), and graph classification (Xu et al., 2018; Errica et al., 2019; Wijesinghe & Wang, 2021; Choi
et al., 2023). However, these methods typically embed nodes into a Euclidean space, resulting in
significant distortion when applied to real-world graphs exhibiting scale-free or hierarchical struc-
ture (Peng et al., 2021). In a non-Euclidean setting, hyperbolic space has gained increasing popular-
ity for processing tree-like graph data. Ganea et al. (2018) presented a generalization of deep neural
networks in hyperbolic space, specifically deriving hyperbolic multiclass logistic regression. Chami
et al. (2019) proposed HGCN, performing network operations in the tangent space of the hyperbolic
manifold. Zhang et al. (2021a) introduced a graph attention network in the Poincaré ball model
to embed hierarchical and scale-free graphs with low distortion. Additional, Zhang et al. (2021b)
proposed a neighborhood aggregation method based on the centroid of Lorentzian distance. Build-
ing upon this, Chen et al. (2022) further adapted the Lorentz transformations, incorporating boost
and rotation operations, to formalize fully essential transformation in hyperbolic space. Moreover,
HIE (Yang et al., 2023) leveraged hierarchical information inferred from the hyperbolic distance of
each node to the origin, thereby enhancing current hyperbolic methods.

SPD neural networks. To take advantage of geometric deep learning techniques, considerable
efforts have been devoted to generalizing Euclidean deep leaning to the realm of Riemannian geom-
etry (Zhen et al., 2019; Chakraborty et al., 2020; Nguyen, 2021; Bronstein et al., 2021). Huang &
Van Gool (2017); Wang et al. (2021) devised a densely connected feed-forward network explicitly
tailored for the SPD manifold, incorporating a bi-linear mapping layer and a non-linear activation
function. Expanding on this, Zhang et al. (2020) presented an SPD transformation network for ac-
tion recognition, encompassing SPD convolutional, non-linear, and recursive layers. In the pursuit
of enhancing expressiveness and interpretability of graph embeddings, López et al. (2021b) devel-
oped vector-valued distance and gyrovector calculus on the SPD manifold. Building upon this work,
Zhao et al. (2023) conducted a preliminary exploration of implementing GNNs in the tangent space
of the SPD manifold. Furthermore, Nguyen & Yang (2023) applied the theory of gyrogroups and
gyrovector spaces to the study of matrix manifolds, successfully constructing neural networks on
these manifolds.
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Table 3: Datasets statistics.
Dataset #Nodes #Features #Classes #Edges δ-hyperbolicity
Disease 1,044 1,000 2 1,043 0
Airport 3,188 11 4 18,631 1
PubMed 19,717 500 3 88,651 3.5
Cora 2,708 1433 7 5,429 11

C EXPERIMENTAL DETAILS

C.1 DATASET INFORMATION

As outlined in Section 4.1, datasets employed in our experiments are all public available and widely
used as standard benchmarks for evaluating graph representation learning tasks. The detailed infor-
mation is provided below.

Disease (Anderson & May, 1991) is constructed based on the SIR disease spreading model. The
labels indicate whether a node was infected or not, while the node features represent the suscep-
tibility to the disease. This dataset comprises tree networks with 1,044 nodes, 1,043 edges, 1,000
features, and 2 classes.

Airport (Chami et al., 2019) is a flight network where nodes correspond to airports and edges
represent airline routes. The node features contains geographic information and GDP of the country
to which the airport belongs. The node labels indicate the population of the corresponding country.
The flight network in this dataset consists of 3,188 nodes, 18,631 edges, 11 features, and 4 classes.

Cora (Sen et al., 2008) and PubMed (Szklarczyk et al., 2016) serve as standard benchmarks for
citation networks. In these networks, nodes represent published scientific papers, and edges indicate
the citation relationships between them. The labels assigned to the nodes pertain to academic topics.
Specifically, Cora contains 2,708 nodes, 5,429 edges, 1,433 features and 7 classes, while PubMed
consists of 19,717 nodes, 88,651 edges, 500 features and 3 classes.

Data split. We split the nodes in Disease dataset into 30%, 10%, and 60%, and the nodes in
Airport dataset into 70%, 15%, and 15%. For Cora and PubMed datasets, we used 20 labeled
examples per class for training. The above splits are the same as those used in (Chami et al., 2019;
Chen et al., 2022).

C.2 DETAILED IMPLEMENTATIONS

GNN framework. As outlined in Section 3, our objective is to reconstruct the GNNs on the SPD
manifold, encompassing feature transformation, neighborhood aggregation, non-linear activation,
and MLR. By incorporating these reconstructed components into the canonical GNN architecture,
we propose a novel model, referred to as SPDGNN, which operates fully on the SPD manifold. The
pseudo code for the training process of SPDGNN is provided in Algorithm 1.

Hyper-parameters. For experimental model, the hyper-parameters are tuned from the following
search space: learning rate in {0.001, 0.005, 0.01}, dropout in {0, 0.3, 0.5, 0.7, 0.9}, weight decay
in {0, 0.0001, 0.001, 0.01, 0.1}, dimension in {5, 10}, number of layer in {2, 3, 4, 5}, and margin in
{0.25, 0.5, 1, 2, 5}. The optimal hyper-parameters on various datasets are summarized in Table 4.

Training details. The SPDGNN model is trained with the semi-supervised classification loss on
labeled training nodes. To determine the epoch selection, we employ the loss on the validation set
as an indicator and report the testing results accordingly. During each run, the model is trained for
a maximum of 2000 epochs, with early stopping applied after 500 epochs of no improvement. The
testing result reported is obtained from the epoch with the lowest validation loss.

Numerical stability. The effectiveness of the SPD manifold for geometric representation learning
has been validated. However, this desirable property comes with a drawback: numerical instabil-
ity leading to the failure of Cholesky decomposition. These instabilities are caused by imprecise
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Algorithm 1: Training process of SPDGNN
Input: Graph G , feature x for each node, label ŷ for a fraction of nodes, propagation step ℓ,
and maximal epochs T .

Set t = 0.

Initialize parameters.

while t ≤ T and not converge do
(Feature Map) XS = S (φ(σ(WxE))); (Eqn.14)

for j = 1 to ℓ do
(Feature Transformation) XS ←MXSM⊤; (Eqn. 15)

(Neighborhood Aggregation) XS ← F́S(N (XS)); (Eqn. 18)

(Non-linear Activation) XS = σS(XS); (Eqn. 19)
end

(SPD MLR) Calculate probability for each class p(y = k|XS);(Eqn. 26)

Calculate loss and optimize parameters W , M , and {Pk,Vk|k ∈ 1, · · · ,K}.
end

Table 4: Hyper-parameters for SPDGNN.
Hyper-parameters Disease Airport PubMed Cora

Learning Rate 0.001 0.01 0.01 0.005
Dropout 0 0 0.9 0.9

Weight Decay 0.0001 0.0001 0.001 0.001
Dimension 10 10 5 5

Layer 3 2 4 4
Margin 1 1 2 1

floating-point arithmetic systems. Such errors can impact the positive-definiteness of node embed-
dings, ultimately resulting in the failure of Cholesky decomposition. To mitigate this issue, we
adopt double precision floating-point format during computation and clamp eigenvalues to ensure
their positive values.

D EXPERIMENT EXTENSIONS
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Figure 4: Hyper-parameter analysis for propagation depth, weight decay, and margin.

As the comprehensive rendition of Fig. 3, we magnificently showcase the hyperplanes learned by
SPD MLR on Disease, Airport, and PubMed from multiple perspectives in Figs. 6-8, respec-
tively, where elev denotes the angle of elevation from the x-y plane and zim denotes the angle of
clockwise rotation around the z-axis.
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(a) Euclidean hyperplanes and node embeddings on
Airport

(b) SPD hyperplanes and node embeddings on
Airport

Figure 5: Direct Euclidean vs SPD MLR used to classify nodes on Airport.

Table 5: Comparison of training time per epoch and inference time on four datasets.

Model Disease Airport Pubmed Cora
TR(s) IN(s) TR(s) IN(s) TR(s) IN(s) TR(s) IN(s)

HGCN 0.011 0.010 0.014 0.005 0.018 0.006 0.011 0.007
SPD4GCN 1.068 1.144 3.115 3.265 18.002 18.479 2.779 2.702
SPDGNN 0.091 0.061 0.086 0.035 0.163 0.073 0.074 0.026

The SPD hyperplanes of S2+ for Diseasewith z-axis variants are displayed in Fig. 6. By observing
subplots (f) and (h), we can clearly see that the green hyperplane closely resembles the hyperboloid
illustrated in Fig. 1, while the yellow hyperplane appears flat and exhibits mroe Euclidean geometry
characteristics. This confirms the geometric manifold richness of the SPD manifold and further
validate the effectiveness of the proposed components for geometric modeling on the SPD manifold.

The 3D visual representations of class hyperplanes and node embeddings derived through Euclidean
MLR and SPD MLR, as depicted in Fig.5. The SPD hyperplanes of S2+ for Airport with z-axis
variants are displayed in Fig. 7. By examining subplots (b) and (g), we can observe that the navy-blue
hyperplane exhibits a noticeable curvature, suggesting that this category may possess hierarchical
structures with hyperbolicity. It should be note that, due to the inherent imprecision of floating-
point arithmetic systems, slight distortions may occur on the hyperplanes. However, this does not
compromise the characteristics of the hyperplanes.

The SPD hyperplanes of S2+ for PubMed with z-axis variants are displayed in Fig. 8. By synthe-
sizing the information from multiple subplots, we can unmistakably observe that the hyperplanes
of the three categories exhibit a discernible hyperbolicity along convex cones. Additionally, their
positioning is distinctive and corresponds closely to the node embeddings represented in Fig. 3.
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(a) elev=15, zim=0 (b) elev=15, zim=30 (c) elev=15, zim=60 (d) elev=15, zim=90

(e) elev=15, zim=120 (f) elev=15, zim=150 (g) elev=15, zim=180 (h) elev=15, zim=210

(i) elev=15, zim=240 (j) elev=15, zim=270 (k) elev=15, zim=300 (l) elev=15, zim=330

Figure 6: SPD hyperplanes of S2+ for Disease with z-axis variants. Intuitively, SPD presents
expressive structural hyperplanes for MLR including non-Euclidean curved surfaces.
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(a) elev=45, zim=0 (b) elev=45, zim=30 (c) elev=45, zim=60 (d) elev=45, zim=90

(e) elev=45, zim=120 (f) elev=45, zim=150 (g) elev=45, zim=180 (h) elev=45, zim=210

(i) elev=45, zim=240 (j) elev=45, zim=270 (k) elev=45, zim=300 (l) elev=45, zim=330

Figure 7: SPD hyperplanes of S2+ for Airport with z-axis variants. Intuitively, SPD presents
expressive structural hyperplanes for MLR including non-Euclidean curved surfaces.
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(a) elev=-15, zim=0 (b) elev=-15, zim=30 (c) elev=-15, zim=60 (d) elev=-15, zim=90

(e) elev=-15, zim=120 (f) elev=-15, zim=150 (g) elev=-15, zim=180 (h) elev=-15, zim=210

(i) elev=-15, zim=240 (j) elev=-15, zim=270 (k) elev=-15, zim=300 (l) elev=-15, zim=330

Figure 8: SPD hyperplanes of S2+ for PubMed with z-axis variants. Intuitively, SPD presents ex-
pressive structural hyperplanes for MLR including non-Euclidean curved surfaces.
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