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ABSTRACT

Concept Bottleneck Models (CBMs) map the inputs onto a concept bottleneck
and use the bottleneck to make a prediction. A concept bottleneck enhances in-
terpretability since it can be investigated to understand what concepts the model
”sees” in an input and which of these concepts are deemed important. However,
CBMs are restrictive in practice as they require concept labels during training to
learn the bottleneck. Additionally, it is questionable if CBMs can match the accu-
racy of an unrestricted neural network trained on a given domain, potentially re-
ducing the incentive to deploy them in practice. In this work, we address these two
key limitations by introducing Post-hoc Concept Bottleneck models (P-CBMs).
We show that we can turn any neural network into a P-CBM without sacrificing
model performance while still retaining interpretability benefits. Finally, we show
that editing P-CBMs without any fine-tuning or use of data from the target domain
can provide significant performance gains.

1 INTRODUCTION

There is growing interest in developing deep learning models that are interpretable and yet still
flexible. One approach is concept analysis (Kim et al., 2018), where the goal is to understand if
and how high-level human-understandable features are “engineered” and used by neural networks
(see Related Works in Appendix A for a broader overview). For instance, we can probe a skin lesion
classifier to understand if the Atypical Pigment Networks concept is encoded in the embedding space
and used later to make the prediction.

Concept bottlenecks are inspired by the idea that we can solve the task of interest by applying a
simple interpretable function (e.g. a sparse linear model or a decision tree) to an underlying set
of human-interpretable concepts. For instance, when trying to classify whether a skin tumor is
malignant, dermatologists look for different visual patterns, e.g. existence of Blue-Whitish Veils
are demonstrated to be the most useful indicator of melanoma (Menzies et al., 1996; Lucieri et al.,
2020).

By constraining the model to only rely on a set of concepts and an interpretable predictor, we can

1. Explain what information the model is using when classifying an input by looking at the
weights/rules in the interpretable predictor.

2. Understand when the model made a particular mistake due to incorrect concept predic-
tions.

3. Intervene on the bottleneck to fix false concept predictions and thus fix the mistake.
4. Edit the interpretable predictor to improve performance and generalizability.

Our work builds on the earlier idea of concept bottlenecks, specifically Concept Bottleneck Models
(CBMs) (Koh et al., 2020). CBMs train an entire model in an end-to-end fashion by first predicting
concepts, then using these concepts to predict the label. While CBMs provide many of the benefits
mentioned above, they require access to concept labels during model training, i.e. each input must
be annotated with which concepts are present. Even though there are a number of densely annotated
datasets such as CUB(Welinder et al., 2010), this is particularly restrictive for real-world use cases.
In practice, datasets rarely have concept annotations. Most state-of-the-art models are trained using
very large datasets (Deng et al., 2009; Radford et al., 2021) only annotated with the task label.
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Figure 1: Post-hoc Concept Bottleneck Models. a) First, we learn the CAVs corresponding to
the concepts in our concept library. For each concept, e.g. stripes, we train a linear SVM to dis-
tinguish the embeddings of examples that contain the concept from those that do not. The CAV is
defined as the vector normal to the classification boundary. Collectively, the set of CAVs define a
concept subspace, and we project the embeddings produced by the pretrained backbone onto this
new subspace. Second, we train an interpretable predictor to classify the examples based on their
projections. When the concept library is incomplete, we can construct an HP-CBM by optionally
introducing a residual predictor that maps the original embeddings to the target space.

Furthermore, for many downstream applications, the transfer learning approach, i.e. fine-tuning
a pretrained model on the the downstream task, generally outperforms training from scratch. In
addition, these fine-tuned models are more robust to distribution shifts (Hendrycks et al., 2020;
Mathis et al., 2021; Hendrycks et al., 2019).

In this work, we propose the Post-hoc Concept Bottleneck Model (P-CBM) and Hybrid P-CBM
(HP-CBM). P-CBMs can convert any pre-trained model into a concept bottleneck model, and en-
hance the model with the desired interpretability benefits. HP-CBM is inspired by semiparametric
models on fitting residuals (Härdle et al., 2004), and when the concept bottleneck is not rich enough,
it adds a residual modeling step to recover the original model performance. In experiments across
several tasks, we show that P-CBMs can be used without a loss in the original model performance.
We further show that P-CBMs offer model edits without any fine-tuning or optimization.

2 POST-HOC CONCEPT BOTTLENECK MODELS

There are two main steps while building a P-CBM, and an optional additional step to model the
residuals that cannot be explained by the concept bottleneck. We let f : X → Rd be any pretrained
backbone model, where d is the size of the corresponding embedding space and X is the input space.
For instance, f can be the image encoder of CLIP (Radford et al., 2021) or the model layers up to
the penultimate layer of a ResNet (He et al., 2016). An overview of the model can be found in 1,
and we describe the steps in detail below.

Learning the Concept Subspace (C ∈ RNc×d): To learn concept representations, we make use
of CAVs (Concept Activation Vectors) (Kim et al., 2018). In particular, we first define a concept
library I = {i1, i2, ..., in}. The concepts in the library can be selected by a domain expert, or
learned automatically from the data (Ghorbani et al., 2019; Yeh et al., 2020). For each concept i,
we collect embeddings for the positive examples, denoted by the set Pi = {f(xp1), ..., f(xpNp

)},
that exhibit the concept, and negative examples Ni = {f(xn1

), ..., f(xpNn
)} that do not contain the

concept. Importantly, note that unlike CBMs, these samples can be different from the data used to
train the backbone model. Following (Kim et al., 2018), we train a linear SVM using Pi and Ni

to learn the corresponding CAV, that is, the vector normal to the linear classification boundary. We
denote the CAV for concept i by ci. Let C ∈ RNc×d denote a matrix of concept vectors, where
Nc is the number of concepts and each row ci represents a concept. Given an input, we project
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the embedding of the input onto the subspace spanned by concept vectors (the concept subspace).
Particularly, we let fC(x) = projCf(x), where the ith entry is f (i)

C (x) = ⟨f(x),ci⟩
||ci||22

ci.

Learning the Interpretable Predictor: Next, we define an interpretable predictor that maps the
concept subspace to the model prediction. Concretely, let g : RNc → Y be an interpretable predictor,
such as a sparse linear model or a decision tree, where Y denotes the label space. An interpretable
predictor is desirable because it provides insight into which concepts the model is relying on when
making a decision. If a domain expert observes a counter-intuitive phenomenon in the predictor,
they can edit the predictor to improve the model. We demonstrate these benefits in our experiments.

To learn the P-CBM, we solve the following problem:

min
g

E(x,y)∼D[L(g(fC(x)), y)] + λΩ(g) (1)

where fC = projCf(x), L(ŷ, y) is a loss function such as cross-entropy loss, Ω(g) is a complexity
measure to regularize the model, and λ is the regularization strength. In this work, we use sparse
linear models to learn the interpretable predictor, where g(x) = wTx + b. Similarly, we define
Ω(g) = (α||w||1 + (1− α)||w||22) as the elastic-net penalty parameterized by α.

Residual Modeling: What happens when the concept bank is not sufficiently expressive? For
instance, there may be skin lesion descriptors that are not available in the concept library. Ideally,
we would like to preserve the original model accuracy while retaining the interpretability benefits.
Drawing inspiration from the semiparametric models on fitting residuals (Härdle et al., 2004), we
introduce Hybrid Post-hoc CBMs(HP-CBM). Particularly, after fixing the concept bottleneck and
the interpretable predictor, we re-introduce the embeddings to ‘fit the residuals‘. Particularly, we
solve the following:

min
r

E(x,y)∼D[L(g(fC(x)) + r(f(x)), y)] (2)

where r : Rd → Y is the residual predictor. We hypothesize that the residual predictor will com-
pensate for what is missing from the concept bank, and recover the original model accuracy. We
implement the residual predictor as a linear model, i.e. r(x) = wT

r x + br. Note that in Equation
2, while training the residual predictor, the trained concept bottleneck is kept fixed. Given a trained
HP-CBM, if we would like to observe model performance in the absence of the residual predictor,
we can simply drop r.

3 EXPERIMENTS

We evaluate P-CBMs and HP-CBMs in challenging image classification and medical settings, where
we demonstrate intriguing reliability gains. First, we address practical concerns and show that P-
CBMs can be used without a loss in the original model performance. Finally, we show the P-CBMs
offer model edits without any fine-tuning or needing data from the target domain.

3.1 CONCEPT BOTTLENECKS DO NOT HURT THE FULL MODEL PERFORMANCE

CIFAR10, CIFAR100 (Krizhevsky, 2009) We use CLIP-ResNet50(Radford et al., 2021) as the
backbone model for CIFAR experiments, following linear probing methodology to evaluate the orig-
inal model. For the concept bottleneck, we use 170 concepts introduced in (Abid et al., 2021) which
are extracted from the BRODEN visual concepts dataset (Fong & Vedaldi, 2018). These concepts
include objects (e.g. dog), settings (e.g. snow) textures (e.g. stripes), and (d) image qualities (e.g.
blurriness). The full list of concepts can be found in (Abid et al., 2021).

CUB (Welinder et al., 2010) In the 200-way bird identification task, we use a ResNet18(He et al.,
2016) trained on the CUB dataset, available in (osmr, 2022). We use training/validation splits shared
in (Koh et al., 2020). We use the 312 concepts provided in the CUB dataset, which indicate various
features including wing shape, back pattern, eye color, and more.

HAM10000 (Tschandl et al., 2018) is a dataset of dermoscopic images, which contain skin
lesions from a representative set of diagnostic categories. The task we follow is detecting whether
a skin lesion is benign or malignant. We use the Inception(Szegedy et al., 2015) model trained
on this dataset, which is available from (Daneshjou et al., 2021). Following the setting in (Lucieri
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et al., 2020), we collect concepts from the Derm7pt (Kawahara et al., 2018) dataset. 8 concepts
obtained from this dataset include Blue Whitish Veil, Pigmented Networks, Regression Structures,
which are reportedly associated with the malignancy of a lesion. We further add the dark-skin-
color concept to test for biases in these models, where we obtain the concept bank images from the
Fitzpatrick17k(Groh et al., 2021) dataset.

SIIM-ISIC(Rotemberg et al., 2021) To test a real-world transfer learning use case, we evaluate
the model trained on HAM10000 on a subset of the SIIM-ISIC Melanoma Classification dataset.
We use 2000 images for training (400 malignant, 1600 benign) and evaluate the model on a held-out
set of 500 images (100 malignant, 400 benign). We evaluate the original model performance using
a linear probe. We use the same concepts described in the HAM10000 dataset.

For each of these datasets, we first train the P-CBM for 10 epochs. Next, we train the HP-CBM for
10 more epochs using the residual fitting step. Finally, we compare P-CBMs and HP-CBMs to the
performance of the original model on the held-out test datasets. We use Adam(Kingma & Ba, 2015)
to solve the optimization problems. All of the experiments use the same set of hyperparameters,
where we have regularization strength λ = 0.05, α = 0.99, and learning rate 0.01.

In Table 1, we report results over these five datasets. P-CBMs achieve comparable performance to
the original model in all datasets except CIFAR100, and HP-CBMs match the performance in all
scenarios. In CIFAR100, we hypothesize that the concept bank available is not sufficient to classify
finer-grained classes, and hence there is a performance gap between the P-CBM and the original
model. When the concept bank is not sufficient to solve the task, HP-CBMs can be introduced to
recover the original model performance while retaining the benefits of P-CBMs (see next sections).

CIFAR10 CIFAR100 CUB HAM10000 ISIC
Original Model 0.888 0.701 0.612 0.891 0.830

P-CBM 0.705 0.432 0.596 0.887 0.828
HP-CBM 0.879 0.684 0.635 0.912 0.832

Change in Accuracy -0.009 -0.017 0.023 0.021 0.002

Table 1: Post-hoc Concept Bottlenecks do not hurt model performance. Over five evaluations,
P-CBMs/HP-CBMs do not exhibit a significant performance degradation. In CIFAR100, P-CBM
performs poorly since the concept bank is not expressive enough to solve a finer-grained task; how-
ever, HP-CBMs recover original model accuracy. Strikingly, both P-CBM and HP-CBMs show
improvements over the original model in HAM10000 and ISIC. Original CBMs cannot be trained
on CIFAR/HAM10000/ISIC, as they do not have concept labels in the training dataset.
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Figure 2: Explaining Post-hoc CBMs. a) We report the top 3 largest weights in the linear layer
for the shown classes. For instance, Blue Whitish Veils, Atypical Pigment Networks and Irregular
Streaks have the large weights for classifying whether a skin lesion is malignant. These are consis-
tent with dermatologists’ findings (Menzies et al., 1996).

In Figure 2, we provide sample concept weights in the corresponding P-CBMs. For instance in
HAM10000, P-CBMs use Blue Whitish Veils, Atypical Pigment Networks and Irregular Streaks to
identify malignant lesions, whereas Typical Pigment Networks, Regular Streaks and Regular Dots
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and Globules are used to identify benign lesions. These associations are in parallel with medi-
cal knowledge(Menzies et al., 1996; Lucieri et al., 2020). We observe similar cases in CIFAR-10
and CIFAR-100, where the class keyboard is associated with the concepts keyboard, computer and
mouse; while the class lamp is associated with the concepts lamp, light and candlesticks.

We showed that P-CBMs and HP-CBMs are drop-in replacements for existing models with almost
no performance loss. However, P-CBMs provide further benefits, as we demonstrate in the next
section.

3.2 MODEL EDITING WITH POST-HOC CONCEPT BOTTLENECKS

When we observe a spurious correlation in the concept bottleneck, can we make the model perform
better by simple edit operations? In this section, we show that P-CBMs come with the benefit of
‘free’ model edits. Firstly, unlike many existing model editing approaches (see Appendix A), we
do not assume any knowledge about the test domain. We also do not need any data from either the
train or target domains to perform the model edit, which can be a significant advantage in practice
when data is inaccessible. Given a trained P-CBM, we edit our concept bottleneck by just looking at
the concept weights. For our editing experiments, we use the Metashift(Liang & Zou, 2022) dataset
to simulate distribution shifts. We use 10 different scenarios where there is a distribution shift for
a particular class between the training and test datasets. For instance, during training, we use table
images where there is also a dog in the image, and test the model with table images where there is
not a dog but a cat in the image. We denote the training domain as table(dog), and the test domain
as table(cat). We give more details and the results of all domains in the Appendix C.

Given a P-CBM, we evaluate three editing strategies:

1. Prune: We set the weight of a particular concept on a particular class prediction to 0, i.e.
for a class indexed by k and concept indexed by i, we let w′(k)

i = 0.

2. Prune+Normalize: After applying pruning, we rescale the concept weights. Let w′(k)

denote the pruned weights for class k. We renormalize the weights to match the original
norms, such that |w′(k)| = |w(k)|. The normalization step alleviates the imbalance between
class weights upon pruning a concept with large weights for a particular class.

3. Fine-tune (Oracle): We compare our simple editing strategies to retraining, which can be
considered an oracle. Particularly, we fine-tune our P-CBM using samples from the test
domain, and then test the fine-tuned model with a set of held-out samples.

In the context of Metashift experiments, we simply edit the concept spuriously correlated with a
particular class. Namely, for the domain table(dog), we prune the weight of the dog concept for
the class table. In Table 2, we report the result of our editing experiments over 10 scenarios. We
observe that for P-CBMs, the Prune+Normalize strategy can recover 50% of the accuracy gains
given by fine-tuning on the original test domain.

Unedited Prune Prune + Normalize Fine-tune(Oracle)
P-CBM Accuracy 0.656± 0.079 0.686± 0.081 0.750± 0.059 0.859± 0.09
P-CBM Edit Gain - 0.029± 0.052 0.093± 0.078 0.202± 0.067

HP-CBM Accuracy 0.657± 0.122 0.672± 0.103 0.713± 0.086 0.861± 0.102
HP-CBM Edit Gain - 0.017± 0.028 0.058± 0.055 0.190± 0.153

Table 2: Model edits with Post-Hoc CBMs. We report results over 10 distribution shift experiments
generated using Metashift. We observe that very simple editing strategies in the concept subspace
provide 50% of the gains made by fine-tuning on the test domain.

Even though our edit strategy is extremely simple, we can recover 50% of the gains made by fine-
tuning the model. It is particularly easy-to-use since it can be applied without fine-tuning or using
any knowledge or data from the target domain.
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4 LIMITATIONS AND CONCLUSION

In this work, we presented Post-hoc CBMs as a way of converting any model into a CBM, retaining
the original model performance without losing the interpretability benefits. Many benefits of CBMs
depend heavily on the quality of the concept library. Finding concept subspaces in an unsupervised
fashion is an active area of research that will help with usability of concept bottlenecks. Additionally,
future work will focus on better model editing approaches with concept subspaces.
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A RELATED WORKS

Concepts Human-understandable concepts draw increasing interest to interpret model behav-
ior(Kim et al., 2018; Bau et al., 2017; 2020). Related work focuses on understanding if neural
networks encode and use concepts (Lucieri et al., 2020; Kim et al., 2018; McGrath et al., 2021),
or generate counterfactual explanations to understand model behavior(Ghandeharioun et al., 2021;
Abid et al., 2021; Akula et al., 2020). These works mostly use a set of human-specified concepts
to analyze model behavior, however, there is an increasing interest in automatically discovering the
concepts that are used by a model (Yeh et al., 2020; Ghorbani et al., 2019; Lang et al., 2021).

Concept bottleneck models (CBMs) (Koh et al., 2020) extend the earlier idea (Lampert et al., 2009;
Kumar et al., 2009) of decomposing a task into two parts by first predicting the concepts, then using
concepts predicting the target. CBMs require training the model in an end-to-end fashion using
concept labels at training time. Margeloiu et al. (2021) questions the interpretability of concepts in
a CBM, and provide results that concepts learned by the CBMs may not be interpretable.

Model Editing Model editing aims to achieve the removal or modification of information in a given
neural network. One branch of work focuses on intervening on the latent space of neural networks to
alter the generated output towards a desired state, e.g. removal of artifacts or manipulation of object
positions (Sinitsin et al., 2020; Bau et al., 2020; Santurkar et al., 2021). Bau et al. (2020) edits
generative models, Santurkar et al. (2021) edits classifiers by modifying ‘rules’, such as making a
model perceive the concept of a ‘snowy road‘ as the concept of a ‘road’. Mitchell et al. (2021);
De Cao et al. (2021) aim to edit the factual knowledge in language models by training a separate
network to modify model parameters achieving the desired edit.
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B METASHIFT CONCEPT WEIGHTS

We observe that when a spurious correlation is present, the interpretable predictor in P-CBM’s often
assigns the largest weights to the concepts that were spuriously correlated with the target class.
For instance, in the 5-class object recognition task beach, computer, motorcycle, stove, table, when
examples of table images in our training set all contained a cat, the cat concept was assigned the
most positive weight. A similar phenomenon occurs when table is spuriously correlated with dog.
In contrast, table without spurious correlations had concept weights that appeared more generally
related to table, e.g. food. With enough induced sparsity, i.e. with a large enough λ, there often
emerges one or two concepts that have a substantively larger weight than the rest, making it easy to
spot potential biases in the model.
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Figure 3: Examples of Metashift concept weights.

C METASHIFT EXPERIMENTS FOR MODEL EDITING

For Metashift, we have 2 tasks. Both tasks are 5-class object recognition tasks, where in the first
one classes are airplane, bed, car, cow, keyboard, and for the second one we have beach, computer,
motorcycle, stove, table. For each of these, we use a ResNet18 pretrained on ImageNet as the
backbone of the P-CBM, and then use 100 images per class to train the concept bottleneck. For all
experiments, we use the Adam Optimizer with a learning rate of 0.05, the regularization parameters
λ = 0.05, α = 0.99. Similar to CIFAR experiments, we use the Broden Concept dataset used in
(Abid et al., 2021). Below we give the entire set of results.
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Train Test Model Original Prune Prune+Normalize Fine-Tune
bed(dog) bed(cat) P-CBM 0.760 0.760 0.760 0.920
bed(cat) bed(dog) P-CBM 0.680 0.700 0.720 0.940
table(dog) table(cat) P-CBM 0.520 0.540 0.620 0.760
table(cat) table(dog) P-CBM 0.660 0.700 0.740 0.760
table(books) table(dog) P-CBM 0.600 0.580 0.780 0.720
table(books) table(cat) P-CBM 0.620 0.680 0.800 0.820
car(dog) car(cat) P-CBM 0.718 0.718 0.744 0.949
car(cat) car(dog) P-CBM 0.620 0.760 0.840 0.840
cow(dog) cow(cat) P-CBM 0.778 0.750 0.778 0.944
keyboard(dog) keyboard(cat) P-CBM 0.620 0.580 0.720 0.940
bed(dog) bed(cat) HP-CBM 0.760 0.760 0.780 0.900
bed(cat) bed(dog) HP-CBM 0.760 0.740 0.760 0.940
table(dog) table(cat) HP-CBM 0.600 0.620 0.640 0.780
table(cat) table(dog) HP-CBM 0.540 0.580 0.640 0.820
table(books) table(dog) HP-CBM 0.660 0.700 0.760 0.680
table(books) table(cat) HP-CBM 0.760 0.800 0.820 0.780
car(dog) car(cat) HP-CBM 0.795 0.769 0.795 0.974
car(cat) car(dog) HP-CBM 0.640 0.660 0.740 0.720
cow(dog) cow(cat) HP-CBM 0.639 0.639 0.639 0.917
keyboard(dog) keyboard(cat) HP-CBM 0.400 0.460 0.560 0.940

Table 3: Results of the Metashift editing experiments.
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