
Under review as a conference paper at ICLR 2024

REVISITING LARS FOR LARGE BATCH TRAINING
GENERALIZATION OF NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

LARS and LAMB have emerged as prominent techniques in Large Batch Learn-
ing (LBL) to ensure training stability in AI. Convergence stability is a challenge in
LBL, where the AI agent usually gets trapped in the sharp minimizer. To address
this challenge, warm-up is an efficient technique, but it lacks a strong theoretical
foundation. Specifically, the warm-up process often reduces gradients in the early
phase, inadvertently preventing the agent from escaping the sharp minimizer early
on. In light of this situation, we conduct empirical experiments to analyze the be-
haviors of LARS and LAMB with and without a warm-up strategy. Our analyses
give a comprehensive insight into the behaviors of LARS, LAMB, and the neces-
sity of a warm-up technique in LBL, including an explanation of their failure in
many cases. Building upon these insights, we propose a novel algorithm called
Time Varying LARS (TVLARS), which facilitates robust training in the initial
phase without the need for warm-up. A configurable sigmoid-like function is em-
ployed in TVLARS to replace the warm-up process to enhance training stability.
Moreover, TVLARS stimulates gradient exploration in the early phase, thus al-
lowing it to surpass the sharp optimizer early on and gradually transition to LARS
and achieving robustness of LARS in the latter phases. Extensive experimental
evaluations reveal that TVLARS consistently outperforms LARS and LAMB in
most cases, with improvements of up to 2% in classification scenarios. Notably,
in every case of self-supervised learning, TVLARS dominates LARS and LAMB
with performance improvements of up to 10%.

1 INTRODUCTION

Large Batch Learning (LBL) is crucial in modern Deep Learning (DL) for its efficiency gains
through parallel processing, enhanced generalization with exposure to diverse samples, memory
efficiency, and hardware utilization. These advantages make LBL particularly suitable for training
large Deep Neural Network (DNN) models and Self-Supervised Learning (SSL) tasks, where in-
creased model capacity and representation learning are crucial. Nonetheless, the present application
of LBL with conventional gradient-based methods often necessitates the use of heuristic tactics and
results in compromised generalization accuracy Hoffer et al. (2017); Keskar et al. (2017).

Numerous methods Huo et al. (2021); You et al. (2020); Fong et al. (2020) have been explored to
address the performance issues associated with large-batch training. Among these methods, Layer-
wise Adaptive Rate Scaling (LARS) You et al. (2017) has gained significant popularity. Fundamen-
tally, LARS employs adaptive rate scaling to improve gradient descent on a per-layer basis. As a
result, training stability is enhanced across the layers of the DNN model. Despite its benefits, LARS
faces instability in the initial stages of the LBL process, leading to slow convergence, especially
with large batches. Implementing a warm-up strategy is effective in reducing the LARS adaptive
rate and stabilizing the learning process for larger batch sizes. However, this approach relies on a
vague tuning process and lacks a solid theoretical foundation, providing opportunities for further
exploration and improvement in adaptive rate scaling algorithms.

Through empirical experiments, we made an interesting observation in the initial phase of LARS
training. The Layer-wise Learning Rate (LLR) was found to be high due to the Layer-wise Normal-
ization Rate (LNR), i.e., ∥w∥/∥∇L∥, which was caused by the near-zero value of the Layer-wise
Gradient Norm (LGN), i.e., ∥∇L∥. This infinitesimal value of LGN was a consequence of getting
trapped into sharp minimizers (i.e., characterized by large positive eigenvalue of Hessian Keskar

1



Under review as a conference paper at ICLR 2024

et al. (2017); Dinh et al. (2017)) during the initial phase, leading to an explosion of the scaled gradi-
ent. When incorporating the current warm-up technique into LARS, it takes considerable unneces-
sary steps to scale the gradient to a threshold that enables escape from the initial sharp minimizers
(see Figure 1). Furthermore, because of the constant decay in the Learning Rate (LR), the warm-up
process does not effectively encourage gradient exploration over the initial sharp minimizers and
struggles to adapt to diverse datasets. To address these issues, we propose a new algorithm called
Time-Varying Layer-wise Adaptive Rate Scaling (TVLARS), which enables gradient exploration for
LARS in the initial phase while retaining the stability of other LARS family members in the latter
phase. Instead of using warm-up, which, as we will discuss later, suffers from major aforementioned
issues, TVLARS, in contrast, overcomes sharp minimizes by taking full advantage of a high initial
LR (i.e., target LR) in warm-up aided LARS (WA-LARS) and inverted sigmoid function enhancing
training stability, aligning with theories about sharp minimizers in LBL Keskar et al. (2017). Our
contributions can be summarized as follows:

• We perform empirical experiments on two canonical LBL techniques, namely LARS and
LAMB, to gain a comprehensive understanding of how they enhance LBL performance.

• We investigated the necessity of warm-up for the LARS method and identified potential
issues with using warm-up in LARS. These potential shortcomings arise from the lack of
understanding regarding sharp minimizers aspects in LBL.

• Acknowledging the principles of LARS and the warm-up technique, we propose a simple
and straightforward alternative technique, the so-called TVLARS, which is more aligned
with the theories about sharp minimizers in LBL and can avoid the potential issues of the
warm-up approach.

• To validate the efficacy of TVLARS, we conduct several experimental evaluations, com-
paring its performance against other popular baselines. The results of our experiments
demonstrate that under the same delay step and target LR, TVLARS significantly outper-
forms the state-of-the-art benchmarks, especially WA-LARS particularly when the batch
size becomes large (e.g., 8192, 16384).

2 NOTATIONS AND PRELIMINARIES

Notation. We denote by wt ∈ Rd the model parameters at time step t. For any function f : Rd →
Rd, ∇l(xi, yi|wk) is denoted the gradient with respect to w(k). We use ∥ · ∥ and ∥ · ∥1 to denote l2-
norm and l1-norm of a vector, respectively. We start our discussion by formally stating the problem
setup. In this paper, we study a non-convex stochastic optimization problem of the form:

min
w∈Rd

L(w) ≜ Exi,yi∼P (X,Y )[ℓ(xi, yi|w)] +
λ

2
∥w∥2, (1)

where ℓ is an empirical loss function, (x, y) ∼ P (X,Y ) ∈ Z = {X,Y } is sample and ground truth.

LARS. To deal with LBL, You et al. (2017) proposed LARS. Suppose a neural network has K
layers, we have w = {w1, w2, . . . , wK}. The LR at layer k is updated as follows:

γkt = γscale × η × ∥wkt ∥2
∥ 1
B

∑
i∈It ∇l(xi, yi|w

k
t )∥

, (2)

where γscale = γtuning × B
Bbase

is the base LR You et al. (2017) and η is the LARS coefficient for the
LBL algorithm. We denote ∥ 1

B

∑
i∈It ∇l(xi, yi|w

k
t )∥ as the LGN. For simplicity, in later parts, we

denote the LGN as ∥∇w∥. The LNR is defined as ∥wkt ∥2

∥ 1
B

∑
i∈It

∇l(xi,yi|wkt )∥2
, which has the objective of

normalizing the LR to each layer k. Despite its practical effectiveness, there is inadequate theoretical
insight into LARS. Additionally, without implementing warm-up techniques Goyal et al. (2018),
LARS tends to exhibit slow convergence or divergence during initial training.

3 THE MYSTERY OF GENERALIZATION BEHIND WARM-UP LARS AND NON
WARM-UP LARS

This section explores how the LARS optimizers contribute to large-batch training. By revealing the
mechanism of large-batch training, we provide some insights for improving LARS performance.

2



Under review as a conference paper at ICLR 2024

Algorithm 1 TVLARS algorithm

Require: wk
t ∈ Rd, LR {γk

t }Tt , delay factor λ, batch
size B, delay epoch de, scaling factor α, time-varying
factor ϕt, momentum µ, η, γmin,
for e = 1 : N do

Sample B samples Bt =
{
(x1t , y

1
t ), · · · , (xbt , ybt )

}
Compute gradient

∇t
wL(w) =

1

|Bt|

b∑
i=1

∇ℓ(xit, yit|w).

Update ϕt =
1

α+eψt
+ γmin where ψt = λ(t− de)

as mentioned in (4) and γmin defined in (5).
Compute layer-wise LR γk

t

γk
t = η × ϕt ×

∥wk
t ∥

∥∇t
wL(w) + wd∥

Compute momentum mk
t+1 = wk

t − γk
t ∇t

wL(w)
Adjust model weight

wk
t+1 = mk

t+1 + µ
(
mk

t+1 −mk
t

)
.

end for

0 2000 4000 6000 8000 10000 12000

step

0

0.5

1

1.5

2

L
ea

rn
in

g 
ra

te
 f

ac
to

r 
an

ne
al

ed
 b

y 
w

ar
m

-u
p

Redundant
  scaling

should be explored
but steeped too fast

Stable learning

Exploration

(a) WA-LARS.

0 2000 4000 6000 8000 10000 12000

step

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
R

 s
ca

le
 v

al
ue

Exploration

Stable learning

(b) TVLARS.

Figure 1: Scaling value of the learning rate
in two different strategies.

To understand the detrimental impact of lacking warm-up procedure in current state-of-the-art LBL
techniques, we employ the LARS and LAMB optimizers on vanilla classification problems to ob-
serve the convergence behavior. We conduct empirical experiments on CIFAR10 Krizhevsky (2009).

3.1 ON THE PRINCIPLE OF LARS

First, we revisit the LARS algorithm, which proposes adaptive rate scaling. Essentially, LARS
provides a set of LR that adapts prior to each layer of the DNN, as shown in Equation (2). From a
geometric perspective on layer k of the DNN, the layer-wise weight norm (LWN) ∥wkt ∥ can be seen
as the magnitude of the vector containing all components in the Euclidean vector space. Similarly,
the LGN can be regarded as the magnitude of the gradient vector of all components in the vector
space. Thus, the LNR can be interpreted as the number of distinct pulses in Hartley’s law.

By considering the LNR, we can adjust the layer-wise gradient based on the LWN. In other words,
instead of taking the normal gradient step ∇wkt at every layer k, we perform a gradient step as a
percentage of the LWN. The proportional gradient update can be expressed as follows:

γscale × η × ∥wkt ∥
∥∇L(wkt )∥

× ∇L(wk,jt ) = γscale × η × ∥wkt ∥ ×
∇L(wk,jt )

∥∇L(wkt )∥
, (3)

where ∇L(wk,jt ) is the gradient on j-th parameter in layer k. ∇L(wk,jt )

∥∇L(wkt )∥
represents a function that

estimates the percentage of gradient magnitude on each parameter j with respect to the LGN of layer
k. It becomes apparent that the LLR function of LARS only influences the percentage update to the
layer-wise model parameters. However, it does not address the issue of mitigating the problem of
sharp minimizers in the initial phase of LBL.

3.2 LARS AND THE IMPORTANCE OF WARM-UP

The warm-up strategy is considered an important factor of LBL, which enhances the model perfor-
mance and training stability You et al. (2020), Gotmare et al. (2019), Goyal et al. (2018), You et al.
(2017). The warm-up strategy linearly scales the LR from 0 to the target one, then switches to a reg-

3



Under review as a conference paper at ICLR 2024

ular LR decay, which is stated to reduce loss in accuracy, though its unproven empirical properties.
Therefore, we analyzed to investigate the vitality of warming up as well as its potential issues.

Quantitative results. Our quantitative results on CIFAR10 are presented in Appendix H, showcas-
ing the accuracy of training on the test dataset. The results reveal a decline in AI performance when
contrasting runs with and without a warm-up strategy. In particular, the LARS without a warm-up
technique exhibits greater training instability, characterized by fluctuating accuracy. Moreover, the
performance decline becomes more significant, especially with larger batch sizes.

From adaptive ratio to LBL performance. To enhance our comprehension of the adaptive rate
scaling series, we conducted thorough experiments analyzing LNR in LARS. Each result in our
study includes two crucial elements: the test loss during model training and the corresponding LNR.
In our study, we examined the detailed results of WA-LARS, as presented in Appendix G.2.1. In

(a) NOWA-LARS 512 (b) NOWA-LARS 1024 (c) WA-LARS 512 (d) WA-LARS 1024

(e) NOWA-LARS 8192 (f) NOWA-LARS 16384 (g) WA-LARS 8192 (h) WA-LARS 16384

Figure 2: This figure illustrated the quantitative performance of LARS (B = 16K) conducted with a
warm-up and without a warm-up strategy (NOWA-LARS). Each figure contains 4 subfigures, which
indicate the LWN ∥w∥, LGN ∥∇w∥, and LNR ∥w∥/∥∇w∥ of all layers, and test loss value in the y
axis. The comprehensive version is shown in Appendix F.

addition, we made observations regarding the convergence and the behavior of the LNR:

1) During the initial phase of the successfully trained models (characterized by a significant reduc-
tion in test loss), the LNR tends to be high, indicating a higher LR.

2) High variance in the LNR indicates significant exploration during training, resulting in noticeable
fluctuations in LWM. Conversely, when training requires stability, the LNR variance decreases.

3) Additionally, we noticed that it is necessary to impose an upper threshold on the LNR to prevent
divergence caused by values exceeding the range of ∥γkt × ∇L∥ over the LWN ∥w∥ You et al.
(2017). The absence of the warm-up technique in LARS often leads to the LNR surpassing this
upper threshold. This issue is addressed by the WA-LARS. Specifically, compared with non warm-
up LARS (NOWA-LARS) at batch sizes of 512, 1024, 2048, 4096, 8192, respectively, where the
LNR during the initial phase is limited to values such as 0.15, 0.2, 0.3, 0.5, 1.5 (see Figures 20, 21,
22, 23, 24), the highest LNR of WA-LARS is 0.06, 0.1, 0.125, 0.15, 0.25 (see Figures 14, 15, 16,
17, 18).

4) The LNR in the WA-LARS is regulated by a more gradual incline. For example, after 40 − 50
epochs, the LNR decreases from 0.060 to 0.018 in Figure 14, 0.10 to 0.02, 0.125 to 0.027
in Figure 15, 0.16 to 0.048 in Figure 16, and 0.20 to 0.050 in Figure 17 for batch sizes of
512, 1024, 2048, 4096, respectively. On the other hand, in contrast to the WA-LARS, the NOWA-
LARS exhibits a steep decline in the LNR. For instance, after 10 − 20 epochs, the LNR decreases
from 0.15 to 0.048 in Figure 20, 0.221 to 0.032 in Figure 21, 0.30 to 0.043 in Figure 22, and
0.43 to 0.089 in Figure 23. For more comprehensive details and additional results, please refer to
Appendix H.

4



Under review as a conference paper at ICLR 2024

Extensive Study. To gain deeper insights, we conducted additional experiments, and the results are
presented in Figure 2. Through the analysis of Section 3.2 and the insights derived from Figure 2,
it becomes evident that the reduction in the LNR can be attributed to the rapid decrease in the
LWN over time. This phenomenon occurs in tandem with the exponential reduction of the LGN.
Consequently, we can deduce that the superior performance of the AI model with respect to larger
batch sizes is a consequence of the gradual decrease in the LWN.

Put differently, envisioning the model parameters as a hypersphere, the gradient descent technique
explores the topological space of this hypersphere. This exploration commences from the hy-
persphere’s edge, indicated by ∥wkt ∥ = wmax, and progresses toward its center, characterized by
∥wkt ∥ = 0. This hypothesis finds support in the gradual decrease of ∥wkt ∥ as depicted in Figure 2.
Nevertheless, in cases of exploding gradient issues, significant fluctuations in ∥wkt ∥ can disrupt the
functionality of this hypothesis.

In the context of NOWA-LARS, the LNR experiences a steeper decline due to the rapid reduction
in the LWN ∥wkt ∥. This high reduction rate can be understood as an overly swift exploration of
the parameter vector hypersphere. Such expeditious exploration results in overlooking numerous
potential searches, leading to the potential failure to identify global minimizers. In contrast, with
WA-LARS, the search across the parameter space occurs more gradually, ensuring a more stable
exploration of the parameter hypersphere.

Based on the aforementioned observations, our conclusion is that the primary challenges encoun-
tered in the context of LARS stem from two key issues: a high LNR and substantial variance in the
LWN. These dual challenges pose significant obstacles to LARS’s effective performance. As a so-
lution, the warm-up process aims to prevent the occurrence of exploding gradients during the initial
phase by initially setting the LR coefficient to a significantly low value and gradually increasing it
thereafter. However, we believe that the application of the warm-up technique may be somewhat
lacking in a comprehensive understanding. Consequently, we are motivated to delve deeper into the
characteristics of sharp minimizers within the LBL, seeking a more profound insight into LARS and
the warm-up process.

3.3 SHORTCOMINGS OF WARM-UP

The degradation in learning performance when the batch size becomes large and the sharp
minimizer. As mentioned in Section 3.1, the LARS technique only influences the percentage up-
date to their layer-wise model parameters to stabilize the gradient update behavior. However, the
learning efficiency is not affected by the LARS technique. To gain a better understanding of LARS
performance as the batch size increases significantly, our primary goal is to establish an upper limit
for the unbiased gradient, which is similar to (Wang et al., 2020, Assumption 2) (i.e., the variance
of the batch gradient). We first adopt the following definition:
Definition 1. A gradient descent gti at time t using reference data point xi is a composition of a
general gradient ḡt and a variance gradient ∆gti . For instance, we have gti = ḡt +∆gti , where the
variance gradient ∆gti represents the perturbation of gradient descent over the dataset. The general
gradient represents the invariant characteristics over all perturbations of the dataset.

The aforementioned definition leads to the following theorem that shows the relationship between
unbiased gradient (Wang et al., 2020, Assumption 2) and the batch size as follows:
Theorem 1 (Unbiased Large Batch Gradient). Given ḡt as mentioned in Definition 1, gtB is the batch
gradient with batch size B. Given σ2 is the variance for point-wise unbiased gradient as mentioned
in (Wang et al., 2020, Assumption 2), we have the stochastic gradient with B is an unbiased estimator
of the general gradient and has bounded variance: Exi,yi∈{X ,Y} [ḡ

t − gtB] ≤ σ2/B,

Proof. The proof is shown in Appendix C.

Theorem 1 demonstrates that utilizing a large batch size B during training results in more stable gra-
dients. However, there are two significant concerns with this which come with negative implications.
Firstly, the stability of the gradient is influenced by the large batch (LB). Consequently, in scenarios
where the LNR experiences rapid reduction (as discussed in NOWA-LARS in Section 3.2), there is a
potential for the gradient descent process to become trapped into sharp minimizers during the initial
stages Keskar et al. (2017). Secondly, due to the steep decline in the LNR, the exploration across the
hypersphere of wtk occurs excessively swiftly (specifically, from wmax to 0). LB techniques lack the

5



Under review as a conference paper at ICLR 2024

exploratory characteristics of small batch (SB) methods and often focus excessively on narrowing
down to the minimizer that is closest to the starting point Keskar et al. (2017).

Redundant Ratio Scaling in Warm-up LARS. Warm-up Gotmare et al. (2019) involves initially
scaling the base LR and subsequently reducing it to facilitate gradient exploration. However, our
findings indicate that gradually increasing the base LR from an extremely low value before gradient
exploration is unnecessary (see Figure 1). As a consequence, when we multiply the base LR with
the LNR (which tends to be low in a few initial rounds), the LLR will be extremely low accordingly.
To verify this assumption, we conduct empirical experiments to see the LLR of each layer of DNN
and demonstrate it as in Appendix J.

When the LLR γkt is too small, particularly at the initial stage, learning fails to avoid memorizing
noisy data You et al. (2019). Moreover, when the model gets trapped in the sharp minimizers during
the warm-up process, due to the steepness of the sharp minimizers, the model will be unable to
escape from the sharp minima. Furthermore, apart from the high variance of the gradient of mini-
batch learning, the gradient of the LBL is stable as mentioned in Theorem 1. Therefore, the LBL is
halted until the LR surpasses a certain threshold.

4 METHODOLOGY

After conducting and comprehending the experiential quantification in Section 3, we have identified
the issues of warm-up LARS. It becomes evident that the LLR is not well-aligned with the charac-
teristics of sharp minimizer distributions in the context of LB settings. Specifically, during the initial
phases of the search process, the loss landscape tends to exhibit numerous sharp minimizers that ne-
cessitate sufficiently high gradients to facilitate efficient exploration. Furthermore, it is imperative
for the LR to be adjustable so that the LBL can be fine-tuned to match the behavior of different
datasets and learning models.

To this end, we propose a novel algorithm TVLARS for LBL optimization that aims to take full
advantage of the strength of LARS and warm-up strategy along with drawbacks avoidance. A key
idea of TVLARS is to ensure the following characteristics: 1) elimination of incremental phase of
base LR to eliminate redundant unlearnable processes, 2) a configurable base LR function that can
be tuned for different data and model types, and 3) a lower threshold for stability and inheriting
LARS robustness.

1) Initiating Exploration Stimulus. Although warm-up strategy enhances model training stability
(Section 3), learning from a strictly small LR prevents the model from tackling poor sharp mini-
mizers, appearing much near initialization point Granziol et al. (2022), Keskar et al. (2017), Dinh
et al. (2017). Otherwise, as a result of the steep decline in adaptive LNR, the exploration around
the hypersphere of wtk is restricted (Theorem 1) and does not address the sharp minimizer concern
(Section 3.1). Moreover, warm-up does not fulfill the need for LBL training because of the unneces-
sary linear scaling (Section 3.3). We construct TVLARS as an optimizer that uses a high initial LR
owing to its ability of early sharp minima evasion, which enhances the loss landscape exploration.

ϕt =
1

α+ eψt
+ γmin where ψt = λ(t− de) (4)

2) Learning Rate Decay. To avoid instability of training due to the high initial LR, we use a
parameter de specifying the number of delayed epochs as inspired by the warm-up strategy. After
de epochs, the base LR is annealed via Equation (4), which is the time-varying component used
to tackle. According to the mathematical discussion of the LARS principle (Section 3.1) and the
aforementioned characteristic of LARS, LAMB with and without a warm-up strategy (Section 3.2,
3.3), the LNR ∥w∥

∥∇L(w)∥ tends to be exploding as the model is stuck at local sharp minima, then
∥∇L(w)∥ decay faster than ∥w∥.

3) Configurable Decay Rate. The proposed time-varying component ϕt is constructed based on the
sigmoid function whose curve is smooth to keep the model away from unstable learning (see Figure
3). λ is the soft-temperature factor, which controls the steepness of the time-variant component.
Specifically, as λ is large, the steepness is significant, and the time-variant component ϕt reduces
faster. Therefore, by changing the soft-temperature factor λ, we can adjust the transition duration
from gradient exploration to stable learning (i.e., we can achieve a stable learning phase faster as λ
is larger, and otherwise).

6



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(e
)

a = 0.50
a = 0.62
a = 0.75
a = 0.88
a = 1.00

(a) λ = 0.01

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(e
)

a = 0.50
a = 0.62
a = 0.75
a = 0.88
a = 1.00

(b) λ = 0.005

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(e
)

a = 0.50
a = 0.62
a = 0.75
a = 0.88
a = 1.00

(c) λ = 0.001

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(e
)

a = 0.50
a = 0.62
a = 0.75
a = 0.88
a = 1.00

(d) λ = 10−4

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(e
)

a = 0.50
a = 0.62
a = 0.75
a = 0.88
a = 1.00

(e) λ = 10−5

0 20 40 60 80 100
epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(e
)

a = 0.50
a = 0.62
a = 0.75
a = 0.88
a = 1.00

(f) λ = 10−6

Figure 3: The decay plot of TVLARS algorithm under different settings.

4) Alignment with LARS. When the learning process is at the latter phase, it is essential for the
TVLARS behavior to align with that of LARS in order to inherit LARS’s robustness (see Figure
3). We introduce two parameters α and γmin used to control the bound for time-varying component
ϕt. For any α, γmin ∈ R, the lower and upper bounds for ϕt is shown in Equation (5) (see proof in
Appendix D).

γmin ≤ ϕt ≤
1

α+ exp{−λde}
(5)

This boundary ensures that the LLR does not explode during the training phase. Otherwise, to
guarantee that all experiments conducted are fair among optimizers, α is set to 1, which means there
is no increment in the initial LR after being chosen, and the minimum value of the LR is also set to
γmin.

5 EXPERIMENT

Table 1: Accuracy (%) of LARS, LAMB, and TVLARS on a classification (λ = 10−4), and SSL
(λ = 10−5). Weight initialization is Xavier Uniform

Problem Classification SSL - Barlow Twins
Data set CIFAR10 Tiny ImageNet CIFAR10 Tiny ImageNet
Learning rate 1 2 3 1 2 3 1 2 3 1 2 3
LARS

B = 512
74.64 77.49 79.64 33.72 36.60 38.92 51.31 58.89 60.76 18.32 19.52 21.12

LAMB 57.88 64.76 78.39 20.28 41.40 37.52 10.01 12.01 67.31 13.46 17.75 27.37
TVLARS 78.92 81.42 81.56 37.56 39.28 39.64 69.96 69.72 70.54 29.02 31.01 31.44
Learning rate 2 3 4 2 3 4 2 3 4 2 3 4
LARS

B = 1024
74.70 78.83 80.52 33.8 36.84 38.52 61.13 67.03 68.98 19.96 19.36 20.38

LAMB 52.06 57.83 79.98 16.88 31.84 37.76 12.03 15.03 69.49 16.44 16.70 24.53
TVLARS 81.84 82.58 82.54 39.60 39.16 39.40 67.38 69.80 71.13 28.98 27.46 28.32
Learning rate 5 6 7 5 6 7 5 6 7 5 6 7
LARS

B = 2048
75.22 79.49 81.1 34.48 38.04 40.44 52.42 57.35 52.42 19.92 20.33 19.98

LAMB 43.12 47.88 81.43 12.60 18.56 39.92 10.01 15.64 60.08 18.67 21.98 23.43
TVLARS 81.52 82.22 82.44 39.56 39.56 41.68 62.61 61.71 61.05 26.15 23.43 27.08
Learning rate 8 9 10 8 9 10 8 9 10 8 9 10
LARS

B = 4096
75.63 80.96 82.49 34.24 38.56 40.40 52.77 55.74 55.98 19.45 20.20 20.25

LAMB 22.32 37.52 81.53 05.24 10.76 39.00 48.93 50.19 53.38 13.78 15.66 21.45
TVLARS 80.9 80.96 81.16 38.28 39.96 41.64 57.96 58.28 60.46 24.29 24.29 24.92
Learning rate 10 12 15 10 12 15 10 12 15 10 12 15
LARS

B = 8192
77.59 81.75 82.5 34.36 38.12 42.00 50.29 52.78 09.65 19.69 20.79 21.62

LAMB 16.14 19.85 81.78 01.12 02.48 39.20 42.22 45.26 52.39 19.60 23.44 23.55
TVLARS 81.16 82.42 82.74 36.48 39.20 42.32 54.14 53.56 52.24 23.41 23.47 24.26
Learning rate 15 17 19 15 17 19 15 17 19 15 17 19
LARS

B = 16384
79.46 80.62 38.57 35.60 39.72 41.72 48.27 48.26 49.05 20.97 21.54 22.42

LAMB 14.82 11.97 77.16 00.84 00.92 37.28 42.26 44.02 49.65 20.34 23.58 23.78
TVLARS 79.20 80.42 80.42 38.56 40.32 41.08 48.16 49.84 50.15 25.82 24.95 25.91

5.1 CLASSIFICATION AND BARLOW TWINS PROBLEM

Table 1 demonstrates the model performance trained with LARS, LAMB, and TVLARS (detail
setting at B). The table contains two main columns for CIFAR and Tiny ImageNet with associated
tasks: CLF and BT. Besides CIFAR, Tiny ImageNet is considered to be a rigorously challenging
dataset (100, 000 images of 200 classes), which is usually used to evaluate the performance of LBL
SSL tasks. Overall, TVLARS achieves the highest accuracies, which outperforms LARS 4 ∼ 7%,

7



Under review as a conference paper at ICLR 2024

3 ∼ 4%, and 1 ∼ 2% in each pair of γtarget and B. LARS and LAMB, besides, are immobilized by
the poor sharp minima indicated by the LNR ∥w∥/∥∇wL(w)∥ → ∞ as ∥∇wL(w)∥ → 0 (see Figure
2), which although creates a high adaptive LR to escape the trapped minima, ∇wL(w)/∥∇wL(w)∥
only influences the percentage update to the layer-wise model parameters hence cannot tackle the
problem of sharp minima thoroughly (more analysis at 3, E, G). This phenomenon is caused by the
warm-up strategy partly making LARS and LAMB converge slowly and be stuck at sharp minima.
TVLARS (λ = 10−3) reach the optimum after 20 epochs, compared to 60 ∼ 80 epochs from LARS
and LAMB (γtarget = 19,B = 16K). See more results at E, G.1, G.2.

5.2 ABLATION TEST

5.2.1 DECAY COEFFICIENTS

Decay coefficient λ is a simple regularized parameter, used to anneal the LR to enhance the model
performance. Figure 4 demonstrates the experiments’ result (B ∈ {1024, 16384}) conducted with
values of λ (E, G.3, I). Otherwise, we set α = 1, so that the γtarget for all experiments are the
same. Besides, de, the number of delay epochs is set to 10 and γmin is set to B

Bbase
× 0.001 for both

TVLARS and LARS experiment.

(a) λ = 0.01 (b) λ = 0.005 (c) λ = 0.001 (d) λ = 0.0001 (e) λ = 10−5 (f) λ = 10−6

(g) λ = 0.01 (h) λ = 0.005 (i) λ = 0.001 (j) λ = 0.0001 (k) λ = 10−5 (l) λ = 10−6

Figure 4: Quantitative comparison in learning stability between experiments (B ∈ {1024, 16384},
which are upper and lower row, respectively). The bigger version is shown in Appendix I.

In 1K batch-sized experiments, there is a large generalization gap among γtarget for λ ∈
{0.01, 0.005}. Smaller λ, otherwise, enhance the model accuracy by leaving γtarget to stay nearly
unchanged longer, which boosts the ability to explore loss landscape and avoid sharp minima. As
a result, the model achieve higher accuracy: ∼ 84% (λ = 10−5), compared to result stated in 1
(λ = 0.0001). See E, I for detailed analysis and discussion. In contrast, the model performs better
with larger values of λ (λ ∈ {0.01, 0.005, 0.001}) in 16K batch-sized experiments. Owing to the
pretty high initial γtarget, the model tends to find it easier to escape the local minima which do not
converge within 20 epochs (four times compared to LARS) but also to a low loss value (∼ 2), com-
pared to just under 20 (λ = 10−6). This problem is owing to the elevated γtarget, which makes the
leaning direction fluctuate dramatically in the latter training phase (see Figures 4j, 4k, 4l).

5.2.2 LEARNING RATE

A high initial LR, otherwise, plays a pivotal role in enhancing the model performance by sharp
minimizer avoidance Keskar et al. (2017); Dinh et al. (2017). Authors of Granziol et al. (2022);
Krizhevsky (2014) suggest that, when B/Bbase = m, the LR should be ϵ

√
m to keep the variance,

where ϵ is the LR used with Bbase. However, choosing ϵ is an empirical task, hence we do not only
apply the theorem from Keskar et al. (2017) but also conduct the experiments with LRs in a large
variation to analyze how LR can affect the model performance. Figure 5 illustrates that the higher
the LR is, the lower the loss value and the higher the accuracy model can achieve (see detail analysis
at E, G).

8



Under review as a conference paper at ICLR 2024

(a) B = 512 (b) B = 1024 (c) B = 2048 (d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 5: Quantitative analysis of γtarget (λ = 0.0001). Bigger version at Appendix I.

5.2.3 WEIGHT INITIALIZATION

According to You et al. (2017), the weight initialization is sensitive to the initial training phase.
From Equation (2), when the value of γkt is high due to the ratio B/Bbase (i.e. B = 16K), the
update magnitude of ∥γkt∇L(wkt )∥ may outperform ∥wkt ∥ and cause divergence. Otherwise, since
w ∼ P(w), which makes ∥w∥ varies in distinguished variation, hence the ratio LNR ∥w∥/∥∇L∥
may make the initial training phase performance different in each method of weight initialization.
Addressing this potential phenomenon, apart from Xavier Uniform Glorot & Bengio (2010), which
has been shown above, we conducted the experiments using various types of weight initialization:
Xavier Normal Glorot & Bengio (2010) and Kaiming He Uniform, Normal He et al. (2015b). It
is transparent that, the model performance results using different weight initialization methods are
nearly unchanged. TVLARS, though its performance is unstable owing to its exploration ability,
outperforms LARS 1 ∼ 3% in both CIFAR10 and Tiny ImageNet.

0 20 40 60 80 100
epoch

70

72

74

76

78

80

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

70

72

74

76

78

80

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

70

72

74

76

78

80

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

70

72

74

76

78

80

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

70

72

74

76

78

80

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

70

72

74

76

78

80

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

30

31

32

33

34

35

36

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

30

31

32

33

34

35

36

37

38

te
st

_a
cc

optimizer
lars
tvlars

(a) Xavier Normal

0 20 40 60 80 100
epoch

30

31

32

33

34

35

36

37

38

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

30

31

32

33

34

35

36

37

38

te
st

_a
cc

optimizer
lars
tvlars

(b) Kaiming Normal

0 20 40 60 80 100
epoch

30

31

32

33

34

35

36

te
st

_a
cc

optimizer
lars
tvlars

0 20 40 60 80 100
epoch

30

32

34

36

38

te
st

_a
cc

optimizer
lars
tvlars

(c) Kaiming Uniform

Figure 6: Quantitative analysis of different weight initialization methods for CIFAR10 and TinyIm-
ageNet (upper and lower rows). For each method, B ∈ {8192, 16384} (left, right columns)

.

6 CONCLUSION

Given the current lack of clarity in the fine-tuning and enhancing of the performance of layerwise
adaptive LRs in LBL, we conducted extensive experiments to gain deeper insights into layerwise-
based update algorithms. We then developed a new algorithm, referred to as TVLARS, based on our
understanding of LARS and LAMB and their interaction with LBL. Our TVLARS approach capi-
talizes on the observation that LBL often encounters sharper minimizers during the initial stages. By
prioritizing gradient exploration, we facilitate more efficient navigation through these initial obsta-
cles in LBL. Simultaneously, through adjustable discounts in layerwise LRs, TVLARS combines the
favorable aspects of a sequence of layerwise adaptive LRs to ensure strong convergence in LBL and
overcome the issues of warm-up. With TVLARS we achieve significantly improved convergence
compared to two other cutting-edge methods, LARS and LAMB, especially combined with warm-
up and when dealing with extremely large batch sizes (e.g., B = 16384), across Tiny ImageNet and
CIFAR-10 datasets.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pp. 265–283, USA, Nov. 2016. USENIX Association.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regular-
ization for self-supervised learning. In International Conference on Learning Representations,
2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 1597–1607,
13–18 Jul 2020.

Valeriu Codreanu, Damian Podareanu, and Vikram Saletore. Scale out for large minibatch sgd:
Residual network training on imagenet-1k with improved accuracy and reduced time to train.
arXiv Preprint arXiv:1711.04291, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 248–255. IEEE, 2009.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1019–1028.
PMLR, 06–11 Aug 2017.

Rick Durrett. Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press, 4 edition, 2010. doi: 10.1017/CBO9780511779398.

Jeffrey Fong, Siwei Chen, and Kaiqi Chen. Improving layer-wise adaptive rate methods using trust
ratio clipping, 2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look at deep
learning heuristics: Learning rate restarts, warmup and distillation. In International Conference
on Learning Representations, May 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour, 2018.

Diego Granziol, Stefan Zohren, and Stephen Roberts. Learning rates as a function of batch size:
A random matrix theory approach to neural network training. Journal of Machine Learning
Research, 23(173):1–65, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 1026–1034, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), December 2015b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016.

10



Under review as a conference paper at ICLR 2024

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, Dec. 2017.

Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch optimization for deep learning using new
complete layer-wise adaptive rate scaling. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9):7883–7890, May 2021.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou, Liqiang Xie,
Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen, Guangxiao Hu, Shaohuai Shi, and Xi-
aowen Chu. Highly scalable deep learning training system with mixed-precision: Training ima-
genet in four minutes. arXiv Preprint arXiv:1807.11205, 2018.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678,
New York, NY, USA, Nov. 2014. Association for Computing Machinery.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
International Conference on Learning Representations, 2017.

J. Kiefer and J. Wolfowitz. Stochastic Estimation of the Maximum of a Regression Function. The
Annals of Mathematical Statistics, 23(3):462 – 466, 1952. doi: 10.1214/aoms/1177729392.

Chiheon Kim, Saehoon Kim, Jongmin Kim, Donghoon Lee, and Sungwoong Kim. Automated
learning rate scheduler for large-batch training. In 8th ICML Workshop on Automated Machine
Learning (AutoML), 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pp. 32–33, 2009.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv Preprint
arXiv:1404.5997, Oct. 2014.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. In Advances in Neural Information Processing Systems,
Dec. 2019.

Rui Liu and Barzan Mozafari. Communication-efficient distributed learning for large batch opti-
mization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research, pp. 13925–13946. PMLR, 17–23 Jul
2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, May 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, volume 32, Dec. 2019.

Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu, and Jian Sun.
Megdet: A large mini-batch object detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2018.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective in-
consistency problem in heterogeneous federated optimization. In Advances in Neural Information
Processing Systems, volume 33, pp. 7611–7623, Dec. 2020.

11



Under review as a conference paper at ICLR 2024

Hang Xu, Wenxuan Zhang, Jiawei Fei, Yuzhe Wu, Tingwen Xie, Jun Huang, Yuchen Xie, Mohamed
Elhoseiny, and Panos Kalnis. SLAMB: Accelerated large batch training with sparse communica-
tion. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 38801–38825. PMLR, 23–29
Jul 2023.

Zeyue Xue, Jianming Liang, Guanglu Song, Zhuofan Zong, Liang Chen, Yu Liu, and Ping Luo.
Large-batch optimization for dense visual predictions. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=kImIIKGqDFA.

Masafumi Yamazaki, Akihiko Kasagi, Akihiro Tabuchi, Takumi Honda, Masahiro Miwa, Naoto
Fukumoto, Tsuguchika Tabaru, Atsushi Ike, and Kohta Nakashima. Yet another accelerated sgd:
Resnet-50 training on imagenet in 74.7 seconds. arXiv Preprint arXiv:1903.12650, 2019.

Zhuliang Yao, Yue Cao, Shuxin Zheng, Gao Huang, and Stephen Lin. Cross-iteration batch normal-
ization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12331–12340, June 2021.

Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I. Jordan. How does learning rate
decay help modern neural networks? arXiv Preprint arXiv:1908.01878, 2019.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2020.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In Proceedings of the International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 12310–12320, 18–24
Jul. 2021.

12

https://openreview.net/forum?id=kImIIKGqDFA


Under review as a conference paper at ICLR 2024

A RELATED WORKS

Large-batch learning. In Codreanu et al. (2017), several LR schedulers are proposed to figure
out problems in LBL, especially the Polynomial Decay technique which helps ResNet50 converge
within 28 minutes by decreasing the LR to its original value over several training iterations. Since
schedulers are proven to be useful in LBL, You et al. (2017), Peng et al. (2018) suggested a LR
scheduler based on the accumulative steps and a GPU cross Batch Normalization. Gotmare et al.
(2019), besides, investigates deeper into the behavior of cosine annealing and warm-up strategy
then shows that the latent knowledge shared by the teacher in knowledge distillation is primarily
disbursed in the deeper layers. Inheriting the previous research, Goyal et al. (2018) proposed a
hyperparameter-free linear scaling rule used for LR adjustment by constructing a relationship be-
tween LR and batch size as a function.

Adaptive optimizer. Another orientation is optimization improvement, starting by You et al. (2017),
which proposed LARS optimizers that adaptively adjust the LR for each layer based on the local
region. To improve LARS performance, Jia et al. (2018) proposed two training strategies including
low-precision computation and mixed-precision training. In contrast, Liu & Mozafari (2022) authors
propose JointSpar and JointSpar-LARS to reduce the computation and communication costs. On the
other hand, Accelerated SGD Yamazaki et al. (2019), is proposed for training DNN in large-scale
scenarios. In You et al. (2020), Xu et al. (2023), new optimizers called LAMB and SLAMB were
proved to be successful in training Attention Mechanisms along with the convergence analysis of
LAMB and LARS. With the same objective AGVM Xue et al. (2022) is proposed to boost RCNN
training efficiency. Authors in Fong et al. (2020), otherwise proposed a variant of LAMB called
LAMBC which employs trust ratio clipping to stabilize its magnitude and prevent extreme values.
CLARS Huo et al. (2021), otherwise is suggested to exchange the traditional warm-up strategy
owing to its unknown theory.

B EXPERIMENTAL SETTINGS

Problems. The vanilla classification (CLF) and Self Supervised Learning (SSL) are conducted and
evaluated by the accuracy (%) metric. Regarding the success of SSL, we conduct the SOTA Barlow
Twins1 (BT) Zbontar et al. (2021) to compare the performance between LARS, LAMBYou et al.
(2020), and TVLARS (ours). To be more specific, the BT SSL problem consists of two stages: SSL
and CLF stage, conducted with 1000 and 100 epochs, respectively. The dimension space used in
the first stage of BT is 4096 stated to be the best performance setting in Zbontar et al. (2021), along
with two sub Fully Connected 2048 nodes layers integrated before the latent space layer. We also
conduct the CLF stage of BT with vanilla Stochastic Gradient Descent (SGD) Kiefer & Wolfowitz
(1952) along with the Cosine Annealing Loshchilov & Hutter (2017) scheduler as implemented by
BT authors. The main results of CLF and BT tasks are shown at 5.1. See more results of LAMBYou
et al. (2020), LARSYou et al. (2017), and TVLARS at G.1, G.2, G.3, separately.

Datasets and Models. To validate the performance of the optimizers, we consider two different
data sets with distinct contexts: CIFAR10 Krizhevsky (2009) (32 × 32, 10 modalities) and Tiny
ImageNet Deng et al. (2009) (64 × 64, 200 modalities). Otherwise, the two SOTA model architec-
tures ResNet18 and ResNet34 He et al. (2016) are trained separately from scratch on CIFAR10 and
TinyImageNet. To make a fair comparison between optimizers, the model weight is initialized in
Kaiming Uniform Distribution He et al. (2015a).

Optimizers and Warm-up Strategy. Specifically, we explore the characteristics of LARS and
LAMB by applying them with and without a warm-up strategy, aiming to understand the LNR
|w|/|∇L(w)| (see more results at G.2, H. LARS and LAMB official source codes are implemented
inside NVCaffe Jia et al. (2014) and Tensorflow Abadi et al. (2016). the Pytorch version of LARS
used in this research is verified and referenced from Lightning Flash 2. LAMB Pytorch code, on
the other hand, verified and referenced from Pytorch Optimizer 3. Besides, the warm-up strategy
Gotmare et al. (2019) contains two separate stages: linear LR scaling and LR decay. In this first
stage, γt becomes greater gradually by iteratively updating γt = γtarget × t

T for each step (T = 20

1https://github.com/facebookresearch/barlowtwins
2https://github.com/Lightning-Universe/lightning-flash
3https://github.com/jettify/pytorch-optimizer

13

https://github.com/facebookresearch/barlowtwins
https://github.com/Lightning-Universe/lightning-flash
https://github.com/jettify/pytorch-optimizer


Under review as a conference paper at ICLR 2024

epochs). Then, γt goes down moderately by γt = γtarget × q + γmin × (1 − q) where q = 1
2 ×

(1 + cos πtT ), which is also conducted in Zbontar et al. (2021); Chen et al. (2020); Bardes et al.
(2022). In experiments where LARS and LAMB are conducted without a warm-up strategy, a
simple Polynomial Decay is applied instead. TVLARS, on the contrary, is conducted without using
a LR scheduler.

Hyperparameters and System. The LRs are determined using the square root scaling rule
Krizhevsky (2014), which is described detailedly at 5.2.2 (see more results at I). We consider the
following sets of γtarget: {1, 2, 3}, {2, 3, 4}, {5, 6, 7}, {8, 9, 10}, {10, 12, 15}, and {15, 17, 19},
which are associated with B of 512, 1024, 2048, 4096, 8192, and 16384, respectively. Otherwise,
wd, and µ is set to 5 × 10−4, and 0.9, respectively. Besides, all experiments are conducted on
Ubuntu 18.04 by using Pytorch Paszke et al. (2019) with multi Geforce 3080 GPUs settings, along
with Syncing Batch Normalization, which is proven to boost the training performance Krizhevsky
(2014), Yao et al. (2021), Huang et al. (2018).

C PROOF ON THEOREM 1

Revisit the Definition 1, we have:

gti = ḡt +∆gti . (6)

In applying the LB gradient descent with batch size B, we have:

gtB =
1

B

B∑
i=1

gti =
1

B

B∑
i=1

ḡt +∆gti = ḡt +
1

B

B∑
i=1

∆gti . (7)

Apply the L2 Weak Law (Durrett, 2010, Theorem 2.2.3), we have: gtB ≤ ḡt+ σ2

B , which can be also
understood as:

Exi,yi∈{X ,Y}
[
ḡt − gtB

]
≤ σ2/B (8)

D TIME VARYING COMPONENT BOUND

Consider the following equation of time-varying component:

ϕ(t) =
1

α+ exp{λ(t− de)}
+ γmin (9)

We then analyze its derivative (Equation (10))to gain deeper insights into how it can affect the
gradient scaling ratio.

∂ϕ(t)

∂t
=

−λ exp{λt− λde}
(α+ exp{λt− λde})2

≤ 0 w.r.t.
{
(α+ exp{λt− λde})2 ≥ 0

λ exp{λt− λde} ≥ 0
(10)

Thus function ϕ(t) is a decreasing function for any t ∈ [0, T ). Therefore, the minimum value of the
above function at T → ∞ is γmin as follows:

min{ϕ(t)} = lim
t→∞

1

α+ exp{λ(t− de)}
+ γmin = γmin (11)

While the maximum value at t = 0 is as follows:

max{ϕ(t)} = ϕ(t = 0) =
1

α+ exp{−λde}
(12)

Hence the time-varying component has the following bounds:

γmin ≤ ϕ(t) ≤ 1

α+ exp{−λde}
(13)

14



Under review as a conference paper at ICLR 2024

E DETAILED ANALYSIS

Overall, it is transparent that TVLARS performs well in most settings followed by LARS and
LAMB, especially with batch sizes of 512, 1024, 2048, and 4096 (Table 1). In 512 sampled batch
size experiments, TVLARS achieves 78.92, 81.42, and 81.56% on CIFAR10 and 37.56, 39.28, and
39.64% on Tiny ImageNet related to the LR of 1, 2, and 3, as opposed to 74.64, 77.49, and 79.64%
and 33.72, 36.60, and 38.92% accomplished from LARS, respectively. TVLARS continues to per-
form better on even higher batch sizes: 1024, 2048, and 4096 with a stable rise in accuracy. While
the performance of LARS varies approximately from 75% to 80%, TVLARS gains accuracy nearly
or above 82% trained on CIFAR10 with batch sizes of 1024, 2048, and 4096. Furthermore, this
assertion remains the same for experiments with Tiny ImageNet that TVLARS stably reaches the
accuracy from 38% to 41%, in contrast with mostly from 33% to 38% of LARS. On even higher
batch size settings: 8K and 16K, TVLARS achieves more stable performances: from approximately
81% to nearly 83%, and from 36% to above 42% on CIFAR10 and Tiny ImageNet, respectively.
Although the performance of TVLARS and LARS are close to each other, the performance of the
model trained by LARS accompanied by a warm-up strategy tends to explode and slow convergence
in a very high batch size of 16K (see Figure 19c), which attains only 38% on CIFAR10 compared
to fast convergence (within 20 epochs) and stable learning of TVLARS (see Figures 31c, 43c, 49c,
55c, 61c), which accomplishes 80.42%. LAMB, on the other hand, plunges to just above poor per-
formance, especially just above 0% experimenting with the two lower LRs for a batch size of 16K.
However, in the highest LR considered, LAMB achieves a performance of approximately 80%.

Another interesting point is that the higher the LR is, the faster the model reaches the optimal point,
which claims that owing to the high LR at the initial training phase, the exploration of the loss
landscape is enhanced by avoiding the model being trapped by the early poor sharp minima Dinh
et al. (2017); Keskar et al. (2017). This phenomenon is indicated evidently in Figures of Section
G, especially in experiments with a decay coefficient of 0.0001 used in Table 1. In detail, in the
experiment with batch sizes of 512 and 1024, the convergence rate of the objective functions is
nearly unchanged, which takes from 20 to 40 (see Figures 44, 45) epochs to reach the optimal point,
compared to more than 40 in LARS with warm-up strategy (see Figures 14, 15, 16, 17, 18, 19).
Moreover, the objective function value of TVLARS plunges to the optimal value after just above
20 epochs (47, 48, 49), as opposed to nearly 60 and 80 epochs in the experiments of LARS with
batch sizes of 4K, 8K, and 16K (17a, 17b, 17c, 18a, 18b, 18c, 19a, 19b, 19c), respectively. This
circumstance is caused by the imperfect exploration ability of a small LR Li et al. (2019); Keskar
et al. (2017) in the warm-up phase, which steadily increases the LR from a small LR to a target LR by
iteratively updating the LR γt = γtarget × t

T . Although LARS and TVLARS (B = 16K) conducted
with LRs of 15 and 17 reach the optimal point after 60 epochs, TVLARS experimented with a LR of
19 converges after 20 epochs, in contrast to 20 epochs from LARS. LAMB experiments are not an
exception, they tend to reach the optimal point deliberately. Experimented with batch sizes of 4K,
8K, and 16K, for instance, LAMB acquires from 60 to 80 epochs to reach the optimum point for all
LRs considered (11, 12, 13).

On the other hand, as the ability to avoid the many sharp minima that exist near the weight initializa-
tion point by high initial LR Hoffer et al. (2017), Kim et al. (2021), TVLARS enhances the model by
finding a better performance local minima (see Figures 44a, 44b, 44c, 45a, 45b, 45c), which dives to
0.6 loss value, contrasted to scarcely higher than 1.0 achieved by LARS showed in Figure 14a, 14b,
14c, 15a, 15b, 15c. Especially in larger batch-size training (B ∈ {8K, 16K}), while TVLARS reach
a loss value of under 0.75 (48a, 48b, 48c), LARS reaches to local minima whose performance of
approximately 1.0 error (18a, 18b, 18c). Furthermore, TVLARS performance plunges to optimum
(error ≈ 0) (see Figures 49a, 49b, 49c), as opposed to significantly higher than 2 achieved by LARS
(19a, 19b, 19c). As a result of the small LR, LARS with the warm-up strategy is effortlessly trapped
by low-performance sharp minima. This problem is interpreted by the dramatically unpredictable
oscillation of ∥∇wL(w)∥ in the early phase, which is shown in Figures 2g, 2h, 2e. Since the norm of
model layers’ gradient ∥∇w∥ = {∥∇wk∥}K−1

k=0 varies from 0 to a much larger value frequently after
several epochs, the model is stuck by local sharp minima whose different performance Keskar et al.
(2017): larger than 20 error value. After 60 to 80 epochs, the model trained by LARS converges
without being immobilized by poor sharp minima. This is a result of the ratio ∥w∥/∥∇w∥ → ∞ as
∥∇w∥ → 0, which creates a high adaptive LR to escape the trapped minima, where ∥w∥ gradually
decrease after each iteration. The higher the LR is, the more expeditious LARS achieves, which
converges to a minimum whose loss value of 2 after 80, 70, and 60 epochs with LRs of 15, 17, and

15



Under review as a conference paper at ICLR 2024

19, separately. LAMB is not an exception, whose ∥w∥/∥∇w∥ fluctuate frequently, which indicates
the ability of LAMB to tackle the poor performance sharp minima, though its performance is not
satisfactory that LAMB’s loss value drops to around 1 (8, 9, 10, 11, 12, 13), compared to under
0.5 loss value achieved by TVLARS. However, in the experiments with the largest LRs considered,
LAMB finds it easy to escape the poor sharp minima that the ratio ∥w∥/∥∇w∥ is not oscillated dras-
tically (see Figures 8c, 9c, 10c, 11c, 12c, 13c), and converge to optimum within 40 epochs whose
performance are nearly the same with LARS.

16



Under review as a conference paper at ICLR 2024

F LARS WITH AND WITHOUT WARM-UP STRATEGY ADAPTIVE RATIO LNR

(a) NOWA-LARS 512 (b) NOWA-LARS 1024

(c) WA-LARS 512 (d) WA-LARS 1024

(e) NOWA-LARS 8192 (f) NOWA-LARS 16384

(g) WA-LARS 8192 (h) WA-LARS 16384

17



Under review as a conference paper at ICLR 2024

G FURTHER EXPERIMENTS ON SCALING RATIO

G.1 LAMB

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 8: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 9: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 10: Batch size = 2048

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 11: Batch size = 4096

18



Under review as a conference paper at ICLR 2024

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 12: Batch size = 8K

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 13: Batch size = 16K

19



Under review as a conference paper at ICLR 2024

G.2 LARS

G.2.1 WITH WARM UP

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 14: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 15: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 16: Batch size = 2048

20



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 17: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 18: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 19: Batch size = 16384

21



Under review as a conference paper at ICLR 2024

G.2.2 WITHOUT WARM UP

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 20: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 21: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 22: Batch size = 2048

22



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 23: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 24: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 25: Batch size = 16384

23



Under review as a conference paper at ICLR 2024

G.3 TVLARS

G.3.1 λ = 0.01

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 26: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 27: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 28: Batch size = 2048

24



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 29: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 30: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 31: Batch size = 16384

25



Under review as a conference paper at ICLR 2024

G.3.2 λ = 0.005

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 32: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 33: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 34: Batch size = 2048

26



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 35: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 36: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 37: Batch size = 16384

27



Under review as a conference paper at ICLR 2024

G.3.3 λ = 0.001

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 38: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 39: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 40: Batch size = 2048

28



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 41: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 42: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 43: Batch size = 16384

29



Under review as a conference paper at ICLR 2024

G.3.4 λ = 0.0001

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 44: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 45: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 46: Batch size = 2048

30



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 47: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 48: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 49: Batch size = 16384

31



Under review as a conference paper at ICLR 2024

G.3.5 λ = 0.00001

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 50: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 51: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 52: Batch size = 2048

32



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 53: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 54: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 55: Batch size = 16384

33



Under review as a conference paper at ICLR 2024

G.3.6 λ = 0.000001

(a) base lr = 1 (b) base lr = 2 (c) base lr = 3

Figure 56: Batch size = 512

(a) base lr = 2 (b) base lr = 3 (c) base lr = 4

Figure 57: Batch size = 1024

(a) base lr = 5 (b) base lr = 6 (c) base lr = 7

Figure 58: Batch size = 2048

34



Under review as a conference paper at ICLR 2024

(a) base lr = 8 (b) base lr = 9 (c) base lr = 10

Figure 59: Batch size = 4096

(a) base lr = 10 (b) base lr = 12 (c) base lr = 15

Figure 60: Batch size = 8192

(a) base lr = 15 (b) base lr = 17 (c) base lr = 19

Figure 61: Batch size = 16384

35



Under review as a conference paper at ICLR 2024

H FURTHER EXPERIMENT ON LARS WITH AND WITHOUT WARM-UP
STRATEGY

(a) test loss (b) test acc

Figure 62: B = 512

(a) test loss (b) test acc

Figure 63: B = 1024

(a) test loss (b) test acc

Figure 64: B = 2048

36



Under review as a conference paper at ICLR 2024

(a) test loss (b) test acc

Figure 65: B = 4096

(a) test loss (b) test acc

Figure 66: B = 8192

(a) test loss (b) test acc

Figure 67: B = 16384

37



Under review as a conference paper at ICLR 2024

I FURTHER EXPERIMENT OF TVLARS WITH A LARGE VARIATION OF DECAY
COEFFICIENT

(a) B = 512 (b) B = 1024 (c) B = 2048

(d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 68: λ = 0.01.

(a) B = 512 (b) B = 1024 (c) B = 2048

(d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 69: λ = 0.01.

38



Under review as a conference paper at ICLR 2024

(a) B = 512 (b) B = 1024 (c) B = 2048

(d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 70: λ = 0.001.

(a) B = 512 (b) B = 1024 (c) B = 2048

(d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 71: λ = 0.0001.

39



Under review as a conference paper at ICLR 2024

(a) B = 512 (b) B = 1024 (c) B = 2048

(d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 72: λ = 0.00001.

(a) B = 512 (b) B = 1024 (c) B = 2048

(d) B = 4096 (e) B = 8192 (f) B = 16384

Figure 73: λ = 0.000001.

40



Under review as a conference paper at ICLR 2024

J LEARNING RATE ANNEALED BY WARMUP STRATEGY

The figure 74 reveals the LLR in WA-LARS. As we can see from the figure, the LLR tends to be
excessively low in the first 20 learning epochs in many DNN layers (i.e., layer 1 to layer 12). In the
last layer, the LLR is nearly 0 in first 40 epochs. This problem leads to the gradient dismishing when
applying the LLR to the back-propagation, which can be considered as redundant learning phase in
WA-LARS.

Figure 74: Learning rate annealed by warm-up strategy with a setting of 16K batches in every 20
layers of the model.

41


	Introduction
	Notations and preliminaries
	The mystery of generalization behind warm-up LARS and non warm-up LARS
	On the principle of LARS
	LARS and the importance of warm-up
	Shortcomings of warm-up

	Methodology
	Experiment
	Classification and Barlow Twins Problem
	Ablation test
	Decay coefficients
	Learning rate
	Weight Initialization


	Conclusion
	Related Works
	Experimental Settings
	Proof on Theorem 1
	Time Varying Component Bound
	Detailed Analysis
	LARS with and without warm-up strategy adaptive ratio LNR
	Further experiments on Scaling Ratio
	LAMB
	Lars
	With warm up
	Without Warm Up

	TVLars
	
	
	
	
	
	


	Further experiment on LARS with and without warm-up strategy
	Further experiment of TVLARS with a large variation of decay coefficient
	Learning rate annealed by warmup strategy

