

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPERATOR FLOW MATCHING FOR TIMESERIES FORE- CASTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Forecasting high-dimensional, PDE-governed dynamics remains a core challenge for generative modeling. Existing autoregressive and diffusion-based approaches often suffer cumulative errors and discretisation artifacts that limit long, physically consistent forecasts. Flow matching offers a natural alternative, enabling efficient, deterministic sampling. We propose TempO, a time-conditioned latent flow matching method mimicking classical PDE evolution operators. We introduce an attention-based multiscale autoencoder, a latent Fourier vector field regressor, and decoupled spatial and temporal processing for temporally coherent and accurate rollouts. We prove an upper bound on FNO approximation error and empirically show that TempO outperforms state-of-the-art baselines across three benchmark PDE datasets, and spectral analysis further demonstrates superior recovery of multi-scale dynamics, while efficiency studies highlight its parameter- and memory-light design compared to attention-based or convolutional regressors.

1 INTRODUCTION

Generative artificial intelligence has brought unparalleled creative and scientific potential, with models capable of producing images (Hatamizadeh et al., 2025), video (Bar-Tal et al., 2024), audio (Ju et al., 2024), and text (Grattafiori et al., 2024) that rival human quality. From autoregressive transformers to diffusion models and energy-based approaches, the landscape of generative AI is rich and diverse, offering multiple pathways to model complex data distributions. At the core of this revolution are probabilistic generative models, which learn to sample from complex, high-dimensional distributions. Among these, flow matching models have emerged as a class of generative models which learn to transform a simple prior distribution to a more complex data distribution as a continuous transformation. This direct, simulation-free approach enables both efficiency and precision, offering a new lens on modeling complex systems (Lipman et al., 2023).

Despite recent advances, forecasting high-dimensional temporal dynamics remains challenging. Deep learning models are computationally expensive and often fail catastrophically after a few dozen timesteps due to compounding errors in autoregressive predictions, particularly in stiff or chaotic systems (Ansari et al., 2024; Raissi et al., 2019). Even with the advent of large language models and their remarkable ability to generate, models that attempt to leverage them for forecasting introduce truncation and quantisation errors due to tokenised representations which further exacerbate cumulative errors (Ansari et al., 2024), offering little practical benefit relative to their computational cost (Tan et al., 2024). Modern generative models have been proven capable of generating visually compelling and coherent videos (John et al., 2024), but critically lack the fine-grained control required to be used in scientific and engineering contexts.

Recent foundation models for forecasting include GenCast for weather (Price et al., 2025) and Chronos for general time series (Ansari et al., 2024), demonstrate the promise of large-scale pretraining. These models leverage massive datasets across multiple domains resulting in strong zero- and few-shot transferability. Chronos captures coarse, long-range correlations remarkably long timespans; however, the granularity, i.e. prediction length still falls at an average of 22 across 55 datasets, with only 7 tasks exceeding 30 steps (Ansari et al., 2024). GenCast, likewise, can generate 15-day global weather forecasts, but at a granularity of 12 hours, around 30 steps. True progress requires models capable of deterministic yet flexible generation, able to explore plausible trajectories while respecting physical constraints to then select precise forecasts out of the space of plausible predic-

054 tions (Guo et al., 2025). Although the short to mid term range is a popular horizon to explore (Lim
 055 et al., 2025b), the goal is to generate long-horizon predictions on the order of 30 timesteps or more,
 056 generating trajectories that are not just plausible, but physically consistent.

057 Fundamentally, models relying on discretisation or tokenisation are not ideal for continuous, Partial
 058 Differential Equation (PDE)-governed dynamics. Demonstrating smooth trajectories in state space
 059 which generalise to long forecasting horizons would show greater fidelity to the underlying physics.
 060 Other existing efforts which leverage diffusion (Molinaro et al., 2025; Yao et al., 2025; Huang et al.,
 061 2024) move toward more natural representations and, in some settings, benefit from the stochastic-
 062 ity inherent to diffusion, e.g. for uncertainty quantification or modeling ensembles of plausible
 063 trajectories in chaotic regimes (Lippe et al., 2023). However, their stochastic sampling procedures
 064 can introduce computational overhead and variance when the goal is to learn a sharp, deterministic
 065 operator. Flow matching provides a complementary alternative: vector field regression aligns nat-
 066 urally with learning PDE operators, which themselves describe deterministic time derivatives, and
 067 yields efficient Ordinary Differential Equation (ODE)-based sampling without iterative denoising.
 068 Existing flow matching methods have individually worked toward video generation (Davtyan et al.,
 069 2023; Jin et al., 2025; Holzschuh et al., 2025; Serrano et al., 2024) and PDE single-step predic-
 070 tion (Kerrigan et al., 2023), but thus far have not been thoroughly tested for long-horizon temporal
 071 forecasting and do not design for the deterministic and stable rollouts required for such tasks.

072 In this work, we propose Temporal Operator flow matching (TempO), the first principled integration
 073 of time-conditioned latent flow matching with neural operators mimicking classical PDE evolu-
 074 tion operators, offering an efficient, stable and spectrally accurate alternative to autoregressive and
 075 diffusion-based PDE forecasting. TempO is built around four key innovations:

- 076 1. We design a multi-headed attention-enhanced autoencoder that learns multiscale latent
 077 representations, allowing the flow field to jointly capture global structures and fine local
 078 features.
- 079 2. We construct time-conditioned latent spectral embeddings that encode PDE states in a
 080 frequency-aware latent space, enabling smooth flow interpolation and preserving high-
 081 frequency dynamics.
- 082 3. Motivated by the structure of PDE evolution operators, TempO explicitly decouples spatial
 083 and temporal processing via channel folding, using operator layers for spatial modes and
 084 latent flow dynamics for temporal evolution.
- 085 4. We incorporate sparse conditioning, providing computational and data efficiency by condi-
 086 tioning the flow only on two prior timesteps without degrading accuracy.

088 We derive theoretical error bounds that characterize the efficiency and expressivity of TempO, and
 089 showcase its performance on PDE benchmarking datasets accompanied with a spectral analysis
 090 showing a distinct advantage in capturing the essential dynamics required for forecasting. Empiri-
 091 cally, we see a 16% lower error when predicting vorticity of 2D incompressible Navier Stokes, with
 092 Pearson correlations remaining above 0.95 for a 40 step forecasting horizon, demonstrating its stable
 093 temporal forecasting and high quality generation capability.

095 2 RELEVANT WORKS

097 Application-specific models for scientific data have also seen development: GenCFD (Molinaro
 098 et al., 2025) proposes a conditional diffusion model to generate the underlying distributions of high
 099 fidelity flow fields. Kerrigan et al. (2023) propose the first extension of Fourier Neural Operators
 100 (FNOs) to flow matching tasks and predicts plausible fluid dynamic fields, Functional Flow Match-
 101 ing. Shi et al. (2025) builds on this concept and extends it to learning stochastic process priors on
 102 function spaces. Similarly, Lim et al. (2025a) extend denoising diffusion models to function space,
 103 introducing Denoising Diffusion Operators for unconditional prior generation; Yao et al. (2025) ex-
 104 tends this to conditional posterior sampling under observation constraints and sees state-of-the-art
 105 performance for multi-resolution PDE tasks, as compared to its competitor DiffusionPDE Huang
 106 et al. (2024) which originally demonstrated strong performance in solving PDEs with partial obser-
 107 vations. Such methods have thus far focused on static prediction, i.e., generating diverse samples of
 108 plausible PDE solutions, rather than deterministic temporal rollouts.

108 Models designed to predict sequences of future states include the aforementioned large-scale
 109 Chronos and GenCast (Ansari et al., 2024; Price et al., 2025). In addition, pyramidal flow matching
 110 (Jin et al., 2025) produces state-of-the-art video generation compared to leading models (Zheng
 111 et al., 2024), representing a successful flow matching foundation model. (Tamir et al., 2024) present
 112 conditional flow matching for time series, succeeding in long 1D trajectories where neural ODEs
 113 fail, but has not scaled to 2D spatiotemporal data. Physics-Based Flow Matching (Baldan et al.,
 114 2025) adds a PINN-style loss (Raissi et al., 2019) to flow matching for surrogate model. Kolloviev
 115 et al. (2024) extends this with Gaussian processes for forecasting tasks outside of scientific machine
 116 learning. We focus instead on models that fall between these two categories, scaling reasonably to
 117 2D data to match common PDE settings. Li et al. (2025) further leverage latent space modeling and
 118 coarsely sampled diffusion for PDE generation on irregular grids.

119 TempO occupies a distinct methodological position in this landscape: it is conditional and deterministic,
 120 built to learn an operator-valued transport that maps an initial PDE state to its evolved state,
 121 rather than to sample diverse static solutions. TempO also shares the same spectral motivation as
 122 prior works, e.g. Functional Flow Matching, but differentiates itself in a crucial way: instead of
 123 using an FNO as a denoiser inside a sampler, TempO uses an FNO to parameterize a latent-space
 124 velocity field that is time-conditioned and integrated as an ODE. This design enables deterministic,
 125 operator-valued rollouts rather than stochastic sample generation, and directly targets long-horizon
 126 forecasting stability.

127 3 METHOD

128 We begin by developing the background which is then used to construct our method. Flow matching
 129 learns a time-dependent velocity field $v_\theta(z, t)$ defining an ODE in the latent space:

$$132 \quad \frac{dz(t)}{dt} = v_\theta(z(t), t), \quad z(0) \sim \pi_0, \quad (1)$$

133 where π_0 is a simple prior (e.g., Gaussian). Integrating this ODE transports samples to the latent
 134 data distribution π_1 , see Appendix B. Training reduces to a regression objective that matches the
 135 model velocity field to a target velocity along interpolating probability paths (Lipman et al., 2023).
 136 This enables simulation-free sampling from complex distributions.

137 Table 1: Representative Path Choices in Flow Matching Models.

Path	a_t	b_t	c_t	Parameter definitions
Affine-OT ¹	t	0	$(1 - (1 - \epsilon_{\min})t)^2$	$\epsilon_{\min} \geq 0$: min. noise level
RIVER ²	$(1 - (1 - \sigma_{\min})t)$	t	σ^2	$\sigma \geq 0$: noise scale, $\sigma_{\min} \geq 0$: min. noise
SLP ³	$(1 - t)$	t	$\sigma_{\min}^2 + \sigma^2 t(1 - t)$	$\sigma, \sigma_{\min} \geq 0$: variance parameters
VE-diff ⁴	1	0	σ_t^2	σ_t : geometric schedule, $\sigma_{\min}, \sigma_{\max} > 0$
VP-diff ⁴	$\exp(-\frac{1}{2}T(1 - t))$	0	$1 - \exp(-T(1 - t))$	$\beta_{\min}, \beta_{\max} > 0$, $T(t) = \int_0^t \beta(s) ds$

¹ (Lipman et al., 2023), ² (Davtyan et al., 2023), ³ (Lim et al., 2025b), ⁴ (Ryzhakov et al., 2024)

147 A key component of flow matching is the choice of the probability density path p_t interpolating
 148 between the reference distribution π_0 and the target π_1 . We focus on Gaussian conditional paths
 149 with closed-form velocity fields:

$$150 \quad p_t(Z | \tilde{Z} := (Z_0, Z_1)) = \mathcal{N}(Z | a_t Z_0 + b_t Z_1, c_t^2 I),$$

152 where a_t, b_t, c_t define the path (Table 1). This pair-conditional path is defined for a specific transi-
 153 tion (Z_0, Z_1) , and the marginal interpolant is obtained by averaging over all pairs: $p_t(Z) =$
 154 $\mathbb{E}_{(Z_0, Z_1)}[p_t(Z | Z_0, Z_1)]$. While π_0 is typically a standard Gaussian, intermediate densities p_t
 155 can follow diffusion-inspired, optimal transport, or other custom schedules.

156 To parameterize v_θ , we modify FNOs, which approximate mappings between functions via spectral
 157 convolution layers. Given input u , the FNO parameterizes an operator as $\mathcal{G}_\theta : u \mapsto \tilde{u}$, $\tilde{u} : \mathcal{D} \rightarrow$
 158 $\mathbb{R}^{C_{\text{out}}}$, that maps u to an output function \tilde{u} . Iterative Fourier layers perform spectral transformations
 159 of the input $\hat{u}(k) = \mathcal{F}[u](k)$, $\hat{\tilde{u}}(k) = R_\theta(k) \cdot \hat{u}(k)$, followed by an inverse Fourier transform back
 160 to the spatial domain; $\tilde{u}(x) = \mathcal{F}^{-1}[\hat{\tilde{u}}](x)$, with $R_\theta(k)$ being learnable Fourier-mode weights and \mathcal{F}
 161 denoting the Fourier transform. This spectral representation allows the FNO to efficiently capture
 long-range dependencies and global correlations in the data.

162 3.1 TEMPORAL OPERATOR FLOW MATCHING (TEMPO)
163

164 Using an FNO-inspired regressor to learn the vector field of a flow matching model has a number of
165 benefits, namely, the added expressivity that the Fourier representation provides at a low computa-
166 tional cost thanks to highly optimised Fast Fourier Transform (FFT) operations. Building on prior
167 analysis of FNOs for solving PDEs (Kovachki et al., 2021), we show that an FNO-inspired regressor
168 can achieve an upper bound on approximation error for flow matching models and we provide a
169 lower bound on the accuracy achievable by sampler-based methods (e.g., Transformer or U-Net) in
170 relation to their number of parameters.

171 **Theorem 3.1** (FNO regressor constructive upper bound). *Let \mathbb{T}^d be the d -torus. Fix $s, s' \geq 0$ and
172 let $\mathcal{U} \subset H^s(\mathbb{T}^d)$ be compact. Suppose $\mathcal{G} : \mathcal{U} \rightarrow H^{s'}(\mathbb{T}^d)$ is continuous and satisfies $|\widehat{\mathcal{G}(u)}(k)| \leq$
173 $C_\lambda(1 + |k|)^{-p}$ for all $u \in \mathcal{U}$, $k \in \mathbb{Z}^d$, with constants $C_\lambda > 0$, $p > 0$. If $p > s' + \frac{d}{2}$ and we define
174 $\alpha := p - s' - \frac{d}{2} > 0$, then for every $\varepsilon > 0$ there exists a Fourier Neural Operator \mathcal{G}_θ with*
175

$$P_{\text{FNO}}(\varepsilon) \lesssim \varepsilon^{-d/\alpha},$$

176 such that $\sup_{u \in \mathcal{U}} \|\mathcal{G}(u) - \mathcal{G}_\theta(u)\|_{H^{s'}} \leq \varepsilon$. The hidden constants depend only on $d, s, s', \mathcal{U}, C_\lambda$ and
177 mild/logarithmic factors.

180 This result is in line with the estimates and arguments made in (Kovachki et al., 2021).
181

182 *Sketch of proof of Theorem 3.1.* (Spectral truncation.) The Fourier decay assumption implies that
183 high-frequency modes of $\mathcal{G}(u)$ contribute at most $O(K^{-2\alpha})$ to the $H^{s'}$ -error. Choosing $K \asymp \varepsilon^{-1/\alpha}$
184 makes this truncation error $\leq \varepsilon/2$.

186 (Finite-dimensional reduction.) For this cutoff K , the operator \mathcal{G}_K is determined by $O(K^d)$ Fourier
187 coefficients, and inputs can likewise be restricted to finitely many low modes without significant
188 loss of accuracy. Thus the problem reduces to approximating a continuous map between compact
189 subsets of $\mathbb{R}^{m_{\text{in}}}$ and $\mathbb{R}^{m_{\text{out}}}$, with $m_{\text{out}} \asymp K^d$.

190 (Approximation by networks.) Standard universal approximation results (or the constructive FNO
191 design in (Kovachki et al., 2021)) ensure that such a finite map can be uniformly approximated by a
192 network with $O(K^d)$ parameters, up to mild logarithmic factors.

193 (Conclusion.) Combining these errors yields an overall accuracy ε with parameter count $P \lesssim K^d \asymp$
194 $\varepsilon^{-d/\alpha}$, proving the claim. \square
195

196 **Proposition 3.2** (Transformer/UNet Sampler-based lower bound). *Under the assumptions of The-
197 orems 3.1, consider any learner that observes each $u \in \mathcal{U}$ only through n fixed point evalua-
198 tions and applies a parametric map with P real parameters, required in the worst case to reconstruct all
199 Fourier modes up to radius $K \asymp \varepsilon^{-1/\alpha}$. Then necessarily*

$$n \gtrsim \varepsilon^{-d/\alpha}, \quad P_{\text{sampler}}(\varepsilon) \gtrsim \varepsilon^{-\beta d/\alpha},$$

202 for some architecture-dependent $\beta \geq 1$ (optimistically $\beta = 1$ when only diagonal mode-wise maps
203 are needed, generically $\beta = 2$ for arbitrary dense linear maps). These bounds are information-
204 theoretic and asymptotic, up to constants and mild/logarithmic factors.

206 *Sketch of proof of Proposition 3.2.* (Sampling necessity.) The K -mode subspace V_K has dimension
207 $D_K \asymp K^d$. Sampling at n points defines a linear map $S : V_K \rightarrow \mathbb{C}^n$. For S to be injective on V_K ,
208 its matrix must have rank D_K , hence $n \geq D_K \asymp K^d$.

209 (Parameter complexity.) After sampling, the learner implements a parametric map $M : \mathbb{C}^n \rightarrow \mathbb{C}^m$.
210 To represent arbitrary linear maps on the D_K -dimensional coefficient space (e.g. arbitrary diagonal
211 multipliers), the parameter family must have at least $P \gtrsim D_K$ degrees of freedom. For fully general
212 dense linear maps one needs $P \gtrsim D_K^2$.

214 (Conversion.) Substituting $K \asymp \varepsilon^{-1/\alpha}$ (from the theorem) gives $n \gtrsim \varepsilon^{-d/\alpha}$ and $P \gtrsim \varepsilon^{-\beta d/\alpha}$ with
215 $\beta = 1$ (optimistic) or $\beta = 2$ (dense case), establishing the lower bound, see Appendix A for the
extended proof. \square

216 **Corollary 3.3** (FNO vs sampler scaling). *From Theorem 3.1 and Proposition 3.2 one has*
 217

$$P_{\text{FNO}}(\varepsilon) \lesssim \varepsilon^{-d/\alpha}, \quad P_{\text{sampler}}(\varepsilon) \gtrsim \varepsilon^{-\beta d/\alpha}.$$

220 *Hence, whenever $\beta > 1$, FNOs achieve the same accuracy ε with asymptotically fewer parameters
 221 than sampler-based learners.*
 222

224 **TempO** Consequently, we propose TempO, a framework capable of long rollout PDE forecasting
 225 via a multiscale attention-based autoencoder, time-conditioned FNO vector field regressor, and
 226 channel folding for both efficiency and enhanced temporal coherency, reflecting the PDE evolution-
 227 operator perspective that motivates our decoupling of spatial and temporal processing. Together
 228 with temporal conditioning, these define a novel, end-to-end trainable model for predicting latent
 229 dynamics.
 230

231 Let $f_\phi : \mathbb{R}^X \rightarrow \mathbb{R}^Z$ denote an encoder mapping data points x to latent embeddings $z = f_\phi(x)$.
 232 We use a *multi-headed attention-enhanced autoencoder* for multiscale embeddings that are well-
 233 suited for subsequent temporal conditioning and flow-based evolution. The use of attention layers
 234 and residual blocks preserves multi-scale spatial correlations while compressing the data for more
 235 efficient processing. We can then define a latent-space velocity field described by 1 where v_θ is
 236 parameterized by an FNO, which provides a spectral inductive bias for learning PDE-consistent
 237 dynamics.
 238

239 Under the standard flow-matching assumption that the learned drift has bounded Lipschitz constant,
 240 the global forecasting error grows no faster than $\exp(\int_0^1 L_t dt) \varepsilon$ yielding polynomial accumulation,
 241 consistent with classical ODE stability. In contrast, autoregressive models accumulate errors through
 242 the product of stepwise Jacobians, $\prod_t \|J_t\|$, which can increase much more rapidly. We further
 243 mitigate the expected error accumulation via sparse conditioning.
 244

245 *Sparse conditioning* provides computational and data efficiency by leveraging the locality and tem-
 246 poral coherence inherent to PDEs, and additionally allows the model to condition on fixed points
 247 during rollout rather than recursively using its own predictions as inputs (Davtyan et al., 2023; Lim
 248 et al., 2025b). For some discrete-time sequence $\{x_t\}_{t=1}^N$ with $x_t \in \mathcal{X}$, its latent representation is
 249 given by $\{z_t\}_{t=1}^N$, where $z_t = f_\phi(x_t)$. For a prediction horizon $T \in \{L, \dots, N-1\}$ with sequence
 250 length L , the objective is to predict the next latent embedding z_{T+1} . We define a reference em-
 251 bedding to be z_T , corresponding to the most recent observation prior to the prediction target, and a
 252 conditioning embedding as some observation selected at a timestep $\tau \in \{T-L, \dots, T-1\}$. These
 253 two embeddings are concatenated with the temporal offset, defined as $\Delta = T - \tau$, which is the extent
 254 of temporal data the model is provided to predict the next-step embedding, $\hat{z}_{T+1} = f_\theta(z_T, z_\tau, \Delta)$.
 255 In practice, we fix the conditioning to one of the provided initial steps, effectively pinning the gen-
 256 eration against a known correct solution and incrementing the temporal offset and updating the
 257 reference embedding: this results in significantly more stable rollouts.
 258

259 We then propose *channel folding*, a key architectural contribution that allows 2D FNO layers to pro-
 260 cess time-varying latent fields without temporal blurring. This folding preserves a clean separation
 261 between spatial operator structure and temporal latent dynamics, reflecting the semigroup property
 262 of PDE evolution operators. We collapse the batch and channel axes into a single “effective batch”
 263 dimension $u' \in \mathbb{R}^{(B \cdot C) \times T \times H \times W}$ as input to the FNO. This folding operation effectively treats each
 264 channel of each sample as an independent element within the extended batch. As a consequence,
 265 the FNO is applied identically across all channels but without cross-channel mixing at this stage.
 266 This disentangles t (within the flow matching integration step) from τ (the PDE timestep), which is
 267 explicitly provided as part of the conditioning tuple $\mathcal{C} = \{z_\tau, \Delta\}$.
 268

269 This *time-conditioned FNO* then operates over latent temporal embeddings as functions on their
 270 spatial domain $v_\theta(z, t) = \mathcal{G}_\theta(z)$ to learn the time-dependent vector field that transports a reference
 271 latent distribution π_0 to the latent data distribution π_1 . This differs from prior FNO-based generative
 272 models, which operate either unconditionally or autoregressively in input space rather than in a time-
 273 conditioned latent ODE. By leveraging the spectral inductive bias of FNOs, the learned velocity field
 274 models cross-scale correlations, thereby stabilizing flow matching across long horizons. Combined
 275 with spectral latent embeddings, this produces temporally coherent latent trajectories that maintain
 276 high-frequency fidelity during transport.
 277

270

4 EXPERIMENTS

271
 272 The TempO is evaluated with the goal of assessing its ability to learn accurate stochastic latent-space
 273 dynamics and forecast high-dimensional solution fields over medium to long time horizons. We test
 274 our method over PDE datasets which pose challenging spatio-temporal correlations and multiscale
 275 features, making them a natural testbed for latent flow-based modeling.

276 Our proposed TempO was set against five key methods. The state-of-the-art video generation method
 277 based on a U-Net shaped Vision Transformer (ViT) and modified optimal transport path Random
 278 frame conditioned flow Integration for VidEo pRediction (RIVER) proposed by Davtyan et al.
 279 (2023) matches or surpasses common video prediction benchmarks using 10x fewer computational
 280 resources (Davtyan et al., 2023). We also include the baseline conditional flow matching Lipman
 281 et al. (2023) which implements a U-Net trained using a theoretically optimal affine optimal trans-
 282 port (Affine-OT) path. The stochastic linear path (SLP) was proposed by Lim et al. (2025b), tested
 283 with a ViT to directly address the challenges of spatiotemporal forecasting for PDE datasets. The
 284 Transformer-based latent space flow matching method with Affine-OT proposed by Dao et al. (2023)
 285 further demonstrates competitive performance in image generation using latent flow matching com-
 286 pared against both flow matching models and diffusion models (Phung et al., 2023; Ho et al., 2020)
 287 among others. We also evaluate both variance preserving diffusion (VP-diff) and variance exploding
 288 diffusion (VE-diff) paths which generalise the Denoising Diffusion Probabilistic noise perturbation
 289 model and a score-based model to flow matching paths, respectively (Ho et al., 2020; Song et al.,
 290 2021). Ryzhakov et al. (2024) establishes strong theoretical backing for both paths.

291 We then ablate the specific implementation of the methods (consisting of a specific architecture and
 292 a specific probability path). In summary, the choice of regressor includes our proposed TempO re-
 293 gressor, and additionally implement a ViT regressor (Davtyan et al., 2023; Lim et al., 2025b) and a
 294 classic U-Net regressor (Lipman et al., 2023). We pretrain a convolutional autoencoder with residual
 295 and attention blocks to obtain a compressed latent representation of the dynamics, see Appendix D.
 296 We additionally compare against baseline, non-flow matching models FNO2D, FNO3D, Wavelet
 297 Neural Operator (WNO)2D, WNO3D, and a U-Net to contextualize performance, with further de-
 298 tails in Appendix F (Li et al., 2021; Tripura & Chakraborty, 2022).

299 All flow matching methods were conditioned using sparse conditioning, and baseline 2D methods
 300 mapping 10 timesteps to predict the following, and 3D methods directly mapping the block of 10
 301 timesteps to directly predict the remaining 40. Flow matching models are then supervised by each
 302 probability density paths described in Table 1. Further details in Appendix E. The Adam optimiser
 303 with a learning rate of 1e-4 was used for the FNO, and 5e-5 for the ViT and U-Net regressors.
 304 Models are trained on an 80/10/10 training to validation to test data splits.

305 We evaluate our models on three spatiotemporal PDE datasets: the shallow water equation (SWE),
 306 which simulate 2D free-surface flows; 2D reaction diffusion (RD-2D) exhibiting multiscale non-
 307 linear patterns; and 2D incompressible Navier-Stokes vorticity (NS- ω) dataset capturing chaotic
 308 turbulent dynamics. During training, models are sparsely conditioned on the first 15 frames and
 309 tasked with predicting the subsequent frame at resolutions of $1 \times 128 \times 128$ (shallow water equation
 310 (SWE)), $2 \times 128 \times 128$ (2D reaction diffusion (RD-2D)), and $1 \times 64 \times 64$ (2D incompressible
 311 Navier-Stokes vorticity (NS- ω)), see Appendix G.

312

5 RESULTS

313 Overall, TempO outperforms the methods proposed by Lim et al. (2025b); Song et al. (2022); Lip-
 314 man et al. (2023) and Davtyan et al. (2023) as well as the ablated flow-matching methods. For
 315 results predicting NS- ω in Table 2, we observe a 16% improvement in MSE and an 11.4% lower
 316 spectral MSE, producing spatially and spectrally accurate next steps. Its lower RFNE indicates
 317 reduced scale-independent error, while SSIM shows improved fidelity in local features, critical for
 318 the localized vorticity patterns where small spatial distortions significantly affect downstream evolu-
 319 tion (Majda & Bertozzi, 2001). PSNR and Pearson see lower normalised ranges in values, indicating
 320 that large scale features like the vorticity intensity and global structure agreement, respectively, are
 321 more easily captured across all models, with a clear advantage by TempO; additional visualisations
 322 in Appendix I. We observe that the baseline FNO models outperform across the board for next step,
 323 but critically fail at longer rollouts evidenced by the 58.1% worse MSE/time of FNO-3D versus

324

Table 2: NS- ω Results: Comparison of TempO, U-Net, and ViT models.

Regressor	Path	MSE \downarrow	SpectralMSE \downarrow	RFNE \downarrow	PSNR \uparrow	Pearson \uparrow	SSIM \uparrow	MSE/time \downarrow
TempO	RIVER	5.63e-02	3.84e-02	2.50e-01	25.19	0.969	0.786	2.67e-02
	Affine-OT	5.77e-02	3.98e-02	2.54e-01	25.08	0.968	0.789	2.91e-02
	VP-diff	8.10e-02	5.34e-02	2.85e-01	23.61	0.955	0.731	2.29e-01
	VE-diff	2.96e-01	1.73e-01	5.60e-01	17.98	0.821	0.373	5.02e-01
ViT	Affine-OT ¹	6.75e-02	4.38e-02	2.72e-01	24.40	0.962	0.758	8.71e-02
	RIVER ²	6.88e-02	4.33e-02	2.73e-01	24.32	0.962	0.750	3.85e-02
	VP-diff ³	7.77e-02	4.95e-02	2.89e-01	23.79	0.956	0.729	6.65e-02
	VE-diff ³	1.63e+00	9.27e-01	1.35e+00	10.67	0.118	0.024	1.67e+00
U-Net	VP-diff ⁴	4.05e-01	3.26e-01	6.71e-01	16.62	0.756	0.323	2.66e-01
	RIVER	4.08e-01	3.28e-01	6.74e-01	16.59	0.752	0.321	2.79e-01
	Affine-OT ⁵	4.10e-01	3.42e-01	6.76e-01	16.57	0.751	0.324	2.82e-01
	VE-diff ⁴	5.02e-01	3.70e-01	7.48e-01	15.68	0.694	0.263	2.92e-01
Baselines	FNO-2D	<i>6.09e-04</i>	<i>4.27e-04</i>	<i>2.54e-02</i>	<i>44.85</i>	<i>1.000</i>	<i>0.992</i>	<i>1.92e-01</i>
	FNO-3D	1.06e-01	7.34e-02	3.37e-01	22.46	0.945	0.645	6.37e-02
	WNO-2D	3.72e-03	2.83e-03	6.06e-02	36.99	0.998	0.966	5.19e-01
	WNO-3D	2.23e-01	1.19e-01	4.97e-01	19.209	0.868	0.452	2.05e-01
	U-Net	<i>2.47e-03</i>	<i>1.92e-03</i>	<i>4.83e-02</i>	<i>38.772</i>	<i>0.999</i>	<i>0.976</i>	<i>1.66e+00</i>

¹(Dao et al., 2023), ²(Davtyan et al., 2023), ³(Lim et al., 2025b; Song & Ermon, 2020), ⁴(Ryzhakov et al., 2024), ⁵(Lipman et al., 2023)

341

Table 3: SWE and RD-2D Results: Comparison of TempO, U-Net, and ViT models.

Dataset	Method	MSE \downarrow	SpectralMSE \downarrow	RFNE \downarrow	PSNR \uparrow	Pearson \uparrow	SSIM \uparrow	MSE/time \downarrow
SWE	TempO _{Affine-OT}	6.64e-05	5.65e-05	7.64e-03	46.5	0.998	0.997	1.60e-03
	ViT _{Affine-OT} ¹	9.59e-05	7.93e-05	9.06e-03	44.9	0.997	0.995	7.02e-03
	ViT _{VP-diff} ²	1.30e-04	8.81e-05	1.05e-02	43.6	0.996	0.993	1.61e-03
	ViT _{RIVER} ³	2.99e-04	1.67e-04	1.63e-02	40.0	0.992	0.981	6.96e-03
	ViT _{SLP} ⁴	6.60e-04	-	1.28e-01	36.1	-	0.93	-
RD-2D	TempO _{Affine-OT}	2.76e-05	2.18e-05	3.29e-02	65.7	1.000	0.999	1.89e-02
	U-Net _{Affine-OT} ⁵	3.09e-05	2.45e-05	3.57e-02	65.2	0.999	0.999	1.95e-02
	ViT _{Affine-OT}	6.30e-04	4.40e-04	1.67e-01	52.2	0.987	0.986	2.04e-02
	ViT _{SLP} ⁴	3.56e-04	-	1.16e-01	34.3	-	0.90	-

¹(Dao et al., 2023), ²(Lim et al., 2025b; Song & Ermon, 2020), ³(Davtyan et al., 2023), ⁴(Lim et al., 2025b); results reported from original paper trained on same dataset., ⁵(Lipman et al., 2023)

353

354

355 TempO. The orders of magnitude better next step prediction can be seen to blur significantly in
356 rollout visualisations, provided for top next-step model FNO-2D in Appendix N

357 We select top performing comparisons for SWE and RD-2D, Table 3), where TempO maintains
358 superior performance. In SWE, it achieves a 28.8% lower SpectralMSE and higher PSNR, indicating
359 faithful amplitude, spectral content, and structural coherence with sharp boundaries preserved, see
360 Appendix J for additional visualisations and ablated comparisons. Overall MSE is reduced by 30.8
361

362 In RD-2D, U-Net_{Affine-OT} competes closely with TempO, benefiting from translation-equivariant con-
363 volutional layers that capture multi-scale dynamics and repeating local structures (Cohen & Welling,
364 2016). Both TempO and the U-Net have nearly matched PSNR, Pearson, and SSIM scores, with an
365 improvement of 11% in SpectralMSE from the TempO. By contrast, the next best ViT regressor
366 model is 95.6% drop in SpectralMSE, where attention might emphasize low-frequency global struc-
367 tures (Wang et al., 2022; Piao et al., 2024); see visual comparison in Appendix K.

368 The timeseries forecasting task, see Fig. 1, evaluates how well models capture the underlying PDE.
369 Models follow the inference protocol used by (Davtyan et al., 2023; Li et al., 2021): a short lead-up
370 of 9 initial frames is provided, with the baseline FNO using all 9; the sparsely conditioned flow-
371 matching models use only the last two frames in the lead-up as conditioning and reference frames.
372 The conditioning frame is then pinned and the temporal offset vector is incremented while the ref-
373 erence frame is set to timestep $t - 1$ to generate timestep t . TempO maintains Pearson correlation
374 above 0.98 over 40 forecasted timesteps, indicating stable amplitude and phase tracking. The ViT
375 regressor holds above 0.95 for 20 steps before degrading, while the flow matching baseline (Lipman
376 et al., 2023) shows steady decline. This suggests TempO effectively mimics the dynamics without
377 significant error accumulation. This is further demonstrated by visualisations of the vorticity field at
378 key timesteps in Fig. 1 (right), where $t = 35$ most clearly shows TempO’s faithful capture of turbu-
379 lent eddies in comparison to the ViT regressor, which fails to predict the small vortical structure.

Figure 1: **Prediction performance comparison for $NS-\omega$.** *Left:* Pearson correlation across forecasted timesteps. Forty timesteps are predicted by TempO, ViT, U-Net, and top performing baseline FNO-3D averaged over 20 initial conditions on the withheld test set plotted as means and standard deviations. The Pearson correlation coefficient shows significant degradation for the U-Net, oscillatory behavior and degradation for the ViT, and consistently stable values above 0.95 for TempO. The FNO-3D baseline exhibits a high variance in the first timesteps, attributed to the direct time convolution *Right:* Predicted vorticity fields. True data (a), TempO (b), ViT_{Affine-OT} (c), U-Net_{VP-diff}, (d), and baseline FNO3D (e). At timesteps 5, 15, and 35 (c), (d), and (e) clearly diverge, with (d) regressing to a noisy diagonal and (e) losing detail, while TempO maintains excellent accuracy.

5.1 SPECTRAL ANALYSIS

The spectral analysis of TempO versus the top alternative ViT_{Affine-OT} and the baseline U-Net_{Affine-OT} (Lipman et al., 2023) in Fig. 2 examines the scale-resolved error via the energy per wavenumber k , or at the scale of $\frac{1}{k}$. This provides scale-resolved context to the SpectralMSE, which averages the MSE of the Fourier coefficients to a single metric. For $NS-\omega$, the first 8 modes which cumulatively make up 99% of the total energy, beyond which the modes have negligible contributions to overall flow dynamics, see Appendix H. TempO closely follows the true spectrum compared to both ViT_{Affine-OT} and U-Net_{Affine-OT}, though all three methods diverge past $k = 8$. We observe from the inset of Fig. 2 that TempO exhibits a small residual which fluctuates about 0 whereas the ViT_{Affine-OT} has a negative and increasing error: the ViT regressor tends to capture the lower wavenumbers well, but then underestimates the higher wavelengths notably after $k = 4$.

Modes	SpectralMSE
1	8.57e-02
2	4.10e-02
4	3.98e-02
8	3.79e-02
16	3.74e-02

Figure 3: Ablation: Fourier mode cutoffs with TempO. Figure 3 shows the effect of varying the number of retained Fourier modes on the performance of TempO. The table above lists the SpectralMSE for 1, 2, 4, 8, and 16 modes. The results show that TempO performs well with as few as 4 modes, with performance slightly decreasing as more modes are added beyond 8.

We observe also that the number of modes retained during the FFT of TempO in Fig. 3 follows the observation of a close spectral match up until $k = 8$, where the SpectralMSE sees the most improvement; however, from 8 modes to 16 modes, the performance appears to saturate. Fig. 3 demonstrates that up to 8 modes capture the essential dynamics, while the fundamental frequency alone is insufficient and likely under-represents necessary higher frequency components; adding more than 8 modes yields diminishing returns, matching the true spectral analysis; extended metrics support this trend in Appendix L. This empirical saturation beyond 8 modes is consistent with the theoretical expectation in Theorem 3.3, where FNOs are shown to achieve accuracy with asymptotically fewer parameters by leveraging only the most informative spectral modes.

To assess whether TempO’s forecasting performance depends strongly on the spectral bandwidth of the latent FNO, we conduct an ablation in which the number of retained Fourier modes is varied (Appendix M). We find that the model is remarkably stable across a wide range of truncation levels: reducing from 16 to 8 or even 4 modes yields nearly identical MSE, spectral error, and long-horizon stability. This aligns with the spectral energy distribution observed in Fig. 2, where $NS-\omega$ exhibits

Figure 2: **Spectral graphs for $NS-\omega$.** Comparison of energy spectra for TempO, a ViT-based model, and the U-Net baseline (Lipman et al., 2023). The first eight Fourier modes capture 99% of the energy, with higher modes negligible. TempO aligns closely, while the ViT underestimates energy beyond $k = 4$. The inset bar plot shows TempO oscillating tightly around zero with small deviations, the ViT producing larger negative deviations, and the U-Net performing markedly worse.

weak high-frequency content. Only highly restrictive truncation, e.g., 2 or 1 mode, produces noticeable degradation, indicating that the autoencoder sufficiently captures the multiscale features and further confirming that TempO is robust to spectral compression in latent space.

5.2 EFFICIENCY

Finally, we also train the models over varying sequence lengths and measuring next-step prediction error (MSE) and 40-step forecast error (MSE/time), shown in Table 5. MSE is lowest for shorter sequences, as the model learns from fewer choices of indices for sparse conditioning during training. Conversely, MSE/time decreases with longer sequences, reflecting better long-horizon performance. Notably, TempO’s MSE/time drops faster and plateaus lower than the ViT, indicating better data efficiency to extrapolate from the same available sequence length.

Model	Params	FLOPs	Mem (MB)	NFEs
TempO	0.49M	208M	~50	560
ViT	3.39M	10M	~80	942
U-Net	14.0M	555M	~68	728

Table 4: Model Complexity and Efficiency: number of function evaluations (NFEs) are averaged from sampling performed for Table 2 for adaptive solver `dopri5` and tolerances of $1e-5$.

TempO is the most lightweight model among the three choices of regressors, with $\tilde{7}x$ fewer parameters than the ViT and $\tilde{28}x$ fewer than the U-Net. In addition, it sees a significantly lower memory usage compared to the ViT where attention has higher demands and the U-Net where skip-connections hold onto additional memory.

Method	Seq	MSE	MSE/time
TempO	2	4.92e-02	2.70e-01
	5	4.75e-02	3.41e-01
	10	5.04e-02	4.94e-02
	15	5.61e-02	3.83e-02
	25	6.26e-02	4.22e-02
ViT	2	6.75e-02	2.71e-01
	5	5.43e-02	3.59e-01
	10	6.01e-02	1.49e-01
	15	6.70e-02	4.53e-02
	25	7.68e-02	8.56e-02
(Affine-OT)	2	4.92e-02	2.70e-01
	5	4.75e-02	3.41e-01
	10	5.04e-02	4.94e-02
	15	5.61e-02	3.83e-02
	25	6.26e-02	4.22e-02

Table 5: Ablation: Performance comparison scaling with sequence length tested on $NS-\omega$.

486 While TempO has a moderate number of FLoating Point OPerations (FLOPs), landing between
 487 the ViT and U-Net, this may be offsetted by the NFEs seen during the ODE integration where
 488 TempO takes only 560 evaluations to meet the same tolerances. Beyond these empirical measures,
 489 TempO further benefits from its shared spatial Fourier layers. By folding the channel dimension and
 490 truncating higher modes, the spectral convolution scales as $O(N^2 \log N)$, in contrast to the naive
 491 $O(N^3 \log N)$ cost of a full 3D FFT. Also for reference, a ViT layer can scale as $O(N^4)$ in 2D 3.2,
 492 higher than the quasi-quadratic cost of the FNO.

493

494 6 LIMITATIONS

495

496 Flow matching models struggle with extreme data sparsity which can distort the distributions being
 497 learned, whereas hybrid models or models with explicitly defined conservations can fall back
 498 on injected physical knowledge. Additionally, similar to other generative models, adaptations, e.g.
 499 architectural modifications, would be necessary to extend the method towards a foundational model
 500 framework. Finally, while our stable and accurate 40-step forecasting represents the longer end time
 501 horizons, it remains an open question on how to forecast for much longer timeframes. Critical appli-
 502 cations in science and engineering would require further study both experimentally and theoretically
 503 to establish statistically reliable forecasting.

504

505 7 CONCLUSIONS AND FURTHER WORK

506

507 In this work, we addressed the challenge of long-horizon PDE forecasting via our proposed method
 508 TempO. TempO consistently outperformed state-of-the-art baselines across three benchmark PDE
 509 datasets and achieves stable long-horizon 40 step forecasts with remarkable accuracy to the true
 510 trajectories as well as superior spectral fidelity. The modified time-conditioned FNO is parameter-
 511 efficient while improving the capture of both local and global spectral modes, resulting in improve-
 512 ments in both data- and compute- efficiency. Additionally, we establish that FNO can achieve an
 513 upper bound on approximation error that sampler-based architectures cannot reach without signifi-
 514 cantly more parameters, Corollary 3.3. These results highlight the importance of architectures that
 515 align with the continuous nature of PDE dynamics, enabling not only improved predictive accuracy
 516 but also physically consistent, long-horizon trajectories.

517

518 Consequently, TempO poses significant opportunity for further work in this field. Under typical
 519 real-world environments, PDE observations may come from irregularly sampled domains; since
 520 our method already demonstrates state-of-the-art generations using a simple autoencoder (AE) and
 521 the latent time-conditioned FNO which no longer relies on a regular grid as is a limitation of the
 522 original FNO (Li et al., 2021), one extension of our work is to then extend our method to real-world
 523 settings to forecast PDE over irregular domains and irregularly sampled domains. In addition, a
 524 detailed sensitivity analysis quantifying how TempO’s effective Lipschitz constants and integration
 525 error evolve over long horizons would complement our empirical findings.

526

527 REFERENCES

528

529 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
 530 Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
 531 Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, An-
 532 drew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
 533 Language of Time Series, November 2024.

534

535 Giacomo Baldan, Qiang Liu, Alberto Guardone, and Nils Thuerey. Flow Matching Meets PDEs: A
 536 Unified Framework for Physics-Constrained Generation, November 2025.

537

538

539

539 Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
 540 Junhwa Hur, Guanghui Liu, Amit Raj, Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver
 541 Wang, Deqing Sun, Tali Dekel, and Inbar Mosseri. Lumiere: A Space-Time Diffusion Model
 542 for Video Generation. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–11, Tokyo Japan,
 543 December 2024. ACM. ISBN 979-8-4007-1131-2. doi: 10.1145/3680528.3687614.

540 Taco Cohen and Max Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning*, pp. 2990–2999. PMLR, 2016.
 541
 542
 543 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow Matching in Latent Space, July 2023.
 544
 545 Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient Video Prediction via Sparsely Condi-
 546 tioned Flow Matching, August 2023.
 547 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 548 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 549 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 550 renov, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 551 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 552 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 553 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 554 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 555 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 556 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 557 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 558 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 559 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 560 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 561 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 562 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 563 soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 564 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 565 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 566 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 567 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 568 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 569 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 570 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 571 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 572 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajwal Bhargava, Pratik Dubal, Praveen Krishnan,
 573 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 574 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 575 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 576 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 577 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 578 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 579 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 580 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 581 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 582 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 583 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 584 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 585 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 586 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 587 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 588 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 589 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 590 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 591 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 592 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 593 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo,
 Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,

594 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 595 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 596 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 597 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 598 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 599 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 600 son Rudolph, Helen Suk, Henry Asperegn, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 601 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 602 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 603 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 604 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 605 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 606 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 607 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 608 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 609 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 610 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 611 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 612 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 613 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 614 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 615 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 616 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 617 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 618 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 619 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 620 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 621 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 622 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 623 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 624 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 625 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 626 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 627 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 628 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
 629 Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
 630 Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian Wu,
 631 Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
 632 Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen
 633 Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
 634 Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models, November 2024.
 635

633 Xingzhuo Guo, Yu Zhang, Baixu Chen, Haoran Xu, Jianmin Wang, and Mingsheng Long. Dynam-
 634 ical Diffusion: Learning Temporal Dynamics with Diffusion Models, March 2025.

635 Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. DiffiT: Diffusion Vision
 636 Transformers for Image Generation. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Rus-
 637 sakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision – ECCV 2024*, volume 15066,
 638 pp. 37–55. Springer Nature Switzerland, Cham, 2025. ISBN 978-3-031-73241-6 978-3-031-
 639 73242-3. doi: 10.1007/978-3-031-73242-3_3.

641 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
 642 2020.

643 Benjamin Holzschuh, Qiang Liu, Georg Kohl, and Nils Thuerey. PDE-Transformer: Efficient and
 644 Versatile Transformers for Physics Simulations. <https://arxiv.org/abs/2505.24717v1>, May 2025.

645 Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. DiffusionPDE: Generative PDE-
 646 Solving Under Partial Observation, November 2024.

648 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
 649 Yang Song, Yadong Mu, and Zhouchen Lin. Pyramidal Flow Matching for Efficient Video Gen-
 650 erative Modeling, March 2025.

651

652 Richard John, Lukas Herron, and Pratyush Tiwary. A survey of probabilistic generative frameworks
 653 for molecular simulations, November 2024.

654

655 Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong
 656 Leng, Kaitao Song, Siliang Tang, Zhizheng Wu, Tao Qin, Xiang-Yang Li, Wei Ye, Shikun Zhang,
 657 Jiang Bian, Lei He, Jinyu Li, and Sheng Zhao. NaturalSpeech 3: Zero-Shot Speech Synthesis
 658 with Factorized Codec and Diffusion Models, April 2024.

659

660 Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Functional Flow Matching, December
 661 2023.

662

663 Marcel Kollovieh, Marten Lienen, David Lüdke, Leo Schwinn, and Stephan Günnemann. Flow
 664 Matching with Gaussian Process Priors for Probabilistic Time Series Forecasting. In *The Thir-
 665 teenth International Conference on Learning Representations*, October 2024.

666

667 Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On Universal Approximation and
 668 Error Bounds for Fourier Neural Operators. *Journal of Machine Learning Research*, 22(290):
 669 1–76, 2021. ISSN 1533-7928.

670

671 Zijie Li, Anthony Zhou, and Amir Barati Farimani. Generative Latent Neural PDE Solver using
 672 Flow Matching, March 2025.

673

674 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 675 drew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential
 676 Equations, May 2021.

677

678 Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzade-
 679 nesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal,
 680 Arash Vahdat, and Anima Anandkumar. Score-based Diffusion Models in Function Space, Jan-
 681 uary 2025a.

682

683 Soon Hoe Lim, Yijin Wang, Annan Yu, Emma Hart, Michael W. Mahoney, Xiaoye S. Li, and
 684 N. Benjamin Erichson. Elucidating the Design Choice of Probability Paths in Flow Matching
 685 for Forecasting, July 2025b.

686

687 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
 688 for Generative Modeling, February 2023.

689

690 Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E. Turner, and Johannes Brandstetter.
 691 PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers, October 2023.

692

693 Andrew J. Majda and Andrea L. Bertozzi. *Vorticity and Incompressible Flow*. Cambridge Texts in
 694 Applied Mathematics. Cambridge University Press, Cambridge, 2001. ISBN 978-0-521-63057-3.
 695 doi: 10.1017/CBO9780511613203.

696

697 Roberto Molinaro, Samuel Lanthaler, Bogdan Raonić, Tobias Rohner, Victor Armegioiu, Stephan
 698 Simonis, Dana Grund, Yannick Ramic, Zhong Yi Wan, Fei Sha, Siddhartha Mishra, and Leonardo
 699 Zepeda-Núñez. Generative AI for fast and accurate statistical computation of fluids, February
 700 2025.

701

702 Hao Phung, Quan Dao, and Anh Tran. Wavelet Diffusion Models are fast and scalable Image
 703 Generators, March 2023.

704

705 Xihao Piao, Zheng Chen, Taichi Murayama, Yasuko Matsubara, and Yasushi Sakurai. Fredformer:
 706 Frequency Debiased Transformer for Time Series Forecasting. In *Proceedings of the 30th ACM
 707 SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 2400–2410, August 2024.
 708 doi: 10.1145/3637528.3671928.

702 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R. Andersson, Andrew El-Kadi, Do-
 703 minic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, Remi Lam, and
 704 Matthew Willson. Probabilistic weather forecasting with machine learning. *Nature*, 637(8044):
 705 84–90, January 2025. ISSN 1476-4687. doi: 10.1038/s41586-024-08252-9.

706 M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
 707 ing framework for solving forward and inverse problems involving nonlinear partial differential
 708 equations. *Journal of Computational Physics*, 378:686–707, February 2019. ISSN 0021-9991.
 709 doi: 10.1016/j.jcp.2018.10.045.

710 Gleb Ryzhakov, Svetlana Pavlova, Egor Sevriugov, and Ivan Oseledets. Explicit Flow Matching:
 711 On The Theory of Flow Matching Algorithms with Applications. In *ICOMP 2024*. arXiv, July
 712 2024. doi: 10.48550/arXiv.2402.03232.

713 Louis Serrano, Thomas X. Wang, Etienne Le Naour, Jean-Noël Vittaut, and Patrick Gallinari.
 714 AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields, Octo-
 715 ber 2024.

716 Yaozhong Shi, Zachary E. Ross, Domniki Asimaki, and Kamyar Azizzadenesheli. Stochastic Pro-
 717 cess Learning via Operator Flow Matching, October 2025.

718 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models, October
 719 2022.

720 Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribu-
 721 tion, October 2020.

722 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 723 Poole. Score-Based Generative Modeling through Stochastic Differential Equations, February
 724 2021.

725 Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
 726 Pflüger, and Mathias Niepert. PDEBENCH: An Extensive Benchmark for Scientific Machine
 727 Learning, October 2022.

728 Ella Tamir, Najwa Laabid, Markus Heinonen, Vikas Garg, and Arno Solin. Conditional Flow Match-
 729 ing for Time Series Modelling. In *ICML 2024 Workshop on Structured Probabilistic Inference
 730 \& Generative Modeling*, July 2024.

731 Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are Language
 732 Models Actually Useful for Time Series Forecasting?, October 2024.

733 Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: A neural operator for parametric
 734 partial differential equations, May 2022.

735 Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-Oversmoothing in Deep
 736 Vision Transformers via the Fourier Domain Analysis: From Theory to Practice, March 2022.

737 Jiachen Yao, Abbas Mammadov, Julius Berner, Gavin Kerrigan, Jong Chul Ye, Kamyar Azizzade-
 738 nesheli, and Anima Anandkumar. Guided Diffusion Sampling on Function Spaces with Applica-
 739 tions to PDEs, May 2025.

740 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
 741 Zhou, Tianyi Li, and Yang You. Open-Sora: Democratizing Efficient Video Production for All,
 742 December 2024.

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A PROOFS
757758 *Proof of Theorem 3.1. Step 1: Spectral truncation.* By assumption the Fourier coefficients of $\mathcal{G}(u)$
759 satisfy

760
$$|\widehat{\mathcal{G}(u)}(k)| \leq C_\lambda(1+|k|)^{-p}, \quad \forall u \in \mathcal{U}, \quad k \in \mathbb{Z}^d.$$

761

762 If we keep only the modes $|k| \leq K$ and set

763
$$\mathcal{G}_K(u)(x) := \sum_{|k| \leq K} \widehat{\mathcal{G}(u)}(k) e^{ik \cdot x},$$

764
765

766 then the error lives in the high modes:

767
$$\|\mathcal{G}(u) - \mathcal{G}_K(u)\|_{H^{s'}}^2 = \sum_{|k| > K} (1+|k|^2)^{s'} |\widehat{\mathcal{G}(u)}(k)|^2.$$

768
769

770 Using the decay bound gives

771
$$\|\mathcal{G}(u) - \mathcal{G}_K(u)\|_{H^{s'}}^2 \leq C_\lambda^2 \sum_{|k| > K} (1+|k|)^{2(s'-p)}.$$

772
773

774 A standard counting argument (comparing the lattice sum with a radial integral) shows this tail is
775 $\lesssim K^{-2\alpha}$, with

776
$$\alpha := p - s' - \frac{d}{2} > 0.$$

777 This is exactly the pseudo-spectral tail estimate also used in (Kovachki et al., 2021, Thm. 40). Hence
778 choosing

779
$$K \asymp \varepsilon^{-1/\alpha}$$

780 ensures $\|\mathcal{G} - \mathcal{G}_K\|_{H^{s'}} \leq \varepsilon/2$.781 *Step 2: Reduction to a finite-dimensional map.* The truncated operator \mathcal{G}_K is determined by finitely
782 many Fourier coefficients $\{\widehat{\mathcal{G}(u)}(k)\}_{|k| \leq K}$, with output dimension $m_{\text{out}} \asymp K^d$. To apply a neural
783 network, we also restrict the input to finitely many low modes. By compactness of $\mathcal{U} \subset H^s$ and
784 continuity of the projection P_M , there exists M such that

785
$$\|\mathcal{G}_K(u) - \mathcal{G}_K(P_M u)\|_{H^{s'}} \leq \varepsilon/6 \quad \forall u \in \mathcal{U}.$$

786 This is the same finite-dimensional reduction used in the universal approximation argument of (Ko-
787 vachki et al., 2021, Thm. 15). Thus it suffices to approximate the finite-dimensional continuous
788 map

789
$$F : (\widehat{u}(k))_{|k| \leq M} \mapsto (\widehat{\mathcal{G}(u)}(k))_{|k| \leq K},$$

790

791 between compact subsets of Euclidean spaces.

792 *Step 3: Approximation of the finite map.* Classical universal approximation theorems (and the con-
793 structive Ψ -FNO realization in (Kovachki et al., 2021, Def. 11, Thm. 15)) ensure that for any desired
794 accuracy $\delta > 0$, one can build a neural network (or FNO block) approximating F uniformly to error
795 δ on each retained coefficient. To control the $H^{s'}$ -norm it suffices to achieve coefficient accuracy

796
$$\delta \lesssim \frac{\varepsilon}{K^{s'+d/2}}.$$

797

800 This choice ensures $\|P_K \mathcal{G}(u) - \widetilde{\mathcal{G}}_\theta(u)\|_{H^{s'}} \leq \varepsilon/3$. Constructive approximation bounds then give a
801 parameter count

802
$$P \lesssim K^d \cdot \text{polylog}(1/\varepsilon),$$

803

804 where the extra logarithmic factor reflects standard overheads in coefficient quantization and net-
805 work approximation (Kovachki et al., 2021, Remark 22).806 *Step 4: Assemble errors and conclude.* Adding the contributions: - spectral truncation error $\leq \varepsilon/2$
807 (Step 1), - input-projection error $\leq \varepsilon/6$ (Step 2), - finite-map approximation error $\leq \varepsilon/3$ (Step 3),

810 we obtain

$$811 \sup_{u \in \mathcal{U}} \|\mathcal{G}(u) - \mathcal{G}_\theta(u)\|_{H^{s'}} \leq \varepsilon.$$

813 Substituting $K \asymp \varepsilon^{-1/\alpha}$ into the parameter bound gives

$$814 \quad P_{\text{FNO}}(\varepsilon) \lesssim \varepsilon^{-d/\alpha},$$

816 up to the mild logarithmic factors discussed above. \square

818 *Proof of Proposition 3.2. Step 1: Finite-dimensional subspace and sampling.* Consider the K -mode
819 Fourier subspace

$$821 \quad V_K := \text{span}\{e^{ik \cdot x} : |k| \leq K\} \subset L^2(\mathbb{T}^d), \quad \dim V_K =: D_K \asymp K^d.$$

822 Any sampler-based learner observes an input $u \in V_K$ only through n fixed points
823 $(u(x_1), \dots, u(x_n))$. This defines a linear map

$$824 \quad S : V_K \rightarrow \mathbb{C}^n, \quad S(u) = (u(x_1), \dots, u(x_n)).$$

827 *Step 2: Nyquist / injectivity argument.* To reconstruct all Fourier modes up to radius K , the sampling
828 map S must be injective on V_K . In matrix terms, S is represented by an $n \times D_K$ Vandermonde-like
829 matrix. To have full rank D_K , we require

$$830 \quad n \geq D_K \asymp K^d.$$

832 If $n < D_K$, there exists a nonzero $u \in V_K$ vanishing on all sample points, so the learner cannot
833 distinguish it from zero. This is the standard Nyquist/dimension-counting requirement: at least as
834 many samples as degrees of freedom.

836 *Step 3: Parameter lower bound.* After sampling, the learner applies a parametric map $M : \mathbb{C}^n \rightarrow$
837 \mathbb{C}^m (e.g., a neural network) to produce either output samples or coefficients. To implement arbitrary
838 linear transformations on the D_K retained modes (e.g., arbitrary Fourier multipliers), the parametric
839 map must have at least D_K free parameters. For fully general dense linear maps (no structural
840 constraints), one needs

$$841 \quad P \gtrsim D_K^2 \asymp K^{2d}.$$

842 *Step 4: Conversion to accuracy ε .* From the FNO upper bound analysis, achieving accuracy ε
843 requires

$$844 \quad K \asymp \varepsilon^{-1/\alpha}, \quad \alpha = p - s' - d/2 > 0.$$

846 Substituting this into the previous bounds gives the scaling

$$847 \quad n \gtrsim \varepsilon^{-d/\alpha}, \quad P_{\text{sampler}}(\varepsilon) \gtrsim \varepsilon^{-\beta d/\alpha},$$

849 with $\beta = 1$ for minimal mode-wise maps and $\beta = 2$ for fully dense maps.

851 *Step 5: Conclusion.* Hence any sampler-based architecture that must reconstruct all modes up to
852 radius K requires asymptotically more parameters than an FNO whenever $\beta > 1$, justifying the
853 lower bound in the proposition. \square

855 B FLOW MATCHING BACKGROUND

857 **Flow matching** The core idea of flow matching is to learn a time-dependent velocity field, $v_\theta(z, t)$,
858 which defines an ODE in the latent space:

$$859 \quad \frac{dz(t)}{dt} = v_\theta(z(t), t), \quad z(0) \sim \pi_0, \quad (2)$$

862 where π_0 is a simple reference distribution (e.g., Gaussian). Integrating this ODE transports sam-
863 ples to the latent data distribution π_1 , such that $z(1) \sim \pi_1$ and $p_1(z) \approx f_\phi \# \mathcal{D}_{\text{data}}$, where $f_\phi \# \mu$
denotes the pushforward measure of a distribution μ under f_ϕ , i.e., $(f_\phi \# \mu)(A) = \mu(f_\phi^{-1}(A))$ for

measurable sets A . The corresponding time-dependent probability density, $p_t(z)$, evolves according to the continuity equation:

$$\frac{\partial p_t(z)}{\partial t} + \nabla_z \cdot (p_t(z) v_\theta(z, t)) = 0. \quad (3)$$

In practice, the target velocity field $u(t, z)$ and the full marginal density $p_t(z)$ are generally unknown and intractable. Flow matching sidesteps this issue by directly supervising the model to match the instantaneous vector field along interpolating paths between the reference π_0 and the target π_1 , allowing for deterministic, efficient sampling. Different choices of paths lead to different training dynamics and inductive biases, as they implicitly define the target velocity field $u(t, z)$ that the model regresses against.

Integrating this ODE from $t = 0$ to $t = 1$ transports the reference distribution π_0 to the latent data distribution π_1 , so that $z(1) \sim \pi_1$ and $p_1(z) \approx f_\phi \# \mathcal{D}_{\text{data}}$.

Latent Flow Matching. We now instantiate the general flow matching framework in the latent space. Let $z_\tau = f_\phi(x_\tau)$ for $\tau = 1, \dots, m$, where f_ϕ is a pretrained encoder mapping from the data space to the lower-dimensional latent space. Our objective is to approximate the ground-truth latent distribution $q(z_\tau \mid x_1, \dots, x_{\tau-1})$ by a parametric distribution $p(z_\tau \mid z_{\tau-1})$, which can later be decoded back to the data space via $x_\tau = g_\psi(z_\tau)$ using a decoder g_ψ .

The latent dynamics can be expressed by the ODE:

$$\dot{z}_t = u_t(z_t), \quad (4)$$

where u_t denotes the (true) time-dependent velocity field. Learning these dynamics amounts to approximating u_t with a neural parameterization. Following the flow matching framework, we introduce a model velocity field $v_\theta : [0, 1] \times \mathbb{R}^Z \rightarrow \mathbb{R}^Z$ and consider the ODE

$$\dot{\phi}_t(z) = v_\theta(\phi_t(z), t), \quad \phi_0(z) = z, \quad (5)$$

which defines a time-dependent diffeomorphism ϕ_t pushing forward an initial reference distribution p_0 (often chosen as $\mathcal{N}(0, I)$) to a target distribution $p_1 \approx q$ along the density path p_t :

$$p_t = (\phi_t)_\# p_0, \quad (6)$$

where $(\cdot)_\#$ denotes the pushforward. In other words, the goal of flow matching is to learn a deterministic coupling between p_0 and q by training v_θ so that the solution satisfies $z_0 \sim p_0$ and $z_1 \sim q$.

Given a probability path p_t and its associated velocity field u_t , flow matching reduces to a least-squares regression problem:

$$\mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{t \sim U[0, 1], z \sim p_t} \omega(t) \|v_\theta(z, t) - u_t(z)\|_2^2, \quad (7)$$

where $\omega(t) > 0$ is a weighting function, often taken as $\omega(t) = 1$ (Lipman et al., 2022). This formulation ensures that the learned velocity field aligns with the target field u_t at all times, thereby generating the desired marginal probability path.

C FOURIER NEURAL OPERATOR BACKGROUND

An FNO is designed to learn a mapping between function spaces, rather than between finite-dimensional vectors. Consider a function $u : \mathbb{R}^d \rightarrow \mathbb{R}^c$ representing data, for example in \mathbb{R}^X , with samples $x \in \mathbb{R}^X$. Then, an FNO parameterizes an operator as

$$\mathcal{G}_\theta : u \mapsto \tilde{u}, \quad \tilde{u} : \mathcal{D} \rightarrow \mathbb{R}^{c_{\text{out}}},$$

that maps u to an output function \tilde{u} (e.g., a solution field of a PDE or a transformed spatial signal).

This mapping is implemented via iterative Fourier layers which perform spectral transformations of the input:

$$\hat{u}(k) = \mathcal{F}[u](k), \quad \hat{\tilde{u}}(k) = R_\theta(k) \cdot \hat{u}(k), \quad (8)$$

followed by an inverse Fourier transform back to the spatial domain:

$$\tilde{u}(x) = \mathcal{F}^{-1}[\hat{\tilde{u}}](x), \quad (9)$$

with $R_\theta(k)$ being learnable Fourier-mode weights and \mathcal{F} denoting the Fourier transform. This spectral representation allows the FNO to efficiently capture long-range dependencies and global correlations in the data.

918 **D AUTOENCODER DETAILS**
919920 Residual blocks throughout the architecture consist of two 3×3 convolutions with ReLU activation
921 and group normalization (8 groups) in between, with the input added back to the output. Attention
922 blocks are implemented using PyTorch’s `nn.MultiheadAttention`, with embeddings
923 reshaped from $[B, C, H, W]$ to $[B, HW, C]$.924 The autoencoder is initialised with a depth of $d = 2$ resulting in a factor $2^d = 4$ compression for all
925 datasets.
926927 **E MODEL HYPERPARAMETERS**
928930 We initialised the probability paths with the following hyperparameters. RIVER was defined with
931 variance parameters $\sigma = 0.1$ and $\sigma_{\min} = 10^{-7}$. SLP used $\sigma = 0.1$ and $\sigma_{\min} = 0.01$. We further
932 considered the VE-diff path with $\sigma_{\min} = 0.01$ and $\sigma_{\max} = 0.1$ and the VP-diff path initialized with
933 $\beta_{\min} = 0.1$ and $\beta_{\max} = 20.0$ per (Lim et al., 2025b).934 We provide details for the vector field regressors’ width and depth hyperparameters as per Table 6.
935

Model	Parameter	Value
TempO	n_{modes}	20
	Hidden channels	64
	Projection channels	64
	Depth	4
U-Net	Hidden channels	64
	Attention resolutions	(1, 2, 2)
	Channel multiplier	(1, 2, 4)
	Depth	3
ViT	Hidden channels	256
	Depth	4
	Mid-depth	5
	Output normalization	LayerNorm

950 Table 6: Descriptions of hyperparameters across TempO, U-Net, and ViT architectures.
951
952953 **F TRAINING AND INFERENCE SETUP FOR BASELINE MODELS**
954955 We evaluate three classes of baselines: Fourier Neural Operators (FNO) (Li et al., 2021), Wavelet
956 Neural Operators (WNO) (Tripura & Chakraborty, 2022), and a standard U-Net backbone.
957958 **2D Autoregressive Models (FNO-2D, WNO-2D, U-Net).** The 2D variants of FNO, WNO, and
959 U-Net operate purely on spatial fields $\omega(\cdot, t) \in \mathbb{R}^{64 \times 64}$ and treat time autoregressively. Each model
960 is provided a dense block of n input frames. These frames are concatenated and mapped to the
961 next-time-step prediction $\hat{\omega}(\cdot, t+1)$. During training, models minimize an ℓ_2 regression loss on
962 the next-step vorticity. During inference, the prediction is appended to the input sequence, and the
963 model is rolled forward autoregressively for the desired horizon, replacing the oldest frame at each
964 step. This $2D+RNN$ structure allows propagation to arbitrarily long forecast windows using a fixed
965 temporal stride.
966967 **3D Convolutional Models (FNO-3D, WNO-3D).** The 3D variants of FNO and WNO treat time
968 as an additional convolutional dimension and directly process space–time blocks (x, y, t) as 3D
969 volumes. Following Li et al. (2021), the model receives the dense history of the first n timesteps and
970 performs a 3D convolutional operator mapping
971

$$\mathbb{R}^{n \times x \times y} \longrightarrow \mathbb{R}^{T_{\text{pred}} \times x \times y},$$

972 producing the entire future trajectory segment T at once. Unlike the 2D autoregressive setting, the
 973 3D operator does *not* iterate forward in time: it learns a direct operator from the initial block to the
 974 entire forecast window. This makes the method better conditioned and more expressive at the cost
 975 of requiring a fixed temporal window during training (Li et al., 2021).

976 Both 2D and 3D WNOs follow the same temporal training structure as their FNO counterparts. The
 977 only architectural change is the replacement of Fourier transforms with multi-resolution wavelet
 978 transforms, but the data flow (input–output tensor shapes, roll-out strategy, and supervision) is iden-
 979 tical.

981 **Training Details.** Models were trained using the Adam optimiser with weight decay of 0.0001.
 982 FNO and WNO learning rate of 0.001 except the U-Net, which was trained with a learning rate of
 983 0.0001.

985 Model	986 Dim	987 Layers	988 Width	989 Modes / Wavelet	990 Level	991 Input Ch.
FNO-3D	3D	4	64	(20, 20, 16) (Fourier)	–	1
FNO-2D	2D	4	64	(20, 20) (Fourier)	–	T_{in}
UNet-2D	2D	4 (down/up)	128 base	–	–	T_{in}
WNO-3D	3D	4	40	db6 (wavelet)	2	$(T_{\text{in}} + 3)$
WNO-2D	2D	4	64	db6 (wavelet)	2	$(T_{\text{in}} + 2)$

991 Table 7: Summary of hyperparameters for Fourier and Wavelet neural operators and the UNet base-
 992 line. Channels refers to hidden width. Modes applies only to FNO; wavelet type/level applies only
 993 to WNO.

995 **Inference Protocol.** For comparability with prior operator-learning works, we evaluate autore-
 996 gressive models by providing the first $n = 10$ frames as context and generating the next 40 timesteps
 997 using a single-step temporal stride. For 3D models, the first n frames are mapped directly to a 40-
 998 step output block without iterative rollout. This setup follows the conventions established in (Li
 999 et al., 2021; Tripura & Chakraborty, 2022).

1001 G DATASET DETAILS

1003 Table 8: Dataset sizes and trajectory lengths used in evaluation.

1005 Dataset	1006 # Trajectories	1007 Timeseries Length
SWE	1000	100
RD-2D	1000	100
NS- ω	5000	50

1010 Shallow water equation (SWE)

1012 The SWEs are derived from the compressible Navier–Stokes equations and model free-surface flow
 1013 problems in 2D. The system of hyperbolic PDEs is given by:

$$1015 \quad \partial_t h + \partial_x(hu) + \partial_y(hv) = 0, \quad (10)$$

$$1017 \quad \partial_t(hu) + \partial_x\left(u^2 h + \frac{1}{2} g_r h^2\right) + \partial_y(uvh) = -g_r h \partial_x b, \quad (11)$$

$$1019 \quad \partial_t(hv) + \partial_y\left(v^2 h + \frac{1}{2} g_r h^2\right) + \partial_x(uvh) = -g_r h \partial_y b, \quad (12)$$

1021 where u, v are the horizontal and vertical velocities, h is the water height, b represents spatially
 1022 varying bathymetry, and g_r is gravitational acceleration. The quantities hu and hv correspond to
 1023 directional momentum components.

1025 The dataset ((Takamoto et al., 2022)) simulates a 2D radial dam break scenario on a square domain
 $\Omega = [-2.5, 2.5]^2$. The initial water height is a circular bump in the center of the domain:

1026

$$h(t=0, x, y) = \begin{cases} 2.0, & \text{if } r < r_0, \\ 1.0, & \text{if } r \geq r_0, \end{cases} \quad r = \sqrt{x^2 + y^2}, \quad r_0 \sim \mathcal{U}(0.3, 0.7).$$

1029

2D reaction diffusion (RD-2D)

1031

The RD-2D dataset models two non-linearly coupled variables: the activator $u = u(t, x, y)$ and the inhibitor $v = v(t, x, y)$. The system of PDEs is:

1033

1034

1035

$$\partial_t u = D_u \partial_{xx} u + D_u \partial_{yy} u + R_u(u, v), \quad (13)$$

1036

$$\partial_t v = D_v \partial_{xx} v + D_v \partial_{yy} v + R_v(u, v), \quad (14)$$

1037

1038

1039

where D_u and D_v are diffusion coefficients, and $R_u(u, v)$, $R_v(u, v)$ are the reaction functions. Specifically, the FitzHugh–Nagumo model defines the reactions as:

1040

1041

1042

$$R_u(u, v) = u - u^3 - k - v, \quad (15)$$

1043

$$R_v(u, v) = u - v, \quad (16)$$

1044

1045

with $k = 5 \times 10^{-3}$, $D_u = 1 \times 10^{-3}$, and $D_v = 5 \times 10^{-3}$.

1046

The dataset ((Takamoto et al., 2022)) uses a simulation domain $x, y \in (-1, 1)$ and $t \in (0, 5]$ with initial condition set as standard normal random noise: $u(0, x, y) \sim \mathcal{N}(0, 1.0)$.

1047

2D incompressible Navier-Stokes vorticity (NS- ω)

1048

1049

The NS- ω ((Li et al., 2021)) models 2D incompressible fluid flow on the unit torus. The system of equations is:

1050

1051

1052

$$\partial_t w(x, t) + u(x, t) \cdot \nabla w(x, t) = \nu \Delta w(x, t) + f(x), \quad x \in (0, 1)^2, t \in (0, T], \quad (17)$$

1053

$$\nabla \cdot u(x, t) = 0, \quad (18)$$

1054

$$w(x, 0) = w_0(x), \quad (19)$$

1055

1056

1057

where $w(x, t)$ is the vorticity, $u(x, t)$ is the velocity field, ν is viscosity, and $f(x)$ is a fixed forcing term:

1058

1059

1060

$$f(x) = 0.1 \left(\sin(2\pi(x_1 + x_2)) + \cos(2\pi(x_1 + x_2)) \right).$$

1061

The initial condition is sampled from a Gaussian measure:

1062

1063

1064

1065

1066

1067

1068

1069

$$w_0 \sim \mu, \quad \mu = \mathcal{N} \left(0, (-\Delta + 49I)^{-2.5} 7^{3/2} \right),$$

1070

1071

H SPECTRAL ANALYSIS OF GROUND TRUTH NS- ω

1072

1073

1074

1075

1076

Fig. 4 shows how the quality of spectral truncations of the true Navier–Stokes vorticity field depends on the cutoff wavenumber k_{cut} . Given the full Fourier spectrum $\hat{\omega}(k_x, k_y)$, we apply a mask that retains only modes with $|k_x| + |k_y| \leq k_{\text{cut}}$, reconstruct the signal by inverse FFT, and compute three quantities as functions of k_{cut} :

1077

1078

1079

1. Reconstruction MSE: the mean squared error between the original and truncated fields in physical space.
2. Spectral MSE: the mean squared error in Fourier space, quantifying lost spectral content.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Figure 4: **Spectral Analysis of True Vorticity**: Reconstruction MSE, spectral MSE, and cumulative enstrophy fraction of true Navier–Stokes vorticity data as functions of cutoff wavenumber k_{cut} .

3. Cumulative energy fraction: the fraction of total energy $\sum |\hat{\omega}|^2$ retained by the truncated spectrum.

As k_{cut} increases, both reconstruction and spectral errors decrease, while the retained energy approaches unity.

1134
1135 **I EXTENDED RESULTS FOR NAVIER–STOKES VORTICITY**
11361137
1138 **Figure 5: Navier–Stokes Vorticity (Original).** Ground-truth timeseries across 40 timesteps.
11391140
1141 **Figure 6: Navier–Stokes Vorticity (U-Net).** Forecasted timeseries across 40 timesteps.
11421143
1144 **Figure 7: Navier–Stokes Vorticity (ViT).** Forecasted timeseries across 40 timesteps.
11451146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 8: **Navier–Stokes Vorticity (TempO)**. Forecasted timeseries across 40 timesteps.

J EXTENDED RESULTS FOR SHALLOW WATER EQUATION

Regressor	Path	MSE \downarrow	SpectralMSE \downarrow	RFNE \downarrow	PSNR \uparrow	Pearson \uparrow	SSIM \uparrow
TempO	Affine-OT	6.64e-05	5.65e-05	7.64e-03	46.5	0.998	0.997
	RIVER	4.04e-04	2.33e-04	1.89e-02	38.7	0.989	0.976
	VE-diff	9.37e-04	8.22e-04	2.89e-02	35.2	0.994	0.977
	VP-diff	4.41e-03	2.51e-03	4.31e-02	28.3	0.872	0.857
ViT	Affine-OT	9.59e-05	7.93e-05	9.06e-03	44.9	0.997	0.995
	VP-diff	1.30e-04	8.81e-05	1.05e-02	43.6	0.996	0.993
	RIVER	2.99e-04	1.67e-04	1.63e-02	40.0	0.992	0.981
	SLP ¹	6.60e-04	-	1.28e-01	36.1	-	0.93
	VE-diff	1.28e-03	1.01e-03	3.38e-02	33.7	0.985	0.960
U-Net	VP-diff	1.37e-02	8.26e-03	1.10e-01	23.4	0.546	0.627
	RIVER	1.61e-02	1.00e-02	1.20e-01	22.7	0.437	0.610
	Affine-OT	1.68e-02	1.01e-02	1.22e-01	22.5	0.435	0.593

Table 9: Comparison of TempO, U-Net, and ViT models under different probability paths for the SWE. The best value for each metric is highlighted in bold.

Figure 9: **SWE (Original)**. Ground-truth timeseries across 40 timesteps.

Figure 10: **SWE (U-Net)**. Forecasted timeseries across 40 timesteps.Figure 11: **SWE (ViT)**. Forecasted timeseries across 40 timesteps.Figure 12: **SWE (TempO)**. Forecasted timeseries across 40 timesteps.

K EXTENDED RESULTS FOR 2D REACTION DIFFUSION

Regressor	Path	MSE \downarrow	SpectralMSE \downarrow	RFNE \downarrow	PSNR \uparrow	Pearson \uparrow	SSIM \uparrow
TempO	Affine-OT	2.76e-05	2.18e-05	3.29e-02	65.7	1.000	0.999
	RIVER	9.36e-04	5.47e-04	2.08e-01	50.4	0.975	0.978
	VE-diff	1.58e-03	1.38e-03	2.70e-01	48.2	0.990	0.977
	VP-diff	1.24e-02	1.01e-02	4.95e-01	39.2	0.714	0.862
ViT	Affine-OT	6.30e-04	4.40e-04	1.67e-01	52.2	0.987	0.986
	SLP ²	3.56e-04	-	1.16e-01	34.3	-	0.90
	RIVER	1.00e-03	5.89e-04	2.16e-01	50.1	0.973	0.977
	VE-diff	3.54e-03	2.23e-03	4.06e-01	44.7	0.915	0.946
U-Net	Affine-OT	3.09e-05	2.45e-05	3.57e-02	65.2	0.999	0.999
	RIVER	1.02e-03	5.49e-04	2.17e-01	50.1	0.972	0.976
	VE-diff	9.03e-03	6.07e-03	6.42e-01	40.6	0.820	0.860
	VP-diff	2.09e-02	1.66e-02	6.81e-01	37.0	0.574	0.792

Table 10: Comparison of TempO, U-Net, and ViT models under different probability paths for the RD-2D. The best value for each metric is highlighted in bold.

Figure 13: **Reaction Diffusion (Original).** Ground-truth end sample, from initial conditions of randomly sampled noise.

Figure 14: **Reaction Diffusion (U-Net).** Forecasted end sample, from initial conditions of randomly sampled noise.

Figure 15: **Reaction Diffusion (ViT).** Forecasted end sample, from initial conditions of randomly sampled noise.

Figure 16: **Reaction Diffusion (TempO).** Forecasted end sample, from initial conditions of randomly sampled noise.

1350 **L EXTENDED ABLATION RESULTS**

1351
1352 Table 11: Ablation over different training sequence lengths on the NS- ω dataset. TempO and the top
1353 performing alternative are trained while varying sequence lengths and evaluated on 10 timesteps to
1354 predict the next step.

1355
1356

Method	Seq. Len.	MSE	DensityMSE	SpectralMSE	RFNE	PSNR	Pearson	SSIM	NFE
TempO	3	4.924e-02	7.685e-05	3.531e-02	2.328e-01	25.769	0.973	0.803	74
	6	4.753e-02	1.133e-04	3.394e-02	2.276e-01	25.923	0.974	0.800	608
	11	5.036e-02	1.055e-04	3.620e-02	2.352e-01	25.672	0.972	0.800	842
	16	5.607e-02	1.282e-04	3.821e-02	2.497e-01	25.205	0.969	0.786	938
	26	6.255e-02	7.487e-05	3.726e-02	2.541e-01	24.730	0.968	0.765	1070
ViT (Affine-OT)	3	6.748e-02	1.414e-04	4.652e-02	2.678e-01	24.401	0.963	0.766	116
	6	5.434e-02	1.239e-04	3.727e-02	2.416e-01	25.341	0.970	0.783	1766
	11	6.014e-02	1.376e-04	4.067e-02	2.546e-01	24.901	0.967	0.777	1712
	16	6.701e-02	1.093e-04	4.428e-02	2.680e-01	24.431	0.963	0.764	1622
	26	7.682e-02	8.104e-05	4.468e-02	2.778e-01	23.838	0.960	0.741	1100

1367
1368 Table 12: Ablation of the TempO model on the NS- ω dataset by varying the number of modes.
1369 Models are trained with different numbers of Fourier modes and evaluated on 10 timesteps to predict
1370 the next step.

1371
1372

Modes	MSE	DensityMSE	SpectralMSE	RFNE	PSNR	Pearson	SSIM	NFE
1	1.409e-01	1.075e-04	8.566e-02	3.947e-01	21.204	0.921	0.588	5798
2	6.103e-02	8.928e-05	4.096e-02	2.596e-01	24.837	0.966	0.765	1688
4	5.789e-02	8.361e-05	3.978e-02	2.538e-01	25.066	0.968	0.776	1058
8	5.528e-02	8.498e-05	3.788e-02	2.481e-01	25.267	0.969	0.788	800
16	5.471e-02	8.757e-05	3.742e-02	2.467e-01	25.312	0.970	0.787	884

1373 **M ABLATION ON FOURIER-MODE TRUNCATION**

1374 **Setup** To assess the sensitivity of TempO to the number of retained Fourier modes, we perform an
1375 ablation in which the spectral truncation level of the underlying FNO blocks is varied while keeping
1376 all other architectural and training settings fixed. Specifically, we evaluate truncation levels of

1377
$$m \in \{16, 8, 4, 2, 1\},$$

1378 where m denotes the number of Fourier modes kept per spatial dimension. The case $m = 1$ represents
1379 the most extreme truncation and serves as a lower-bound sanity check for TempO under highly
1380 restricted spectral capacity.

1381 **Method** All models are trained with identical optimisation hyperparameters and dataset splits on
1382 the NS- ω dataset. For each truncation level, we measure ..., following the evaluation protocol used
1383 in the main experiments.

1384 **Results** Table 13 reports the aggregated metrics. We observe that performance remains stable for
1385 moderate truncations ($m = 8$ and $m = 16$), with only mild degradation for $m = 4$. As expected,
1386 substantial deterioration appears only when the spectral capacity is collapsed to $m = 2$ or $m = 1$,
1387 reflecting the loss of essential mid-frequency components.

1388 **Discussion** The study shows that TempO’s performance is largely stable for moderate truncations
1389 (4–16 modes), and interestingly at 4 modes (though k=8 captures 99% of the energy, k=4 converges
1390 upon almost 97% already) the rollout is marginally more stable than 8 modes. The extreme trun-
1391 cation to 2 modes and 1 mode produces a noticeable drop in accuracy, as expected, highlighting
1392 the importance of retaining a sufficient number of spectral modes to capture the essential dynamics.

Table 13: Ablation on Fourier mode truncation in TempO.

Modes	MSE	SpectralMSE	PSNR	Pearson	MSE/time
1	5.34e-02	3.74e-2	25.416	0.970	3.950e-01
2	3.16e-02	3.79e-2	27.695	0.982	1.668e-01
4	2.72e-02	4.00e-2	28.346	0.984	2.715e-02
8	2.91e-02	4.10e-2	28.056	0.983	3.244e-02
16	2.80e-02	8.57e-2	28.215	0.984	3.084e-02

Figure 17: Ablation of varying Fourier mode truncation to evaluate sensitivity to the truncation level.

Overall, this confirms that TempO is robust to Fourier-mode selection within a reasonable range, though the best performing model is at 16 modes.

Crucially, truncation from 16 to 8 modes does not materially affect accuracy, consistent with the observation that the datasets considered have weak energy content in the highest spectral bands (Appendix G). Only extremely aggressive truncation (e.g. $m \leq 2$) produces meaningful degradation, as such settings remove both high- and mid-frequency modes required to represent the system’s dynamics. Any truncation for computational requirements is also mitigated by the fact that we operate in latent space, which caps the maximum number of modes according to the resolution of the latent space.

N EXTENDED RESULTS FO FNO-2D ON NAVIER STOKES VORTICITY

O USE OF LARGE LANGUAGE MODELS (LLMs)

We acknowledge the use of ChatGPT to make suggestions on how to polish the text, correct grammar, and ensure clarity in writing. No results, code, or data were created or altered by the model.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Figure 18: **Navier–Stokes Vorticity (Ground Truth).** Forecasted timeseries across 40 timesteps.Figure 19: **Navier–Stokes Vorticity (FNO-2D).** Forecasted timeseries across 40 timesteps.Figure 20: **Navier–Stokes Vorticity (TempO).** Forecasted timeseries across 40 timesteps.