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ABSTRACT

Forecasting high-dimensional, PDE-governed dynamics remains a core challenge
for generative modeling. Existing autoregressive and diffusion-based approaches
often suffer cumulative errors and discretisation artifacts that limit long, physi-
cally consistent forecasts. Flow matching offers a natural alternative, enabling
efficient, deterministic sampling. We propose TempO, a time-conditioned latent
flow matching method mimicking classical PDE evolution operators. We intro-
duce an attention-based multiscale autoencoder, a latent Fourier vector field re-
gressor, and decoupled spatial and temporal processing for temporally coherent
and accurate rollouts. We prove an upper bound on FNO approximation error and
empirically show that TempO outperforms state-of-the-art baselines across three
benchmark PDE datasets, and spectral analysis further demonstrates superior re-
covery of multi-scale dynamics, while efficiency studies highlight its parameter-
and memory-light design compared to attention-based or convolutional regressors.

1 INTRODUCTION

Generative artificial intelligence has brought unparalleled creative and scientific potential, with mod-
els capable of producing images (Hatamizadeh et al., 2025), video (Bar-Tal et al., 2024), audio (Ju
et al., 2024), and text (Grattafiori et al., 2024) that rival human quality. From autoregressive trans-
formers to diffusion models and energy-based approaches, the landscape of generative AI is rich and
diverse, offering multiple pathways to model complex data distributions. At the core of this revo-
lution are probabilistic generative models, which learn to sample from complex, high-dimensional
distributions. Among these, flow matching models have emerged as a class of generative models
which learn to transform a simple prior distribution to a more complex data distribution as a con-
tinuous transformation. This direct, simulation-free approach enables both efficiency and precision,
offering a new lens on modeling complex systems (Lipman et al., 2023).

Despite recent advances, forecasting high-dimensional temporal dynamics remains challenging.
Deep learning models are computationally expensive and often fail catastrophically after a few dozen
timesteps due to compounding errors in autoregressive predictions, particularly in stiff or chaotic
systems (Ansari et al., 2024; Raissi et al., 2019). Even with the advent of large language models
and their remarkable ability to generate, models that attempt to leverage them for forecasting intro-
duce truncation and quantisation errors due to tokenised representations which further exacerbate
cumulative errors (Ansari et al., 2024), offering little practical benefit relative to their computational
cost (Tan et al., 2024). Modern generative models have been proven capable of generating visu-
ally compelling and coherent videos (John et al., 2024), but critically lack the fine-grained control
required to be used in scientific and engineering contexts.

Recent foundation models for forecasting include GenCast for weather (Price et al., 2025) and
Chronos for general time series (Ansari et al., 2024), demonstrate the promise of large-scale pretrain-
ing. These models leverage massive datasets across multiple domains resulting in strong zero- and
few-shot transferability. Chronos captures coarse, long-range correlations remarkably long times-
pans; however, the granularity, i.e. prediction length still falls at an average of 22 across 55 datasets,
with only 7 tasks exceeding 30 steps (Ansari et al., 2024). GenCast, likewise, can generate 15-day
global weather forecasts, but at a granularity of 12 hours, around 30 steps. True progress requires
models capable of deterministic yet flexible generation, able to explore plausible trajectories while
respecting physical constraints to then select precise forecasts out of the space of plausible predic-
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tions (Guo et al., 2025). Although the short to mid term range is a popular horizon to explore (Lim
et al., 2025b), the goal is to generate long-horizon predictions on the order of 30 timesteps or more,
generating trajectories that are not just plausible, but physically consistent.

Fundamentally, models relying on discretisation or tokenisation are not ideal for continuous, Partial
Differential Equation (PDE)-governed dynamics. Demonstrating smooth trajectories in state space
which generalise to long forecasting horizons would show greater fidelity to the underlying physics.
Other existing efforts which leverage diffusion (Molinaro et al., 2025; Yao et al., 2025; Huang et al.,
2024) move toward more natural representations and, in some settings, benefit from the stochas-
ticity inherent to diffusion, e.g. for uncertainty quantification or modeling ensembles of plausible
trajectories in chaotic regimes (Lippe et al., 2023). However, their stochastic sampling procedures
can introduce computational overhead and variance when the goal is to learn a sharp, deterministic
operator. Flow matching provides a complementary alternative: vector field regression aligns nat-
urally with learning PDE operators, which themselves describe deterministic time derivatives, and
yields efficient Ordinary Differential Equation (ODE)-based sampling without iterative denoising.
Existing flow matching methods have individually worked toward video generation (Davtyan et al.,
2023; Jin et al., 2025; Holzschuh et al., 2025; Serrano et al., 2024) and PDE single-step predic-
tion (Kerrigan et al., 2023), but thus far have not been thoroughly tested for long-horizon temporal
forecasting and do not design for the deterministic and stable rollouts required for such tasks.

In this work, we propose Temporal Operator flow matching (TempO), the first principled integration
of time-conditioned latent flow matching with neural operators mimicking classical PDE evolu-
tion operators, offering an efficient, stable and spectrally accurate alternative to autoregressive and
diffusion-based PDE forecasting. TempO is built around four key innovations:

1. We design a multi-headed attention–enhanced autoencoder that learns multiscale latent
representations, allowing the flow field to jointly capture global structures and fine local
features.

2. We construct time-conditioned latent spectral embeddings that encode PDE states in a
frequency-aware latent space, enabling smooth flow interpolation and preserving high-
frequency dynamics.

3. Motivated by the structure of PDE evolution operators, TempO explicitly decouples spatial
and temporal processing via channel folding, using operator layers for spatial modes and
latent flow dynamics for temporal evolution.

4. We incorporate sparse conditioning, providing computational and data efficiency by condi-
tioning the flow only on two prior timesteps without degrading accuracy.

We derive theoretical error bounds that characterize the efficiency and expressivity of TempO, and
showcase its performance on PDE benchmarking datasets accompanied with a spectral analysis
showing a distinct advantage in capturing the essential dynamics required for forecasting. Empiri-
cally, we see a 16% lower error when predicting vorticity of 2D incompressible Navier Stokes, with
Pearson correlations remaining above 0.95 for a 40 step forecasting horizon, demonstrating its stable
temporal forecasting and high quality generation capability.

2 RELEVANT WORKS

Application-specific models for scientific data have also seen development: GenCFD (Molinaro
et al., 2025) proposes a conditional diffusion model to generate the underlying distributions of high
fidelity flow fields. Kerrigan et al. (2023) propose the first extension of Fourier Neural Operators
(FNOs) to flow matching tasks and predicts plausible fluid dynamic fields, Functional Flow Match-
ing. Shi et al. (2025) builds on this concept and extends it to learning stochastic process priors on
function spaces. Similarly, Lim et al. (2025a) extend denoising diffusion models to function space,
introducing Denoising Diffusion Operators for unconditional prior generation; Yao et al. (2025) ex-
tends this to conditional posterior sampling under observation constraints and sees state-of-the-art
performance for multi-resolution PDE tasks, as compared to its competitor DiffusionPDE Huang
et al. (2024) which originally demonstrated strong performance in solving PDEs with partial obser-
vations. Such methods have thus far focused on static prediction, i.e., generating diverse samples of
plausible PDE solutions, rather than deterministic temporal rollouts.
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Models designed to predict sequences of future states include the aforementioned large-scale
Chronos and GenCast (Ansari et al., 2024; Price et al., 2025). In addition, pyramidal flow match-
ing (Jin et al., 2025) produces state-of-the-art video generation compared to leading models (Zheng
et al., 2024), representing a successful flow matching foundation model. (Tamir et al., 2024) present
conditional flow matching for time series, succeeding in long 1D trajectories where neural ODEs
fail, but has not scaled to 2D spatiotemporal data. Physics-Based Flow Matching (Baldan et al.,
2025) adds a PINN-style loss (Raissi et al., 2019) to flow matching for surrogate model. Kollovieh
et al. (2024) extends this with Gaussian processes for forecasting tasks outside of scientific machine
learning. We focus instead on models that fall between these two categories, scaling reasonably to
2D data to match common PDE settings. Li et al. (2025) further leverage latent space modeling and
coarsely sampled diffusion for PDE generation on irregular grids.

TempO occupies a distinct methodological position in this landscape: it is conditional and determin-
istic, built to learn an operator-valued transport that maps an initial PDE state to its evolved state,
rather than to sample diverse static solutions. TempO also shares the same spectral motivation as
prior works, e.g. Functional Flow Matching, but differentiates itself in a crucial way: instead of
using an FNO as a denoiser inside a sampler, TempO uses an FNO to parameterize a latent-space
velocity field that is time-conditioned and integrated as an ODE. This design enables deterministic,
operator-valued rollouts rather than stochastic sample generation, and directly targets long-horizon
forecasting stability.

3 METHOD

We begin by developing the background which is then used to construct our method. Flow matching
learns a time-dependent velocity field vθ(z, t) defining an ODE in the latent space:

dz(t)

dt
= vθ(z(t), t), z(0) ∼ π0, (1)

where π0 is a simple prior (e.g., Gaussian). Integrating this ODE transports samples to the latent
data distribution π1, see Appendix B. Training reduces to a regression objective that matches the
model velocity field to a target velocity along interpolating probability paths (Lipman et al., 2023).
This enables simulation-free sampling from complex distributions.

Table 1: Representative Path Choices in Flow Matching Models.

Path at bt ct Parameter definitions

Affine-OT1 t 0 (1− (1− ϵmin)t)
2 ϵmin ≥ 0: min. noise level

RIVER2 (1− (1− σmin)t) t σ2 σ ≥ 0: noise scale, σmin ≥ 0: min. noise
SLP3 (1− t) t σ2

min + σ2t(1− t) σ, σmin ≥ 0: variance parameters
VE-diff4 1 0 σ2

t σt: geometric schedule, σmin, σmax > 0

VP-diff4 exp(− 1
2T (1− t)) 0 1− exp(−T (1− t)) βmin, βmax > 0, T (t) =

∫ t
0
β(s) ds

1 (Lipman et al., 2023), 2 (Davtyan et al., 2023), 3(Lim et al., 2025b),4 (Ryzhakov et al., 2024)

A key component of flow matching is the choice of the probability density path pt interpolating
between the reference distribution π0 and the target π1. We focus on Gaussian conditional paths
with closed-form velocity fields:

pt

(
Z | Z̃ := (Z0, Z1)

)
= N

(
Z
∣∣ atZ0 + btZ1, c

2
t I
)
,

where at, bt, ct define the path (Table 1). This pair-conditional path is defined for a specific tran-
sition (Z0, Z1), and the marginal interpolant is obtained by averaging over all pairs: pt(Z) =
E(Z0,Z1)[pt(Z | Z0, Z1)]. While π0 is typically a standard Gaussian, intermediate densities pt
can follow diffusion-inspired, optimal transport, or other custom schedules.

To parameterize vθ, we modify FNOs, which approximate mappings between functions via spectral
convolution layers. Given input u, the FNO parameterizes an operator as Gθ : u 7→ ũ, ũ : D →
Rcout , that maps u to an output function ũ. Iterative Fourier layers perform spectral transformations
of the input û(k) = F [u](k), ˆ̃u(k) = Rθ(k) · û(k), followed by an inverse Fourier transform back
to the spatial domain; ũ(x) = F−1[ˆ̃u](x), with Rθ(k) being learnable Fourier-mode weights and F
denoting the Fourier transform. This spectral representation allows the FNO to efficiently capture
long-range dependencies and global correlations in the data.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.1 TEMPORAL OPERATOR FLOW MATCHING (TEMPO)

Using an FNO-inspired regressor to learn the vector field of a flow matching model has a number of
benefits, namely, the added expressivity that the Fourier representation provides at a low computa-
tional cost thanks to highly optimised Fast Fourier Transform (FFT) operations. Building on prior
analysis of FNOs for solving PDEs (Kovachki et al., 2021), we show that an FNO-inspired regressor
can achieve an upper bound on approximation error for flow matching models and we provide a
lower bound on the accuracy achievable by sampler-based methods (e.g., Transformer or U-Net) in
relation to their number of parameters.

Theorem 3.1 (FNO regressor constructive upper bound). Let Td be the d–torus. Fix s, s′ ≥ 0 and
let U ⊂ Hs(Td) be compact. Suppose G : U → Hs′(Td) is continuous and satisfies |Ĝ(u)(k)| ≤
Cλ(1 + |k|)−p for all u ∈ U , k ∈ Zd, with constants Cλ > 0, p > 0. If p > s′ + d

2 and we define
α := p− s′ − d

2 > 0, then for every ε > 0 there exists a Fourier Neural Operator Gθ with

PFNO(ε) ≲ ε− d/α,

such that supu∈U ∥G(u)−Gθ(u)∥Hs′ ≤ ε. The hidden constants depend only on d, s, s′,U , Cλ and
mild/logarithmic factors.

This result is in line with the estimates and arguments made in (Kovachki et al., 2021).

Sketch of proof of Theorem 3.1. (Spectral truncation.) The Fourier decay assumption implies that
high-frequency modes of G(u) contribute at most O(K−2α) to the Hs′ -error. Choosing K ≍ ε−1/α

makes this truncation error ≤ ε/2.

(Finite-dimensional reduction.) For this cutoff K, the operator GK is determined by O(Kd) Fourier
coefficients, and inputs can likewise be restricted to finitely many low modes without significant
loss of accuracy. Thus the problem reduces to approximating a continuous map between compact
subsets of Rmin and Rmout , with mout ≍ Kd.

(Approximation by networks.) Standard universal approximation results (or the constructive FNO
design in (Kovachki et al., 2021)) ensure that such a finite map can be uniformly approximated by a
network with O(Kd) parameters, up to mild logarithmic factors.

(Conclusion.) Combining these errors yields an overall accuracy ε with parameter count P ≲ Kd ≍
ε−d/α, proving the claim.

Proposition 3.2 (Transformer/UNet Sampler-based lower bound). Under the assumptions of The-
orem 3.1, consider any learner that observes each u ∈ U only through n fixed point evaluations
and applies a parametric map with P real parameters, required in the worst case to reconstruct all
Fourier modes up to radius K ≍ ε−1/α. Then necessarily

n ≳ ε− d/α, Psampler(ε) ≳ ε− βd/α,

for some architecture–dependent β ≥ 1 (optimistically β = 1 when only diagonal mode-wise maps
are needed, generically β = 2 for arbitrary dense linear maps). These bounds are information-
theoretic and asymptotic, up to constants and mild/logarithmic factors.

Sketch of proof of Proposition 3.2. (Sampling necessity.) The K–mode subspace VK has dimension
DK ≍ Kd. Sampling at n points defines a linear map S : VK → Cn. For S to be injective on VK ,
its matrix must have rank DK , hence n ≥ DK ≍ Kd.

(Parameter complexity.) After sampling, the learner implements a parametric map M : Cn → Cm.
To represent arbitrary linear maps on the DK-dimensional coefficient space (e.g. arbitrary diagonal
multipliers), the parameter family must have at least P ≳ DK degrees of freedom. For fully general
dense linear maps one needs P ≳ D2

K .

(Conversion.) Substituting K ≍ ε−1/α (from the theorem) gives n ≳ ε−d/α and P ≳ ε−βd/α with
β = 1 (optimistic) or β = 2 (dense case), establishing the lower bound, see Appendix A for the
extended proof.
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Corollary 3.3 (FNO vs sampler scaling). From Theorem 3.1 and Proposition 3.2 one has

PFNO(ε) ≲ ε− d/α, Psampler(ε) ≳ ε− βd/α.

Hence, whenever β > 1, FNOs achieve the same accuracy ε with asymptotically fewer parameters
than sampler–based learners.

TempO Consequently, we propose TempO, a framework capable of long rollout PDE forecast-
ing via a multiscale attention-based autoencoder, time-conditioned FNO vector field regressor, and
channel folding for both efficiency and enhanced temporal coherency, reflecting the PDE evolution-
operator perspective that motivates our decoupling of spatial and temporal processing. Together
with temporal conditioning, these define a novel, end-to-end trainable model for predicting latent
dynamics.

Let fϕ : RX → RZ denote an encoder mapping data points x to latent embeddings z = fϕ(x).
We use a multi-headed attention-enhanced autoencoder for multiscale embeddings that are well-
suited for subsequent temporal conditioning and flow-based evolution. The use of attention layers
and residual blocks preserves multi-scale spatial correlations while compressing the data for more
efficient processing. We can then define a latent-space velocity field described by 1 where vθ is
parameterized by an FNO, which provides a spectral inductive bias for learning PDE-consistent
dynamics.

Under the standard flow-matching assumption that the learned drift has bounded Lipschitz constant,
the global forecasting error grows no faster than exp

( ∫ 1

0
Lt dt

)
ε yielding polynomial accumulation,

consistent with classical ODE stability. In contrast, autoregressive models accumulate errors through
the product of stepwise Jacobians,

∏
t ∥Jt∥, which can increase much more rapidly. We further

mitigate the expected error accumulation via sparse conditioning.

Sparse conditioning provides computational and data efficiency by leveraging the locality and tem-
poral coherence inherent to PDEs, and additionally allows the model to condition on fixed points
during rollout rather than recursively using its own predictions as inputs (Davtyan et al., 2023; Lim
et al., 2025b). For some discrete-time sequence {xt}Nt=1 with xt ∈ X , its latent representation is
given by {zt}Nt=1, where zt = fϕ(xt). For a prediction horizon T ∈ {L, . . . , N − 1} with sequence
length L, the objective is to predict the next latent embedding zT+1. We define a reference em-
bedding to be zT , corresponding to the most recent observation prior to the prediction target, and a
conditioning embedding as some observation selected at a timestep τ ∈ {T −L, . . . , T − 1}. These
two embeddings are concatenated with the temporal offset, defined as ∆ = T−τ , which is the extent
of temporal data the model is provided to predict the next-step embedding, ẑT+1 = fθ(zT , zτ ,∆).
In practice, we fix the conditioning to one of the provided initial steps, effectively pinning the gen-
eration against a known correct solution and incrementing the temporal offset and updating the
reference embedding: this results in significantly more stable rollouts.

We then propose channel folding, a key architectural contribution that allows 2D FNO layers to pro-
cess time-varying latent fields without temporal blurring. This folding preserves a clean separation
between spatial operator structure and temporal latent dynamics, reflecting the semigroup property
of PDE evolution operators. We collapse the batch and channel axes into a single “effective batch”
dimension u′ ∈ R(B·C)×T×H×W as input to the FNO. This folding operation effectively treats each
channel of each sample as an independent element within the extended batch. As a consequence,
the FNO is applied identically across all channels but without cross-channel mixing at this stage.
This disentangles t (within the flow matching integration step) from τ (the PDE timestep), which is
explicitly provided as part of the conditioning tuple C = {zτ ,∆}.

This time-conditioned FNO then operates over latent temporal embeddings as functions on their
spatial domain vθ(z, t) = Gθ(z) to learn the time-dependent vector field that transports a reference
latent distribution π0 to the latent data distribution π1. This differs from prior FNO-based generative
models, which operate either unconditionally or autoregressively in input space rather than in a time-
conditioned latent ODE. By leveraging the spectral inductive bias of FNOs, the learned velocity field
models cross-scale correlations, thereby stabilizing flow matching across long horizons. Combined
with spectral latent embeddings, this produces temporally coherent latent trajectories that maintain
high-frequency fidelity during transport.
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4 EXPERIMENTS

The TempO is evaluated with the goal of assessing its ability to learn accurate stochastic latent-space
dynamics and forecast high-dimensional solution fields over medium to long time horizons. We test
our method over PDE datasets which pose challenging spatio-temporal correlations and multiscale
features, making them a natural testbed for latent flow-based modeling.

Our proposed TempO was set against five key methods. The state-of-the-art video generation method
based on a U-Net shaped Vision Transformer (ViT) and modified optimal transport path Random
frame conditioned flow Integration for VidEo pRediction (RIVER) proposed by Davtyan et al.
(2023) matches or surpasses common video prediction benchmarks using 10x fewer computational
resources (Davtyan et al., 2023). We also include the baseline conditional flow matching Lipman
et al. (2023) which implements a U-Net trained using a theoretically optimal affine optimal trans-
port (Affine-OT) path. The stochastic linear path (SLP) was proposed by Lim et al. (2025b), tested
with a ViT to directly address the challenges of spatiotemporal forecasting for PDE datasets. The
Transformer-based latent space flow matching method with Affine-OT proposed by Dao et al. (2023)
further demonstrates competitive performance in image generation using latent flow matching com-
pared against both flow matching models and diffusion models (Phung et al., 2023; Ho et al., 2020)
among others. We also evaluate both variance preserving diffusion (VP-diff) and variance exploding
diffusion (VE-diff) paths which generalise the Denoising Diffusion Probabilistic noise perturbation
model and a score-based model to flow matching paths, respectively (Ho et al., 2020; Song et al.,
2021). Ryzhakov et al. (2024) establishes strong theoretical backing for both paths.

We then ablate the specific implementation of the methods (consisting of a specific architecture and
a specific probability path). In summary, the choice of regressor includes our proposed TempO re-
gressor, and additionally implement a ViT regressor (Davtyan et al., 2023; Lim et al., 2025b) and a
classic U-Net regressor (Lipman et al., 2023). We pretrain a convolutional autoencoder with residual
and attention blocks to obtain a compressed latent representation of the dynamics, see Appendix D.
We additionally compare against baseline, non-flow matching models FNO2D, FNO3D, Wavelet
Neural Operator (WNO)2D, WNO3D, and a U-Net to contextualize performance, with further de-
tails in Appendix F (Li et al., 2021; Tripura & Chakraborty, 2022).

All flow matching methods were conditioned using sparse conditioning, and baseline 2D methods
mapping 10 timesteps to predict the following, and 3D methods directly mapping the block of 10
timesteps to directly predict the remaining 40. Flow matching models are then supervised by each
probability density paths described in Table 1. Further details in Appendix E. The Adam optimiser
with a learning rate of 1e-4 was used for the FNO, and 5e-5 for the ViT and U-Net regressors.
Models are trained on an 80/10/10 training to validation to test data splits.

We evaluate our models on three spatiotemporal PDE datasets: the shallow water equation (SWE),
which simulate 2D free-surface flows; 2D reaction diffusion (RD-2D) exhibiting multiscale non-
linear patterns; and 2D incompressible Navier-Stokes vorticity (NS-ω) dataset capturing chaotic
turbulent dynamics. During training, models are sparsely conditioned on the first 15 frames and
tasked with predicting the subsequent frame at resolutions of 1×128×128 (shallow water equation
(SWE)), 2 × 128 × 128 (2D reaction diffusion (RD-2D)), and 1 × 64 × 64 (2D incompressible
Navier-Stokes vorticity (NS-ω)), see Appendix G.

5 RESULTS

Overall, TempO outperforms the methods proposed by Lim et al. (2025b); Song et al. (2022); Lip-
man et al. (2023) and Davtyan et al. (2023) as well as the ablated flow-matching methods. For
results predicting NS-ω in Table 2, we observe a 16% improvement in MSE and an 11.4% lower
spectral MSE, producing spatially and spectrally accurate next steps. Its lower RFNE indicates
reduced scale-independent error, while SSIM shows improved fidelity in local features, critical for
the localized vorticity patterns where small spatial distortions significantly affect downstream evolu-
tion (Majda & Bertozzi, 2001). PSNR and Pearson see lower normalised ranges in values, indicating
that large scale features like the vorticity intensity and global structure agreement, respectively, are
more easily captured across all models, with a clear advantage by TempO; additional visualisations
in Appendix I. We observe that the baseline FNO models outperform across the board for next step,
but critically fail at longer rollouts evidenced by the 58.1% worse MSE/time of FNO-3D versus
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Table 2: NS-ω Results: Comparison of TempO, U-Net, and ViT models.

Regressor Path MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑ MSE/time ↓

TempO

RIVER 5.63e-02 3.84e-02 2.50e-01 25.19 0.969 0.786 2.67e-02
Affine-OT 5.77e-02 3.98e-02 2.54e-01 25.08 0.968 0.789 2.91e-02
VP-diff 8.10e-02 5.34e-02 2.85e-01 23.61 0.955 0.731 2.29e-01
VE-diff 2.96e-01 1.73e-01 5.60e-01 17.98 0.821 0.373 5.02e-01

ViT

Affine-OT1 6.75e-02 4.38e-02 2.72e-01 24.40 0.962 0.758 8.71e-02
RIVER2 6.88e-02 4.33e-02 2.73e-01 24.32 0.962 0.750 3.85e-02
VP-diff3 7.77e-02 4.95e-02 2.89e-01 23.79 0.956 0.729 6.65e-02
VE-diff3 1.63e+00 9.27e-01 1.35e+00 10.67 0.118 0.024 1.67e+00

U-Net

VP-diff4 4.05e-01 3.26e-01 6.71e-01 16.62 0.756 0.323 2.66e-01
RIVER 4.08e-01 3.28e-01 6.74e-01 16.59 0.752 0.321 2.79e-01
Affine-OT5 4.10e-01 3.42e-01 6.76e-01 16.57 0.751 0.324 2.82e-01
VE-diff4 5.02e-01 3.70e-01 7.48e-01 15.68 0.694 0.263 2.92e-01

Baselines

FNO-2D 6.09e-04 4.27e-04 2.54e-02 44.85 1.000 0.992 1.92e-01
FNO-3D 1.06e-01 7.34e-02 3.37e-01 22.46 0.945 0.645 6.37e-02
WNO-2D 3.72e-03 2.83e-03 6.06e-02 36.99 0.998 0.966 5.19e-01
WNO-3D 2.23e-01 1.19e-01 4.97e-01 19.209 0.868 0.452 2.05e-01
U-Net 2.47e-03 1.92e-03 4.83e-02 38.772 0.999 0.976 1.66e+00

1 (Dao et al., 2023), 2(Davtyan et al., 2023), 3 (Lim et al., 2025b; Song & Ermon, 2020), 4(Ryzhakov et al., 2024), 5(Lipman et al., 2023)

Table 3: SWE and RD-2D Results: Comparison of TempO, U-Net, and ViT models.

Dataset Method MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑ MSE/time ↓

SWE

TempOAffine-OT 6.64e-05 5.65e-05 7.64e-03 46.5 0.998 0.997 1.60e-03
ViTAffine-OT

1 9.59e-05 7.93e-05 9.06e-03 44.9 0.997 0.995 7.02e-03
ViTVP-diff

2 1.30e-04 8.81e-05 1.05e-02 43.6 0.996 0.993 1.61e-03
ViTRIVER

3 2.99e-04 1.67e-04 1.63e-02 40.0 0.992 0.981 6.96e-03
ViTSLP

4 6.60e-04 - 1.28e-01 36.1 - 0.93 -

RD-2D

TempOAffine-OT 2.76e-05 2.18e-05 3.29e-02 65.7 1.000 0.999 1.89e-02
U-NetAffine-OT

5 3.09e-05 2.45e-05 3.57e-02 65.2 0.999 0.999 1.95e-02
ViTAffine-OT 6.30e-04 4.40e-04 1.67e-01 52.2 0.987 0.986 2.04e-02
ViTSLP

4 3.56e-04 - 1.16e-01 34.3 - 0.90 -
1 (Dao et al., 2023), 2(Lim et al., 2025b; Song & Ermon, 2020), 3(Davtyan et al., 2023), 4(Lim et al., 2025b); results reported from original paper trained on same dataset., 5(Lipman et al., 2023)

TempO. The orders of magnitude better next step prediction can be seen to blur significantly in
rollout visualisations, provided for top next-step model FNO-2D in Appendix N

We select top performing comparisons for SWE and RD-2D, Table 3), where TempO maintains
superior performance. In SWE, it achieves a 28.8% lower SpectralMSE and higher PSNR, indicating
faithful amplitude, spectral content, and structural coherence with sharp boundaries preserved, see
Appendix J for additional visualisations and ablated comparisons. Overall MSE is reduced by 30.8

In RD-2D, U-NetAffine-OT competes closely with TempO, benefiting from translation-equivariant con-
volutional layers that capture multi-scale dynamics and repeating local structures (Cohen & Welling,
2016). Both TempO and the U-Net have nearly matched PSNR, Pearon, and SSIM scores, with an
improvement of 11% in SpectralMSE from the TempO. By contrast, the next best ViT regressor
model is 95.6% drop in SpectralMSE, where attention might emphasize low-frequency global struc-
tures (Wang et al., 2022; Piao et al., 2024); see visual comparison in Appendix K.

The timeseries forecasting task, see Fig. 1, evaluates how well models capture the underlying PDE.
Models follow the inference protocol used by (Davtyan et al., 2023; Li et al., 2021): a short lead-up
of 9 initial frames is provided, with the baseline FNO using all 9; the sparsely conditioned flow-
matching models use only the last two frames in the lead-up as conditioning and reference frames.
The conditioning frame is then pinned and the temporal offset vector is incremented while the ref-
erence frame is set to timestep t − 1 to generate timestep t. TempO maintains Pearson correlation
above 0.98 over 40 forecasted timesteps, indicating stable amplitude and phase tracking. The ViT
regressor holds above 0.95 for 20 steps before degrading, while the flow matching baseline (Lipman
et al., 2023) shows steady decline. This suggests TempO effectively mimics the dynamics without
significant error accumulation. This is further demonstrated by visualisations of the vorticity field at
key timesteps in Fig. 1 (right), where t = 35 most clearly shows TempO’s faithful capture of turbu-
lent eddies in comparison to the ViT regressor, which fails to predict the small vortical structure.
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Figure 1: Prediction performance comparison for NS-ω. Left: Pearson correlation across fore-
casted timesteps. Forty timesteps are predicted by TempO, ViT, U-Net, and top performing baseline
FNO-3D averaged over 20 initial conditions on the withheld test set plotted as means and standard
deviations. The Pearson correlation coefficient shows significant degradation for the U-Net, oscil-
latory behavior and degradation for the ViT, and consistently stable values above 0.95 for TempO.
The FNO-3D baseline exhibits a high variance in the first timesteps, attributed to the direct time
convolution Right: Predicted vorticity fields. True data (a), TempO (b), ViTAffine-OT (c), U-NetVP-diff,
(d), and baseline FNO3D (e). At timesteps 5, 15, and 35 (c), (d), and (e) clearly diverge, with (d)
regressing to a noisy diagonal and (e) losing detail, while TempO maintains excellent accuracy.

5.1 SPECTRAL ANALYSIS

The spectral analysis of TempO versus the top alternative ViTAffine-OT and the baseline U-
NetAffine-OT (Lipman et al., 2023) in Fig. 2 examines the scale-resolved error via the energy per
wavenumber k, or at the scale of 1

k . This provides scale-resolved context to the SpectralMSE, which
averages the MSE of the Fourier coefficients to a single metric. For NS-ω, the first 8 modes which
cumulatively make up 99% of the total energy, beyond which the modes have negligible contribu-
tions to overall flow dynamics, see Appendix H. TempO closely follows the true spectrum compared
to both ViTAffine-OT and U-NetAffine-OT, though all three methods diverge past k = 8. We observe from the
inset of Fig. 2 that TempO exhibits a small residual which fluctuates about 0 whereas the ViTAffine-OT

has a negative and increasing error: the ViT regressor tends to capture the lower wavenumbers well,
but then underestimates the higher wavelengths notably after k = 4.

Modes SpectralMSE

1 8.57e-02
2 4.10e-02
4 3.98e-02
8 3.79e-02

16 3.74e-02

Figure 3: Ablation: Fourier mode
cutoffs with TempO.

We observe also that the number of modes retained during the
FFT of TempO in Fig. 3 follows the observation of a close
spectral match up until k = 8, where the SpectralMSE sees the
most improvement; however, from 8 modes to 16 modes, the
performance appears to saturate. Fig. 3 demonstrates that up to
8 modes capture the essential dynamics, while the fundamen-
tal frequency alone is insufficient and likely under-represents
necessary higher frequency components; adding more than 8
modes yields diminishing returns, matching the true spectral

analysis; extended metrics support this trend in Appendix L. This empirical saturation beyond 8
modes is consistent with the theoretical expectation in Theorem 3.3, where FNOs are shown to
achieve accuracy with asymptotically fewer parameters by leveraging only the most informative
spectral modes.

To assess whether TempO’s forecasting performance depends strongly on the spectral bandwidth of
the latent FNO, we conduct an ablation in which the number of retained Fourier modes is varied
(Appendix M). We find that the model is remarkably stable across a wide range of truncation levels:
reducing from 16 to 8 or even 4 modes yields nearly identical MSE, spectral error, and long-horizon
stability. This aligns with the spectral energy distribution observed in Fig. 2, where NS-ω exhibits
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Figure 2: Spectral graphs for NS-ω. Comparison of energy spectra for TempO, a ViT-based model,
and the U-Net baseline (Lipman et al., 2023). The first eight Fourier modes capture 99% of the
energy, with higher modes negligible. TempO aligns closely, while the ViT underestimates energy
beyond k = 4. The inset bar plot shows TempO oscillating tightly around zero with small deviations,
the ViT producing larger negative deviations, and the U-Net performing markedly worse.

weak high-frequency content. Only highly restrictive truncation, e.g., 2 or 1 mode, produces notice-
able degradation, indicating that the autoencoder sufficiently captures the multiscale features and
further confirming that TempO is robust to spectral compression in latent space.

5.2 EFFICIENCY

Finally, we also train the models over varying sequence lengths and measuring next-step prediction
error (MSE) and 40-step forecast error (MSE/time), shown in Table 5. MSE is lowest for shorter
sequences, as the model learns from fewer choices of indices for sparse conditioning during training.
Conversely, MSE/time decreases with longer sequences, reflecting better long-horizon performance.
Notably, TempO’s MSE/time drops faster and plateaus lower than the ViT, indicating better data
efficiency to extrapolate from the same available sequence length.

Model Params FLOPs Mem (MB) NFEs

TempO 0.49M 208M ∼50 560
ViT 3.39M 10M ∼80 942
U-Net 14.0M 555M ∼68 728

Table 4: Model Complexity and Efficiency: num-
ber of function evaluationss (NFEs) are averaged
from sampling performed for Table 2 for adaptive
solver dopri5 and tolerances of 1e-5.

Method Seq MSE MSE/time

TempO

2 4.92e-02 2.70e-01
5 4.75e-02 3.41e-01
10 5.04e-02 4.94e-02
15 5.61e-02 3.83e-02
25 6.26e-02 4.22e-02

ViT
(Affine-OT)

2 6.75e-02 2.71e-01
5 5.43e-02 3.59e-01
10 6.01e-02 1.49e-01
15 6.70e-02 4.53e-02
25 7.68e-02 8.56e-02

Table 5: Ablation: Performance comparison
scaling with sequence length tested on NS-ω.

TempO is the most lightweight model among the
three choices of regressors, with 7̃x fewer parame-
ters than the ViT and 2̃8x fewer than the U-Net. In
addition, it sees a significantly lower memory usage
compared to the ViT where attention has higher de-
mands and the U-Net where skip-connections hold
onto additional memory.
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While TempO has a moderate number of FLoating Point OPerations (FLOPs), landing between
the ViT and U-Net, this may be offsetted by the NFEs seen during the ODE integration where
TempO takes only 560 evaluations to meet the same tolerances. Beyond these empirical measures,
TempO further benefits from its shared spatial Fourier layers. By folding the channel dimension and
truncating higher modes, the spectral convolution scales as O(N2 logN), in contrast to the naive
O(N3 logN) cost of a full 3D FFT. Also for reference, a ViT layer can scale as O(N4) in 2D 3.2,
higher than the quasi-quadratic cost of the FNO.

6 LIMITATIONS

Flow matching models struggle with extreme data sparsity which can distort the distributions be-
ing learned, whereas hybrid models or models with explicitly defined conservations can fall back
on injected physical knowledge. Additionally, similar to other generative models, adaptations, e.g.
architectural modifications, would be necessary to extend the method towards a foundational model
framework. Finally, while our stable and accurate 40-step forecasting represents the longer end time
horizons, it remains an open question on how to forecast for much longer timeframes. Critical appli-
cations in science and engineering would require further study both experimentally and theoretically
to establish statistically reliable forecasting.

7 CONCLUSIONS AND FURTHER WORK

In this work, we addressed the challenge of long-horizon PDE forecasting via our proposed method
TempO. TempO consistently outperformed state-of-the-art baselines across three benchmark PDE
datasets and achieves stable long-horizon 40 step forecasts with remarkable accuracy to the true
trajectories as well as superior spectral fidelity. The modified time-conditioned FNO is parameter-
efficient while improving the capture of both local and global spectral modes, resulting in improve-
ments in both data- and compute- efficiency. Additionally, we establish that FNO can achieve an
upper bound on approximation error that sampler-based architectures cannot reach without signifi-
cantly more parameters, Corollary 3.3. These results highlight the importance of architectures that
align with the continuous nature of PDE dynamics, enabling not only improved predictive accuracy
but also physically consistent, long-horizon trajectories.

Consequently, TempO poses significant opportunity for further work in this field. Under typical
real-world environments, PDE observations may come from irregularly sampled domains; since
our method already demonstrates state-of-the-art generations using a simple autoencoder (AE) and
the latent time-conditioned FNO which no longer relies on a regular grid as is a limitation of the
original FNO (Li et al., 2021), one extension of our work is to then extend our method to real-world
settings to forecast PDE over irregular domains and irregularly sampled domains. In addition, a
detailed sensitivity analysis quantifying how TempO’s effective Lipschitz constants and integration
error evolve over long horizons would complement our empirical findings.
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A PROOFS

Proof of Theorem 3.1. Step 1: Spectral truncation. By assumption the Fourier coefficients of G(u)
satisfy ∣∣Ĝ(u)(k)∣∣ ≤ Cλ(1 + |k|)−p, ∀u ∈ U , k ∈ Zd.
If we keep only the modes |k| ≤ K and set

GK(u)(x) :=
∑

|k|≤K

Ĝ(u)(k)eik·x,

then the error lives in the high modes:

∥G(u)− GK(u)∥2
Hs′ =

∑
|k|>K

(1 + |k|2)s
′ ∣∣Ĝ(u)(k)∣∣2.

Using the decay bound gives

∥G(u)− GK(u)∥2
Hs′ ≤ C2

λ

∑
|k|>K

(1 + |k|)2(s
′−p).

A standard counting argument (comparing the lattice sum with a radial integral) shows this tail is
≲ K−2α, with

α := p− s′ − d
2 > 0.

This is exactly the pseudo-spectral tail estimate also used in (Kovachki et al., 2021, Thm. 40). Hence
choosing

K ≍ ε−1/α

ensures ∥G − GK∥Hs′ ≤ ε/2.

Step 2: Reduction to a finite-dimensional map. The truncated operator GK is determined by finitely
many Fourier coefficients {Ĝ(u)(k)}|k|≤K , with output dimension mout ≍ Kd. To apply a neural
network, we also restrict the input to finitely many low modes. By compactness of U ⊂ Hs and
continuity of the projection PM , there exists M such that

∥GK(u)− GK(PMu)∥Hs′ ≤ ε/6 ∀u ∈ U .

This is the same finite-dimensional reduction used in the universal approximation argument of (Ko-
vachki et al., 2021, Thm. 15). Thus it suffices to approximate the finite-dimensional continuous
map

F : (û(k))|k|≤M 7−→ (Ĝ(u)(k))|k|≤K ,

between compact subsets of Euclidean spaces.

Step 3: Approximation of the finite map. Classical universal approximation theorems (and the con-
structive Ψ–FNO realization in (Kovachki et al., 2021, Def. 11, Thm. 15)) ensure that for any desired
accuracy δ > 0, one can build a neural network (or FNO block) approximating F uniformly to error
δ on each retained coefficient. To control the Hs′–norm it suffices to achieve coefficient accuracy

δ ≲
ε

Ks′+d/2
.

This choice ensures ∥PKG(u)− G̃θ(u)∥Hs′ ≤ ε/3. Constructive approximation bounds then give a
parameter count

P ≲ Kd · polylog(1/ε),
where the extra logarithmic factor reflects standard overheads in coefficient quantization and net-
work approximation (Kovachki et al., 2021, Remark 22).

Step 4: Assemble errors and conclude. Adding the contributions: - spectral truncation error ≤ ε/2
(Step 1), - input-projection error ≤ ε/6 (Step 2), - finite-map approximation error ≤ ε/3 (Step 3),

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

we obtain
sup
u∈U

∥G(u)− Gθ(u)∥Hs′ ≤ ε.

Substituting K ≍ ε−1/α into the parameter bound gives

PFNO(ε) ≲ ε−d/α,

up to the mild logarithmic factors discussed above.

Proof of Proposition 3.2. Step 1: Finite-dimensional subspace and sampling. Consider the K-mode
Fourier subspace

VK := span{eik·x : |k| ≤ K} ⊂ L2(Td), dimVK =: DK ≍ Kd.

Any sampler-based learner observes an input u ∈ VK only through n fixed points
(u(x1), . . . , u(xn)). This defines a linear map

S : VK → Cn, S(u) = (u(x1), . . . , u(xn)).

Step 2: Nyquist / injectivity argument. To reconstruct all Fourier modes up to radius K, the sampling
map S must be injective on VK . In matrix terms, S is represented by an n×DK Vandermonde-like
matrix. To have full rank DK , we require

n ≥ DK ≍ Kd.

If n < DK , there exists a nonzero u ∈ VK vanishing on all sample points, so the learner cannot
distinguish it from zero. This is the standard Nyquist/dimension-counting requirement: at least as
many samples as degrees of freedom.

Step 3: Parameter lower bound. After sampling, the learner applies a parametric map M : Cn →
Cm (e.g., a neural network) to produce either output samples or coefficients. To implement arbitrary
linear transformations on the DK retained modes (e.g., arbitrary Fourier multipliers), the parametric
map must have at least DK free parameters. For fully general dense linear maps (no structural
constraints), one needs

P ≳ D2
K ≍ K2d.

Step 4: Conversion to accuracy ε. From the FNO upper bound analysis, achieving accuracy ε
requires

K ≍ ε−1/α, α = p− s′ − d/2 > 0.

Substituting this into the previous bounds gives the scaling

n ≳ ε− d/α, Psampler(ε) ≳ ε− βd/α,

with β = 1 for minimal mode-wise maps and β = 2 for fully dense maps.

Step 5: Conclusion. Hence any sampler-based architecture that must reconstruct all modes up to
radius K requires asymptotically more parameters than an FNO whenever β > 1, justifying the
lower bound in the proposition.

B FLOW MATCHING BACKGROUND

Flow matching The core idea of flow matching is to learn a time-dependent velocity field, vθ(z, t),
which defines an ODE in the latent space:

dz(t)

dt
= vθ(z(t), t), z(0) ∼ π0, (2)

where π0 is a simple reference distribution (e.g., Gaussian). Integrating this ODE transports sam-
ples to the latent data distribution π1, such that z(1) ∼ π1 and p1(z) ≈ fϕ#Ddata, where fϕ#µ

denotes the pushforward measure of a distribution µ under fϕ, i.e., (fϕ#µ)(A) = µ(f−1
ϕ (A)) for
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measurable sets A. The corresponding time-dependent probability density, pt(z), evolves according
to the continuity equation:

∂pt(z)

∂t
+∇z ·

(
pt(z) vθ(z, t)

)
= 0. (3)

In practice, the target velocity field u(t, z) and the full marginal density pt(z) are generally unknown
and intractable. Flow matching sidesteps this issue by directly supervising the model to match the
instantaneous vector field along interpolating paths between the reference π0 and the target π1,
allowing for deterministic, efficient sampling. Different choices of paths lead to different training
dynamics and inductive biases, as they implicitly define the target velocity field u(t, z) that the
model regresses against.

Integrating this ODE from t = 0 to t = 1 transports the reference distribution π0 to the latent data
distribution π1, so that z(1) ∼ π1 and p1(z) ≈ fϕ#Ddata.

Latent Flow Matching. We now instantiate the general flow matching framework in the latent
space. Let zτ = fϕ(xτ ) for τ = 1, . . . ,m, where fϕ is a pretrained encoder mapping from the
data space to the lower-dimensional latent space. Our objective is to approximate the ground-truth
latent distribution q(zτ | x1, . . . , xτ−1) by a parametric distribution p(zτ | zτ−1), which can later
be decoded back to the data space via xτ = gψ(zτ ) using a decoder gψ .

The latent dynamics can be expressed by the ODE:
żt = ut(zt), (4)

where ut denotes the (true) time-dependent velocity field. Learning these dynamics amounts to
approximating ut with a neural parameterization. Following the flow matching framework, we
introduce a model velocity field vθ : [0, 1]× RZ → RZ and consider the ODE

ϕ̇t(z) = vθ(ϕt(z), t), ϕ0(z) = z, (5)
which defines a time-dependent diffeomorphism ϕt pushing forward an initial reference distribution
p0 (often chosen as N (0, I)) to a target distribution p1 ≈ q along the density path pt:

pt = (ϕt)#p0, (6)
where (·)# denotes the pushforward. In other words, the goal of flow matching is to learn a deter-
ministic coupling between p0 and q by training vθ so that the solution satisfies z0 ∼ p0 and z1 ∼ q.

Given a probability path pt and its associated velocity field ut, flow matching reduces to a least-
squares regression problem:

LFM(θ) = Et∼U [0,1], z∼pt ω(t) ∥vθ(z, t)− ut(z)∥22, (7)

where ω(t) > 0 is a weighting function, often taken as ω(t) = 1 (Lipman et al., 2022). This
formulation ensures that the learned velocity field aligns with the target field ut at all times, thereby
generating the desired marginal probability path.

C FOURIER NEURAL OPERATOR BACKGROUND

An FNO is designed to learn a mapping between function spaces, rather than between finite-
dimensional vectors. Consider a function u : Rd → Rc representing data, for example in RX ,
with samples x ∈ RX . Then, an FNO parameterizes an operator as

Gθ : u 7→ ũ, ũ : D → Rcout ,

that maps u to an output function ũ (e.g., a solution field of a PDE or a transformed spatial signal).

This mapping is implemented via iterative Fourier layers which perform spectral transformations of
the input:

û(k) = F [u](k), ˆ̃u(k) = Rθ(k) · û(k), (8)
followed by an inverse Fourier transform back to the spatial domain:

ũ(x) = F−1[ˆ̃u](x), (9)
with Rθ(k) being learnable Fourier-mode weights and F denoting the Fourier transform. This
spectral representation allows the FNO to efficiently capture long-range dependencies and global
correlations in the data.
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D AUTOENCODER DETAILS

Residual blocks throughout the architecture consist of two 3 × 3 convolutions with ReLU activa-
tion and group normalization (8 groups) in between, with the input added back to the output. At-
tention blocks are implemented using PyTorch’s nn.MultiheadAttention, with embeddings
reshaped from [B,C,H,W ] to [B,HW,C].

The autoencoder is initialised with a depth of d = 2 resulting in a factor 2d = 4 compression for all
datasets.

E MODEL HYPERPARAMETERS

We initialised the probability paths with the following hyperparameters. RIVER was defined with
variance parameters σ = 0.1 and σmin = 10−7. SLP used σ = 0.1 and σmin = 0.01. We further
considered the VE-diff path with σmin = 0.01 and σmax = 0.1 and the VP-diff path initialized with
βmin = 0.1 and βmax = 20.0 per (Lim et al., 2025b).

We provide details for the vector field regressors’ width and depth hyperparameters as per Table 6.

Model Parameter Value

TempO

nmodes 20
Hidden channels 64
Projection channels 64
Depth 4

U-Net

Hidden channels 64
Attention resolutions (1, 2, 2)
Channel multiplier (1, 2, 4)
Depth 3

ViT

Hidden channels 256
Depth 4
Mid-depth 5
Output normalization LayerNorm

Table 6: Descriptions of hyperparameters across TempO, U-Net, and ViT architectures.

F TRAINING AND INFERENCE SETUP FOR BASELINE MODELS

We evaluate three classes of baselines: Fourier Neural Operators (FNO) (Li et al., 2021), Wavelet
Neural Operators (WNO) (Tripura & Chakraborty, 2022), and a standard U-Net backbone.

2D Autoregressive Models (FNO-2D, WNO-2D, U-Net). The 2D variants of FNO, WNO, and
U-Net operate purely on spatial fields ω(·, t) ∈ R64×64 and treat time autoregressively. Each model
is provided a dense block of n input frames. These frames are concatenated and mapped to the
next-time-step prediction ω̂(·, t + 1). During training, models minimize an ℓ2 regression loss on
the next-step vorticity. During inference, the prediction is appended to the input sequence, and the
model is rolled forward autoregressively for the desired horizon, replacing the oldest frame at each
step. This 2D+RNN structure allows propagation to arbitrarily long forecast windows using a fixed
temporal stride.

3D Convolutional Models (FNO-3D, WNO-3D). The 3D variants of FNO and WNO treat time
as an additional convolutional dimension and directly process space–time blocks (x, y, t) as 3D
volumes. Following Li et al. (2021), the model receives the dense history of the first n timesteps and
performs a 3D convolutional operator mapping

Rn×x×y −→ RTpred×x×y,
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producing the entire future trajectory segment T at once. Unlike the 2D autoregressive setting, the
3D operator does not iterate forward in time: it learns a direct operator from the initial block to the
entire forecast window. This makes the method better conditioned and more expressive at the cost
of requiring a fixed temporal window during training (Li et al., 2021).

Both 2D and 3D WNOs follow the same temporal training structure as their FNO counterparts. The
only architectural change is the replacement of Fourier transforms with multi-resolution wavelet
transforms, but the data flow (input–output tensor shapes, roll-out strategy, and supervision) is iden-
tical.

Training Details. Models were trained using the Adam optimiser with weight decay of 0.0001.
FNO and WNO learning rate of 0.001 except the U-Net, which was trained with a learning rate of
0.0001.

Model Dim Layers Width Modes / Wavelet Level Input Ch.

FNO-3D 3D 4 64 (20, 20, 16) (Fourier) – 1
FNO-2D 2D 4 64 (20, 20) (Fourier) – Tin

UNet-2D 2D 4 (down/up) 128 base – – Tin

WNO-3D 3D 4 40 db6 (wavelet) 2 (Tin + 3)
WNO-2D 2D 4 64 db6 (wavelet) 2 (Tin + 2)

Table 7: Summary of hyperparameters for Fourier and Wavelet neural operators and the UNet base-
line. Channels refers to hidden width. Modes applies only to FNO; wavelet type/level applies only
to WNO.

Inference Protocol. For comparability with prior operator-learning works, we evaluate autore-
gressive models by providing the first n = 10 frames as context and generating the next 40 timesteps
using a single-step temporal stride. For 3D models, the first n frames are mapped directly to a 40-
step output block without iterative rollout. This setup follows the conventions established in (Li
et al., 2021; Tripura & Chakraborty, 2022).

G DATASET DETAILS

Table 8: Dataset sizes and trajectory lengths used in evaluation.

Dataset # Trajectories Timeseries Length

SWE 1000 100
RD-2D 1000 100
NS-ω 5000 50

Shallow water equation (SWE)

The SWEs are derived from the compressible Navier–Stokes equations and model free-surface flow
problems in 2D. The system of hyperbolic PDEs is given by:

∂th+ ∂x(hu) + ∂y(hv) = 0, (10)

∂t(hu) + ∂x

(
u2h+

1

2
grh

2
)
+ ∂y(uvh) = −grh ∂xb, (11)

∂t(hv) + ∂y

(
v2h+

1

2
grh

2
)
+ ∂x(uvh) = −grh ∂yb, (12)

where u, v are the horizontal and vertical velocities, h is the water height, b represents spatially
varying bathymetry, and gr is gravitational acceleration. The quantities hu and hv correspond to
directional momentum components.

The dataset ( (Takamoto et al., 2022)) simulates a 2D radial dam break scenario on a square domain
Ω = [−2.5, 2.5]2. The initial water height is a circular bump in the center of the domain:
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h(t = 0, x, y) =

{
2.0, if r < r0,

1.0, if r ≥ r0,
r =

√
x2 + y2, r0 ∼ U(0.3, 0.7).

2D reaction diffusion (RD-2D)

The RD-2D dataset models two non-linearly coupled variables: the activator u = u(t, x, y) and the
inhibitor v = v(t, x, y). The system of PDEs is:

∂tu = Du ∂xxu+Du ∂yyu+Ru(u, v), (13)
∂tv = Dv ∂xxv +Dv ∂yyv +Rv(u, v), (14)

where Du and Dv are diffusion coefficients, and Ru(u, v), Rv(u, v) are the reaction functions.
Specifically, the FitzHugh–Nagumo model defines the reactions as:

Ru(u, v) = u− u3 − k − v, (15)
Rv(u, v) = u− v, (16)

with k = 5× 10−3, Du = 1× 10−3, and Dv = 5× 10−3.

The dataset ( (Takamoto et al., 2022)) uses a simulation domain x, y ∈ (−1, 1) and t ∈ (0, 5] with
initial condition set as standard normal random noise: u(0, x, y) ∼ N (0, 1.0).

2D incompressible Navier-Stokes vorticity (NS-ω)

The NS-ω ( (Li et al., 2021)) models 2D incompressible fluid flow on the unit torus. The system of
equations is:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ], (17)
∇ · u(x, t) = 0, (18)

w(x, 0) = w0(x), (19)

where w(x, t) is the vorticity, u(x, t) is the velocity field, ν is viscosity, and f(x) is a fixed forcing
term:

f(x) = 0.1
(
sin(2π(x1 + x2)) + cos(2π(x1 + x2))

)
.

The initial condition is sampled from a Gaussian measure:

w0 ∼ µ, µ = N
(
0,

(
−∆+ 49I

)−2.5
73/2

)
,

with periodic boundary conditions.

H SPECTRAL ANALYSIS OF GROUND TRUTH NS-ω

Fig. 4 shows how the quality of spectral truncations of the true Navier–Stokes vorticity field depends
on the cutoff wavenumber kcut. Given the full Fourier spectrum ω̂(kx, ky), we apply a mask that
retains only modes with |kx|+ |ky| ≤ kcut, reconstruct the signal by inverse FFT, and compute three
quantities as functions of kcut:

1. Reconstruction MSE: the mean squared error between the original and truncated fields in
physical space.

2. Spectral MSE: the mean squared error in Fourier space, quantifying lost spectral content.
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Figure 4: Spectral Analysis of True Vorticity: Reconstruction MSE, spectral MSE, and cumulative
enstrophy fraction of true Navier–Stokes vorticity data as functions of cutoff wavenumber kcut.

3. Cumulative energy fraction: the fraction of total energy
∑

|ω̂|2 retained by the truncated
spectrum.

As kcut increases, both reconstruction and spectral errors decrease, while the retained energy ap-
proaches unity.
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I EXTENDED RESULTS FOR NAVIER–STOKES VORTICITY

Figure 5: Navier–Stokes Vorticity (Original). Ground-truth timeseries across 40 timesteps.

Figure 6: Navier–Stokes Vorticity (U-Net). Forecasted timeseries across 40 timesteps.

Figure 7: Navier–Stokes Vorticity (ViT). Forecasted timeseries across 40 timesteps.
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Figure 8: Navier–Stokes Vorticity (TempO). Forecasted timeseries across 40 timesteps.

J EXTENDED RESULTS FOR SHALLOW WATER EQUATION

Regressor Path MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑

TempO

Affine-OT 6.64e-05 5.65e-05 7.64e-03 46.5 0.998 0.997
RIVER 4.04e-04 2.33e-04 1.89e-02 38.7 0.989 0.976
VE-diff 9.37e-04 8.22e-04 2.89e-02 35.2 0.994 0.977
VP-diff 4.41e-03 2.51e-03 4.31e-02 28.3 0.872 0.857

ViT

Affine-OT 9.59e-05 7.93e-05 9.06e-03 44.9 0.997 0.995
VP-diff 1.30e-04 8.81e-05 1.05e-02 43.6 0.996 0.993
RIVER 2.99e-04 1.67e-04 1.63e-02 40.0 0.992 0.981
SLP1 6.60e-04 - 1.28e-01 36.1 - 0.93
VE-diff 1.28e-03 1.01e-03 3.38e-02 33.7 0.985 0.960

U-Net
VP-diff 1.37e-02 8.26e-03 1.10e-01 23.4 0.546 0.627
RIVER 1.61e-02 1.00e-02 1.20e-01 22.7 0.437 0.610
Affine-OT 1.68e-02 1.01e-02 1.22e-01 22.5 0.435 0.593

Table 9: Comparison of TempO, U-Net, and ViT models under different probability paths for the
SWE. The best value for each metric is highlighted in bold.

Figure 9: SWE (Original). Ground-truth timeseries across 40 timesteps.
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Figure 10: SWE (U-Net). Forecasted timeseries across 40 timesteps.

Figure 11: SWE (ViT). Forecasted timeseries across 40 timesteps.

Figure 12: SWE (TempO). Forecasted timeseries across 40 timesteps.

K EXTENDED RESULTS FOR 2D REACTION DIFFUSION
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Regressor Path MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑

TempO

Affine-OT 2.76e-05 2.18e-05 3.29e-02 65.7 1.000 0.999
RIVER 9.36e-04 5.47e-04 2.08e-01 50.4 0.975 0.978
VE-diff 1.58e-03 1.38e-03 2.70e-01 48.2 0.990 0.977
VP-diff 1.24e-02 1.01e-02 4.95e-01 39.2 0.714 0.862

ViT

Affine-OT 6.30e-04 4.40e-04 1.67e-01 52.2 0.987 0.986
SLP2 3.56e-04 - 1.16e-01 34.3 - 0.90
RIVER 1.00e-03 5.89e-04 2.16e-01 50.1 0.973 0.977
VE-diff 3.54e-03 2.23e-03 4.06e-01 44.7 0.915 0.946

U-Net

Affine-OT 3.09e-05 2.45e-05 3.57e-02 65.2 0.999 0.999
RIVER 1.02e-03 5.49e-04 2.17e-01 50.1 0.972 0.976
VE-diff 9.03e-03 6.07e-03 6.42e-01 40.6 0.820 0.860
VP-diff 2.09e-02 1.66e-02 6.81e-01 37.0 0.574 0.792

Table 10: Comparison of TempO, U-Net, and ViT models under different probability paths for the
RD-2D. The best value for each metric is highlighted in bold.

Figure 13: Reaction Diffusion (Original). Ground-truth end sample, from initial conditions of
randomly sampled noise.

Figure 14: Reaction Diffusion (U-Net). Forecasted end sample, from initial conditions of randomly
sampled noise.

Figure 15: Reaction Diffusion (ViT). Forecasted end sample, from initial conditions of randomly
sampled noise.

Figure 16: Reaction Diffusion (TempO). Forecasted end sample, from initial conditions of ran-
domly sampled noise.
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L EXTENDED ABLATION RESULTS

Table 11: Ablation over different training sequence lengths on the NS-ω dataset. TempO and the top
performing alternative are trained while varying sequence lengths and evaluated on 10 timesteps to
predict the next step.

Method Seq. Len. MSE DensityMSE SpectralMSE RFNE PSNR Pearson SSIM NFE

TempO

3 4.924e-02 7.685e-05 3.531e-02 2.328e-01 25.769 0.973 0.803 74
6 4.753e-02 1.133e-04 3.394e-02 2.276e-01 25.923 0.974 0.800 608
11 5.036e-02 1.055e-04 3.620e-02 2.352e-01 25.672 0.972 0.800 842
16 5.607e-02 1.282e-04 3.821e-02 2.497e-01 25.205 0.969 0.786 938
26 6.255e-02 7.487e-05 3.726e-02 2.541e-01 24.730 0.968 0.765 1070

ViT
(Affine-OT)

3 6.748e-02 1.414e-04 4.652e-02 2.678e-01 24.401 0.963 0.766 116
6 5.434e-02 1.239e-04 3.727e-02 2.416e-01 25.341 0.970 0.783 1766
11 6.014e-02 1.376e-04 4.067e-02 2.546e-01 24.901 0.967 0.777 1712
16 6.701e-02 1.093e-04 4.428e-02 2.680e-01 24.431 0.963 0.764 1622
26 7.682e-02 8.104e-05 4.468e-02 2.778e-01 23.838 0.960 0.741 1100

Table 12: Ablation of the TempO model on the NS-ω dataset by varying the number of modes.
Models are trained with different numbers of Fourier modes and evaluated on 10 timesteps to predict
the next step.

Modes MSE DensityMSE SpectralMSE RFNE PSNR Pearson SSIM NFE

1 1.409e-01 1.075e-04 8.566e-02 3.947e-01 21.204 0.921 0.588 5798
2 6.103e-02 8.928e-05 4.096e-02 2.596e-01 24.837 0.966 0.765 1688
4 5.789e-02 8.361e-05 3.978e-02 2.538e-01 25.066 0.968 0.776 1058
8 5.528e-02 8.498e-05 3.788e-02 2.481e-01 25.267 0.969 0.788 800

16 5.471e-02 8.757e-05 3.742e-02 2.467e-01 25.312 0.970 0.787 884

M ABLATION ON FOURIER-MODE TRUNCATION

Setup To assess the sensitivity of TempO to the number of retained Fourier modes, we perform an
ablation in which the spectral truncation level of the underlying FNO blocks is varied while keeping
all other architectural and training settings fixed. Specifically, we evaluate truncation levels of

m ∈ {16, 8, 4, 2, 1},

where m denotes the number of Fourier modes kept per spatial dimension. The case m = 1 repre-
sents the most extreme truncation and serves as a lower-bound sanity check for TempO under highly
restricted spectral capacity.

Method All models are trained with identical optimisation hyperparameters and dataset splits on
the NS-ω dataset. For each truncation level, we measure ..., following the evaluation protocol used
in the main experiments.

Results Table 13 reports the aggregated metrics. We observe that performance remains stable for
moderate truncations (m = 8 and m = 16), with only mild degradation for m = 4. As expected,
substantial deterioration appears only when the spectral capacity is collapsed to m = 2 or m = 1,
reflecting the loss of essential mid-frequency components.

Discussion The study shows that TempO’s performance is largely stable for moderate truncations
(4–16 modes), and interestingly at 4 modes (though k=8 captures 99% of the energy, k=4 converges
upon almost 97% already) the rollout is marginally more stable than 8 modes. The extreme trun-
cation to 2 modes and 1 mode produces a noticeable drop in accuracy, as expected, highlighting
the importance of retaining a sufficient number of spectral modes to capture the essential dynamics.
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Table 13: Ablation on Fourier mode truncation in TempO.

Modes MSE SpectralMSE PSNR Pearson MSE/time

1 5.34e-02 3.74e-2 25.416 0.970 3.950e-01
2 3.16e-02 3.79e-2 27.695 0.982 1.668e-01
4 2.72e-02 4.00e-2 28.346 0.984 2.715e-02
8 2.91e-02 4.10e-2 28.056 0.983 3.244e-02

16 2.80e-02 8.57e-2 28.215 0.984 3.084e-02

Figure 17: Ablation of varying Fourier mode truncation to evaluate sensitivity to the truncation level.

Overall, this confirms that TempO is robust to Fourier-mode selection within a reasonable range,
though the best performing model is at 16 modes.

Crucially, truncation from 16 to 8 modes does not materially affect accuracy, consistent with the
observation that the datasets considered have weak energy content in the highest spectral bands
(Appendix G). Only extremely aggressive truncation (e.g. m ≤ 2) produces meaningful degradation,
as such settings remove both high- and mid-frequency modes required to represent the system’s
dynamics. Any truncation for computational requirements is also mitigated by the fact that we
operate in latent space, which caps the maximum number of modes according to the resolution of
the latent space.

N EXTENDED RESULTS FO FNO-2D ON NAVIER STOKES VORTICITY

O USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of ChatGPT to make suggestions on how to polish the text, correct gram-
mar, and ensure clarity in writing. No results, code, or data were created or altered by the model.
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Figure 18: Navier–Stokes Vorticity (Ground Truth). Forecasted timeseries across 40 timesteps.

Figure 19: Navier–Stokes Vorticity (FNO-2D). Forecasted timeseries across 40 timesteps.

Figure 20: Navier–Stokes Vorticity (TempO). Forecasted timeseries across 40 timesteps.
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