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ABSTRACT

Forecasting high-dimensional, PDE-governed dynamics remains a core challenge
for generative modeling. Existing autoregressive and diffusion-based approaches
often suffer cumulative errors and discretisation artifacts that limit long, physically
consistent forecasts. Flow matching offers a natural alternative, enabling efficient,
deterministic sampling. We prove an upper bound on FNO approximation error
and propose TempO, a latent flow matching model leveraging sparse conditioning
with channel folding to efficiently process 3D spatiotemporal fields using time-
conditioned Fourier layers to capture multi-scale modes with high fidelity. TempO
outperforms state-of-the-art baselines across three benchmark PDE datasets, and
spectral analysis further demonstrates superior recovery of multi-scale dynamics,
while efficiency studies highlight its parameter- and memory-light design com-
pared to attention-based or convolutional regressors.

1 INTRODUCTION

Generative artificial intelligence has brought unparalleled creative and scientific potential, with mod-
els capable of producing images (Hatamizadeh et al., 2025), video (Bar-Tal et al., 2024), audio (Ju
et al., 2024), and text (Grattafiori et al., 2024) that rival human quality. From autoregressive trans-
formers to diffusion models and energy-based approaches, the landscape of generative AI is rich and
diverse, offering multiple pathways to model complex data distributions. At the core of this revo-
lution are probabilistic generative models, which learn to sample from complex, high-dimensional
distributions. Among these, flow matching models have emerged as a class of generative models
which learn to transform a simple prior distribution to a more complex data distribution as a con-
tinuous transformation. This direct, simulation-free approach enables both efficiency and precision,
offering a new lens on modeling complex systems (Lipman et al., 2023).

Despite recent advances, forecasting high-dimensional temporal dynamics remains challenging.
Deep learning models are computationally expensive and often fail catastrophically after a few dozen
timesteps due to compounding errors in autoregressive predictions (Ansari et al., 2024). Even with
the advent of large language models and their remarkable ability to generate, models that attempt
to leverage them for forecasting face limitations of discretisation and tokenisation (Ansari et al.,
2024), offering little practical benefit relative to their computational cost (Tan et al., 2024). Mod-
ern generative models have been proven capable of generating visually compelling and coherent
videos (John et al., 2024), but critically lack the fine-grained control required to be used in scientific
and engineering contexts.

Recent foundation models for forecasting include GenCast for weather (Price et al., 2025) and
Chronos for general time series (Ansari et al., 2024), demonstrate the promise of large-scale pretrain-
ing. These models leverage massive datasets across multiple domains resulting in strong zero- and
few-shot transferability. Chronos captures coarse, long-range correlations remarkably long times-
pans; however, the granularity, i.e. prediction length still falls at an average of 22 across 55 datasets,
with only 7 tasks exceeding 30 steps (Ansari et al., 2024). GenCast, likewise, can generate 15-day
global weather forecasts, but at a granularity of 12 hours, around 30 steps. True progress requires
models capable of deterministic yet flexible generation, able to explore plausible trajectories while
respecting physical constraints to then select precise forecasts out of the space of plausible predic-
tions (Guo et al., 2025). Although the short to mid term range is a popular horizon to explore (Lim
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et al., 2025), the goal is to generate long-horizon predictions on the order of 30 timesteps or more,
generating trajectories that are not just plausible, but physically consistent.

Fundamentally, models relying on discretisation or tokenisation are not ideal for continuous, Partial
Differential Equation (PDE)-governed dynamics. Demonstrating smooth trajectories in state space
which generalise to long forecasting horizons would show greater fidelity to the underlying physics.
Other existing efforts which leverage diffusion (Molinaro et al., 2025; Yao et al., 2025; Huang et al.,
2024) move toward more natural representations, but are themselves fundamentally tied to stochastic
dynamics. Instead, a natural choice for such a problem is flow matching, where the vector field
regression is closer to learning PDE operators which are themselves vector fields describing time-
derivatives, and learn deterministic dynamics with potentially more efficient Ordinary Differential
Equation (ODE)-based sampling in contrast to the denoising process of diffusion models. Existing
flow matching methods have individually worked toward video generation (Davtyan et al., 2023;
Jin et al., 2025) and PDE single-step prediction (Kerrigan et al., 2023), but thus far have not been
thoroughly tested for long-horizon temporal forecasting and do not design for the deterministic and
stable rollouts required for such tasks.

In this work, we propose Temporal Operator flow matching (TempO), a latent flow matching capable
of forecasting physically meaningful fields over long time horizons with high fidelity in both spatial
and spectral characteristics. We perform sparse conditioning for added computational- and data-
efficiency, and channel folding to process spatiotemporal 3D data using conventionally 2D frame-
works: We leverage recent advances in scientific machine learning by designing time-conditioned
parameter-efficient shared Fourier layers within the vector field regressor, allowing for strong cap-
ture of global and local spatial modes. We derive theoretical error bounds that characterize the ef-
ficiency and expressivity of TempO, and showcase its performance on PDE benchmarking datasets
accompanied with a spectral analysis showing a distinct advantage in capturing the essential dy-
namics required for forecasting. We see a 16% lower error when predicting vorticity of 2D incom-
pressible Navier Stokes, with Pearson correlations remaining above 0.98 for a 40 step forecasting
horizon, demonstrating its stable temporal forecasting and high quality generation capability.

2 RELEVANT WORKS

Interest in machine learning for physical systems has surged, with generative models being adapted
for such tasks and borrowing features for broader generation. For example, Liu & Tang (2025); Li
et al. (2021) integrate an Fourier Neural Operator (FNO) into a score-matching denoising network,
leveraging its resolution-invariant properties to achieve state-of-the-art superresolution. Similarly,
Fourier Neural ODE combines Fourier analysis with Neural ODEs, outperforming the original FNO,
DeepONet (Lu et al., 2021), and Physics Informed Neural Networks (Raissi et al., 2019) for predict-
ing time instances (Li et al., 2024). Operator learning has also been integrated with generative adver-
sarial models to generalize to infinite-dimensional function spaces (Rahman et al., 2022). However,
such approaches leverage desirable representation characteristics of Fourier embedded processing,
which diverges from the focus of this work on spatio-temporal generation.

Application-specific models for scientific data have also seen development: GenCFD (Molinaro
et al., 2025) proposes a conditional diffusion model to generate the underlying distributions of high
fidelity flow fields. Kerrigan et al. (2023) propose the first extension of FNOs to flow matching
tasks and predicts plausible fluid dynamic fields. Yao et al. (2025) leverages neural operators
in an unconditional diffusion model to improve efficiency and sees state-of-the-art performance
for multi-resolution PDE tasks, as compared to its competitor DiffusionPDE Huang et al. (2024)
which originally demonstrated strong performance in solving PDEs with partial observations. Such
methods have thus far focused on single-timeframe prediction, i.e., solving slices of 2D dynamic
PDEs, rather than temporal rollouts as investigated here.

Models designed to predict sequences of future states include the aforementioned large-scale
Chronos and GenCast (Ansari et al., 2024; Price et al., 2025). In addition, pyramidal flow match-
ing (Jin et al., 2025) produces state-of-the-art video generation compared to leading models (?),
representing a successful flow matching foundation model. (Tamir et al., 2024) present conditional
flow matching for time series, succeeding in long 1D trajectories where neural ODEs fail, but has
not scaled to 2D spatiotemporal data. Kollovieh et al. (2024) extends this with Gaussian processes

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for forecasting tasks outside of scientific machine learning. We focus instead on models that fall
between these two categories, scaling reasonably to 2D data to match common PDE settings.

3 METHOD

We begin by developing the background which is then used to construct our method. Flow matching
learns a time-dependent velocity field vθ(z, t) defining an ODE in the latent space:

dz(t)

dt
= vθ(z(t), t), z(0) ∼ π0, (1)

where π0 is a simple prior (e.g., Gaussian). Integrating this ODE transports samples to the latent
data distribution π1, see Appendix B. Training reduces to a regression objective that matches the
model velocity field to a target velocity along interpolating probability paths (Lipman et al., 2023).
This enables deterministic, simulation-free sampling from complex distributions.

Table 1: Representative Path Choices in Flow Matching Models.

Path at bt ct Parameter definitions

Affine-OT1 t 0 (1− (1− ϵmin)t)
2 ϵmin ≥ 0: min. noise level

RIVER2 (1− (1− σmin)t) t σ2 σ ≥ 0: noise scale, σmin ≥ 0: min. noise
SLP3 (1− t) t σ2

min + σ2t(1− t) σ, σmin ≥ 0: variance parameters
VE-diff4 1 0 σ2

t σt: geometric schedule, σmin, σmax > 0

VP-diff4 exp(− 1
2T (1− t)) 0 1− exp(−T (1− t)) βmin, βmax > 0, T (t) =

∫ t
0
β(s) ds

1 (Lipman et al., 2023), 2 (Davtyan et al., 2023), 3(Lim et al., 2025),4 (Ryzhakov et al., 2024)

A key component of flow matching is the choice of the probability density path pt interpolating
between the reference distribution π0 and the target π1. We focus on Gaussian conditional paths
with closed-form velocity fields:

pt

(
Z | Z̃ := (Z0, Z1)

)
= N

(
Z
∣∣ atZ0 + btZ1, c

2
t I
)
,

where at, bt, ct define the path (Table 1). This pair-conditional path is defined for a specific tran-
sition (Z0, Z1), and the marginal interpolant is obtained by averaging over all pairs: pt(Z) =
E(Z0,Z1)[pt(Z | Z0, Z1)]. While π0 is typically a standard Gaussian, intermediate densities pt
can follow diffusion-inspired, optimal transport, or other custom schedules.

To parameterize vθ, we modify FNOs, which approximate mappings between functions via spectral
convolution layers. Given input u, the FNO parameterizes an operator as Gθ : u 7→ ũ, ũ : D →
Rcout , that maps u to an output function ũ. Iterative Fourier layers perform spectral transformations
of the input û(k) = F [u](k), ˆ̃u(k) = Rθ(k) · û(k), followed by an inverse Fourier transform back
to the spatial domain; ũ(x) = F−1[ˆ̃u](x), with Rθ(k) being learnable Fourier-mode weights and F
denoting the Fourier transform. This spectral representation allows the FNO to efficiently capture
long-range dependencies and global correlations in the data.

3.1 TEMPORAL OPERATOR FLOW MATCHING (TEMPO)

Using an FNO-inspired regressor to learn the vector field of a flow matching model has a number of
benefits, namely, the added expressivity that the Fourier representation provides at a low computa-
tional cost thanks to highly optimised Fast Fourier Transform (FFT) operations. Building on prior
analysis of FNOs for solving PDEs (Kovachki et al., 2021), we show that an FNO-inspired regressor
can achieve an upper bound on approximation error for flow matching models and we provide a
lower bound on the accuracy achievable by sampler-based methods (e.g., Transformer or U-Net) in
relation to their number of parameters.
Theorem 3.1 (FNO regressor constructive upper bound). Let Td be the d–torus. Fix s, s′ ≥ 0 and
let U ⊂ Hs(Td) be compact. Suppose G : U → Hs′(Td) is continuous and satisfies |Ĝ(u)(k)| ≤
Cλ(1 + |k|)−p for all u ∈ U , k ∈ Zd, with constants Cλ > 0, p > 0. If p > s′ + d

2 and we define
α := p− s′ − d

2 > 0, then for every ε > 0 there exists a Fourier Neural Operator Gθ with

PFNO(ε) ≲ ε− d/α,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

such that supu∈U ∥G(u)−Gθ(u)∥Hs′ ≤ ε. The hidden constants depend only on d, s, s′,U , Cλ and
mild/logarithmic factors.

This result is in line with the estimates and arguments made in (Kovachki et al., 2021).

Sketch of proof of Theorem 3.1. (Spectral truncation.) The Fourier decay assumption implies that
high-frequency modes of G(u) contribute at most O(K−2α) to the Hs′ -error. Choosing K ≍ ε−1/α

makes this truncation error ≤ ε/2.

(Finite-dimensional reduction.) For this cutoff K, the operator GK is determined by O(Kd) Fourier
coefficients, and inputs can likewise be restricted to finitely many low modes without significant
loss of accuracy. Thus the problem reduces to approximating a continuous map between compact
subsets of Rmin and Rmout , with mout ≍ Kd.

(Approximation by networks.) Standard universal approximation results (or the constructive FNO
design in (Kovachki et al., 2021)) ensure that such a finite map can be uniformly approximated by a
network with O(Kd) parameters, up to mild logarithmic factors.

(Conclusion.) Combining these errors yields an overall accuracy ε with parameter count P ≲ Kd ≍
ε−d/α, proving the claim.

Proposition 3.2 (Transformer/UNet Sampler-based lower bound). Under the assumptions of The-
orem 3.1, consider any learner that observes each u ∈ U only through n fixed point evaluations
and applies a parametric map with P real parameters, required in the worst case to reconstruct all
Fourier modes up to radius K ≍ ε−1/α. Then necessarily

n ≳ ε− d/α, Psampler(ε) ≳ ε− βd/α,

for some architecture–dependent β ≥ 1 (optimistically β = 1 when only diagonal mode-wise maps
are needed, generically β = 2 for arbitrary dense linear maps). These bounds are information-
theoretic and asymptotic, up to constants and mild/logarithmic factors.

Sketch of proof of Proposition 3.2. (Sampling necessity.) The K–mode subspace VK has dimension
DK ≍ Kd. Sampling at n points defines a linear map S : VK → Cn. For S to be injective on VK ,
its matrix must have rank DK , hence n ≥ DK ≍ Kd.

(Parameter complexity.) After sampling, the learner implements a parametric map M : Cn → Cm.
To represent arbitrary linear maps on the DK-dimensional coefficient space (e.g. arbitrary diagonal
multipliers), the parameter family must have at least P ≳ DK degrees of freedom. For fully general
dense linear maps one needs P ≳ D2

K .

(Conversion.) Substituting K ≍ ε−1/α (from the theorem) gives n ≳ ε−d/α and P ≳ ε−βd/α with
β = 1 (optimistic) or β = 2 (dense case), establishing the lower bound, see Appendix A for the
extended proof.

Corollary 3.3 (FNO vs sampler scaling). From Theorem 3.1 and Proposition 3.2 one has

PFNO(ε) ≲ ε− d/α, Psampler(ε) ≳ ε− βd/α.

Hence, whenever β > 1, FNOs achieve the same accuracy ε with asymptotically fewer parameters
than sampler–based learners.

TempO Consequently, we propose a novel generation model which capitalises on the FNO’s ex-
pressivity and capacity to model complex velocity fields by designing a latent time-conditioned FNO
vector field regressor using channel folding for both efficiency and enhanced temporal coherency.
Together with temporal conditioning (Davtyan et al., 2023), these define a novel, end-to-end train-
able model for predicting latent dynamics.

Let fϕ : RX → RZ denote an encoder mapping data points x to latent embeddings z = fϕ(x). We
can then define a latent-space velocity field described by 1 where vθ is parameterized by an FNO.

To capture the temporal dependencies, we leverage sparse conditioning (Davtyan et al., 2023; Lim
et al., 2025). For some discrete-time sequence {xt}Nt=1 with xt ∈ X , its latent representation
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is given by {zt}Nt=1, where zt = fϕ(xt). For a prediction horizon T ∈ {L, . . . , N − 1} with
sequence length L, the objective is to predict the next latent embedding zT+1. We define a reference
embedding to be zT , corresponding to the most recent observation prior to the prediction target, and
a conditioning embedding as some observation selected at a timestep τ ∈ {T−L, . . . , T−1}. These
two embeddings are concatenated with the temporal offset, defined as ∆ = T−τ , which is the extent
of temporal data the model is provided to predict the next-step embedding, ẑT+1 = fθ(zT , zτ ,∆).

To process the spatiotemporal input data and conditioning while preserving compatibility the 2D
FNO, we then propose a channel folding scheme that merges the batch and channel dimensions
(as opposed to the more conventional batch and time dimensions) to align with the original input
ordering of the FNO). To match with the expected inputs of the form RB′×T ′×H×W , we collapse
the batch and channel axes into a single “effective batch” dimension u′ ∈ R(B·C)×T×H×W . This
folding operation effectively treats each channel of each sample as an independent element within
the extended batch. As a consequence, the FNO is applied identically across all channels but without
cross-channel mixing at this stage.

This time-conditioned FNO then operates over latent temporal embeddings as functions on their
spatial domain vθ(z, t) = Gθ(z) to learn the time-dependent vector field that transports a reference
latent distribution π0 to the latent data distribution π1. By leveraging the spectral inductive bias
of FNOs, the learned velocity field can capture both local and long-range correlations efficiently,
improving the expressivity and stability of flow matching in high-dimensional latent spaces.

4 EXPERIMENTS

The TempO is evaluated with the goal of assessing its ability to learn accurate stochastic latent-space
dynamics and forecast high-dimensional solution fields over medium to long time horizons. We test
our method over PDE datasets which pose challenging spatio-temporal correlations and multiscale
features, making them a natural testbed for latent flow-based modeling.

Our proposed TempO was set against five key methods. The state-of-the-art video generation method
based on a U-Net shaped Vision Transformer (ViT) and modified optimal transport path Random
frame conditioned flow Integration for VidEo pRediction (RIVER) proposed by Davtyan et al.
(2023) matches or surpasses common video prediction benchmarks using 10x fewer computational
resources (Davtyan et al., 2023). We also include the baseline conditional flow matching Lipman
et al. (2023) which implements a U-Net trained using a theoretically optimal affine optimal trans-
port (Affine-OT) path. The stochastic linear path (SLP) was proposed by Lim et al. (2025), tested
with a ViT to directly address the challenges of spatiotemporal forecasting for PDE datasets. The
Transformer-based latent space flow matching method with Affine-OT proposed by Dao et al. (2023)
further demonstrates competitive performance in image generation using latent flow matching com-
pared against both flow matching models and diffusion models (Phung et al., 2023; Ho et al., 2020)
among others. We also evaluate both variance preserving diffusion (VP-diff) and variance exploding
diffusion (VE-diff) paths which generalise the Denoising Diffusion Probabilistic noise perturbation
model and a score-based model to flow matching paths, respectively (Ho et al., 2020; Song et al.,
2021). Ryzhakov et al. (2024) establishes strong theoretical backing for both paths.

We then ablate the specific implementation of the methods (consisting of a specific architecture and
a specific probability path). In summary, the choice of regressor includes our proposed TempO
regressor, and additionally implement a ViT regressor (Davtyan et al., 2023; Lim et al., 2025) and a
classic U-Net regressor (Lipman et al., 2023). We pretrain a convolutional autoencoder with residual
and attention blocks to obtain a compressed latent representation of the dynamics, see Appendix D.

All methods were conditioned using sparse conditioning. These models are then supervised by each
probability density paths described in Table 1, with further details in Appendix E. The Adam opti-
miser was used with a learning rate of 1e-4 for the FNO, and 5e-5 for the ViT and U-Net regressors.
Models are trained on an 80/10/10 training to validation to test data splits.

We evaluate our models on three spatiotemporal PDE datasets: the shallow water equation (SWE),
which simulate 2D free-surface flows; 2D reaction diffusion (RD-2D) exhibiting multiscale non-
linear patterns; and 2D incompressible Navier-Stokes vorticity (NS-ω) dataset capturing chaotic
turbulent dynamics. During training, models are sparsely conditioned on the first 15 frames and
tasked with predicting the subsequent frame at resolutions of 1×128×128 (shallow water equation
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(SWE)), 2 × 128 × 128 (2D reaction diffusion (RD-2D)), and 1 × 64 × 64 (2D incompressible
Navier-Stokes vorticity (NS-ω)), see Appendix F.

5 RESULTS

Table 2: NS-ω Results: Comparison of TempO, U-Net, and ViT models.

Regressor Path MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑

TempO

RIVER 5.63e-02 3.84e-02 2.50e-01 25.19 0.969 0.786
Affine-OT 5.77e-02 3.98e-02 2.54e-01 25.08 0.968 0.789
VP-diff 8.10e-02 5.34e-02 2.85e-01 23.61 0.955 0.731
VE-diff 2.96e-01 1.73e-01 5.60e-01 17.98 0.821 0.373

ViT

Affine-OT1 6.75e-02 4.38e-02 2.72e-01 24.40 0.962 0.758
RIVER2 6.88e-02 4.33e-02 2.73e-01 24.32 0.962 0.750
VP-diff3 7.77e-02 4.95e-02 2.89e-01 23.79 0.956 0.729
VE-diff3 1.63e+00 9.27e-01 1.35e+00 10.67 0.118 0.024

U-Net

VP-diff4 4.05e-01 3.26e-01 6.71e-01 16.62 0.756 0.323
RIVER 4.08e-01 3.28e-01 6.74e-01 16.59 0.752 0.321
Affine-OT5 4.10e-01 3.42e-01 6.76e-01 16.57 0.751 0.324
VE-diff4 5.02e-01 3.70e-01 7.48e-01 15.68 0.694 0.263

1 (Dao et al., 2023), 2(Davtyan et al., 2023), 3 (Lim et al., 2025; Song & Ermon, 2020), 4(Ryzhakov et al., 2024), 5(Lipman et al., 2023)

Table 3: SWE and RD-2D Results: Comparison of TempO, U-Net, and ViT models.

Dataset Method MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑

SWE

TempOAffine-OT 6.64e-05 5.65e-05 7.64e-03 46.5 0.998 0.997
ViTAffine-OT

1 9.59e-05 7.93e-05 9.06e-03 44.9 0.997 0.995
ViTVP-diff

2 1.30e-04 8.81e-05 1.05e-02 43.6 0.996 0.993
ViTRIVER

3 2.99e-04 1.67e-04 1.63e-02 40.0 0.992 0.981
ViTSLP

4 6.60e-04 - 1.28e-01 36.1 - 0.93

RD-2D

TempOAffine-OT 2.76e-05 2.18e-05 3.29e-02 65.7 1.000 0.999
U-NetAffine-OT

5 3.09e-05 2.45e-05 3.57e-02 65.2 0.999 0.999
ViTAffine-OT 6.30e-04 4.40e-04 1.67e-01 52.2 0.987 0.986
ViTSLP

4 3.56e-04 - 1.16e-01 34.3 - 0.90
1 (Dao et al., 2023), 2(Lim et al., 2025; Song & Ermon, 2020), 3(Davtyan et al., 2023), 4(Lim et al., 2025); results reported from original paper trained on same dataset.,

5(Lipman et al., 2023)

Overall, TempO outperforms the methods proposed by Lim et al. (2025); Song et al. (2022); Lipman
et al. (2023) and Davtyan et al. (2023) as well as the ablated methods. For results predicting NS-ω
in Table 2, we observe a 16% improvement in MSE and an 11.4% lower spectral MSE, producing
spatially and spectrally accurate next steps. Its lower RFNE indicates reduced scale-independent er-
ror, while SSIM shows improved fidelity in local features, critical for the localized vorticity patterns
where small spatial distortions significantly affect downstream evolution (Majda & Bertozzi, 2001).
PSNR and Pearson see lower normalised ranges in values, indicating that large scale features like
the vorticity intensity and global structure agreement, respectively, are more easily captured across
all models, with a clear advantage by TempO; additional visualisations in Appendix H.

We select top performing comparisons for SWE and RD-2D, Table 3), where TempO maintains
superior performance. In SWE, it achieves a 28.8% lower SpectralMSE and higher PSNR, indicating
faithful amplitude, spectral content, and structural coherence with sharp boundaries preserved, see
Appendix I for additional visualisations and ablated comparisons. Overall MSE is reduced by 30.8

In RD-2D, U-NetAffine-OT competes closely with TempO, benefiting from translation-equivariant con-
volutional layers that capture multi-scale dynamics and repeating local structures (Cohen & Welling,
2016). Both TempO and the U-Net have nearly matched PSNR, Pearon, and SSIM scores, with an
improvement of 11% in SpectralMSE from the TempO. By contrast, the next best ViT regressor
model is 95.6% drop in SpectralMSE, where attention might emphasize low-frequency global struc-
tures (Wang et al., 2022; Piao et al., 2024); see visual comparison in Appendix J.
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Figure 1: Prediction performance comparison for NS-ω. Left: Pearson correlation across fore-
casted timesteps. Forty timesteps are predicted by TempO, ViT, and U-Net conditioned on two
preceding timesteps and sampled for each proceeding step. The Pearson correlation coefficient
shows significant degradation for the U-Net, oscillatory behavior and degradation for the ViT, and
consistently stable values above 0.98 for TempO. Right: Predicted vorticity fields. True data (a),
TempO (b), ViT (c), and U-Net (d). At timesteps 5, 15, and 35 the ViT and U-Net models clearly
diverge, with U-Net regressing to a noisy, while TempO maintaining excellent accuracy.

The timeseries forecasting task, see Fig. 1, evaluates how well models capture the underlying PDE.
The model is provided two initial timeframes representing the conditioning and reference frames,
respectively, and is then sampled for increasing temporal offsets with the reference set to be the most
recent generation. TempO maintains Pearson correlation above 0.98 over 40 forecasted timesteps,
indicating stable amplitude and phase tracking. The ViT regressor holds above 0.95 for 20 steps
before degrading, while the flow matching baseline (Lipman et al., 2023) shows steady decline.
This suggests TempO effectively mimics the dynamics without significant error accumulation. This
is further demonstrated by visualisations of the vorticity field at key timesteps in Fig. 1 (right), where
t = 35 most clearly shows TempO’s faithful capture of turbulent eddies in comparison to the ViT
regressor, which fails to predict the small vortical structure.

5.1 SPECTRAL ANALYSIS

The spectral analysis of TempO versus the top alternative ViTAffine-OT and the baseline U-
NetAffine-OT (Lipman et al., 2023) in Fig. 2 examines the scale-resolved error via the energy per
wavenumber k, or at the scale of 1

k . This provides scale-resolved context to the SpectralMSE, which
averages the MSE of the Fourier coefficients to a single metric. For NS-ω, the first 8 modes which
cumulatively make up 99% of the total energy, beyond which the modes have negligible contribu-
tions to overall flow dynamics, see Appendix G. TempO closely follows the true spectrum compared
to both ViTAffine-OT and U-NetAffine-OT, though all three methods diverge past k = 8. We observe from the
inset of Fig. 2 that TempO exhibits a small residual which fluctuates about 0 whereas the ViTAffine-OT

has a negative and increasing error: the ViT regressor tends to capture the lower wavenumbers well,
but then underestimates the higher wavelengths notably after k = 4.

Modes SpectralMSE

1 8.57e-02
2 4.10e-02
4 3.98e-02
8 3.79e-02

16 3.74e-02

Figure 3: Ablation: Fourier mode
cutoffs with TempO.

We observe also that the number of modes retained during the
FFT of TempO in Fig. 3 follows the observation of a close
spectral match up until k = 8, where the SpectralMSE sees the
most improvement; however, from 8 modes to 16 modes, the
performance appears to saturate. Fig. 3 demonstrates that up to
8 modes capture the essential dynamics, while the fundamen-
tal frequency alone is insufficient and likely under-represents
necessary higher frequency components; adding more than 8
modes yields diminishing returns, matching the true spectral
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Figure 2: Spectral graphs for NS-ω. Comparison of energy spectra for TempO, a ViT-based model,
and the U-Net baseline (Lipman et al., 2023). The first eight Fourier modes capture 99% of the
energy, with higher modes negligible. TempO aligns closely, while the ViT underestimates energy
beyond k = 4. The inset bar plot shows TempO oscillating tightly around zero with small deviations,
the ViT producing larger negative deviations, and the U-Net performing markedly worse.

analysis; extended metrics support this trend in Appendix K. This empirical saturation beyond 8
modes is consistent with the theoretical expectation in Theorem 3.3, where FNOs are shown to
achieve accuracy with asymptotically fewer parameters by leveraging only the most informative
spectral modes.

5.2 EFFICIENCY

Finally, we also train the models over varying sequence lengths and measuring next-step prediction
error (MSE) and 40-step forecast error (MSE/time), shown in Table 5. MSE is lowest for shorter
sequences, as the model learns from fewer choices of indices for sparse conditioning during training.
Conversely, MSE/time decreases with longer sequences, reflecting better long-horizon performance.
Notably, TempO’s MSE/time drops faster and plateaus lower than the ViT, indicating better data
efficiency to extrapolate from the same available sequence length.

Model Params FLOPs Mem (MB) NFEs

TempO 0.49M 208M ∼50 560
ViT 3.39M 10M ∼80 942
U-Net 14.0M 555M ∼68 728

Table 4: Model Complexity and Efficiency: num-
ber of function evaluationss (NFEs) are averaged
from sampling performed for Table 2 for adaptive
solver dopri5 and tolerances of 1e-5.

Method Seq MSE MSE/time

TempO

2 4.92e-02 2.70e-01
5 4.75e-02 3.41e-01
10 5.04e-02 4.94e-02
15 5.61e-02 3.83e-02
25 6.26e-02 4.22e-02

ViT
(Affine-OT)

2 6.75e-02 2.71e-01
5 5.43e-02 3.59e-01
10 6.01e-02 1.49e-01
15 6.70e-02 4.53e-02
25 7.68e-02 8.56e-02

Table 5: Ablation: Performance comparison
scaling with sequence length.

TempO is the most lightweight model among the
three choices of regressors, with 7̃x fewer parame-
ters than the ViT and 2̃8x fewer than the U-Net. In
addition, it sees a significantly lower memory usage
compared to the ViT where attention has higher de-
mands and the U-Net where skip-connections hold
onto additional memory.
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While TempO has a moderate number of FLoating Point OPerations (FLOPs), landing between
the ViT and U-Net, this may be offsetted by the NFEs seen during the ODE integration where
TempO takes only 560 evaluations to meet the same tolerances. Beyond these empirical measures,
TempO further benefits from its shared spatial Fourier layers. By folding the channel dimension and
truncating higher modes, the spectral convolution scales as O(N2 logN), in contrast to the naive
O(N3 logN) cost of a full 3D FFT. Also for reference, a ViT layer can scale as O(N4) in 2D 3.2,
higher than the quasi-quadratic cost of the FNO.

6 LIMITATIONS

Flow matching models struggle with extreme data sparsity which can distort the distributions be-
ing learned, whereas hybrid models or models with explicitly defined conservations can fall back
on injected physical knowledge. Additionally, similar to other generative models, adaptations, e.g.
architectural modifications, would be necessary to extend the method towards a foundational model
framework. Finally, while our stable and accurate 40-step forecasting represents the longer end time
horizons, it remains an open question on how to forecast for much longer timeframes. Critical appli-
cations in science and engineering would require further study both experimentally and theoretically
to establish statistically reliable forecasting.

7 CONCLUSIONS AND FURTHER WORK

In this work, we addressed the challenge of long-horizon PDE forecasting via our proposed method
TempO. TempO consistently outperformed state-of-the-art baselines across three benchmark PDE
datasets and achieves stable long-horizon 40 step forecasts with remarkable accuracy to the true
trajectories as well as superior spectral fidelity. The modified time-conditioned FNO is parameter-
efficient while improving the capture of both local and global spectral modes, resulting in improve-
ments in both data- and compute- efficiency. Additionally, we establish that FNO can achieve an
upper bound on approximation error that sampler-based architectures cannot reach without signifi-
cantly more parameters, Corollary 3.3. These results highlight the importance of architectures that
align with the continuous nature of PDE dynamics, enabling not only improved predictive accuracy
but also physically consistent, long-horizon trajectories.

Consequently, TempO poses significant opportunity for further work in this field. Under typical
real-world environments, PDE observations may come from irregularly sampled domains; since our
method already demonstrates state-of-the-art generations using a simple autoencoder (AE) and the
latent time-conditioned FNO which no longer relies on a regular grid as is a limitation of the original
FNO (Li et al., 2021), one extension of our work is to then extend our method to real-world settings
to forecast PDE over irregular domains.
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A PROOFS

Proof of Theorem 3.1. Step 1: Spectral truncation. By assumption the Fourier coefficients of G(u)
satisfy ∣∣Ĝ(u)(k)∣∣ ≤ Cλ(1 + |k|)−p, ∀u ∈ U , k ∈ Zd.
If we keep only the modes |k| ≤ K and set

GK(u)(x) :=
∑

|k|≤K

Ĝ(u)(k)eik·x,

then the error lives in the high modes:

∥G(u)− GK(u)∥2
Hs′ =

∑
|k|>K

(1 + |k|2)s
′ ∣∣Ĝ(u)(k)∣∣2.

Using the decay bound gives

∥G(u)− GK(u)∥2
Hs′ ≤ C2

λ

∑
|k|>K

(1 + |k|)2(s
′−p).

A standard counting argument (comparing the lattice sum with a radial integral) shows this tail is
≲ K−2α, with

α := p− s′ − d
2 > 0.

This is exactly the pseudo-spectral tail estimate also used in (Kovachki et al., 2021, Thm. 40). Hence
choosing

K ≍ ε−1/α

ensures ∥G − GK∥Hs′ ≤ ε/2.

Step 2: Reduction to a finite-dimensional map. The truncated operator GK is determined by finitely
many Fourier coefficients {Ĝ(u)(k)}|k|≤K , with output dimension mout ≍ Kd. To apply a neural
network, we also restrict the input to finitely many low modes. By compactness of U ⊂ Hs and
continuity of the projection PM , there exists M such that

∥GK(u)− GK(PMu)∥Hs′ ≤ ε/6 ∀u ∈ U .

This is the same finite-dimensional reduction used in the universal approximation argument of (Ko-
vachki et al., 2021, Thm. 15). Thus it suffices to approximate the finite-dimensional continuous
map

F : (û(k))|k|≤M 7−→ (Ĝ(u)(k))|k|≤K ,

between compact subsets of Euclidean spaces.

Step 3: Approximation of the finite map. Classical universal approximation theorems (and the con-
structive Ψ–FNO realization in (Kovachki et al., 2021, Def. 11, Thm. 15)) ensure that for any desired
accuracy δ > 0, one can build a neural network (or FNO block) approximating F uniformly to error
δ on each retained coefficient. To control the Hs′–norm it suffices to achieve coefficient accuracy

δ ≲
ε

Ks′+d/2
.

This choice ensures ∥PKG(u)− G̃θ(u)∥Hs′ ≤ ε/3. Constructive approximation bounds then give a
parameter count

P ≲ Kd · polylog(1/ε),
where the extra logarithmic factor reflects standard overheads in coefficient quantization and net-
work approximation (Kovachki et al., 2021, Remark 22).

Step 4: Assemble errors and conclude. Adding the contributions: - spectral truncation error ≤ ε/2
(Step 1), - input-projection error ≤ ε/6 (Step 2), - finite-map approximation error ≤ ε/3 (Step 3),
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we obtain
sup
u∈U

∥G(u)− Gθ(u)∥Hs′ ≤ ε.

Substituting K ≍ ε−1/α into the parameter bound gives

PFNO(ε) ≲ ε−d/α,

up to the mild logarithmic factors discussed above.

Proof of Proposition 3.2. Step 1: Finite-dimensional subspace and sampling. Consider the K-mode
Fourier subspace

VK := span{eik·x : |k| ≤ K} ⊂ L2(Td), dimVK =: DK ≍ Kd.

Any sampler-based learner observes an input u ∈ VK only through n fixed points
(u(x1), . . . , u(xn)). This defines a linear map

S : VK → Cn, S(u) = (u(x1), . . . , u(xn)).

Step 2: Nyquist / injectivity argument. To reconstruct all Fourier modes up to radius K, the sampling
map S must be injective on VK . In matrix terms, S is represented by an n×DK Vandermonde-like
matrix. To have full rank DK , we require

n ≥ DK ≍ Kd.

If n < DK , there exists a nonzero u ∈ VK vanishing on all sample points, so the learner cannot
distinguish it from zero. This is the standard Nyquist/dimension-counting requirement: at least as
many samples as degrees of freedom.

Step 3: Parameter lower bound. After sampling, the learner applies a parametric map M : Cn →
Cm (e.g., a neural network) to produce either output samples or coefficients. To implement arbitrary
linear transformations on the DK retained modes (e.g., arbitrary Fourier multipliers), the parametric
map must have at least DK free parameters. For fully general dense linear maps (no structural
constraints), one needs

P ≳ D2
K ≍ K2d.

Step 4: Conversion to accuracy ε. From the FNO upper bound analysis, achieving accuracy ε
requires

K ≍ ε−1/α, α = p− s′ − d/2 > 0.

Substituting this into the previous bounds gives the scaling

n ≳ ε− d/α, Psampler(ε) ≳ ε− βd/α,

with β = 1 for minimal mode-wise maps and β = 2 for fully dense maps.

Step 5: Conclusion. Hence any sampler-based architecture that must reconstruct all modes up to
radius K requires asymptotically more parameters than an FNO whenever β > 1, justifying the
lower bound in the proposition.

B FLOW MATCHING BACKGROUND

Flow matching The core idea of flow matching is to learn a time-dependent velocity field, vθ(z, t),
which defines an ODE in the latent space:

dz(t)

dt
= vθ(z(t), t), z(0) ∼ π0, (2)

where π0 is a simple reference distribution (e.g., Gaussian). Integrating this ODE transports sam-
ples to the latent data distribution π1, such that z(1) ∼ π1 and p1(z) ≈ fϕ#Ddata, where fϕ#µ

denotes the pushforward measure of a distribution µ under fϕ, i.e., (fϕ#µ)(A) = µ(f−1
ϕ (A)) for
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measurable sets A. The corresponding time-dependent probability density, pt(z), evolves according
to the continuity equation:

∂pt(z)

∂t
+∇z ·

(
pt(z) vθ(z, t)

)
= 0. (3)

In practice, the target velocity field u(t, z) and the full marginal density pt(z) are generally unknown
and intractable. Flow matching sidesteps this issue by directly supervising the model to match the
instantaneous vector field along interpolating paths between the reference π0 and the target π1,
allowing for deterministic, efficient sampling. Different choices of paths lead to different training
dynamics and inductive biases, as they implicitly define the target velocity field u(t, z) that the
model regresses against.

Integrating this ODE from t = 0 to t = 1 transports the reference distribution π0 to the latent data
distribution π1, so that z(1) ∼ π1 and p1(z) ≈ fϕ#Ddata.

Latent Flow Matching. We now instantiate the general flow matching framework in the latent
space. Let zτ = fϕ(xτ ) for τ = 1, . . . ,m, where fϕ is a pretrained encoder mapping from the
data space to the lower-dimensional latent space. Our objective is to approximate the ground-truth
latent distribution q(zτ | x1, . . . , xτ−1) by a parametric distribution p(zτ | zτ−1), which can later
be decoded back to the data space via xτ = gψ(zτ ) using a decoder gψ .

The latent dynamics can be expressed by the ODE:
żt = ut(zt), (4)

where ut denotes the (true) time-dependent velocity field. Learning these dynamics amounts to
approximating ut with a neural parameterization. Following the flow matching framework, we
introduce a model velocity field vθ : [0, 1]× RZ → RZ and consider the ODE

ϕ̇t(z) = vθ(ϕt(z), t), ϕ0(z) = z, (5)
which defines a time-dependent diffeomorphism ϕt pushing forward an initial reference distribution
p0 (often chosen as N (0, I)) to a target distribution p1 ≈ q along the density path pt:

pt = (ϕt)#p0, (6)
where (·)# denotes the pushforward. In other words, the goal of flow matching is to learn a deter-
ministic coupling between p0 and q by training vθ so that the solution satisfies z0 ∼ p0 and z1 ∼ q.

Given a probability path pt and its associated velocity field ut, flow matching reduces to a least-
squares regression problem:

LFM(θ) = Et∼U [0,1], z∼pt ω(t) ∥vθ(z, t)− ut(z)∥22, (7)

where ω(t) > 0 is a weighting function, often taken as ω(t) = 1 (Lipman et al., 2022). This
formulation ensures that the learned velocity field aligns with the target field ut at all times, thereby
generating the desired marginal probability path.

C FOURIER NEURAL OPERATOR BACKGROUND

An FNO is designed to learn a mapping between function spaces, rather than between finite-
dimensional vectors. Consider a function u : Rd → Rc representing data, for example in RX ,
with samples x ∈ RX . Then, an FNO parameterizes an operator as

Gθ : u 7→ ũ, ũ : D → Rcout ,

that maps u to an output function ũ (e.g., a solution field of a PDE or a transformed spatial signal).

This mapping is implemented via iterative Fourier layers which perform spectral transformations of
the input:

û(k) = F [u](k), ˆ̃u(k) = Rθ(k) · û(k), (8)
followed by an inverse Fourier transform back to the spatial domain:

ũ(x) = F−1[ˆ̃u](x), (9)
with Rθ(k) being learnable Fourier-mode weights and F denoting the Fourier transform. This
spectral representation allows the FNO to efficiently capture long-range dependencies and global
correlations in the data.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D AUTOENCODER DETAILS

Residual blocks throughout the architecture consist of two 3 × 3 convolutions with ReLU activa-
tion and group normalization (8 groups) in between, with the input added back to the output. At-
tention blocks are implemented using PyTorch’s nn.MultiheadAttention, with embeddings
reshaped from [B,C,H,W ] to [B,HW,C].

The autoencoder is initialised with a depth of d = 2 resulting in a factor 2d = 4 compression for all
datasets.

E MODEL HYPERPARAMETERS

We initialised the probability paths with the following hyperparameters. RIVER was defined with
variance parameters σ = 0.1 and σmin = 10−7. SLP used σ = 0.1 and σmin = 0.01. We further
considered the VE-diff path with σmin = 0.01 and σmax = 0.1 and the VP-diff path initialized with
βmin = 0.1 and βmax = 20.0 per (Lim et al., 2025).

We provide details for the vector field regressors’ width and depth hyperparameters as per Table 6.

Model Parameter Value

TempO

nmodes 20
Hidden channels 64
Projection channels 64
Depth 4

U-Net

Hidden channels 64
Attention resolutions (1, 2, 2)
Channel multiplier (1, 2, 4)
Depth 3

ViT

Hidden channels 256
Depth 4
Mid-depth 5
Output normalization LayerNorm

Table 6: Descriptions of hyperparameters across TempO, U-Net, and ViT architectures.

F DATASET DETAILS

Table 7: Dataset sizes and trajectory lengths used in evaluation.

Dataset # Trajectories Timeseries Length

SWE 1000 100
RD-2D 1000 100
NS-ω 5000 50

Shallow water equation (SWE)

The SWEs are derived from the compressible Navier–Stokes equations and model free-surface flow
problems in 2D. The system of hyperbolic PDEs is given by:

∂th+ ∂x(hu) + ∂y(hv) = 0, (10)

∂t(hu) + ∂x

(
u2h+

1

2
grh

2
)
+ ∂y(uvh) = −grh ∂xb, (11)

∂t(hv) + ∂y

(
v2h+

1

2
grh

2
)
+ ∂x(uvh) = −grh ∂yb, (12)
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where u, v are the horizontal and vertical velocities, h is the water height, b represents spatially
varying bathymetry, and gr is gravitational acceleration. The quantities hu and hv correspond to
directional momentum components.

The dataset ( (Takamoto et al., 2022)) simulates a 2D radial dam break scenario on a square domain
Ω = [−2.5, 2.5]2. The initial water height is a circular bump in the center of the domain:

h(t = 0, x, y) =

{
2.0, if r < r0,

1.0, if r ≥ r0,
r =

√
x2 + y2, r0 ∼ U(0.3, 0.7).

2D reaction diffusion (RD-2D)

The RD-2D dataset models two non-linearly coupled variables: the activator u = u(t, x, y) and the
inhibitor v = v(t, x, y). The system of PDEs is:

∂tu = Du ∂xxu+Du ∂yyu+Ru(u, v), (13)
∂tv = Dv ∂xxv +Dv ∂yyv +Rv(u, v), (14)

where Du and Dv are diffusion coefficients, and Ru(u, v), Rv(u, v) are the reaction functions.
Specifically, the FitzHugh–Nagumo model defines the reactions as:

Ru(u, v) = u− u3 − k − v, (15)
Rv(u, v) = u− v, (16)

with k = 5× 10−3, Du = 1× 10−3, and Dv = 5× 10−3.

The dataset ( (Takamoto et al., 2022)) uses a simulation domain x, y ∈ (−1, 1) and t ∈ (0, 5] with
initial condition set as standard normal random noise: u(0, x, y) ∼ N (0, 1.0).

2D incompressible Navier-Stokes vorticity (NS-ω)

The NS-ω ( (Li et al., 2021)) models 2D incompressible fluid flow on the unit torus. The system of
equations is:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ], (17)
∇ · u(x, t) = 0, (18)

w(x, 0) = w0(x), (19)

where w(x, t) is the vorticity, u(x, t) is the velocity field, ν is viscosity, and f(x) is a fixed forcing
term:

f(x) = 0.1
(
sin(2π(x1 + x2)) + cos(2π(x1 + x2))

)
.

The initial condition is sampled from a Gaussian measure:

w0 ∼ µ, µ = N
(
0,

(
−∆+ 49I

)−2.5
73/2

)
,

with periodic boundary conditions.

G SPECTRAL ANALYSIS OF GROUND TRUTH NS-ω

Fig. 4 shows how the quality of spectral truncations of the true Navier–Stokes vorticity field depends
on the cutoff wavenumber kcut. Given the full Fourier spectrum ω̂(kx, ky), we apply a mask that
retains only modes with |kx|+ |ky| ≤ kcut, reconstruct the signal by inverse FFT, and compute three
quantities as functions of kcut:
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Figure 4: Spectral Analysis of True Vorticity: Reconstruction MSE, spectral MSE, and cumulative
enstrophy fraction of true Navier–Stokes vorticity data as functions of cutoff wavenumber kcut.

1. Reconstruction MSE: the mean squared error between the original and truncated fields in
physical space.

2. Spectral MSE: the mean squared error in Fourier space, quantifying lost spectral content.
3. Cumulative energy fraction: the fraction of total energy

∑
|ω̂|2 retained by the truncated

spectrum.

As kcut increases, both reconstruction and spectral errors decrease, while the retained energy ap-
proaches unity.
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H EXTENDED RESULTS FOR NAVIER–STOKES VORTICITY

Figure 5: Navier–Stokes Vorticity (Original). Ground-truth timeseries across 40 timesteps.

Figure 6: Navier–Stokes Vorticity (U-Net). Forecasted timeseries across 40 timesteps.

Figure 7: Navier–Stokes Vorticity (ViT). Forecasted timeseries across 40 timesteps.
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Figure 8: Navier–Stokes Vorticity (TempO). Forecasted timeseries across 40 timesteps.

I EXTENDED RESULTS FOR SHALLOW WATER EQUATION

Regressor Path MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑

TempO

Affine-OT 6.64e-05 5.65e-05 7.64e-03 46.5 0.998 0.997
RIVER 4.04e-04 2.33e-04 1.89e-02 38.7 0.989 0.976
VE-diff 9.37e-04 8.22e-04 2.89e-02 35.2 0.994 0.977
VP-diff 4.41e-03 2.51e-03 4.31e-02 28.3 0.872 0.857

ViT

Affine-OT 9.59e-05 7.93e-05 9.06e-03 44.9 0.997 0.995
VP-diff 1.30e-04 8.81e-05 1.05e-02 43.6 0.996 0.993
RIVER 2.99e-04 1.67e-04 1.63e-02 40.0 0.992 0.981
SLP1 6.60e-04 - 1.28e-01 36.1 - 0.93
VE-diff 1.28e-03 1.01e-03 3.38e-02 33.7 0.985 0.960

U-Net
VP-diff 1.37e-02 8.26e-03 1.10e-01 23.4 0.546 0.627
RIVER 1.61e-02 1.00e-02 1.20e-01 22.7 0.437 0.610
Affine-OT 1.68e-02 1.01e-02 1.22e-01 22.5 0.435 0.593

Table 8: Comparison of TempO, U-Net, and ViT models under different probability paths for the
SWE. The best value for each metric is highlighted in bold.

Figure 9: SWE (Original). Ground-truth timeseries across 40 timesteps.
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Figure 10: SWE (U-Net). Forecasted timeseries across 40 timesteps.

Figure 11: SWE (ViT). Forecasted timeseries across 40 timesteps.

Figure 12: SWE (TempO). Forecasted timeseries across 40 timesteps.

J EXTENDED RESULTS FOR 2D REACTION DIFFUSION
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Regressor Path MSE ↓ SpectralMSE ↓ RFNE ↓ PSNR ↑ Pearson ↑ SSIM ↑

TempO

Affine-OT 2.76e-05 2.18e-05 3.29e-02 65.7 1.000 0.999
RIVER 9.36e-04 5.47e-04 2.08e-01 50.4 0.975 0.978
VE-diff 1.58e-03 1.38e-03 2.70e-01 48.2 0.990 0.977
VP-diff 1.24e-02 1.01e-02 4.95e-01 39.2 0.714 0.862

ViT

Affine-OT 6.30e-04 4.40e-04 1.67e-01 52.2 0.987 0.986
SLP2 3.56e-04 - 1.16e-01 34.3 - 0.90
RIVER 1.00e-03 5.89e-04 2.16e-01 50.1 0.973 0.977
VE-diff 3.54e-03 2.23e-03 4.06e-01 44.7 0.915 0.946

U-Net

Affine-OT 3.09e-05 2.45e-05 3.57e-02 65.2 0.999 0.999
RIVER 1.02e-03 5.49e-04 2.17e-01 50.1 0.972 0.976
VE-diff 9.03e-03 6.07e-03 6.42e-01 40.6 0.820 0.860
VP-diff 2.09e-02 1.66e-02 6.81e-01 37.0 0.574 0.792

Table 9: Comparison of TempO, U-Net, and ViT models under different probability paths for the
RD-2D. The best value for each metric is highlighted in bold.

Figure 13: Reaction Diffusion (Original). Ground-truth end sample, from initial conditions of
randomly sampled noise.

Figure 14: Reaction Diffusion (U-Net). Forecasted end sample, from initial conditions of randomly
sampled noise.

Figure 15: Reaction Diffusion (ViT). Forecasted end sample, from initial conditions of randomly
sampled noise.

Figure 16: Reaction Diffusion (TempO). Forecasted end sample, from initial conditions of ran-
domly sampled noise.
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K EXTENDED ABLATION RESULTS

Table 10: Ablation over different training sequence lengths on the NS-ω dataset. TempO and the top
performing alternative are trained while varying sequence lengths and evaluated on 10 timesteps to
predict the next step.

Method Seq. Len. MSE DensityMSE SpectralMSE RFNE PSNR Pearson SSIM NFE

TempO

3 4.924e-02 7.685e-05 3.531e-02 2.328e-01 25.769 0.973 0.803 74
6 4.753e-02 1.133e-04 3.394e-02 2.276e-01 25.923 0.974 0.800 608
11 5.036e-02 1.055e-04 3.620e-02 2.352e-01 25.672 0.972 0.800 842
16 5.607e-02 1.282e-04 3.821e-02 2.497e-01 25.205 0.969 0.786 938
26 6.255e-02 7.487e-05 3.726e-02 2.541e-01 24.730 0.968 0.765 1070

ViT
(Affine-OT)

3 6.748e-02 1.414e-04 4.652e-02 2.678e-01 24.401 0.963 0.766 116
6 5.434e-02 1.239e-04 3.727e-02 2.416e-01 25.341 0.970 0.783 1766
11 6.014e-02 1.376e-04 4.067e-02 2.546e-01 24.901 0.967 0.777 1712
16 6.701e-02 1.093e-04 4.428e-02 2.680e-01 24.431 0.963 0.764 1622
26 7.682e-02 8.104e-05 4.468e-02 2.778e-01 23.838 0.960 0.741 1100

Table 11: Ablation of the TempO model on the NS-ω dataset by varying the number of modes.
Models are trained with different numbers of Fourier modes and evaluated on 10 timesteps to predict
the next step.

Modes MSE DensityMSE SpectralMSE RFNE PSNR Pearson SSIM NFE

1 1.409e-01 1.075e-04 8.566e-02 3.947e-01 21.204 0.921 0.588 5798
2 6.103e-02 8.928e-05 4.096e-02 2.596e-01 24.837 0.966 0.765 1688
4 5.789e-02 8.361e-05 3.978e-02 2.538e-01 25.066 0.968 0.776 1058
8 5.528e-02 8.498e-05 3.788e-02 2.481e-01 25.267 0.969 0.788 800

16 5.471e-02 8.757e-05 3.742e-02 2.467e-01 25.312 0.970 0.787 884

L USE OF LARGE LANGUAGE MODELS (LLMS)

We acknowledge the use of ChatGPT to make suggestions on how to polish the text, correct gram-
mar, and ensure clarity in writing. No results, code, or data were created or altered by the model.
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