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Abstract

With the growing popularity of LLMs among
the general public users, privacy-preserving and
adversarial robustness have become two pres-
sing demands for LLM-based services, which
have largely been pursued separately but rarely
jointly. In this paper, to the best of our know-
ledge, we are among the first attempts towards
robust and private LLM inference by tightly
integrating two disconnected fields : private in-
ference and prompt ensembling. The former
protects users’ privacy by encrypting inference
data transmitted and processed by LLMs, while
the latter enhances adversarial robustness by
yielding an aggregated output from multiple
prompted LLM responses. Although widely re-
cognized as effective individually, private infe-
rence for prompt ensembling together entails
new challenges that render the naive combina-
tion of existing techniques inefficient.

To overcome the hurdles, we propose SecPE,
which designs efficient fully homomorphic en-
cryption (FHE) counterparts for the core al-
gorithmic building blocks of prompt ensem-
bling. We conduct extensive experiments on
8 tasks to evaluate the accuracy, robustness,
and efficiency of SecPE. The results show that
SecPE maintains high clean accuracy and of-
fers better robustness at the expense of merely
2.5% efficiency overhead compared to baseline
private inference methods, indicating a satisfac-
tory “accuracy-robustness-efficiency” tradeoff.
For the efficiency of the encrypted Argmax ope-
ration that incurs major slowdown for prompt
ensembling, SecPE is 20.8 times faster than
the state-of-the-art peers, which can be of inde-
pendent interest beyond this work.

1 Introduction

Large language models (LLMs) have garnered a
meteoric rise in popularity among general public
users due to their remarkable performance across
myriad natural language processing (NLP) tasks
(Xu et al., 2019; Yang et al., 2019a). LLMs are

oftentimes deployed by service providers in the
form of Machine Learning as a Service (MLaaS)
(Yang et al., 2019b; Raffel et al., 2020), whereby
users can conveniently exploit the full potential
of LLM by submitting their inference data, pre-
pended by specific prompts from prompt learning
techniques (Li et al., 2023c,a; Xu et al., 2024), to
obtain high-performing LLLM outputs tailored to
their downstream tasks. Accompanying this wides-
pread adoption, there arise privacy and robustness
concerns for LLMs (Gilad-Bachrach et al., 2016;
Juvekaretal., 2018; Liu et al., 2017; Brutzkus et al.,
2019; Chou et al., 2018; Lou and Jiang, 2019).

Privacy concerns and private inference. On the
privacy aspect, users’ inference data can inadver-
tently reveal sensitive information if transmitted
and processed by the LLM service provider in
plaintext (Yang et al., 2019b; Raffel et al., 2020),
risking identification and privacy breaches. Ad-
ditionally, the user-submitted prompts can be va-
luable intellectual property and also raise privacy
concerns. As a result, both inference data and user-
side prompts demand privacy-preserving measures
(Gilad-Bachrach et al., 2016; Juvekar et al., 2018;
Liu et al., 2017; Brutzkus et al., 2019; Chou et al.,
2018; Lou and Jiang, 2019). Among the many at-
tempts to avoid submitting raw data for LLM in-
ference, private inference offers very strict privacy
protection by allowing inference to be conducted
on encrypted data. For instance, Fully Homomor-
phic Encryption (FHE) allows rich computations
(covering most operations needed in LLM infe-
rence) on encrypted data without exposing sensitive
information (Gentry, 2009). By encrypting inputs
using FHE, only encrypted predictions are sent to
the server, ensuring privacy throughout the process.
As legal and societal pressures mount, the adoption
of such privacy-preserving technologies by service
providers has received increasing research atten-
tion (Barua, 2021; Masters et al., 2019).



Robustness concern and prompt ensembling. On
the robustness aspect, it is well-recognized that the
output of LLMs can be manipulated by subtle yet
deliberate changes in the inference sample or the
prompt (Wang et al., 2024). There has been a gro-
wing focus on enhancing the robustness of LL.Ms,
especially in safety-critical downstream applica-
tion areas. Various methods have been proposed,
ranging from more advanced (and sophisticated)
(Vu et al., 2021; Asai et al., 2022) to simple me-
thods (Dvornik et al., 2019; Liu et al., 2020). One
representative method from the latter category fol-
lows the idea of prompt ensembling (Schick and
Schiitze, 2020; Lester et al., 2021), which involves
making multiple inferences for a single inference
data and providing the aggregated result as the final
prediction.

This study. The current research efforts on safe-
guarding privacy and robustness during LLM in-
ference are largely explored separately. Driven by
the simultaneous demands from both privacy and
robustness aspects, we envision that these two as-
pects should be pursued jointly. Among the first
attempts toward mitigating both concerns of LLMs
jointly, we investigate the potential to achieve pri-
vate and robust LLM inference through tight inte-
gration of private inference and prompt ensemble.
We focus on these two techniques due to their ef-
fectiveness in addressing their respective concerns.
In particular, we note that while there may be more
advanced techniques for enhancing robustness than
prompt ensembling, achieving a balance between
robustness and efficiency within the private infe-
rence workflow of the simpler prompt ensembling
method already poses significant challenges. That
is, naive application of existing private inference
methods for prompt ensembling entails great effi-
ciency overhead. The crux of efficient private infe-
rence for prompt ensembling is that the aggregation
operation introduced by prompt ensembling, albeit
simple and efficient in plaintext computation, re-
quires prohibitive computation in ciphertext.

To overcome the inefficiency challenges, we pro-
pose SecPE : a new secure prompt ensembling me-
thod for private and robust LLM inference. As illus-
trated in Figure 1, SecPE allows user to encrypt
their inference data and prompts before transmit-
ting to the LLM server for inference. The inference
results from the LLM server are aggregated from
multiple prompted responses and transmitted back
to the user in ciphertext format, which can be de-
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FIGURE 1 — A high-level overview of SecPE for private
and robust LLM inference in FHE-based MLaaS.

crypted only by the user’s private key. The encryp-
ted aggregation operation heavily relies on efficient
computation of Argmax, which is unfortunately not
readily supported by the common homomorphic
primitives like the RNS-CKKS FHE scheme (Lee
et al., 2022). Lying at the design core of SecPE is
a new efficient private aggregation algorithm to
be presented in Algorithm 1, which resorts to an
efficient approximation of Argmax to circumvent
this efficiency bottleneck. We conduct extensive
experiments to test the accuracy, robustness, and ef-
ficiency of SecPE across 14 tasks from GLUE, Adv-
GLUE, and mathematical reasoning data sets. The
results show that SecPE is capable of maintaining
both high utility and robustness while providing
privacy protection.

The main contributions of this paper are summa-
rized as follows :

— To the best of our knowledge, we are among
the first to jointly study the privacy and robust-
ness concerns of LLLM inference, which become
increasingly pressing considering the growing
deployment of LLM-based services.

— We propose SecPE to achieve private and ro-
bust LLM inference, which devises new secure
primitives tailor-made for prompt ensembling
to strike a satisfactory “accuracy-robustness-
efficiency” tradeoff.

— We conduct extensive experiments on 8 tasks
from 3 popular benchmarks to corroborate the
superior performance of SecPE against baseline
methods.

2 Background

2.1 Privacy Issues of LLMs

LLMs such as the GPT have revolutionized na-
tural language processing and understanding with



human-level proficiency (Kenton and Toutanova,
2019; Brown et al., 2020). However, with their
increasing deployment in MLaaS by service provi-
ders and growing popularity among the general pu-
blic users, there arise aggravating privacy concerns.
In the typical MLaaS serving setting, users sub-
mit inference data to the remote server hosting a
proprietary model and receive predictions in re-
turn. Users therefore have privacy concerns about
their inference data that, despite being sensitive or
even confidential, are transmitted and processed
in plaintext by the MLaaS service provider (Shen
et al., 2007; Christoph et al., 2015). This issue has
even led to ChatGPT being temporarily banned in
Italy (Mauran, 2023; Natasha Lomas, 2023; Cecily
Mauran, 2023). Recognizing this pressing privacy
concern, existing works introduce various means to
avoid direct transmission and processing inference
data in plain text form.

Private inference emerges as a viable solu-
tion, promising to reconcile the need for high-
performant inference data processing with strict
privacy requirements (Srinivasan et al., 2019; Hao
et al., 2022; Pang et al., 2024). Private inference
provides a way to guarantee the privacy and confi-
dentiality of both the inference data and the pro-
prietary LLM. It ensures that data is not transmitted
or processed in plaintext but as ciphertext, thereby
safeguarding sensitive details about the server’s mo-
del weights and the User’s inputs from disclosure.
While private inference has significant applications
in computer vision and image processing (Arnab
etal., 2021; Wang et al., 2022b; Zeng et al., 2023),
its use in LLMs is nascent. Notably, the integration
of private inference in prompt learning settings and
prompt ensembles remains an under-explored area,
presenting a frontier yet to be ventured into the
field.

By pursuing private inference tailored for prompt
ensemble learning, we aim to bridge the gap bet-
ween utility, robustness, and privacy, thereby reali-
zing the benefits of prompted LLMs without com-
promising user trust and data integrity.

2.2 Private Inference via Fully Homomorphic
Encryption

The FHE scheme used in this paper is the full
residue number system (RNS) variant of Cheon-
Kim-Kim-Song (CKKS) (Cheon et al., 2017, 2019).
RNS-CKKS is a leveled FHE, which can support
computations up to a multiplicative depth L. Both
the plaintexts and ciphertexts of RNS-CKKS are

elements in a polynomial ring :
Rq = Zo[X]/ (XY +1)

where () = HiLzqu‘ with distinct primes g;. Once a
ciphertext’s level becomes too low, a bootstrap-
ping operation is required to refresh it to a hi-
gher level, enabling more computations. In a nut-
shell, bootstrapping homomorphically evaluates
the decryption circuit and raises the modulus from
qo to qr, by leveraging the isomorphism R, =
Rgo X Ry, X -+ X Ry, (Bossuat et al., 2021). Sup-
pose the bootstrapping consumes K levels, then a
fresh ciphertext can support L — K levels of com-
putations.

2.3 Prompt Ensembling for Robust LLMs

The brittleness of LLMs to slight input modi-
fications often leads to varied/inaccurate and so-
metimes even malicious/harmful outputs, highligh-
ting the essential need for enhanced robustness for
LLMs (Talmor et al., 2020; Schick et al., 2020;
Jiang et al., 2020). Robustness in this context refers
to LLLM’s ability to provide consistent predictions
regardless of slight changes to the inference data,
aiming for more predictable and stable responses.

Building on the success of prompt learning,
prompt ensemble learning (Lu et al., 2022; Al-
lingham et al., 2023) demonstrates the potential
to offer efficient, effective, and robust predictions.
Prompt ensemble utilizes a series of prompts to
allow for the aggregation of multiple responses for
the same inference data, leading to more robust
predictions.

Prompt ensembling, in which the masked lan-
guage model £ is directly tasked with "auto-
completing" natural language prompts. For ins-
tance, for the inference data z;,, the template into
which the inference data is inserted that xprompt
= “It was MASK” is concatenated (i.e., z; = x;p
@ Tprompt)» The prompt typically includes one or
more masked tokens [MASK] that the model L is
expected to fill in, making it a structured query that
directs the model’s response.

The single output refers to the model’s predic-
tion for each prompt, drawing on the context of
the prompt and input data present, like determi-
ning the sentiment of a movie review. When mul-
tiple prompts or input variations are used to obtain
a range of model responses, the aggregated out-
put synthesizes these individual outputs to derive
a more robust or accurate prediction. This aggre-
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FIGURE 2 — An illustration of secPE, which enables homomorphically encrypted LLM inference with guarantees.

gation could involve combining the model’s res-
ponses to enhance prediction reliability or accuracy,
especially in tasks where nuanced understanding or
multiple aspects of the input data are considered.

Suppose there are m prompt templates, the ve-
rifier takes a question and a candidate reasoning
path as input and outputs the probability that the
reasoning path leads to the correct answer (Li et al.,
2023Db).

m

y* = argmax(z L(Zin ® Tprompt))s
i=1

where f(-) is the probability produced by the veri-
fier.

3 Proposed Method : SecPE

We propose a new private inference framework
tailor-made for the prompt ensembling. Private in-
ference for prompt ensembling raises a critical,
unaddressed issue : the challenge of integrating
private contextual inference. Incorporating privacy-
preserving mechanisms into prompt ensembles re-
mains a significant and complex challenge, despite
progress in leveraging prompt-based learning to
improve model effectiveness in downstream tasks.
Our work aims to break new ground by developing
a comprehensive framework that not only improves
model performance through optimized prompt se-
lection but also prioritizes the integration of robust
privacy safeguards.

3.1 SecPE Framework

We give an illustration of SecPE in Fig 2, the
overall process is divided into the following four
steps :

1. Encryption. User encrypts m inputs z; = x;,B
Zprompt; ¢ € [1,m] using FHE and sends them

to the server, where m is the number of prompt
templates.

2. Private Language Model Inference. Server
uses the language model £ classifying m inputs
into one of n classes, n is the number of labels.
the inputs are propagated through £ utilizing the
homomorphic operations of the FHE scheme
(Chen et al., 2022; Hao et al., 2022) to obtain m
encrypted logits y;,7 € [1,m].

3. Private Voting. Server aggregates the encrypted
logits y* < > """ y; and then evaluates Argmax
function in FHE. In particular, this step trans-
forms the logit vector y* into a one-hot vector z.
Then the server sends z to the User.

4. Decryption. User decrypts z with its secret key,
where the single non-zero entry represents the
index of the predicted classification label.

In the workflow of SecPE described above, Steps
1 and 4 involve basic FHE encryption and decryp-
tion. Step 2 has been implemented in many recent
works (Chen et al., 2022; Hao et al., 2022; Pang
et al., 2024). These three steps are orthogonal to
the efficiency designs of prompt ensembling. The
key challenge lies in using FHE to evaluate Argmax
in Step 3. As FHE does not allow evaluation of
control flow (e.g., branching), and ciphertext com-
parison (e.g., checking inequality) is not directly
supported by the homomorphic primitives of the
RNS-CKKS FHE scheme, we therefore cannot ca-
nonically implement Argmax. Instead, we aim for
an efficient approximation to circumvent this effi-
ciency bottleneck raised by prompt ensembling.

3.2 Efficient Private Inference for Prompt
Ensembling

As mentioned above, the design core of efficient
private inference for prompt ensembling lies at the



private aggregation operator, i.e., the Argmax ope-
ration. Therefore, our goal is to approximate the
following function on an RNS-CKKS ciphertext
logit vector :

[y1>"'7yn70N_n] — [zla“-azna#N_n]a (1)

where z; = 1 for the index ¢ corresponding to the
largest value among [y1, Y2, ..., ¥n) (and O elsew-
here).

The state-of-the-art protocol that can achieve this
goal is Phoneix (Jovanovic et al., 2022), which re-
quires (m + 1) times Sign operations and (m + 1)
times ciphertext rotations. Our method only re-
quires (logn + 1) times Sign operations and
(logn + 1) times ciphertext rotations.

We innovatively proposed an Argmax evaluation
method as :

Zp SZgn(yz - ymaac) + 1. (2)

To enable encrypted comparisons, we leverage
the polynomial approximation of the sign function :

-1 1<z =27
Sign(z) =10 x=0 3)
27 <z <1

The approximation (Cheon et al., 2020) involves a
composition of polynomials :

Sign(x) = [ (g% (), S

where f(), g() are two polynomials and dy, d,
are the number of repetitions for them. In our im-
plementation, both f() and ¢() are 9-degree poly-
nomials; we set « = 12,dy = 2,d, = 2, so the
max error bound is less than 10~%. To reduce the
multiplicative depth, we evaluate the polynomials
using the Baby-Step-Giant-Step algorithm (Han
and Ki, 2020).

Before proceeding, we comment on the basic
input requirement of Sign(x), namely that its
inputs are in [—1, 1]. Suppose the inputs z; €
[Dmins Dmaz), to ensure this requirement, for
those inputs that need to be different from each
other, we need to normalize 2; € [0,1] :

€Tq — Dmm
Ty = ———————

Dma.t - Dmin’ (5)

meaning that for all ¢ # j, #; — 2; € [—1,1],
satisfying the requirement in Algo.1

Algorithm 1 Argmax on RNS-CKKS

Input: [y1,y2, ..., Yn, 0V "]

Output: [21, 29, ..., 2, #V"]) as in Eq. 1
1: function Argmax(y)
2: y <y ® RotR(y,n)

3 Ymaz — QuickMaz(y)
4 Y = Y O Ymax

5 z < Sign(y)

6: z+—zd1

7 return 2

8: end function

9: function QuickM ax(y)

10: l < logyn

11: for: =0tologn —1do
12: r <+ RotL(y,2")

13: r < Max(r,y)

14: Yy<r

15: end for

16: return y

17: end function

In order to get &4z, With the help of the Sign
function, we can calculate the maximum value of
a and b by :

a+b a-—0>
+

Maz(a,b) = 5 5

- Sign(a —b). (6)

Then, the selection vector can be easily compu-
ted as described in Algorithm 1.

In Fig. 3, we illustrate how Alg. 1 processes a toy
example. The algorithm first duplicates the logits
(Line 2), then use Quick M az to get the maximum
value of [y1,y2, ..., Yn). Unlike phoenix (Jovanovic
et al., 2022), we do not rotate only one step at a
time, but rotate 2¢, i € [0,logn — 1] steps each
time, which greatly reduces our number of rotations
and the number of Sign operations.

4 Experiments
4.1 Experimental setup

Tasks and Datasets. In the experiments, we utilize
8 tasks from popular benchmarks to thoroughly
evaluate the utility, robustness, and efficiency of
secPE.

i) Benign NLP tasks We evaluate secPE on six
tasks from the GLUE benchmark (Wang et al.,
2018). In detail, the evaluated tasks are (1) SST-
2 (Socher et al., 2013); (2) QQP; (3) MNLI-
matched ; (4) MNLI-mismatched (Williams et al.,
2017), (5) RTE (Giampiccolo et al., 2007), and (6)
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FIGURE 3 — Example run of Algorithm 1.

QNLI—range (Rajpurkar et al., 2016), which range
from sentiment analysis to question answering, di-
versifying in different inference data formats from
sentences to pairs of sentences.

ii) Adversarial NLP tasks We evaluate the ro-
bustness of secPE on six adversarial tasks
in the Adversarial-GLUE (AdvGLUE) bench-
mark (Wang et al., 2021), which are adversarial
counterparts to the above benign GLUE tasks.
The AdvGLUE benchmark is enriched with task-
specific adversarial examples generated by 14 dif-
ferent textual attack methods, coming different ad-
versarial perturbation strategies including word-
level, sentence-level, and human-generated. Reco-
gnizing the potential problem of invalid adversarial
constructs identified by Wang et al. (Wang et al.,
2021), where up to 90% of automatically genera-
ted examples may be flawed, we also incorporate
human validation. This step allows for a more ac-
curate and robust evaluation of secPE by ensuring
that the adversarial examples in our benchmark are
legitimate and that the perturbations maintain the
integrity of the original task.

iii) Arithmetic reasoning tasks We evaluate the
self-consistency of SecPEon two arithmetic rea-
soning benchmarks : GSM8K (Cobbe et al., 2021)
and MultiArith (Roy and Roth, 2016). GSM8K
contains grade-school-level mathematical word
problems requiring models to perform complex
arithmetic reasoning and multi-step calculations.
MultiArith contains multiple arithmetic operations
within a single problem, testing a model’s ability
to comprehend and execute a sequence of calcu-
lations, reflecting the complexity of mathematical
reasoning needed for higher accuracy in various
problem-solving contexts.

Verbalizer

Task | Template

It was [MASK] . < S1 > bad / good
SST-2 < S1 > . Allin all, it was [MASK]. bad / good
Just [MASK]! < S1 > bad / good
In summary, the movie was [MASK]. bad / good
< S1 > [MASK], < S > No / Yes
QQpP < S7 > [MASK], I want to know < S > No/ Yes
< S71 > [MASK], but < Sp > No / Yes
< S1 > [MASK], please, < S > No / Yes

< S1 >?7[MASK], < S >
< S1 >7[MASK], < Sy >"
< S1 >?[MASK], < S >

Wrong/Right/Maybe
No/Yes/Maybe
Wrong/Right/Maybe

MNLI

No/Yes
No/Yes
No/Yes

"< So >7[MASK], < S1 >"
RTE "< Sy >7?[MASK], < S1 >
"< S1 >7?7[MASK]. < So >

No/Yes
Wrong/Right
‘Wrong/Right No/Yes

< S1 >7?[MASK], < S >
< S; >?[MASK], < So >
"< S1 >7?[MASK], < Sp >"

QNLI

TABLE 1 — Manual template and verbalizer pairs. <
S1 > and < Sy > are the input sentences.

Models for Evaluation. In the context of the
SecPEframework, we specifically implement pri-
vate inference both on ALBERT-XXLarge-v2 (Lan
et al., 2019) and GPT-3 code-davinciO01 en-
gine (Chen et al., 2021). This allows techniques
like LM-BFF and PET to process ciphertext inputs,
thereby facilitating privacy-preserving inference.
i) ALBERT-XXLarge-v2 For tasks within the
GLUE and AdvGLUE benchmarks, we use the
ALBERT-XXLarge-v2 model to generate different
contextual representations. This combined text is
fed into the model to obtain the language model
results. This method allows us to assess the rela-
tionship between questions and their correspon-
ding answers, taking advantage of the model’s pre-
trained capabilities.

ii) GPT-3 code-davinci-001 For reasoning tasks
such as MultiArith and GSM8K, we used the GPT-
3 model, specifically the code-davinci-001 variant.
This model was chosen for its advanced ability to
handle complex language patterns and to generate
coherent, contextually relevant text completions.

Baseline Methods. We compare SecPE with three
different baseline methods : Classic fine-tuning
(Devlin et al., 2019), LM-BFF (Gao et al., 2021),
and PET (Schick and Schiitze, 2021). Below, we
briefly describe the FSL methods and explain our
rationale for considering them in our study.

— LM-BFF (Gao et al., 2021) : It involves conca-
tenating the input example, which is modified to
follow the prompting template with a [MASK]
in place of the verbalizer, with semantically
similar examples. During inference, LM-BFF
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TABLE 2 — Performance comparison on GLUE (Cln) and Adversarial GLUE (Adv) benchmarks. We report the
average and standard deviation in the accuracy values of 5 different runs.

ensembles the predictions made by concatena-
ting the input example with all demonstrations
from the few-shot training set. (i.e., demonstra-
tions) from the few-shot training set. For each
test example, we ensemble the predictions over
different possible sets of demonstrations. we
perform random sampling and subsequent trai-
ning of LM-BFF for 5 times and 1000 training
steps, for each task.

— PET (Schick and Schiitze, 2021) : It is a
simple prompt-based few-shot fine-tuning ap-
proach where the training examples are conver-
ted into templates, and the [MASK] tokens are
used to predict the verbalizer, which indicates
the output label. To understand the role of using
multiple prompts in robustness, we use PET
to fine-tune models with different template-
verbalizer pairs and ensemble their predictions
during inference. The pairs used for different
tasks are listed in Table 1. We train the mo-
del on four different sets of manual template-
verbalizer pairs for 250 training steps.

Private Inference Implementation. We develop
encryption functions with C++ and integrate the
SEAL library for RNS-CKKS homomorphic en-
cryption. To improve performance on Intel CPUs,
we include HEXL acceleration. Our configuration
adheres to homomorphic encryption standards, set-
ting the polynomial degree to N = 2'6 and the
ciphertext modulus to 1763 bits for 128-bit secu-
rity. We set a multiplicative depth of L = 35 and
a bootstrapping depth of K = 14, resulting in an
effective multiplicative depth of 21.

4.2 Evaluation Results on GLUE and
Adversarial GLUE Tasks

In Table 2, we present evaluation results on
GLUE and AdvGLUE tasks, reporting metrics F1
score for QQP and accuracy for the other five tasks).

BERT is used as the large pre-trained language mo-
del. For baselines LM-BFF and PET, we implement
the same private ALBERT-xxlarge-v2 for fair com-
parison.

According to Table 2, we have the following
experiment results :

— Compared with prompt ensembles without pri-
vacy preservation, SecPE exhibits almost no
accuracy loss on GELU and AdvGELU bench-
marks. This suggests that SecPE is capable of
maintaining both high utility and robustness
while providing privacy protection.

— Compared with the private inference of a
single prompt template, SecPE has demons-
trated better adversarial robustness than LM-
BFF(Ciphertext).

4.3 Comparison on Arithmetic Reasoning
Tasks

Self Consistency (Wang et al., 2022a) uses dif-
ferent prompt templates to generate a diverse set
of reasoning paths, each reasoning path might lead
to a different final answer, so we determine the
optimal answer by marginalizing out the sampled
reasoning paths using a voting verifier (aggregate-
then-argmax) (Li et al., 2023b) to find the most
consistent answer in the final answer set.

We implemented Self Consistency’s privacy in-
ference under the SecPE framework. The baseline
we compare to is chain-of-thought prompting with
greedy decoding (Wei et al., 2022). Compared with
Self Consistency’s inference results under plaintext,
the accuracy of ciphertext inference is similar to it
and much higher than the baseline. Figure 4 and 5
shows the performance on GSM8K and MultiArith
with the different number of reasoning paths.

4.4 Efficiency Comparison

Figure 6 illustrates the efficiency comparison of
SecPE with Phoenix (Jovanovic et al., 2022) under



GSM8K

NN N
o N »

Accuracy (%)
= [
[=)] o]

—
'S

—a— Greedy Decode (Plaintext)
—»— Self Consistency (Plaintext)
—&— Self Consistency (Ciphertext)

iy
N

v

0 5 10 15 20 25 30 35 40
# Reasoning Paths
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FIGURE 5 — Performance on MultiArith with the dif-
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different input dimensions. In particular, we focus
on the essential Argmax operation, which incurs
one of the major overheads of prompt ensemble
under private inference. For an input length of n,
Phoenix (Jovanovic et al., 2022) adopts a sequen-
tial comparison approach to obtain the sign bit,
resulting in (n+ 1) Sign operations and (n+1) ci-
phertext rotations. In contrast, SecPE’s Algorithm
1 only requires (logn + 1) Sign operations and
(log n + 1) ciphertext rotations. This significantly
reduces the execution time, which is depicted in Fi-
gure 6. For the input length of 256, SecPE achieves
20.8 x speedup for Argmax.

Figure 7 shows the time distribution of dif-
ferent building blocks in SecPE. Due to the nume-
rous non-linear operations (GELU, Softmax, Layer-
Norm) involved in LLM private inference, which
require multiple bootstrapping, they contribute si-
gnificantly to the overall overhead. We show that
the Argmax computation accounts for only 2.5% of
the total time. Therefore, SecPE incurs an additio-
nal cost of only 2.5% compared to private inference
with LLM without prompt ensembling.

It indicates that while Prompt Ensembling ne-
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FIGURE 6 — Performance of Argmax on RNS-CKKS for
different dimensions of input.
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FIGURE 7 — Runtime breakdown.

cessitates multiple inference runs, this overhead is
justified. Despite the additional computational cost,
as visualized by the substantial slice of the pie chart
allocated to LLM inference, the benefits of Prompt
Ensembling cannot be overstated. The improved
robustness and accuracy provided by multiple in-
ferences, where different prompts are evaluated to
derive a final answer, results in more reliable and
accurate model performance. This benefit often out-
weighs the cost of increased inference time, making
Prompt Ensembling a valuable technique in scena-
rios where high-quality predictions are paramount.

5 Conclusions

We propose SecPE, the first attempt to our best
knowledge to jointly enable privacy-preserving
and adversarial robustness for LLM inference.
SecPE synergizes the strengths of private inference
and prompt ensembling, previously explored in
isolation, and overcomes inefficiency challenges
incurred by a naive combination of existing tech-
niques. Our extensive experiments have demons-
trated that SecPE not only preserves high clean
accuracy but also significantly bolsters robustness,
all with a minimal efficiency overhead when com-
pared to existing private inference methods. The-
refore, SecPE manifests a satisfactory “accuracy-
robustness-efficiency” tradeoff.



Limitations

Although our work can ensure the privacy and
robustness of LLM, the privacy inference efficiency
of LLM is low due to the efficiency of homomor-
phic encryption. Even for MPC-based privacy in-
ference, communication traffic will bring a lot of
overhead. In addition, Prompt Ensemble requires
multiple inferences, which also improves our la-
tency. In addition, SecPE only provides empirical
robustness and does not extend the certified robust-
ness.

Ethics Concern

Our effort to integrate privacy and robustness
into LLM inference is a first step, and we’re aware
of the ethical weight it carries. While we strive to
respect user privacy and enhance security, we reco-
gnize the complexity of these issues and welcome
further insight and guidance from the community.
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