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Abstract

We investigate the properties of natural lan-
guage prompts that determine their difficulty in
machine reading comprehension (MRC) tasks.
While much work has been done benchmark-
ing language model (LM) performance at the
task level, there is considerably less literature
focused on how individual task items can en-
hance interpretability for MRC. We perform a
mixed effects analysis on the behavior of three
major LMs, comparing their performance on a
large multiple choice MRC task to explain the
relationship between predicted accuracy and
different prompt features. First, we observe
a divergence in LM accuracy as the prompt’s
token count grows with overall stronger LMs
increasing in accuracy and overall weaker LMs
decreasing. Second, all LMs exhibit consis-
tent accuracy gains with increasing syntactic
complexity. Third, a post hoc analysis revealed
that the most difficult prompts had the greatest
ability to discriminate between different LMs,
suggesting their outsized usefulness in MRC
evaluation methods.

1 Introduction

As of late, the research community has been
fiercely debating whether recent developments in
deep neural language modeling indicate true ma-
chine understanding of natural language or whether
they merely demonstrate shallow mimicry of the
patterns of language. Proponents of the under-
standing hypothesis have argued that the speed
with which new, more difficult benchmarks must
be created to keep up with advancement in pre-
trained LM capabilities suggests that human-level
language comprehension is not far off (Wang et al.,
2019). Devlin et al. (2019) state that “recent em-
pirical improvements ... have demonstrated that
rich, unsupervised pre-training is an integral part
of many language understanding systems.” Detrac-
tors have conversely argued that these benchmarks
are not adequate indicators of real understanding

because of their contrived and narrowly defined
format, which does not generalize to human lan-
guage as a whole (Niven and Kao, 2019; Zellers
et al., 2020; Bender et al., 2021). While we cannot
settle the MRC debate in the scope of this paper,
we intend to lay the groundwork for deeper investi-
gation into the methodology of MRC evaluation by
answering the following question: “Which linguis-
tic features predict LM accuracy on MRC tasks?”
Answering this question will not only shed light
on why LMs behave the way they do but also pro-
vide an opportunity to test an evaluation method
that has not yet seen wide adoption in NLP re-
search. To this end, we have conducted a narrow
and deep investigation into LM performance on
the RACE-h multiple choice MRC dataset (Lai
et al., 2017), leveraging the advantages of mixed
effects regression to enhance the interpretability
our results, which indicate that this methodology
can yield meaningful insights into the comparative
behavior of different LMs beyond the capabilities
of the simple benchmarking paradigm.

1.1 Why Mixed Effects?

Mixed effects models are statistical models that
do not assume independent homoscedastic resid-
uals (West et al., 2022). In other words, they are
formulated to tolerate variables that are not nec-
essarily randomly sampled and whose residuals
may not have constant variance as is often the case
with natural language corpora and benchmarking
datasets (Baayen et al., 2008). Conversely, tradi-
tional fixed effects models require all samples to
be independent and from an identical distribution
(i.i.d. samples), making them generally inappropri-
ate for such datasets. Datasets which lend them-
selves to a mixed effects analysis typically include
those with clustered data or random block experi-
mental designs as well as longitudinal or repeated
measures sampling. Such data are inherently de-
pendent between clusters, blocks, or repeated indi-



vidual subjects. While mixed effects models have
increasingly grown in popularity in the medical, bi-
ological, and social sciences for their flexibility and
expressive power in hypothesis testing on complex
datasets (West et al., 2022), they are still not widely
used in the evaluation of LM performance or empir-
ical NLP research more broadly (Riezler and Hag-
mann, 2022). Standard practice in LM evaluation
still primarily relies on the train/dev/test paradigm,
which satisfies i.i.d artificially by shuffling, parti-
tioning, and cross-validating the dataset while often
ignoring the statistically dependent structure of the
data (Berg-Kirkpatrick et al., 2012). While this
problem can be mitigated by averaging samples
within blocks or clusters and fitting the model to
the block averages, this workaround suffers from
significant information loss and underestimates the
amount of variation in the dataset (Baayen et al.,
2008). Conversely, the mixed effects approach
takes every data point and every grouping struc-
ture into account and can fully describe the vari-
ance both within and between groups via random
intercepts and random slopes respectively. In ad-
dition, it can protect against inflated Type I error
rates when fitting models to larger datasets, as was
demonstrated by Baayen et al. (2008).

2 Related Work

Despite the tremendous growth in our ability to
train and benchmark the performance of increas-
ingly large LMs over the last ten years, our ability
to analyze, contextualize, and understand their per-
formance has not kept pace. This is because the
most commonly used evaluation metrics have lim-
ited ability to help us understand why LMs behave
the way they do, as “[authors] usually report a sin-
gle high score of a model that has been trained with
... maximal hardware resources and maximal com-
putational resources for extensive meta-parameter
search” (Riezler and Hagmann, 2022). As such,
Riezler and Hagmann (2022) recommend the use
of linear mixed effects models for evaluating perfor-
mance on NLP tasks, as they “allow us to estimate
the variance induced by particular meta-parameter
settings ... in a general way.” Indeed, there seems
to be a growing sense that current datasets and mea-
surement techniques have become inadequate for
the general task of LM evaluation, as Bowman and
Dahl (2021) conclude that “benchmarking for NLU
is broken” due to the lack of statistical validity and
power of its techniques and the preponderance of

inaccurate annotations in its datasets.

While some researchers have argued that evalu-
ation methodologies should focus more on mea-
suring the quality of natural language genera-
tion (NLG) rather than simple classification tasks
(Zellers et al., 2020), NLG quality is notoriously
difficult to define much less measure (Sai et al.,
2020). As such, it has often been more practical for
researchers to use simple metrics that frame NLG
evaluation as a classification task, as Hendrycks
et al. (2020) and Zellers et al. (2018) do. In addi-
tion, Zellers et al. (2018) and Zellers et al. (2019)
use a technique known as adversarial filtering to
improve the robustness of MCQA datasets to LMs
that select answers based on shallow stylistic lan-
guage patterns rather than grounded commonsense
inference.

3 Methods

3.1 Dataset Collection

We used RACE-h - the popular MCQA-MRC
dataset — which consists of 69,394 multiple
choice questions (MCQs) collected from Chinese
high school ESL examinations and comes pre-
partitioned into a 90/5/5 train/dev/test split, of
which we chose to only use the test partition, leav-
ing us with 3,498 MCQs arranged into 1,045 statis-
tically independent clusters (Lai et al., 2017). Each
MCQ has exactly four possible answer choices,
and each cluster contains a single context passage
shared between each MCQ in the cluster, making
the individual MCQs statistically dependent, thus
motivating the mixed effects analysis.

In the original publication of the dataset, Lai
et al. (2017) use a sample of 250 MCQs to esti-
mate the proportion of ill-formed MCQs at around
7.1%, though later analyses have suggested that it
could be much higher. Zyrianova et al. (2023) take
a more stringent and exhaustive approach to detect-
ing errors in the dataset and reported that 61.5% of
MCQs are unacceptable. This discrepancy is likely
explainable by the highly divergent acceptability
criteria used by the authors, though the true error
rate in RACE-h is uncertain.

3.2 Language Model Inference

We posed each MCQ in the dataset to each of
three major LMs in the GPT series — Davinci-002,
Davinci-003, and GPT-4 via the OpenAl API —
which are generally agreed to vary in overall task-
level performance (Brown et al., 2020; OpenAl,
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Figure 1: LOESS plots for token count and syntactic complexity predictors of probability correct. Continuous
covariates are expressed in standard deviations from the mean.

2023). At inference time, we prompted each LM
with temperature set to 0 and greedy search en-
abled for simplicity. After stripping peripheral
white space from the response, we compared it
to the gold response, which could only be “A”, “B”,
“C”, or “D”. We then used these comparisons to
create a binary response vector to fit each mixed
effects model and frame the MCQA task as binary
classification.

3.3 Linguistic Feature Measurement

For each MCQ, we measured two linguistic fea-
tures that we expected could predict LM accuracy,
thus providing an explanation for the behavior ob-
served in the data collected. First, we measured
the token count of each MCQ, reasoning that the
varying context windows could affect an LM’s abil-
ity to comprehend longer prompts. Second, we
devised a proxy for syntactic complexity by count-
ing the number of nodes in the constituency parse
tree generated by the Stanza parser (Qi et al., 2020)
and dividing that by the token count to prevent
multicolinearity. Finally, we scaled and centered
each predictor so as to avoid convergence issues in
model fitting. Additional information on our mea-
surement procedures can be found in Appendix A.

Algorithm 1 Calculate Syntactic Complexity

1: function SCORE(sentence, parseTree)

2: TC <+ TOKENCOUNT(sentence)
3: NC <+ NODECOUNT(parseTree)
4: return NC/TC

5: end function

6:

7: function NODECOUNT(node)

8: count + 1

9: for each child in node.children do
10: count < count + NODECOUNT(child)
11: end for

12: return count

13: end function

4 Regression Analysis

Because of the statistical dependence of MCQs
within clusters, traditional regression models that
assume statistical independence would be inappro-
priate for modeling performance on RACE-h. In-
stead, we used generalized linear mixed effects re-
gression (GLMER), which allowed us to construct
logistic regression models which account for each
MCQ cluster as a separate random effect. This
makes it possible to identify salient MCQ clusters
for a more detailed post hoc analysis. It also allows
us to estimate the fixed effects coefficients without
loss of accuracy or the need to discard statistically
dependent MCQs.

We used R (R Core Team, 2021) to preprocesses
and conjoin all of the MCQs, responses, and lin-
guistic measures and fit multiple GLMER mod-
els with the 1me4 package (Bates et al., 2015).
We also used the flexplot package (Fife, 2023)
for fitting LOESS models that were useful for vi-
sualizing and forming our preliminary intuitions
about the data. The LOESS plots in Figure 1 sug-
gest that very short prompts are harder for LMs
to correctly answer in general, though this may
just reflect data sparseness at the lower extreme.
As prompts get longer, LM performance shoots
up then either plateaus or falls off in the case of
Davinci-002. A more interesting relationship can
be seen in the second plot where accuracy grows
almost monotonically for each of the three LMs.
This observation runs contrary to the commonly
accepted hypothesis in the psycholinguistic read-
ability literature that greater syntactic complexity
makes passages and questions harder to correctly
answer (Eslami, 2014). Despite their great expres-
siveness, the LOESS plots do not provide para-
metric formulas or estimations of statistical sig-
nificance for the observed relationships, meaning
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Figure 2: Specification of the mixed effects structure of the random intercepts GLMER models. The predicted log
odds of a correct answer COR;;;, are given by Equations 1 and 2 where T'OK; is the scaled token count of the iy,
MCQ; CONj is the scaled syntactic complexity of M CQ;; LLM; = 1 for the jy;, LLM or 0 for the mean LLM;
and PSG, is the ky, passage (i.e. ki, MCQ cluster). P, can then be obtained using the inverse logit function for
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they are not by themselves sufficient for drawing
valid conclusions via null hypothesis significance
testing.

We then fitted two GLMER models using the
glmer function from 1me4. The first specifies the
token count and LM variables in addition to their
interaction terms as the fixed effects predictors
and random effects by MCQ passage (indicating a
unique cluster). The second is much the same, ex-
cept with the constituency complexity substituted
for the token count. As can be seen in Appendix B,
no convergence failure or singular fit was detected
for either GLMER model. In addition, the vif
function showed no multicolinearity between fixed
effects parameters, indicating the validity and in-
terpretability of the estimated fixed effects. Finally,
a series of ablative likelihood ratio tests with the
anova function showed that all of the predictors in
both models contributed significantly to goodness
of fit (p < 0.05), except for the scaled_con:LLM
interaction terms.!

4.1 Fixed Effects Interpretation

Looking at the first regression table, we can see
that the fixed effects coefficients for the popu-
lation intercept, the offset for Davinci-002, and
the interaction between token count and Davinci-
002 were all statistically significant. The log
odds estimate of the population intercept is 1.31
(SE = 0.04), corresponding to a probability of
0.79 for an MCQ with mean token count to be
answered correctly assuming mean LM perfor-
mance. The log odds offset for Davinci-002 is
-1.12 (SE = 0.04), which corresponds to a proba-
bility of 0.55 (= ¢(1.31 — 1.12)) for mean token
count. The log odds offset for Davinci-003 is -
0.04 (SE = 0.04), which makes the corresponding

! As such, we may ignore the p-values listed in the summary
function.

probability 0.78 (= o(1.31 — 0.04)). Lastly, the
same offset for GPT-4is 1.16 (= —(—1.12—0.04))
(SE = 0.05) with a corresponding probability of
0.92 (= 0(1.31 4+ 1.16)). The slopes of each log
odds curve can then be calculated from the token
count and token count interaction effects, as can be
seen in Table 1.

Token Count 20 0o 20 4o 60
(164) (346) (529) (711) (893)

Davinci-002  0.87 0.55 0.18 0.04 0.01
Davinci-003  0.78 0.78 0.78 0.77 0.77
GPT-4 0.91 0.92 0.93 0.94 0.95
Grand Mean  0.79 0.79 0.78 0.78 0.77

Table 1: Probabilities of each model correctly answering
an MCQ of a particular length.

If we assume that the hypothesis space of the lo-
gistic function can adequately describe the change
in probability, then these results indicate that
Davinci-002’s accuracy rapidly degrades with in-
creased token count, swinging from 0.87 down to
0.01 across the full range of MCQ token counts
(164 to 893 tokens).” The curve for Davinci-003
also shows a negative relationship, though it is
much more slight and can be seen to be in closer
agreement with the corresponding LOESS plot.
Lastly, GPT-4’s curve clearly displays a slight posi-
tive relationship as well as a much higher overall
predicted accuracy in the low 0.90s. Regardless
of whether the hypothesis space is valid, it seems
reasonable to infer the general trend of divergence
in LM accuracy with respect to increasing token
count, as both the LOESS and logistic mixed ef-
fects models agree on this point.

Looking at the second regression table, we may
repeat the same calculations for the syntactic den-
sity relation and arrive at the probabilities in Ta-

*Though the stark disagreement between this logistic curve

and the non-monotonic LOESS spline should caution us
against simple interpretation.



Syntactic Density 20 Oc 20 4o

(3.15) (3.40) (3.65) (3.90)
Davinci-002 0.51 0.55 0.59 0.63
Davinci-003 0.75 0.78 0.81 0.84
GPT4 0.91 0.92 0.93 0.94
Grand Mean 0.76 0.79 0.79 0.8

Table 2: Probabilities of each model correctly answering
an MCQ of a particular syntactic density (i.e. nodes per
token).

ble 2. Note that the 0o column is identical to the
one in Table 1 when rounded to the hundredths
place, meaning that the fixed effects intercepts are
the same between models, while the slopes differ
between models. In addition, the log odds curves
for the syntactic complexity model are almost paral-
lel, which reflects the lack of statistical significance
of the scaled_con:LLM term.

4.2 Random Effects Interpretation

Our models represent the random effects as ran-
dom intercepts by MCQ cluster. And while we
attempted to fit a model with both random inter-
cepts and slopes, there was not enough variation
between MCQs within clusters to fit the random
slopes.? As such, we were only able to characterize
the variation in performance between MCQ clus-
ters. This motivated us to identify MCQ properties
that are highly discriminative between LMs in a
post hoc analysis.

First, we extracted the 100 “easiest” and 100
“hardest” clusters from the random effects structure
of the models. These data show that for both mod-
els, the easiest cluster is high17038. txt, and the
hardest cluster is high22834.txt. Both models
agree that the MCQs in the easiest cluster have an
0.91 probability of being answered correctly, and
the MCQs in the hardest cluster have a correspond-
ing probability of 0.36*, which indicates that the
clusters in RACE-h offer a wide range of difficulty
levels for the mean LM. We visualize the full mixed
effects structure in Appendix B.

S Post Hoc Analysis

In our final experiment, we took the two lists of
easiest and hardest MCQ clusters and compared
the relative frequencies with which different wh-

3This is likely due a lack of verisimilitude in the way
we measured token counts and syntactic complexity on each
MCQ, which did not account for the internal structure of
MCQs.

“Recall that the grand mean probability for all MCQs is
0.79 across the dataset.
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Figure 3: 100 randomly sampled random effects for
Davinci-002, Davinci-003, and GPT-4

words occur as the first token in the interrogative
portion of each individual MCQ. We obtained the
contingency table that can bee seen in Table 3 upon
which Fisher’s exact test with a simulated p-value
showed a significant difference in distribution be-
tween the easy and hard groups (p = 0.01, 2000
replicates). This result may indicate that “What”,
“Who”, and “How” questions are on average more
difficult for LMs to answer, while “Which”, “Why”,
and “When” questions tend to be easier.

We then take a closer look at MCQ clusters
with high discriminatory power (P;), which can be
thought of as the reliability with which an MCQ
from a particular cluster can be used to distinguish
between multiple LMs based on the correctness of
their answers. We define this measure based on
the average pairwise statistical distance between
distributions of MCQs answered correctly in each
cluster by each LM, as follows:

n

Pi= 25 ST Dru(BlP) @

n(n—1) i=1 j=it+1
— DxL(P;|| P; Dy (P; || P;
DKL(Pi”Pj) _ KL( ” ]) ; KL( JH ) (5)

where Dki (P;|| P;) is the Kullback-Leibler diver-
gence between P; and P; € {Py,..., P}, and n
is the number of LLMs being compared.’ Also,
note that P, ~ Bernoulli(py) where 0 < p;, < 1.

>We chose to define Py using the arithmetic mean of mul-
tiple measurements of the KL divergence because of its asym-
metry and because we wanted to capture something analogous
to variance for probability distributions.



We chose to calculate the KL divergence using a
smoothing constant ¢ = 10719 and the natural log-
arithm as follows:

gr = max(min(pg, 1 — €),€) (6)
Dy (Pi||P;) = ¢; In (Z—]) +(1—g)ln G :Z]) %

We then find the MCQ clusters with the 100 high-
est and 100 lowest P, values to construct another
wh— word contingency table. Again, Fisher’s ex-
act test revealed a significant difference in dis-
tribution between the high and low P, groups
(p = 0.02, 2000 replicates). We observe that while
“When”, “Which”, “Where”, and especially “Why”
questions tend to have low Py, “What”, “Who”,
and especially “How” questions tend to have high
P,;. Because these question types are both highly
discriminative and tend to be harder than others, we
may infer the possibility of a positive relationship
between MCQ difficulty and and discriminative
power. We also observe that “When”, “Which”,
and “Why” questions are both easier and have
lower P, on average, reinforcing the plausibility of
this relationship.

We also speculated that looking at the discrim-
inatory power of a dataset item could be used to
identify MCQs that have outsized usefulness in fu-
ture LM benchmarking tasks. The distribution of
these Py values can be seen in Figure 4 and inform
our final post hoc experiements. In part, we sought
to determine if the P, could be used to predict ill-
formed MCQs that should be removed from the
dataset for being unanswerable. We reasoned that
low P; may indicate a serious issue with the struc-
ture or logic of an MCQ, which would cause every
LM to either miss the correct answer or even for ev-
ery LM to get the answer right, because it does not
depend on the contextual passage. To accomplish
this, we split the dataset into four intervals based on
the Py value of each MCQ ranging from 0 to 15.4
and manually labeled 16 randomly sampled MCQs
from each interval, obtaining the contingency table
seen in Table 4. Fisher’s exact test did not reveal
a significant difference between the proportions of
ill-formed MCQs between intervals (p = 1, 2000
replicates). This failure to reject the null hypoth-
esis may indicate either that Py is not useful for
detecting dataset errors or that the sample size of
16 MCQs per interval does not provide sufficient
statistical power to detect such an effect.

Lastly, we wanted to see whether a subset of the
data based on a minimum P, cutoff value could
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Figure 4: Histogram showing the distribution of Py
values across the 1,045 MCQs in the dataset ranging
from O to 15.351 with mean P, of 3.131.

be used to reliably rank LMs by their task level
accuracy without having to use the entire dataset.
This experiment was theoretically motivated by the
observation that not all MCQs are equally useful
for distinguishing between different LMs, as some
provide more information about the subject than
others given a known population of LMs. To an-
swer this question, we first filtered the dataset by
the Py values of each MCQ, discarding MCQs be-
low four different threshold levels: 0, 5, 10, and
15. We then calculated the accuracy of each LM on
each filtered subset to arrive at the data in Table 5
which confirm the statistical validity of the P; con-
struct, suggesting that a dataset’s Py scores may
be useful even when ranking LMs outside of the
original sample used to calculate those scores. In
other words, we see the potential usefulness of Py
filtering in transfer evaluation due to its ability to
emphasize the accuracy difference between differ-
ent LMs even when restricted by relatively small
sample sizes.®

6 Conclusion

6.1 Results

We have used interpretable statistical techniques to
aid in the discovery of linguistic features that affect
the difficulty that LMs have in multiple choice read-

®As long as the sample size is at least 30, the standard error

of the accuracy measure can be no greater than /1/120 =
0.09.



What

When Which Why

Where Who Whom How Other

Easiest 62 9 58 21 3 1 1 7 252
Hardest 86 5 46 11 3 5 0 14 201
E/H 0.72  1.80 126 191 1.00 020 N/A 050 1.25
Highest P; 63 5 39 4 3 2 0 13 158
Lowest Py 52 12 47 15 4 1 0 5 165
H/L 121 042 083 027 075 200 NA 260 096

Table 3: Wh- word contingency table for MCQs from the 100 easiest and 100 hardest MCQ clusters as well as the
100 most and 100 least discriminative clusters. Because clusters have a variable number of MCQs, the MCQ row

totals also vary.

P, [0,5) [5,10) [10,15) >15
Valid 13 2 2 2
Tnvalid 3 7 7 7

Table 4: Contingency table for all 1,045 MCQs split
into four intervals of measured P;.

Py > 0 5 10 15
Davinci-002 0.54 0.19 0.06 0.11
Davinci-003 0.76 0.71 0.63 0.83

GPT4 0.90 0.97 0.98 0.96
Grand Mean 0.73 0.62 056 0.63
MCQ Count 1,045 154 79 37

Question Count 3,498 449 202 76

Table 5: Task accuracy for each LM at each P; cutoff
level. It can be seen from the data that the accuracy of
each LM diverges as the dataset is winnowed down.

ing comprehension tasks. Instead of using the typ-
ical task-level benchmarking evaluation methods,
we fit two GLMER models to examine the fixed
and random effects structures of LM performance
on the RACE-h dataset to obtain a more granular
view of how performance varies with respect to the
features of particular dataset items. These findings
then motivated an exploratory post hoc analysis
where we compared the relative frequencies of dif-
ferent leading position wh— words in different sub
groups of MCQ clusters to determine the lexical
properties that affect performance.

Our results demonstrate that performance di-
verges as MCQ token count grows, that it uni-
formly increases in log odds as syntactic com-
plexity grows, and that there exists a positive rela-
tionship between the difficulty of an MCQ and its
discriminative power. Each of these conclusions
offers meaningful insights into how we can im-
prove LM evaluation methodologies and explain
LM behavior in response to different types of nat-
ural language prompts. Of particular interest is
the surprisingly positive effect of syntactic com-
plexity on the likelihood of comprehension, which
runs counter to the standard assumptions made in

the psycho-linguistics literature (Eslami, 2014) and
invites deeper inquiry.

6.2 Discussion

Our experimental results have significant implica-
tions for how LM evaluation methodologies can
be made more effective, efficient, and interpretable
in various ways. The methods we used can be ex-
tended to aid in the discovery and explanation of
additional linguistic features that predict LM per-
formance on a variety of common tasks similar to
MCQA MRC. This improved understanding would
make it possible to construct more linguistically
informed evaluation datasets that leverage feature
engineered MCQs to more accurately and mean-
ingfully compare the behavior of different LMs
under varying contextual and meta-parameter set-
tings at scale. Such an approach could yield a great
bounty of practical and theoretical insights into the
nature of LM behavior and their natural language
understanding ability.

We have several recommendations for future
lines of inquiry that could leverage our empirical
and methodological results to great effect. For in-
stance, datasets could be filtered for MCQs with
high discriminatory power, which would yield
smaller datasets that could be used to more effi-
ciently rank LMs by performance. In addition, it
would be beneficial to search for similar metrics
that could leverage the observed performance of
relatively few LMs to flag potential garbage data.
This would be of very helpful for the NLP research
and engineering communities, as many commonly
used datasets for benchmarking performance have
significant quality control issues. Indeed, having a
set of statistical and linguistic tests that can be used
to screen and filter datasets to ensure consistently
high quality would be very useful to practitioners
of all kinds.



7 Limitations

While we have striven to provide rigorous empiri-
cal justification for our conclusions and avoid data
dredging, our experimental design still has some
shortcomings that must be addressed. One issue
that may limit the generalizability of our findings is
that we only used three proprietary LMs to answer
the question of how LM behavior is affected by
different linguistic features. As such, the inferred
relationships may not hold for out of distribution
LMs. Another limitation of our methodology was
that we measured linguistic features across entire
dataset items rather than taking piece-wise mea-
surements by passage, by question, and by answer.
It was only after fitting the GLMER models that
we realized piece-wise feature measurement would
have offered many advantages to model interpreta-
tion, as it would have revealed additional variance
within MCQ clusters, allowing us to fit a random
slopes model as well.

Our method of measuring the token count was
also less than ideal, as we used the NLTK library
(Xue, 2011) to compute this value for each MCQ
rather than simply count the number of leaf nodes
provided in the Stanza parse trees. This way both
the token count and the constituency complexity
would have been derived from the same data struc-
ture and the same parsing algorithm.

Lastly, our results may not generalize to lan-
guages other than English, as the RACE-h dataset
is a monolingual English dataset, and the observed
distribution of syntactic density scores is not likely
to hold for other languages.

8 Ethics Statement

We were assisted in the process of data labeling for
the purpose of error estimation by a former grad-
uate student trained in computational linguistics
whose native language is Chinese but completed
their education in the United States. We paid them
$20 per hour for a total of four hours to carefully
label 32 MCQ clusters as either valid or invalid.
The remaining 32 clusters were labeled by one of
the authors whose native language is American
English.

Aside from using the OpenAl API for model
evaluation, we used the ChatGPT web interface
to assist in information retrieval to help the us
choose the best statistical techniques to answer our
research questions. In addition, we used the web in-
terface to create quick mock ups of figures, tables,

and diagrams in I&TgXand TikZ, which we modified
as needed to accurately represent our methods and
findings. All assistance from ChatGPT was con-
fined to the web interface and kept separate from
the API calls so as to avoid any bias introduced via
cross contamination of data.

Lastly, we do not foresee any negative societal
repercussions from having run these experiments
or from publishing our findings, as we have not
trained any LMs. Rather, we have only used a
small handful of them for a limited number of in-
ferences, which is a figurative “drop in the bucket”
with respect to climatological concerns.
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the lazy dog the telescope

Figure 5: Constituency parse trees for “The quick brown fox jumped over the lazy dog.” and “The boy saw the man
with the telescope.” The first sentence has 26 nodes in total, and 10 are leaf nodes that represent tokens. Thus, the
raw syntactic complexity of this sentence would be 2.60 (= 26,/10). Accordingly, the second sentence would have
araw score of 2.78 (= 25/9).

B R Formulas and Code
B.1 GLMER for Token Count

> intercepts_tok <- glmer(correct ~ scaled_tok * LLM + (1|passage), data=df, family=binomial)
> summary(intercepts_tok)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: correct ~ scaled_tok * LLM + (1 | passage)
Data: df

AIC BIC loglLik deviance df.resid
10675.3 10726.1 -5330.7 10661.3 10487

Scaled residuals:
Min 1Q Median 3Q Max
-4.8964 -0.6874 ©.3349 0.5810 1.8478

Random effects:

Groups Name Variance Std.Dev.
passage (Intercept) 0.5564  0.7459

Number of obs: 10494, groups: passage, 1045

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.306962 0.037221 35.113 < 2e-16 ***
scaled_tok -0.012971 0.032554 -0.398 0.69030

LLM1 -1.116906 0.035076 -31.843 < 2e-16 ***
LLM2 -0.044386 0.035716 -1.243 0.21396
scaled_tok:LLM1 -0.097136 0.034660 -2.803 0.00507 **
scaled_tok:LLM2 ©0.003958 0.035950 0.110 0.91233

Signif. codes: @ ‘x*x’ 0.001 ‘**’ 0.01 ‘x’ 0.05 “.” 0.1 < * 1

Correlation of Fixed Effects:

(Intr) scld_t LLM1 LLM2 s_:LLM1
scaled_tok 0.017
LLM1 -0.288 -0.020
LLM2 -0.109 -0.021 -0.229
scld_t:LLM1 -0.020 -0.278 ©0.019 0.021
scld_t:LLM2 -0.016 -0.164 ©.019 ©0.011 -0.199

Figure 6: R formula for and summary of the intercepts only, token count GLMER model. Note that no warnings
were raised when fitting the model with the call to glmer.
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> vif(intercepts_tok)

GVIF Df GVIF*(1/(2+Df))
scaled_tok 1.145968 1 1.070499
LLM 1.002362 2 1.000590
scaled_tok:LLM 1.147014 2 1.034885

Figure 7: Variance inflation factors for the intercepts only, token count GLMER model. The VIF values for each
covariate indicate minimal correlation with other covariates.

B.2 GLMER for Syntactic Complexity

> intercepts_con <- glmer(correct ~ scaled_con * LLM + (1|passage), data=df, family=binomial)

> summary(intercepts_con)

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )

Formula: correct ~ scaled_con * LLM + (1 | passage)
Data: df
AIC BIC 1loglLik deviance df.resid
10677.3 10728.1 -5331.6 10663.3 10487
Scaled residuals:

Min 1Q Median 3Q Max
-4.8474 -0.6859 0.3335 0.5802 1.8448
Random effects:

Groups Name Variance Std.Dev.
passage (Intercept) 0.5569  0.7463
Number of obs: 10494, groups: passage, 1045

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3075563 0.0372347 35.117 < 2e-16 **%
scaled_con 0.0832204 0.0318668 2.612 0.00901 *x*
LLM1 -1.1176523 0.0350764 -31.863 < 2e-16 **x*
LLM2 -0.0434572 0.0357304 -1.216 ©.22389
scaled_con:LLM1 0.0072892 0.0340999 0.214 0.83073
scaled_con:LLM2 -0.0003695 ©.0358214 -0.010 ©.99177
Signif. codes: @ ‘x*x’ 0.001 ‘**’ 0.01 ‘x’ 0.05 “.” 0.1 < * 1
Correlation of Fixed Effects:

(Intr) scld_c LLM1 LLM2 s_:LLM1
scaled_con 0.033
LLM1 -0.288 -0.029
LLM2 -0.108 -0.007 -0.230
scld_c:LLM1 -0.016 -0.269 0.018 0.007
scld_c:LLM2 -0.007 -0.133 0.006 0.034 -0.231

Figure 8: R formula for and summary of the intercepts only, syntactic complexity GLMER model. Note that no
warnings were raised when fitting the model with the call to glmer.
> vif(intercepts_con)

GVIF Df GVIF(1/(2%Df))
scaled_con 1.127094 1 1.061647
LLM 1.002758 2 1.000689
scaled_con:LLM 1.128399 2 1.030660

Figure 9: Variance inflation factors for the intercepts only, syntactic complexity GLMER model. The VIF values for
each covariate indicate minimal correlation with other covariates.
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