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Abstract

We investigate the properties of natural lan-001
guage prompts that determine their difficulty in002
machine reading comprehension (MRC) tasks.003
While much work has been done benchmark-004
ing language model (LM) performance at the005
task level, there is considerably less literature006
focused on how individual task items can en-007
hance interpretability for MRC. We perform a008
mixed effects analysis on the behavior of three009
major LMs, comparing their performance on a010
large multiple choice MRC task to explain the011
relationship between predicted accuracy and012
different prompt features. First, we observe013
a divergence in LM accuracy as the prompt’s014
token count grows with overall stronger LMs015
increasing in accuracy and overall weaker LMs016
decreasing. Second, all LMs exhibit consis-017
tent accuracy gains with increasing syntactic018
complexity. Third, a post hoc analysis revealed019
that the most difficult prompts had the greatest020
ability to discriminate between different LMs,021
suggesting their outsized usefulness in MRC022
evaluation methods.023

1 Introduction024

As of late, the research community has been025

fiercely debating whether recent developments in026

deep neural language modeling indicate true ma-027

chine understanding of natural language or whether028

they merely demonstrate shallow mimicry of the029

patterns of language. Proponents of the under-030

standing hypothesis have argued that the speed031

with which new, more difficult benchmarks must032

be created to keep up with advancement in pre-033

trained LM capabilities suggests that human-level034

language comprehension is not far off (Wang et al.,035

2019). Devlin et al. (2019) state that “recent em-036

pirical improvements ... have demonstrated that037

rich, unsupervised pre-training is an integral part038

of many language understanding systems.” Detrac-039

tors have conversely argued that these benchmarks040

are not adequate indicators of real understanding041

because of their contrived and narrowly defined 042

format, which does not generalize to human lan- 043

guage as a whole (Niven and Kao, 2019; Zellers 044

et al., 2020; Bender et al., 2021). While we cannot 045

settle the MRC debate in the scope of this paper, 046

we intend to lay the groundwork for deeper investi- 047

gation into the methodology of MRC evaluation by 048

answering the following question: “Which linguis- 049

tic features predict LM accuracy on MRC tasks?” 050

Answering this question will not only shed light 051

on why LMs behave the way they do but also pro- 052

vide an opportunity to test an evaluation method 053

that has not yet seen wide adoption in NLP re- 054

search. To this end, we have conducted a narrow 055

and deep investigation into LM performance on 056

the RACE-h multiple choice MRC dataset (Lai 057

et al., 2017), leveraging the advantages of mixed 058

effects regression to enhance the interpretability 059

our results, which indicate that this methodology 060

can yield meaningful insights into the comparative 061

behavior of different LMs beyond the capabilities 062

of the simple benchmarking paradigm. 063

1.1 Why Mixed Effects? 064

Mixed effects models are statistical models that 065

do not assume independent homoscedastic resid- 066

uals (West et al., 2022). In other words, they are 067

formulated to tolerate variables that are not nec- 068

essarily randomly sampled and whose residuals 069

may not have constant variance as is often the case 070

with natural language corpora and benchmarking 071

datasets (Baayen et al., 2008). Conversely, tradi- 072

tional fixed effects models require all samples to 073

be independent and from an identical distribution 074

(i.i.d. samples), making them generally inappropri- 075

ate for such datasets. Datasets which lend them- 076

selves to a mixed effects analysis typically include 077

those with clustered data or random block experi- 078

mental designs as well as longitudinal or repeated 079

measures sampling. Such data are inherently de- 080

pendent between clusters, blocks, or repeated indi- 081
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vidual subjects. While mixed effects models have082

increasingly grown in popularity in the medical, bi-083

ological, and social sciences for their flexibility and084

expressive power in hypothesis testing on complex085

datasets (West et al., 2022), they are still not widely086

used in the evaluation of LM performance or empir-087

ical NLP research more broadly (Riezler and Hag-088

mann, 2022). Standard practice in LM evaluation089

still primarily relies on the train/dev/test paradigm,090

which satisfies i.i.d artificially by shuffling, parti-091

tioning, and cross-validating the dataset while often092

ignoring the statistically dependent structure of the093

data (Berg-Kirkpatrick et al., 2012). While this094

problem can be mitigated by averaging samples095

within blocks or clusters and fitting the model to096

the block averages, this workaround suffers from097

significant information loss and underestimates the098

amount of variation in the dataset (Baayen et al.,099

2008). Conversely, the mixed effects approach100

takes every data point and every grouping struc-101

ture into account and can fully describe the vari-102

ance both within and between groups via random103

intercepts and random slopes respectively. In ad-104

dition, it can protect against inflated Type I error105

rates when fitting models to larger datasets, as was106

demonstrated by Baayen et al. (2008).107

2 Related Work108

Despite the tremendous growth in our ability to109

train and benchmark the performance of increas-110

ingly large LMs over the last ten years, our ability111

to analyze, contextualize, and understand their per-112

formance has not kept pace. This is because the113

most commonly used evaluation metrics have lim-114

ited ability to help us understand why LMs behave115

the way they do, as “[authors] usually report a sin-116

gle high score of a model that has been trained with117

... maximal hardware resources and maximal com-118

putational resources for extensive meta-parameter119

search” (Riezler and Hagmann, 2022). As such,120

Riezler and Hagmann (2022) recommend the use121

of linear mixed effects models for evaluating perfor-122

mance on NLP tasks, as they “allow us to estimate123

the variance induced by particular meta-parameter124

settings ... in a general way.” Indeed, there seems125

to be a growing sense that current datasets and mea-126

surement techniques have become inadequate for127

the general task of LM evaluation, as Bowman and128

Dahl (2021) conclude that “benchmarking for NLU129

is broken” due to the lack of statistical validity and130

power of its techniques and the preponderance of131

inaccurate annotations in its datasets. 132

While some researchers have argued that evalu- 133

ation methodologies should focus more on mea- 134

suring the quality of natural language genera- 135

tion (NLG) rather than simple classification tasks 136

(Zellers et al., 2020), NLG quality is notoriously 137

difficult to define much less measure (Sai et al., 138

2020). As such, it has often been more practical for 139

researchers to use simple metrics that frame NLG 140

evaluation as a classification task, as Hendrycks 141

et al. (2020) and Zellers et al. (2018) do. In addi- 142

tion, Zellers et al. (2018) and Zellers et al. (2019) 143

use a technique known as adversarial filtering to 144

improve the robustness of MCQA datasets to LMs 145

that select answers based on shallow stylistic lan- 146

guage patterns rather than grounded commonsense 147

inference. 148

3 Methods 149

3.1 Dataset Collection 150

We used RACE-h – the popular MCQA-MRC 151

dataset – which consists of 69,394 multiple 152

choice questions (MCQs) collected from Chinese 153

high school ESL examinations and comes pre- 154

partitioned into a 90/5/5 train/dev/test split, of 155

which we chose to only use the test partition, leav- 156

ing us with 3,498 MCQs arranged into 1,045 statis- 157

tically independent clusters (Lai et al., 2017). Each 158

MCQ has exactly four possible answer choices, 159

and each cluster contains a single context passage 160

shared between each MCQ in the cluster, making 161

the individual MCQs statistically dependent, thus 162

motivating the mixed effects analysis. 163

In the original publication of the dataset, Lai 164

et al. (2017) use a sample of 250 MCQs to esti- 165

mate the proportion of ill-formed MCQs at around 166

7.1%, though later analyses have suggested that it 167

could be much higher. Zyrianova et al. (2023) take 168

a more stringent and exhaustive approach to detect- 169

ing errors in the dataset and reported that 61.5% of 170

MCQs are unacceptable. This discrepancy is likely 171

explainable by the highly divergent acceptability 172

criteria used by the authors, though the true error 173

rate in RACE-h is uncertain. 174

3.2 Language Model Inference 175

We posed each MCQ in the dataset to each of 176

three major LMs in the GPT series – Davinci-002, 177

Davinci-003, and GPT-4 via the OpenAI API – 178

which are generally agreed to vary in overall task- 179

level performance (Brown et al., 2020; OpenAI, 180
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Figure 1: LOESS plots for token count and syntactic complexity predictors of probability correct. Continuous
covariates are expressed in standard deviations from the mean.

2023). At inference time, we prompted each LM181

with temperature set to 0 and greedy search en-182

abled for simplicity. After stripping peripheral183

white space from the response, we compared it184

to the gold response, which could only be “A”, “B”,185

“C”, or “D”. We then used these comparisons to186

create a binary response vector to fit each mixed187

effects model and frame the MCQA task as binary188

classification.189

3.3 Linguistic Feature Measurement190

For each MCQ, we measured two linguistic fea-191

tures that we expected could predict LM accuracy,192

thus providing an explanation for the behavior ob-193

served in the data collected. First, we measured194

the token count of each MCQ, reasoning that the195

varying context windows could affect an LM’s abil-196

ity to comprehend longer prompts. Second, we197

devised a proxy for syntactic complexity by count-198

ing the number of nodes in the constituency parse199

tree generated by the Stanza parser (Qi et al., 2020)200

and dividing that by the token count to prevent201

multicolinearity. Finally, we scaled and centered202

each predictor so as to avoid convergence issues in203

model fitting. Additional information on our mea-204

surement procedures can be found in Appendix A.205

Algorithm 1 Calculate Syntactic Complexity
1: function SCORE(sentence, parseTree)
2: TC ← TOKENCOUNT(sentence)
3: NC ← NODECOUNT(parseTree)
4: return NC/TC
5: end function
6:
7: function NODECOUNT(node)
8: count ← 1
9: for each child in node.children do

10: count ← count + NODECOUNT(child)
11: end for
12: return count
13: end function

4 Regression Analysis 206

Because of the statistical dependence of MCQs 207

within clusters, traditional regression models that 208

assume statistical independence would be inappro- 209

priate for modeling performance on RACE-h. In- 210

stead, we used generalized linear mixed effects re- 211

gression (GLMER), which allowed us to construct 212

logistic regression models which account for each 213

MCQ cluster as a separate random effect. This 214

makes it possible to identify salient MCQ clusters 215

for a more detailed post hoc analysis. It also allows 216

us to estimate the fixed effects coefficients without 217

loss of accuracy or the need to discard statistically 218

dependent MCQs. 219

We used R (R Core Team, 2021) to preprocesses 220

and conjoin all of the MCQs, responses, and lin- 221

guistic measures and fit multiple GLMER mod- 222

els with the lme4 package (Bates et al., 2015). 223

We also used the flexplot package (Fife, 2023) 224

for fitting LOESS models that were useful for vi- 225

sualizing and forming our preliminary intuitions 226

about the data. The LOESS plots in Figure 1 sug- 227

gest that very short prompts are harder for LMs 228

to correctly answer in general, though this may 229

just reflect data sparseness at the lower extreme. 230

As prompts get longer, LM performance shoots 231

up then either plateaus or falls off in the case of 232

Davinci-002. A more interesting relationship can 233

be seen in the second plot where accuracy grows 234

almost monotonically for each of the three LMs. 235

This observation runs contrary to the commonly 236

accepted hypothesis in the psycholinguistic read- 237

ability literature that greater syntactic complexity 238

makes passages and questions harder to correctly 239

answer (Eslami, 2014). Despite their great expres- 240

siveness, the LOESS plots do not provide para- 241

metric formulas or estimations of statistical sig- 242

nificance for the observed relationships, meaning 243
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logit
(
Pijk

)
= β0 + β1TOKi + β2jLLMj + β3j(TOKi ∗ LLMj) + PSGk (1)

logit
(
Pijk

)
= β0 + β1CONi + β2jLLMj + β3j(CONi ∗ LLMj) + PSGk (2)

Pijk = P (CORijk = 1 | PSGk) = 1/1+e
−logit

(
Pijk

)
(3)

Figure 2: Specification of the mixed effects structure of the random intercepts GLMER models. The predicted log
odds of a correct answer CORijk are given by Equations 1 and 2 where TOKi is the scaled token count of the ith
MCQ; CONi is the scaled syntactic complexity of MCQi; LLMj = 1 for the jth LLM or 0 for the mean LLM;
and PSGk is the kth passage (i.e. kth MCQ cluster). Pijk can then be obtained using the inverse logit function for
i ∈ {1, ..., 3498}, j ∈ {1, 2, 3}, and k ∈ {1, ..., 1045}.

they are not by themselves sufficient for drawing244

valid conclusions via null hypothesis significance245

testing.246

We then fitted two GLMER models using the247

glmer function from lme4. The first specifies the248

token count and LM variables in addition to their249

interaction terms as the fixed effects predictors250

and random effects by MCQ passage (indicating a251

unique cluster). The second is much the same, ex-252

cept with the constituency complexity substituted253

for the token count. As can be seen in Appendix B,254

no convergence failure or singular fit was detected255

for either GLMER model. In addition, the vif256

function showed no multicolinearity between fixed257

effects parameters, indicating the validity and in-258

terpretability of the estimated fixed effects. Finally,259

a series of ablative likelihood ratio tests with the260

anova function showed that all of the predictors in261

both models contributed significantly to goodness262

of fit (p < 0.05), except for the scaled_con:LLM263

interaction terms.1264

4.1 Fixed Effects Interpretation265

Looking at the first regression table, we can see266

that the fixed effects coefficients for the popu-267

lation intercept, the offset for Davinci-002, and268

the interaction between token count and Davinci-269

002 were all statistically significant. The log270

odds estimate of the population intercept is 1.31271

(SE = 0.04), corresponding to a probability of272

0.79 for an MCQ with mean token count to be273

answered correctly assuming mean LM perfor-274

mance. The log odds offset for Davinci-002 is275

-1.12 (SE = 0.04), which corresponds to a proba-276

bility of 0.55 (= σ(1.31 − 1.12)) for mean token277

count. The log odds offset for Davinci-003 is -278

0.04 (SE = 0.04), which makes the corresponding279

1As such, we may ignore the p-values listed in the summary
function.

probability 0.78 (= σ(1.31 − 0.04)). Lastly, the 280

same offset for GPT-4 is 1.16 (= −(−1.12−0.04)) 281

(SE = 0.05) with a corresponding probability of 282

0.92 (= σ(1.31 + 1.16)). The slopes of each log 283

odds curve can then be calculated from the token 284

count and token count interaction effects, as can be 285

seen in Table 1. 286

Token Count -2σ 0σ 2σ 4σ 6σ
(164) (346) (529) (711) (893)

Davinci-002 0.87 0.55 0.18 0.04 0.01
Davinci-003 0.78 0.78 0.78 0.77 0.77

GPT-4 0.91 0.92 0.93 0.94 0.95
Grand Mean 0.79 0.79 0.78 0.78 0.77

Table 1: Probabilities of each model correctly answering
an MCQ of a particular length.

If we assume that the hypothesis space of the lo- 287

gistic function can adequately describe the change 288

in probability, then these results indicate that 289

Davinci-002’s accuracy rapidly degrades with in- 290

creased token count, swinging from 0.87 down to 291

0.01 across the full range of MCQ token counts 292

(164 to 893 tokens).2 The curve for Davinci-003 293

also shows a negative relationship, though it is 294

much more slight and can be seen to be in closer 295

agreement with the corresponding LOESS plot. 296

Lastly, GPT-4’s curve clearly displays a slight posi- 297

tive relationship as well as a much higher overall 298

predicted accuracy in the low 0.90s. Regardless 299

of whether the hypothesis space is valid, it seems 300

reasonable to infer the general trend of divergence 301

in LM accuracy with respect to increasing token 302

count, as both the LOESS and logistic mixed ef- 303

fects models agree on this point. 304

Looking at the second regression table, we may 305

repeat the same calculations for the syntactic den- 306

sity relation and arrive at the probabilities in Ta- 307

2Though the stark disagreement between this logistic curve
and the non-monotonic LOESS spline should caution us
against simple interpretation.
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Syntactic Density -2σ 0σ 2σ 4σ
(3.15) (3.40) (3.65) (3.90)

Davinci-002 0.51 0.55 0.59 0.63
Davinci-003 0.75 0.78 0.81 0.84

GPT-4 0.91 0.92 0.93 0.94
Grand Mean 0.76 0.79 0.79 0.8

Table 2: Probabilities of each model correctly answering
an MCQ of a particular syntactic density (i.e. nodes per
token).

ble 2. Note that the 0σ column is identical to the308

one in Table 1 when rounded to the hundredths309

place, meaning that the fixed effects intercepts are310

the same between models, while the slopes differ311

between models. In addition, the log odds curves312

for the syntactic complexity model are almost paral-313

lel, which reflects the lack of statistical significance314

of the scaled_con:LLM term.315

4.2 Random Effects Interpretation316

Our models represent the random effects as ran-317

dom intercepts by MCQ cluster. And while we318

attempted to fit a model with both random inter-319

cepts and slopes, there was not enough variation320

between MCQs within clusters to fit the random321

slopes.3 As such, we were only able to characterize322

the variation in performance between MCQ clus-323

ters. This motivated us to identify MCQ properties324

that are highly discriminative between LMs in a325

post hoc analysis.326

First, we extracted the 100 “easiest” and 100327

“hardest” clusters from the random effects structure328

of the models. These data show that for both mod-329

els, the easiest cluster is high17038.txt, and the330

hardest cluster is high22834.txt. Both models331

agree that the MCQs in the easiest cluster have an332

0.91 probability of being answered correctly, and333

the MCQs in the hardest cluster have a correspond-334

ing probability of 0.364, which indicates that the335

clusters in RACE-h offer a wide range of difficulty336

levels for the mean LM. We visualize the full mixed337

effects structure in Appendix B.338

5 Post Hoc Analysis339

In our final experiment, we took the two lists of340

easiest and hardest MCQ clusters and compared341

the relative frequencies with which different wh-342

3This is likely due a lack of verisimilitude in the way
we measured token counts and syntactic complexity on each
MCQ, which did not account for the internal structure of
MCQs.

4Recall that the grand mean probability for all MCQs is
0.79 across the dataset.

Figure 3: 100 randomly sampled random effects for
Davinci-002, Davinci-003, and GPT-4

words occur as the first token in the interrogative 343

portion of each individual MCQ. We obtained the 344

contingency table that can bee seen in Table 3 upon 345

which Fisher’s exact test with a simulated p-value 346

showed a significant difference in distribution be- 347

tween the easy and hard groups (p = 0.01, 2000 348

replicates). This result may indicate that “What”, 349

“Who”, and “How” questions are on average more 350

difficult for LMs to answer, while “Which”, “Why”, 351

and “When” questions tend to be easier. 352

We then take a closer look at MCQ clusters 353

with high discriminatory power (Pd), which can be 354

thought of as the reliability with which an MCQ 355

from a particular cluster can be used to distinguish 356

between multiple LMs based on the correctness of 357

their answers. We define this measure based on 358

the average pairwise statistical distance between 359

distributions of MCQs answered correctly in each 360

cluster by each LM, as follows: 361

Pd =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

DKL(Pi∥Pj) (4) 362

DKL(Pi∥Pj) =
DKL(Pi∥Pj) +DKL(Pj∥Pi)

2
(5) 363

where DKL(Pi∥Pj) is the Kullback-Leibler diver- 364

gence between Pi and Pj ∈ {P1, ..., Pn}, and n 365

is the number of LLMs being compared.5 Also, 366

note that Pk ∼ Bernoulli(pk) where 0 ≤ pk ≤ 1. 367

5We chose to define Pd using the arithmetic mean of mul-
tiple measurements of the KL divergence because of its asym-
metry and because we wanted to capture something analogous
to variance for probability distributions.
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We chose to calculate the KL divergence using a368

smoothing constant ϵ = 10−10 and the natural log-369

arithm as follows:370

qk = max(min(pk, 1− ϵ), ϵ) (6)371

DKL(Pi∥Pj) = qi ln

(
qi
qj

)
+ (1− qi) ln

(
1− qi
1− qj

)
(7)372

We then find the MCQ clusters with the 100 high-373

est and 100 lowest Pd values to construct another374

wh− word contingency table. Again, Fisher’s ex-375

act test revealed a significant difference in dis-376

tribution between the high and low Pd groups377

(p = 0.02, 2000 replicates). We observe that while378

“When”, “Which”, “Where”, and especially “Why”379

questions tend to have low Pd, “What”, “Who”,380

and especially “How” questions tend to have high381

Pd. Because these question types are both highly382

discriminative and tend to be harder than others, we383

may infer the possibility of a positive relationship384

between MCQ difficulty and and discriminative385

power. We also observe that “When”, “Which”,386

and “Why” questions are both easier and have387

lower Pd on average, reinforcing the plausibility of388

this relationship.389

We also speculated that looking at the discrim-390

inatory power of a dataset item could be used to391

identify MCQs that have outsized usefulness in fu-392

ture LM benchmarking tasks. The distribution of393

these Pd values can be seen in Figure 4 and inform394

our final post hoc experiements. In part, we sought395

to determine if the Pd could be used to predict ill-396

formed MCQs that should be removed from the397

dataset for being unanswerable. We reasoned that398

low Pd may indicate a serious issue with the struc-399

ture or logic of an MCQ, which would cause every400

LM to either miss the correct answer or even for ev-401

ery LM to get the answer right, because it does not402

depend on the contextual passage. To accomplish403

this, we split the dataset into four intervals based on404

the Pd value of each MCQ ranging from 0 to 15.4405

and manually labeled 16 randomly sampled MCQs406

from each interval, obtaining the contingency table407

seen in Table 4. Fisher’s exact test did not reveal408

a significant difference between the proportions of409

ill-formed MCQs between intervals (p = 1, 2000410

replicates). This failure to reject the null hypoth-411

esis may indicate either that Pd is not useful for412

detecting dataset errors or that the sample size of413

16 MCQs per interval does not provide sufficient414

statistical power to detect such an effect.415

Lastly, we wanted to see whether a subset of the416

data based on a minimum Pd cutoff value could417

Figure 4: Histogram showing the distribution of Pd

values across the 1,045 MCQs in the dataset ranging
from 0 to 15.351 with mean Pd of 3.131.

be used to reliably rank LMs by their task level 418

accuracy without having to use the entire dataset. 419

This experiment was theoretically motivated by the 420

observation that not all MCQs are equally useful 421

for distinguishing between different LMs, as some 422

provide more information about the subject than 423

others given a known population of LMs. To an- 424

swer this question, we first filtered the dataset by 425

the Pd values of each MCQ, discarding MCQs be- 426

low four different threshold levels: 0, 5, 10, and 427

15. We then calculated the accuracy of each LM on 428

each filtered subset to arrive at the data in Table 5 429

which confirm the statistical validity of the Pd con- 430

struct, suggesting that a dataset’s Pd scores may 431

be useful even when ranking LMs outside of the 432

original sample used to calculate those scores. In 433

other words, we see the potential usefulness of Pd 434

filtering in transfer evaluation due to its ability to 435

emphasize the accuracy difference between differ- 436

ent LMs even when restricted by relatively small 437

sample sizes.6 438

6 Conclusion 439

6.1 Results 440

We have used interpretable statistical techniques to 441

aid in the discovery of linguistic features that affect 442

the difficulty that LMs have in multiple choice read- 443

6As long as the sample size is at least 30, the standard error
of the accuracy measure can be no greater than

√
1/120 ≈

0.09.
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What When Which Why Where Who Whom How Other
Easiest 62 9 58 21 3 1 1 7 252
Hardest 86 5 46 11 3 5 0 14 201

E/H 0.72 1.80 1.26 1.91 1.00 0.20 N/A 0.50 1.25
Highest Pd 63 5 39 4 3 2 0 13 158
Lowest Pd 52 12 47 15 4 1 0 5 165

H/L 1.21 0.42 0.83 0.27 0.75 2.00 N/A 2.60 0.96

Table 3: Wh- word contingency table for MCQs from the 100 easiest and 100 hardest MCQ clusters as well as the
100 most and 100 least discriminative clusters. Because clusters have a variable number of MCQs, the MCQ row
totals also vary.

Pd [0, 5) [5, 10) [10, 15) ≥ 15
Valid 13 12 12 12

Invalid 3 4 4 4

Table 4: Contingency table for all 1,045 MCQs split
into four intervals of measured Pd.

Pd > 0 5 10 15
Davinci-002 0.54 0.19 0.06 0.11
Davinci-003 0.76 0.71 0.63 0.83

GPT-4 0.90 0.97 0.98 0.96
Grand Mean 0.73 0.62 0.56 0.63
MCQ Count 1,045 154 79 37

Question Count 3,498 449 202 76

Table 5: Task accuracy for each LM at each Pd cutoff
level. It can be seen from the data that the accuracy of
each LM diverges as the dataset is winnowed down.

ing comprehension tasks. Instead of using the typ-444

ical task-level benchmarking evaluation methods,445

we fit two GLMER models to examine the fixed446

and random effects structures of LM performance447

on the RACE-h dataset to obtain a more granular448

view of how performance varies with respect to the449

features of particular dataset items. These findings450

then motivated an exploratory post hoc analysis451

where we compared the relative frequencies of dif-452

ferent leading position wh− words in different sub453

groups of MCQ clusters to determine the lexical454

properties that affect performance.455

Our results demonstrate that performance di-456

verges as MCQ token count grows, that it uni-457

formly increases in log odds as syntactic com-458

plexity grows, and that there exists a positive rela-459

tionship between the difficulty of an MCQ and its460

discriminative power. Each of these conclusions461

offers meaningful insights into how we can im-462

prove LM evaluation methodologies and explain463

LM behavior in response to different types of nat-464

ural language prompts. Of particular interest is465

the surprisingly positive effect of syntactic com-466

plexity on the likelihood of comprehension, which467

runs counter to the standard assumptions made in468

the psycho-linguistics literature (Eslami, 2014) and 469

invites deeper inquiry. 470

6.2 Discussion 471

Our experimental results have significant implica- 472

tions for how LM evaluation methodologies can 473

be made more effective, efficient, and interpretable 474

in various ways. The methods we used can be ex- 475

tended to aid in the discovery and explanation of 476

additional linguistic features that predict LM per- 477

formance on a variety of common tasks similar to 478

MCQA MRC. This improved understanding would 479

make it possible to construct more linguistically 480

informed evaluation datasets that leverage feature 481

engineered MCQs to more accurately and mean- 482

ingfully compare the behavior of different LMs 483

under varying contextual and meta-parameter set- 484

tings at scale. Such an approach could yield a great 485

bounty of practical and theoretical insights into the 486

nature of LM behavior and their natural language 487

understanding ability. 488

We have several recommendations for future 489

lines of inquiry that could leverage our empirical 490

and methodological results to great effect. For in- 491

stance, datasets could be filtered for MCQs with 492

high discriminatory power, which would yield 493

smaller datasets that could be used to more effi- 494

ciently rank LMs by performance. In addition, it 495

would be beneficial to search for similar metrics 496

that could leverage the observed performance of 497

relatively few LMs to flag potential garbage data. 498

This would be of very helpful for the NLP research 499

and engineering communities, as many commonly 500

used datasets for benchmarking performance have 501

significant quality control issues. Indeed, having a 502

set of statistical and linguistic tests that can be used 503

to screen and filter datasets to ensure consistently 504

high quality would be very useful to practitioners 505

of all kinds. 506

7



7 Limitations507

While we have striven to provide rigorous empiri-508

cal justification for our conclusions and avoid data509

dredging, our experimental design still has some510

shortcomings that must be addressed. One issue511

that may limit the generalizability of our findings is512

that we only used three proprietary LMs to answer513

the question of how LM behavior is affected by514

different linguistic features. As such, the inferred515

relationships may not hold for out of distribution516

LMs. Another limitation of our methodology was517

that we measured linguistic features across entire518

dataset items rather than taking piece-wise mea-519

surements by passage, by question, and by answer.520

It was only after fitting the GLMER models that521

we realized piece-wise feature measurement would522

have offered many advantages to model interpreta-523

tion, as it would have revealed additional variance524

within MCQ clusters, allowing us to fit a random525

slopes model as well.526

Our method of measuring the token count was527

also less than ideal, as we used the NLTK library528

(Xue, 2011) to compute this value for each MCQ529

rather than simply count the number of leaf nodes530

provided in the Stanza parse trees. This way both531

the token count and the constituency complexity532

would have been derived from the same data struc-533

ture and the same parsing algorithm.534

Lastly, our results may not generalize to lan-535

guages other than English, as the RACE-h dataset536

is a monolingual English dataset, and the observed537

distribution of syntactic density scores is not likely538

to hold for other languages.539

8 Ethics Statement540

We were assisted in the process of data labeling for541

the purpose of error estimation by a former grad-542

uate student trained in computational linguistics543

whose native language is Chinese but completed544

their education in the United States. We paid them545

$20 per hour for a total of four hours to carefully546

label 32 MCQ clusters as either valid or invalid.547

The remaining 32 clusters were labeled by one of548

the authors whose native language is American549

English.550

Aside from using the OpenAI API for model551

evaluation, we used the ChatGPT web interface552

to assist in information retrieval to help the us553

choose the best statistical techniques to answer our554

research questions. In addition, we used the web in-555

terface to create quick mock ups of figures, tables,556

and diagrams in LATEXand TikZ, which we modified 557

as needed to accurately represent our methods and 558

findings. All assistance from ChatGPT was con- 559

fined to the web interface and kept separate from 560

the API calls so as to avoid any bias introduced via 561

cross contamination of data. 562

Lastly, we do not foresee any negative societal 563

repercussions from having run these experiments 564

or from publishing our findings, as we have not 565

trained any LMs. Rather, we have only used a 566

small handful of them for a limited number of in- 567

ferences, which is a figurative “drop in the bucket” 568

with respect to climatological concerns. 569
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Figure 5: Constituency parse trees for “The quick brown fox jumped over the lazy dog.” and “The boy saw the man
with the telescope.” The first sentence has 26 nodes in total, and 10 are leaf nodes that represent tokens. Thus, the
raw syntactic complexity of this sentence would be 2.60 (= 26/10). Accordingly, the second sentence would have
a raw score of 2.78 (= 25/9).

B R Formulas and Code693

B.1 GLMER for Token Count694
> intercepts_tok <- glmer(correct ~ scaled_tok * LLM + (1|passage), data=df, family=binomial)
> summary(intercepts_tok)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: correct ~ scaled_tok * LLM + (1 | passage)

Data: df

AIC BIC logLik deviance df.resid
10675.3 10726.1 -5330.7 10661.3 10487

Scaled residuals:
Min 1Q Median 3Q Max

-4.8964 -0.6874 0.3349 0.5810 1.8478

Random effects:
Groups Name Variance Std.Dev.
passage (Intercept) 0.5564 0.7459
Number of obs: 10494, groups: passage, 1045

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.306962 0.037221 35.113 < 2e-16 ***
scaled_tok -0.012971 0.032554 -0.398 0.69030
LLM1 -1.116906 0.035076 -31.843 < 2e-16 ***
LLM2 -0.044386 0.035716 -1.243 0.21396
scaled_tok:LLM1 -0.097136 0.034660 -2.803 0.00507 **
scaled_tok:LLM2 0.003958 0.035950 0.110 0.91233
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr) scld_t LLM1 LLM2 s_:LLM1

scaled_tok 0.017
LLM1 -0.288 -0.020
LLM2 -0.109 -0.021 -0.229
scld_t:LLM1 -0.020 -0.278 0.019 0.021
scld_t:LLM2 -0.016 -0.164 0.019 0.011 -0.199

Figure 6: R formula for and summary of the intercepts only, token count GLMER model. Note that no warnings
were raised when fitting the model with the call to glmer.
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> vif(intercepts_tok)
GVIF Df GVIF^(1/(2*Df))

scaled_tok 1.145968 1 1.070499
LLM 1.002362 2 1.000590
scaled_tok:LLM 1.147014 2 1.034885

Figure 7: Variance inflation factors for the intercepts only, token count GLMER model. The VIF values for each
covariate indicate minimal correlation with other covariates.

696

B.2 GLMER for Syntactic Complexity697

> intercepts_con <- glmer(correct ~ scaled_con * LLM + (1|passage), data=df, family=binomial)
> summary(intercepts_con)
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: correct ~ scaled_con * LLM + (1 | passage)

Data: df

AIC BIC logLik deviance df.resid
10677.3 10728.1 -5331.6 10663.3 10487

Scaled residuals:
Min 1Q Median 3Q Max

-4.8474 -0.6859 0.3335 0.5802 1.8448

Random effects:
Groups Name Variance Std.Dev.
passage (Intercept) 0.5569 0.7463
Number of obs: 10494, groups: passage, 1045

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.3075563 0.0372347 35.117 < 2e-16 ***
scaled_con 0.0832204 0.0318668 2.612 0.00901 **
LLM1 -1.1176523 0.0350764 -31.863 < 2e-16 ***
LLM2 -0.0434572 0.0357304 -1.216 0.22389
scaled_con:LLM1 0.0072892 0.0340999 0.214 0.83073
scaled_con:LLM2 -0.0003695 0.0358214 -0.010 0.99177
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr) scld_c LLM1 LLM2 s_:LLM1

scaled_con 0.033
LLM1 -0.288 -0.029
LLM2 -0.108 -0.007 -0.230
scld_c:LLM1 -0.016 -0.269 0.018 0.007
scld_c:LLM2 -0.007 -0.133 0.006 0.034 -0.231

Figure 8: R formula for and summary of the intercepts only, syntactic complexity GLMER model. Note that no
warnings were raised when fitting the model with the call to glmer.

698

> vif(intercepts_con)
GVIF Df GVIF^(1/(2*Df))

scaled_con 1.127094 1 1.061647
LLM 1.002758 2 1.000689
scaled_con:LLM 1.128399 2 1.030660

Figure 9: Variance inflation factors for the intercepts only, syntactic complexity GLMER model. The VIF values for
each covariate indicate minimal correlation with other covariates.
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