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Abstract

We propose ESPACE1, an LLM compression technique based on dimensionality re-
duction of activations. Unlike prior works on weight-centric tensor decomposition,
ESPACE projects activations onto a pre-calibrated set of principal components.
The activation-centrality of the approach enables retraining LLMs with no loss of
expressivity; while at inference, weight decomposition is obtained as a byproduct
of matrix multiplication associativity. Theoretical results on the construction of pro-
jection matrices with optimal computational accuracy are provided. Experimentally,
we find ESPACE enables 50% compression of GPT3, Llama2, and Nemotron4
models with small accuracy degradation, as low as a 0.18 perplexity increase on
GPT3-22B. At lower compression rates of 20% to 40%, ESPACE drives GPT3
models to outperforming their baseline, by up to a 0.38 decrease in perplexity
for GPT3-8B. ESPACE also reduces GEMM execution time and prefill inference
latency on existing hardware. Comparison with related works on compressing
Llama2-7B via matrix factorization shows that ESPACE is a first step in advancing
the state-of-the-art in tensor decomposition compression of LLMs.

1 Introduction

Capabilities of large language models (LLMs) have recently soared in natural language understanding
and generative power. It is appreciated that there exists a correlation between model size and
achievable accuracy. Indeed, as LLMs consume trillions of tokens during their training, a large
parameter volume is required to capture intricate linguistic features [1]. This leads to a trade-off in
LLMs: larger parameter counts improve accuracy but come with increased serving cost.

However, it is also appreciated that the computational requirements of inference may be lower than
those of training [2]. To that end, numerous studies have investigated compression of LLMs to reduce
inference cost. The most popular LLM compression techniques are quantization [3] and pruning
[4]. A less explored, but powerful technique is tensor decomposition, and in our work, we propose a
novel, activation-centric way to decompose LLM tensors. Our proposal is to project activations onto
a static set of components optimizing fidelity. The projection reduces activation dimensionality and
leads to weight compression at inference as a byproduct of matrix multiplication associativity.

1.1 Related work and motivation for activation-centric tensor decomposition

Recent research has proposed many quantization and pruning techniques for compressing LLMs.
Examples of advances in LLM quantization include SmoothQuant [3], AWQ [5], and GPTQ [6]; while
notable LLM pruning works include SparseGPT [4], LLM-Pruner [7], and ReLU-based masking [8].
These methods are conceptually orthogonal to our proposal for activation projection which can be

1We use the french pronunciation "espace", which means "space".
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implemented in low precision or sparse formats. Nevertheless, compression fundamentally introduces
noise, and an open problem is to study the impact of combining different methods, e.g., quantization
and matrix factorization. This is beyond the scope of our paper, but a good direction for future work.

Our work is also orthogonal to non-compressive LLM serving acceleration such as continuous
batching [9] or speculative decoding [10], and attention optimizations such as PagedAttention [11],
RadixAttention [12], and FlashAttention [13]. Our study is on matrix multiplication layers involving
weights and activations, and hence is mutually exclusive to works improving cross multiplications of
activation tensors in attention. In fact, all our experiments use FlashAttention.

Finally, we turn to tensor decomposition, also known as factorization. Thus far, compression
for LLM inference using factorization has been focused on weight decomposition. KnGPT [14]
uses the Kronecker transform to pack a large matrix into two smaller ones. TSVD [15] performs
iterative singular value decomposition (SVD) on weight matrices to produce high rank ternary
components. TensorGPT [16] and HEAT [17] compress weight matrices into a cascade product of
small matrices using the tensor-train algorithm. SVD-LoRa [18] uses a truncated SVD on weights
and finetunes the model using LoRa [19]. The LoRa adapters are then merged to the main branch
using bounds on the rank of sum of low rank matrices. ASVD [20] performs a truncated SVD on
the weights after re-scaling them by a diagonal matrix and their inverse encapsulating activation
statistics. This work realizes the importance of activation-awareness but still uses weight-centric
compression. SliceGPT [21] extracts principal components in normalization layers to guide the
deletion of rows and columns in weight matrices. The compression is achieved using a factoriza-
tion made implicit via computational invariance. The statistical method employed by sliceGPT
shares similarities with one of our results, but our problem formulation and solution are different.
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Figure 1: Perplexity2 versus model size for GPT3 and Llama2
models and comparison to compressed models using ESPACE.

Factorization can also streamline
LLM training and finetuning. For
instance, LoRa [19] finetunes pre-
trained models using residual low rank
adapters which are then absorbed into
the main branch. Similarly, GaLore
[22] applies a low rank approxima-
tion to gradients in back-propagation.
These works do not modify inference
parameter and operation count, and
are hence orthogonal to ours. Our
method could be applied in tandem
with LoRa or GaLore, but this is be-
yond the scope of this paper.

Since factorization increases the number of LLM tensors, achieving high compression rates requires
the intermediate dimensions to be much smaller than that of original dot product. This breakage
in computation usually necessitates a retraining or finetuning stage to be healed. Unfortunately,
this healing process is impeded because factorized LLMs have fewer learnable parameters which
decreases expressivity [17, 22].

To our knowledge, no prior art has explored activation decomposition. Indeed, applying factor-
ization solvers (e.g., SVD) dynamically incurs large inference runtime overheads. Yet, activation
decomposition has several desired features which we examine in Section 2 and motivate via the
following insights: (a) weights stay uncompressed during retraining, preventing the aforementioned
loss of expressivity; (b) large activation tensors contain inherent redundancies making them prime
candidates for compression; and (c) since most LLM computation comprises multiplications of
weights and activations, decomposing the latter can lead to compressing the former at inference.

1.2 Contributions

We propose Eigen Static Principal Activation Component Estimation (ESPACE), an LLM compres-
sion technique based on activation dimensionality reduction. Our contributions are as follows:

• We project activation tensors onto a static and pre-calibrated orthonormal matrix. The projection
lowers activation dimensionality but keeps weight matrices intact and fully available for training.
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At inference, leveraging matrix multiplication associativity, model compression is achieved through
pre-computation of the product of weight and projection matrices.

• We theoretically derive optimal constructions for activation dimensionality reduction. Specifically,
the projection matrix is calibrated in a manner to minimize activation decomposition mean squared
error and forward propagated noise metrics. The solution is based on an eigenvalue decomposition
of activation auto-correlation and yields multiple candidate projections for each activaton tensor.

• We empirically study compression of models in the GPT3, Llama2, and Nemotron4 families
evaluated on the Wikitext-103 dataset for perplexity and the LM evaluation harness for downstream
task accuracy. The amelioration in size versus perplexity2 trade-offs is summarized in Figure 1.

• We show that ESPACE can compress LLMs by ∼50% at the cost of a small accuracy loss, as low
as 0.18 increase in perplexity on GPT3-22B.

• At lower compression rates, we find encouraging empirical evidence that ESPACE filters out noise
and improves accuracy; e.g., ∼20% compressed GPT3-8B lowers its baseline perplexity by 0.38.

• As an additional benefit of ESPACE, tangible latency reduction of 35%-to-45% is obtained in
matrix multiplication layers. This speed-up translates to up to ∼ 40% faster prefill inference
latency metricized by the time to first token and measured on existing hardware.

• By comparison to existing works on tensor decomposition, we determine that ESPACE is a first
step in pushing the frontier of compression rate versus accuracy retention (see Figure 4).

2 Dimensionality Reduction & Projections

In this section, we introduce notation for matrix multiplication, review weight decomposition, and
introduce our proposed mechanism of dimensionality reduction via activation projections.

2.1 Matrix Multiplication and Weight Decomposition

We consider general matrix multiplications (GEMMs) described in Figure 2(a) of the form

Y = WTX (1)

where W is a weight matrix of size K ×N and X is an input activation tensor of size K ×M so
that the output activation tensor Y is of size N ×M . Typically, K and N are defined by network
topology and layer instance, they are commonly referred to as embedding or hidden size. In contrast,
M stacks multiple dimensions in an activation tensors to obtain a 2D matrix view. Generally, these
are the sequence and batch dimensions.

Transformer-based LLMs have four GEMM layers per block: query-key-value (QKV), projection
(Proj), fully connected 1 (FC1), and fully connected 2 (FC2) layers. Our study is concerned with
these layers, while cross activation multiplication and embedding layers are untouched. For notational
simplicity, in this paper, we do not include layer indices in our equations.

The matrix W in (1) stores layer parameters and dictates the model’s inference accuracy. To improve
convergence of these parameters, an optimizer state is stored alongside weights during training and
tracks historical values of gradients and updates [23, 24]. On the other hand, the activation tensor X
depends on the input stimulus to the network, and is therefore generated on the fly.

Thus, at inference, weights are fixed but activations are dynamic. As a consequence, prior work on
tensor decomposition has focused on compressing frozen weight matrices. One way of doing so is
breaking WT into a low-rank approximation using some form of truncated SVD [20, 18], which is
described in Figure 2(b). Specifically, (1) is approximated as:

Y ≈ UVX (2)

where U and V are matrices of size N×L and L×K, respectively, with L being the factorization rank.
For the decomposition procedure to be useful, two conditions need to be met: (a) L << min(K,N)
for compression, and (b) the approximation WT ≈ UV should be accurate. However, achieving
both conditions simultaneously may be challenging because a very low rank factorization usually
leads to significant accuracy drop [22].

2Perplexity depends on tokenizer so that comparisons across LLM families (GPT3 vs Llama2) are not useful.
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Figure 2: Decompositions in GEMMs: (a) baseline multiplication of weight matrix and activation tensor,
(b) truncated SVD on the weight matrix, and (c) proposed approach of inserting a static matrix to project
activations. With ESPACE, all weights are available for training, while inference compression is achieved via
per-computation of

(
PTW

)
.

As with other compression techniques, e.g., quantization and pruning, retraining of the compressed
model may be employed to recover accuracy. However, the decomposition in (2) introduces two
training-related hurdles: (a) the effective number of trainable parameters has decreased significantly
which reduces model expressivity, and (b) the breakage of spatial weight structure prevents the
retraining procedure from loading the original optimizer state. Retraining a model without its
optimizer state is known to introduce significant difficulty in convergence [17].

2.2 Activation Decomposition via Static Projection

Since weight decomposition poses the above hurdles, we motivate the need for an activation-centric
solution. In some measure, activation compression may be more achievable due to the large stack
dimension M comprising batches and sequences. Statistically, the Central Limit Theorem claims
that stacking data is likely to exhibit redundancies [25]. In the case of LLMs, such redundancies are
further pronounced due to the likelihood of repeated tokens and information in natural language.

Therefore, activations should be prime candidates for tensor decomposition. Nevertheless, prior
arts have not explored activation decomposition due to one fundamental limitation: unlike weights,
activations are generated on the fly; meaning that tensors must be compressed during inference,
potentially incurring large runtime penalties.

We propose to apply static dimensionality reduction on the activation tensor X in (1). Concretely,
our proposal is to project X onto a pre-computed static orthonormal matrix P of size K × L, where
crucially L << K. Reconstructing X requires a re-expansion using the transpose of the projection
matrix, i.e., X ≈ PPTX. While PTP = IL×L, we note that PPT ̸= IK×K since L << K. Thus,
the proposed activation transformation is noisy, and in Section 3, we derive optimal conditions on the
calibration of P to minimize the effects of this noise.

Our proposal, described in Figure 2(c) is to approximate the GEMM in (1) using the following:

Y = WTX ≈ WTPPTX = WT
(
PPTX

)
=
(
PTW

)T (
PTX

)
(3)

where we used associativity of matrix multiplication to highlight key aspects of our approach.

During training/finetuning: we view our GEMM as WT
(
PPTX

)
where X has been replaced

by its approximation. We emphasize that P is static and does not get updated during training.
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Meanwhile, WT is fully available for adaptation to the activation approximation. The availability of
all learnable weights elides losing model expressivity. The structure of WT is also unchanged and
can be mapped to the baseline’s optimizer state. Thus, the proposed approach does not suffer from
the same limitations as weight decomposition techniques. We do note that introducing P induces
a small storage overhead at train time. However, when L << K, and the order of computation is
properly compiled, the number of operations per iteration is lower than baseline training; and, though
not central to our contribution, we did observe up to 15% reduction in training iteration time for 50%
compressed models.

During inference: we view our GEMM as
(
PTW

)T (
PTX

)
where the required matrices are P of

size K × L and
(
PTW

)
of size N × L, which is pre-computed before deployment. Thus, per-layer

parameter count required for inference has decreased from KN to L(K + N), which, provided
L << {K,N} presents an opportunity for significant model compression. For instance, if N = K,
i.e., WT is square, and L = K/4, then our method yields 50% compression at inference time. This is
one of the compression rates we target in Section 4.

We emphasize that P is not shared across GEMM layers; rather, each GEMM layer decomposed
according to (3) has its own pre-calibrated matrix P. Furthermore, by virtue of (3) not introducing
dependencies across mini-batches, our method is fully compatible with data parallelism.

3 Eigen Static Principal Activation Component Estimation

Our proposed activation decomposition induces an approximation error as X ̸= PPTX. In this
section, we first introduce an ergodic estimation of activation auto-correlation. This important statistic
is then used for theoretical constructions of P with guarantees on computational accuracy. Multiple
results are presented and then combined in our compression studies in Section 4.

3.1 Activation auto-correlation estimation

Let x be an arbitrary K-dimensional vector in X; we define the activation auto-correlation matrix
of size K ×K as CX = E

[
xxT

]
where expectation is taken over activation vectors. This matrix

is symmetric positive semi-definite having a real eigenvalue decomposition (EVD) CX = VDVT

where V is an orthonormal matrix whose columns are eigenvectors, and D is a diagonal matrix
containing the corresponding non-negative eigenvalues, assumed to be sorted in decreasing order.
The eigenvector corresponding to the ith largest eigenvalue is called ith principal eigenvector.

This autocorrelation matrix can be empirically estimated using an instance of the activation tensor:

X = [x1| . . . |xM] ⇒ XXT =
[
x1x

T
1 + . . .+ xMxT

M

]
⇒ CX = XXT

/M (4)
However, evaluating (4) and its EVD dynamically introduces a prohibitive computational overhead.
Thus, we estimate CX in a pre-deployment calibration process. Specifically, during calibration, we
sample and forward pass B random input batches, and for each, calculate C(i)

X = X(i)X(i)T

/M , where
superscript i denotes batch index. Then, we average our estimate of the auto-correlation matrix as
CX =

∑B
i=1 C

(i)
X /B and use its eigenvalue decomposition for further optimizations.

This ergodic approach of estimating activation statistics as part of a calibration process has been
employed to great effect in other compression works on quantization [26, 27] and pruning [28].

3.2 Activation decomposition with minimum mean squared error

Let us write X̃ = PPTX; for a vector x ∈ X, its counterpart in x̃ ∈ X̃ is given by:

x̃ =

L∑
i=1

⟨pi,x⟩pi (5)

where {pi}Li=1 are the orthonormal column vectors of P, i.e., ⟨pi,pj⟩ = 1{i==j},∀i, j ∈ 1 . . . L.

We define the mean squared error (MSE) of the decomposition as
E
[
∥x− x̃∥2

]
(6)

with the L2-norm used throughout this paper. Our first result constructs P minimizing this MSE.
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Theorem 1. For an activation tensor X whose auto-correlation matrix has an eigenvalue decompo-
sition given by CX = VDVT , the projection matrix P minimizing the mean squared error in (6) is
given by P = [v1| . . . |vL] where vi is the ith principal eigenvector in V.

Proof. See Appendix A.1. The result is readily obtained by substituting x̃ in (5) into (6) and
minimizing the MSE which involves quadratic forms involving the positive semi-definite CX.

Theorem 1 shares similarities with the Principal Component Analysis (PCA) algorithm [29]. PCA
extracts low dimensional features having maximum correlation with input data. Unlike PCA, we
omit input normalization to elide its computational cost. Still, we term the columns of P in Theorem
1 as Principal Activation Components. Since those are obtained using an EVD on a static estimation
of CX, we call our method Eigen Static Principal Activation Component Estimation (ESPACE).

The MSE in Theorem 1 is a strong indicator of the quality of an approximation technique, e.g., it is
often employed in quantization studies [26, 27]. However, empirical data may contain large outliers
which can dominate the optimization process; say a few high-magnitude vectors in (6) masking the
contribution of small data on the solution. An alternate metric to the MSE can be employed to prevent
such artifacts in averaging: the normalized MSE (NMSE) defined as:

E
[
∥x−x̃∥2

/∥x∥2
]

(7)

The solution of Theorem 1 can be slightly modified to minimize the NMSE in (7).

Corollary 2. For an activation tensor X, let ĈX = E

[
(x/∥x∥) (x/∥x∥)

T
]

be its input-normalized

auto-correlation matrix having an eigenvalue decomposition given by ĈX = VDVT , the projection
matrix P minimizing the normalized mean squared error in (7) is given by P = [v1| . . . |vL] where
vi is the ith principal eigenvector in V.

Proof. The proof in Appendix A.2 uses equivalence of NMSE and MSE with L2-normalized vectors.

Corollary 2 applies to the decomposition in (3) with no activation normalization required at compute
time. Rather, normalization is done during calibration, where ĈX is estimated instead of CX.

Both solutions in Theorem 1 and Corollary 2 are options to be employed in ESPACE, where either
may be more suitable on a layer-wise basis. Next we present further options for ESPACE based on
the optimization of alternate metrics to the MSE and NMSE.

3.3 Activation decomposition with optimized forward propagated accuracy metrics

While local fidelity metrics, such as the MSE and NMSE above, are good indicators of the quality of
an approximation technique, it has been shown that better insights on a neural network’s accuracy
may be derived via the study of forward propagated noise [30, 31, 32]. In this section, we study the
effects of the decomposition in (3) on the output of the GEMM, and the output loss of the model.

At a given layer, let us write an arbitrary scalar in the GEMM output tensor in (1) as y ∈ Y. Note
that y = ⟨w,x⟩ for some weight vector in w ∈ W and activation vector x ∈ X. We also let ỹ be the
associated output when the GEMM is approximated by (3), which is given by ỹ = ⟨w, x̃⟩ with x̃
given by (5). We define the GEMM Output-referred MSE (GO-MSE) as E

[
(y − ỹ)2

]
.

Similarly, given an input to the network, we write the output loss function (the vocab cross-entropy)
as L. When one arbitrary activation tensor is transformed as per (3), a mismatch in computation is
introduced and propagated all the way to the output. We let L̃ be the resulting new value of the loss
function. We define the Network Loss-referred MSE (NL-MSE) as E

[
(L − L̃)2

]
.

A closed form solution for P in (3) minimizing the GO-MSE and NL-MSE is elusive to us. Therefore,
we derive upper bounds on these metrics which we use as a proxy for optimization.

Proposition 3. For a GEMM in (1) and its decomposition in (3), the GO-MSE is upper bounded by:

E
[
(y − ỹ)2

]
≤ 2E

[
∥w∥2 · ∥x∥2

]
− 2E [⟨w,x⟩ · ⟨w, x̃⟩] (8)
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and the NL-MSE is upper bounded by

E

[
(L − L̃)2

]
≤ 2E

[
∥∇x∥2 · ∥x∥2

]
− 2E [⟨∇x,x⟩ · ⟨∇x, x̃⟩] (9)

where a first order Taylor approximation on the loss function is assumed and its gradient with respect
to vector x is denoted as ∇x.

Proof. The proof in Appendix A.3 first shows ∥x̃∥2 < ∥x∥2 and then uses the Cauchy Schwarz
inequality to establish both bounds.

Next, we provide closed form solutions for P in (3) minimizing the bounds in Proposition 3.

Theorem 4. For a GEMM in (1) and its decomposition in (3), the projection matrix minimizing the
bounds in Proposition 3 is given by P = [v1| . . . |vL] where vi is the ith principal eigenvector in V
obtained via eigenvalue decomposition on a matrix C = VDVT defined as:

C = E
[
xxTwwT +wwTxxT

]
and C = E

[
xxT∇x∇T

x +∇x∇T
xxx

T
]

(10)

to minimize the upper bounds on GO-MSE in (8) and NL-MSE in (9), respectively.

Proof. The proof is included in Appendix A.4, where we also include modifications required in
calibration. Specifically, CX is reused and left/right multiplied by WWT

/N to yield C in (10)
minimizing the bound on GO-MSE. An additional backward pass is needed to properly scale activation
vectors and their gradients when calibrating C in (10) minimizing the bound on NL-MSE.

Theorem 4 augments Theorem 1 and Corollary 2 with two options for the design of P. Much like
Corollary 2, we supplement our new solutions with L2-normalization to include

Ĉ = E
[
(xxTwwT+wwTxxT )/∥w∥2·∥x∥2

]
and Ĉ = E

[
(xxT∇x∇T

x +∇x∇T
x xxT )/∥∇x∥2·∥x∥2

]
as alternate choices for the calibrated matrices C in (10). Unlike Corollary 2, L2-normalization in
these two matrices does not correspond to a notable optimization. Nevertheless, these options are
retained in the spirit of suppressing the influence of large data in calibration.

Thus, overall we have six choices for P. Since each can be obtained as part of a fast and pre-
deployment calibration phase, we may simply select the best one for each layer. In our experiments of
Section 4, the best candidate is determined via a per-layer validation over all six choices. A sensitivity
study on the impact of each of the six candidates is provided in Appendix B.4.

4 Model Compression Studies

In this section, we report on experimental studies investigating LLM compression using ESPACE.

4.1 Experimental setup

We employ three sets of open source LLMs: GPT3 [33], Llama2 [34], and Nemotron4 [35]. Specifi-
cally, we experiment on GPT3-{1.3B, 8B, 22B}, Llama2-{7B, 13B}, and Nemotron4-15B. Accuracy
is evaluated in two ways: perplexity measured on the Wikitext-103 dataset [36] and zero-shot down-
stream task accuracy of: BoolQ (BQ) [37], Hellaswag (HS) [38], PIQA (PQ) [39], RACE (RA) [40],
and WinoGrande (WG) [41].

The Wikitext-103 dataset is split into train, validation, and test sets. We use 512 random sequences
from the training set for calibrating projection matrices required by ESPACE. We use the validation
set for layer-wise sensitivity studies. The test set is used to report perplexity results in this section.

Our implementation uses NVIDIA’s Megatron LM [33] and downstream task evaluation invokes
Eleuther AI’s LM evaluation harness [42]. For the latter, we report raw accuracy scores, and their
average; we do not post process results or apply normalization to the scores.

When ESPACE is applied, we retrain the models to adapt to the approximation error of activation
projection as discussed in Section 2. Retraining simply extends the models’ pre-training sessions and
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uses the 330B-token MTNLG dataset [43], which was used to train GPT3 models. All implementation
details are included in Appendix B to help reproducibility of our results.

We metricize model size reduction via inference compression rate. Specifically, for layers decomposed
per (3), we count the number of entries in P and

(
PTW

)
; for other layers, we count those in WT .

We also report the latency of executing all network GEMMs in (1) or (3), which we measure using a
NVIDIA A100 GPU and a simple, un-optimized implementation (see Appendix B.4). We also report
prefill inference latency, metricized via the Time to First Token (TTFT), and measured using the
Megatron-LM implementation. In our measurements, we use a batch size of 1 and sequence length of
2048 and 4096 for GPT3 and Llama2/Nemotron4 models, respectively. The reported reductions in
total GEMM latency and TTFT constitute evidence that compression improves inference throughput.
It is beyond the scope of this paper to evaluate the impact of ESPACE on end-to-end token throughput
and latency on LLM inference serving systems, since this requires a complex set of optimizations
including but not limited to optimization of back-to-back GEMMs into fused kernels, KV caching,
continuous batching, as well as thorough performance studies with varying input and output sequence
lengths. Thus, we leave an evaluation of token generation throughput and energy savings and
improvements to future work.

4.2 Validation perplexity studies

Our experiments start with a calibration phase where we prepare the static projection matrix P for
each layer. The dimension L in P is chosen as the lowest power of two such that layer compression
is at least 50%. The power-of-two restriction ensures best tensor core utilization, and the resulting
compression rate depends on the dimensions of the original layer (K and N ). Exact details of these
values for all layers and models are included in Appendix B.2.

We perform a sensitivity study on the Wikitext-103 validation perplexity when ESPACE is applied
out-of-the-box (no retraining) one layer at a time. For each layer, we identify which of our six
candidates projection matrices in Section 3 yields lowest validation perplexity. Layers are then sorted
according to their impact on perplexity from least to most destructive. We then evaluate the validation
perplexity when ESPACE is progressively applied to out-of-the-box to all layers according to this
ranking. Fine-grained details of this exploration are included in Appendix C for all models.
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Figure 3: Validation perplexity for
GPT3-22B when ESPACE is progres-
sively applied to its GEMM layers. The
order of layer selection is based on a
layer-wise sensitivity analysis.

This exploration yields an interesting finding: as we progres-
sively apply ESPACE to more layers, the perplexity marginally
increases until an inflection point after which accuracy degrada-
tion accelerates. This inflection occurs at 20% to 40% compres-
sion depending on the model. Figure 3 depicts this phenomenon
for GPT3-22B, and the same data for other models can be found
in Appendix C.2.

We find that out-of-the-box application of ESPACE works bet-
ter for larger models; GPT3-22B, the largest model we exper-
imented on, exhibits an inflection in perplexity at 40% com-
pression, which is the highest in our results. This is consistent
with many earlier works on general compression of neural net-
works [44, 45, 46, 47]. Interestingly, a 20% out-of-the-box
compressed GPT3-22B is iso-accurate to its uncompressed
counterpart (see Figure 3); without retraining, its test perplexity
of 6.61 which is within 1% of the 6.55 baseline.

After the above validation study is performed, we select two
configurations for layers to be compressed using ESPACE: (a)
layers corresponding to the inflection point, i.e., 20% to 40% compression, and (b) as many layers
needed to achieve a compression of ∼50%. For both configurations, we retrain the compressed
models and further evaluate their achievable accuracy.

4.3 Compression of GPT3 models

Once compression targets and layer configurations are set, we retrain GPT3 models on the MTNLG
dataset. Although we use all of the 330B available tokens, we do observe the training loss quickly
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Table 1: GEMM latency, time to first token, Wikitext-103 perplexity (WK-103 PPL), and downstream task
accuracy of GPT3, Llama2, and Nemotron4 models compressed with ESPACE3.

Method
(Compression)

# of
Weights

Total GEMM
Latency

TTFT impl. in
Megatron-LM

WK-103
PPL ↓

Downstream Task Accuracy ↑
BQ HS PQ RA WG Avg.

GPT3-1.3B
Baseline 1.21 × 109 24.2ms 39.8ms 9.94 64.3 43.5 74.2 37.6 58.1 55.5

ESPACE (20%) 9.71 × 108 20.6ms (-15%) 36.1ms (-9%) 9.53 60.6 45.1 73.0 36.4 62.9 55.6
ESPACE (47%) 6.42 × 108 15.9ms (-34%) 31.7ms (-20%) 11.07 62.3 39.9 71.6 34.5 58.7 53.4

GPT3-8B
Baseline 8.05 × 109 136ms 186ms 7.38 69.0 54.2 78.1 41.4 67.8 62.1

ESPACE (21%) 6.33 × 109 110ms (-19%) 155ms (-16%) 7.00 70.3 55.3 78.9 40.7 69.3 62.9
ESPACE (50%) 4.08 × 109 76.8ms (-44%) 122ms (-35%) 7.66 66.5 52.3 77.6 38.9 66.9 60.4

GPT3-22B
Baseline 2.17 × 1010 354ms 457ms 6.55 76.4 57.2 79.3 40.7 70.5 64.8

ESPACE (40%) 1.30 × 1010 229ms (-35%) 313ms (-32%) 6.29 76.6 57.3 79.5 40.2 70.2 64.8
ESPACE (55%) 9.74 × 109 181ms (-49%) 261ms(-43%) 6.73 72.2 55.8 79.3 40.1 69.7 63.4

Llama2-7B
Baseline 6.48 × 109 210ms 368ms 5.06 79.2 57.1 78.1 44.0 69.5 65.6

Retrained (0%) 6.48 × 109 210ms 368ms 5.06 78.2 57.9 78.0 43.7 70.6 65.7
ESPACE (21%) 5.11 × 109 169ms (-19%) 322ms (-12%) 5.07 77.1 57.1 78.7 42.7 69.2 65.0
ESPACE (50%) 3.24 × 109 113ms (-46%) 266ms (-28%) 5.67 72.2 52.0 76.5 38 63.5 60.4

Llama2-13B
Baseline 1.27 × 1010 406ms 643ms 4.61 82.4 60.2 79.5 46.8 71.9 68.2

ESPACE (20%) 1.01 × 1010 336ms (-17%) 562ms (-13%) 4.59 78.3 60.5 79.5 43.0 72.8 66.8
ESPACE (50%) 6.34 × 109 259ms (-36%) 447ms (-31%) 5.13 75.7 56.2 78.0 41.5 69.1 64.1

Nemotron4-15B
Baseline 1.25 × 1010 414ms 741ms 6.06 78.3 62.1 81.1 47.0 75.2 68.7

ESPACE (25%) 9.54 × 109 324ms (-22%) 655ms (-12%) 6.28 78.9 59.9 80.0 46.4 72.8 67.6
ESPACE (50%) 6.25 × 109 223ms (-46%) 545ms (-26%) 6.93 77.9 57.0 77.8 42.4 69.9 65.0

converging. We leave training hyperparameters unchanged except for one: we disable dropout. Our
rationale is that activation projection is one form of deterministic and structured dropout such that
additional regularization may not be needed. Results3 on GPT3 models are included in Table 1.

We find that ESPACE can compress GPT3 models by ∼50% at the cost of a small accuracy degrada-
tion. In the case of GPT3-22B, the perplexity increase is of only 0.18; in general, the gap decreases for
larger overall model size. By and large, similar trends are observed for downstream task accuracies
and we note that most scores of 50% compressed models fall within 5% of the baseline.

For lower compression ratios (inflection points at 20% to 40%), ESPACE converges to an accuracy
better than that of the baseline. The best improvement occurs for GPT3-8B, where ESPACE produces
a 6B model with 0.38 lower perplexity than its 8B baseline. The improvements are observed both in
terms of perplexity and downstream task accuracy. While GPT3 models may be over-parameterized,
we posit that ESPACE acts a regularizer at moderate compression rates. Specifically, we believe that
projection onto principal activation components filters out unnecessary information coming from
small eigenvalue components.

For all models, we observe an encouraging translation of compression to GEMM latency reduction
by up to 49% which leads to noticeable speed-up in TTFT by up to 43%..

4.4 Compression of Llama2 models and comparison to related works

For Llama2, we only retrain using 200B MTNLG tokens because we observed quick convergence for
GPT3. Llama2 models were trained on an undisclosed dataset of 2T tokens [34]. Therefore, with
200B tokens, the healing phase of ESPACE constitutes no more than 10% of the original pre-training
session. Since Llama2 pre-training details are not openly available, we re-used all hyperparameters
from GPT3, which is likely to be sub-optimal. In spite of the two handicaps of dataset disparity and
hyperparameter sub-optimality, we obtained promising results as reported in Table 1.

For Llama2-7B, we first retrained the uncompressed baseline. The purpose of this experiment is
twofold: (a) ensure that our hyperparameters at least do not corrupt the model, and (b) verify that the

3Boldface indicates best result per task. Italics indicates ESPACE results within 5% of the baseline
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healing process is not just an artifact of processing more tokens. Both hypotheses appeared to be
valid: the retrained baseline has nearly identical accuracy compared to the original model.

Generally, we find that the trends of ESPACE compression for Llama2 are similar to GPT3, albeit
slightly less successful. Though the results are still promising, we attribute the slight shortcomings
in accuracy to the handicaps above. We find that 50% ESPACE compression on Llama2 leads to
∼0.6 perplexity increase and similar degradation in terms of downstream task accuracy. Notably,
compressing the Llama2-13B model to to a 6.3B model yields comparable accuracy to the Llama2-7B
baseline which itself is a 6.5B model.

In addition, for 20% compression, we find that ESPACE matches the accuracy of the baseline for
Llama2 models. While not as impressive as the improvements observed with GPT3, ESPACE is
able to produce 5B and 10B models matching the 7B and 13B baselines, which does push the pareto
frontier of accuracy versus model size in the right direction as shown in Figure 1.

Compressed model size (%)

P
er

p
le

xi
ty

 in
cr

ea
se

Llama2-7B perplexity and compression

ESPACE is a step in 
the right direction

Figure 4: Comparison to related works com-
pressing Llama2-7B using matrix factoriza-
tion techniques.

The Llama2-7B model has been used in related works on
tensor decomposition mentioned in Section 1.1; specifi-
cally, ASVD [20], SVD-LoRa [18], and SliceGPT [21].
Both ASVD and sliceGPT have reported perplexity on
Wikitext, but SVD-LoRa performed task-specific finetun-
ing on a variety of datasets and averaged perplexities.
Therefore, in Figure 4, we compare our results to these
works using perplexity increase over baseline, rather than
raw perplexity, for maximum inclusivity.

SVD-LoRa performed an SVD decomposition on the
weights such that the intermediate dimension is half of dot-
product which leads to no compression. On the other hand,
ASVD and sliceGPT can only achieve modest compres-
sion ratios of up to 25% with some loss in accuracy. Recall
that these works apply factorization on weights which is the fundamental difference to ESPACE. As
seen in Figure 4, ESPACE is a step in the right direction towards improving the state-of-the-art in
tensor decomposition of LLMs.

4.5 Compression of Nemotron4-15B

Finally, we used ESPACE to compress Nemotron4-15B into 9.54 and 6.25 billion parameters, as
reported in Table 1. Retraining consumed 275B tokens which corresponds to ∼ 3% of this model’s
original training session. Once more, compression with ESPACE leads to minimal degradation in the
moderate regime (25%) and yields a small accuracy drop in the aggressive regime (50%).

Consistently with our findings for the above models, ESPACE reduces GEMM execution time by
up to 46%. This, in turn, improves the TTFT by up to 26%. An interesting observation is that, for
Llama2 and Nemotron4 models, the TTFT improvement is slightly less pronounced than for GPT3
models. This is simply due to the fact that the latter uses a sequence length of 2048, whereas the
former two use 4096. A larger sequence length means more time is spent in attention cross-activation
products which amortizes the speed-up in the GEMM layers.

5 Conclusion

We have presented ESPACE, a novel compression technique realizing tensor decomposition of LLMs
in an activation-centric manner. A set of theoretical results were derived to guide the construction
of activation projection which is done statically. Experimentally, we have shown promising results
where ESPACE is able to ∼50% compress modern LLMs at the cost of a small accuracy degradation.
Compared to related works, ESPACE is a first step in pushing the frontier of model size versus
accuracy trade-offs. Future work includes combining ESPACE with alternate compression techniques
such as quantization and pruning, and evaluating decomposition of activation tensors in attention. As
potential extension to our algorithm, the use of matrix sketching and random projections may pave
the way for better overall compressibility.
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Supplementary Material

A Proofs of theoretical results

In this first appendix, we provide proofs for the various theoretical results in Section 3.

A.1 Proof of Theorem 1

For a pair of vectors x ∈ X and x̃ ∈ X̃, and using (5), we have the squared error:

∥x− x̃∥2 = ∥x∥2 + ∥x̃∥2 − 2xT x̃ = ∥x∥2 + ∥x̃∥2 − 2
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(
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Tx
)
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Tx
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)2

Furthermore, note that
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)

and since {pi}Li=1 are orthonromal, cross product terms vanish and we have: ∥x̃∥2 =
∑L

i=1

(
pi

Tx
)2

which we plug back into the expression for the squared error:
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where we used the commutativity of dot product and associativity of matrix multiplication. Thus the
squared error is given by:

∥x− x̃∥2 = ∥x∥2 −
L∑

i=1

pi
T
(
xxT

)
pi

Finally, we take expectation on both sides and obtain a formula for the MSE:

E
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where we used linearity of expectation and the fact that {pi}Li=1 are not random. In this formula for
the MSE, E

[
∥x∥2

]
does not depend on {pi}Li=1, and therefore, minimizing the MSE is equivalent to

maximizing the following expression involving the auto-correlation matrix:

L∑
i=1

pi
T
E
[
xxT

]
pi =

L∑
i=1

pi
TCXpi

where each term in the summation is a quadratic form on the positive semi-definite auto-correlation
matrix CX. Since {pi}Li=1 are orthonormal, this is an equivalent form of the Rayleigh quotient [48]
and the solution is to assign {pi}Li=1 as the L principal eigenvectors of CX. This concludes the proof
of Theorem 1.
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A.2 Proof of Corollary 2

The result can be readily obtained as a consequence of the following:
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Therefore, the setup is identical to that of Theorem 1 and we may apply the same solution as Appendix
A.1 above. The only difference is that activation vectors are L2-normalized which is why ĈX (which
is also positive semi-definite) is used in lieu of CX in Corollary 2.

A.3 Proof of Proposition 3

A prelimnary result needed is to show that for any activation vector, we have ∥x̃∥2 < ∥x∥2. We first
note that while x̃ =

∑L
i=1⟨pi,x⟩pi per (5), we also have that x =

∑K
i=1⟨pi,x⟩pi, where {pi}Ki=1

extend the set of orthonormal vectors {pi}Li=1 to be complete, i.e., equivalent to no truncation of
columns of the full rank matrix V when constructing P, regardless of the metric being optimized.

Using orthonormality of projection vectors, similar to the proof of Theorem 1 in Appendix A.1 above,
we obtain ∥x̃∥2 =

∑L
i=1

(
pi

Tx
)2

and ∥x∥2 =
∑K

i=1

(
pi

Tx
)2

. Therefore:

∥x∥2 − ∥x̃∥2 =

K∑
i=L+1

(
pi

Tx
)2 ≥ 0 ⇒ ∥x̃∥2 < ∥x∥2

where we used the fact that a sum of non-negative quantities is non-negative.

Then for a scalar y ∈ Y and its counterpart ỹ ∈ Ỹ, we have:

(y − ỹ)
2
=
(
wTx−wT x̃

)2
=
(
wTx

)2
+
(
wT x̃

)2 − 2
(
wTxwT x̃

)
≤ ∥w∥2 · ∥x∥2 + ∥w∥2 · ∥x̃∥2 − 2

(
wTxwT x̃

)
≤ ∥w∥2 · ∥x∥2 + ∥w∥2 · ∥x∥2 − 2

(
wTxwT x̃

)
= 2∥w∥2 · ∥x∥2 − 2

(
wTxwT x̃

)
where the first upper bound uses the Cauchy-Schwarz inequality while the second uses ∥x̃∥2 < ∥x∥2
which we proved above. Taking expectations on both sides of the inequality yields the upper bound
on GO-MSE in (8).

Next, when a first order Taylor approximation on the loss function is assumed, we have the following
relation between the unperturbed loss value L and its counterpart L̃ when an activation vector x is
projected to x̃ per (5):

L̃ = L+∇T
x (x̃− x) ⇒ L̃ − L = ∇T

x x̃−∇T
xx

⇒
(
L̃ − L

)2
=
(
∇T

x x̃−∇T
xx
)2

=
(
∇T

x x̃
)2

+
(
∇T

xx
)2 − 2

(
∇T

xx∇T
x x̃
)

once more, we use the Cauchy-Schwarz inequality and the fact that ∥x̃∥2 < ∥x∥2 to establish:(
∇T

xx
)2 ≤ ∥∇x∥2 · ∥x∥2 &

(
∇T

x x̃
)2 ≤ ∥∇x∥2 · ∥x̃∥2 ≤ ∇x∥2 · ∥x∥2

which we plug into the difference in network losses above to obtain:(
L̃ − L

)2
≤ 2∥∇x∥2 · ∥x∥2 − 2

(
∇T

xx∇T
x x̃
)

Taking expectations on both sides yields the upper bound on NL-MSE in (9). This completes the
proof of Proposition 3.
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A.4 Proof of Theorem 4

In order to minimize the upper bound on the GO-MSE in (8), note that it suffices to maximize the
quantity 2E [⟨w,x⟩ · ⟨w, x̃⟩] since 2E

[
∥w∥2 · ∥x∥2

]
does not depend on {pi}Li=1. We have the

following:

2⟨w,x⟩ · ⟨w, x̃⟩ = 2wTxwT

(
L∑

i=1

(
pT
i x
)
pi

)
= 2

L∑
i=1

wTxwTpip
T
i x

=

L∑
i=1

(
wTxwTpip

T
i x+wTxwTpip

T
i x
)

But since the dot product is commutative, i.e., aTb = bTa for any two vectors a and b, we may
rearrange each of the two identical terms inside the summation as follows:

wTxwTpip
T
i x = pT

i xx
TwwTpi & wTxwTpip

T
i x = pT

i wwTxxTpi

Therefore, we obtain:

2⟨w,x⟩ · ⟨w, x̃⟩ =
L∑

i=1

(
pT
i xx

TwwTpi + pT
i wwTxxTpi

)
=

L∑
i=1

pT
i

(
xxTwwT +wwTxxT

)
pi

Taking expectations, we find that the quantity that needs to be maximized in order to minimize the
bound on GO-MSE in (8) is:

L∑
i=1

pT
i E
[
xxTwwT +wwTxxT

]
pi

Similar to the proof of Theorem 1 in Appendix A.1, this is yet again a sum of a quadratic form over
the orthonormal set of vectors {pi}Li=1 and the solution is therefore to assign these vectors as the L
principal vectors of C = E

[
xxTwwT +wwTxxT

]
as per (10).

Note that the derivation above decomposed the dot products to obtain a quadratic form on the matrix
xxTwwT +wwTxxT because its symmetry is required for real eigenvalue decomposition. Also
note that if positive definiteness is not achieved, we sort absolute values of eigenvalues. Finally,
observe that this solution requires no overhead on the calibration process. Indeed, assuming weights
and activations are independent, we note that E

[
xxTwwT +wwTxxT

]
= CXCW + CWCX

where CW = E
[
wwT

]
is the weight auto-correlation matrix, which can simply be calibrated as

CW = WWT
/N . Thus we only require left and right scaling of the calibrated auto-correlation matrix.

Similarly, to minimize the upper bound on NL-MSE in (9), it suffices to maximize
2E [⟨∇x,x⟩ · ⟨∇x, x̃⟩]. Using the exact same derivation as the above, replacing w by ∇x, we
obtain that the quantity to be maximized is

L∑
i=1

pT
i E
[
xxT∇x∇T

x +∇x∇T
xxx

T
]
pi

which is done by assigning {pi}Li=1 as the L principal vectors of C = E
[
xxT∇x∇T

x +∇x∇T
xxx

T
]

as per (10). Calibrating this matrix does require an extra step, where we perform a backward pass to
estimate activation gradients. For ease of implementation, in our results, we make an approximation
on the per-sequence independence of activation vectors and their gradients. This greatly reduces the
memory requirements of the calibration process. And for each sample sequence in the calibration set,
we compute C(i) =

(
X(i)X(i)TG(i)G(i)T+G(i)G(i)TX(i)X(i)T

)
/M2 where G(i) is the gradient tensor

(whose vectors are instantiations of ∇x). As always, we end the calibration phase by averaging across
samples: C =

∑B
i=1 C(i)

/B. This completes the proof of Theorem 4.
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B Implementation details

In this appendix, we discuss all details behind our implementation in Section 4. These details include
per-model specific application of ESPACE as well as retraining recipes. We strive to provide excessive
details such that independent reproducibility of our results is seamless. We also encourage readers to
reach out to us (after blind reviewing) for any questions on implementations.

B.1 Software implementation

As was mentioned in Section 4, our implementation is built on top of Megatron-LM [33] which itself
is based on the Pytorch framework. We use Pytorch for all extra introductions needed by ESPACE
except for eigenvalue decomposition. Our experiments were carried out in a cluster of A100 GPUs
and use BF16 precision.

Specifically, during the calibration process, we use Pytorch to track the required auto-correlation
matrices; this simply done by averaging repeated instantiations of XXT as described in Section 3.

Once the calibration of auto-correlation matrices is over, we use DLPack to transfer them from the
Pytorch framework to RAPIDS framework. We then use the CUPY library in RAPIDS to perform fast
(a few milliseconds per auto-correlation matrix) eigenvalue decomposition on GPUs. After truncating
eigenvectors, we send back the projection matrix to Pytorch using DLPack.

Once the projection matrix P is calibrated and inference/training is to be done using ESPACE, we
simply insert a projection operation within the Megatron implementation to perform the operations in
(3) as appropriate. The projection matrices are inserted as Pytorch buffers, rather than parameters,
since they do not get updated during training.

B.2 ESPACE configurations

In Section 4, we mentioned that ESPACE was applied at each layer such that the number of compo-
nents L satisfies two constraints: (a) be a power of two for best tensor core utilization, and (b) yield a
compression of at least 50% at that layer. The exact values of L for each model and layer type are
included in Table 2. Note that the only exception corresponds to QKV layers in Llama2-13B and
Nemotron4-15B, where we use a value of L = 2048 which corresponds to a compression of ∼ 45%
instead of >50% at least. This is only because this amount of compression is already significant that
we didn’t feel the need to push for L = 1024, which would have lead to a compression of > 70%.

B.3 Retraining hyperparameters

By and large, we use the exact same recipe that was used to pretrain the open source GPT3 models
[33]. As mentioned in Section 4, the only modification to hyperparameters is disabling dropout and
weight decay, and identical hyperparameters are used for both sets of experiments on GPT3 and
Llama2 families. The only arbitrary choices we had to make was on the selection of learning rate
schedule and global batch size. We use a cosine decay for all runs, and remaining choicesa are as
follows:

• For GPT3-1.3B, the initial learning rate is set to 1.0 × 10−4, the final learning rate is set to
1.0× 10−5, and the global batch size is set to 512.

• For GPT3-8B, the initial learning rate is set to 5.0×10−5, the final learning rate is set to 5.0×10−6,
and the global batch size is set to 512.

• For GPT3-22B, the initial learning rate is set to 5.0 × 10−5, the final learning rate is set to
5.0× 10−6, and the global batch size is set to 1024.

• For Llama2-7B and Llama2-13B, training is done in two stages (each of 100B tokens). In the first
stage, the initial learning rate is set to 5.0× 10−4, and the final learning rate is set to 5.0× 10−5.
In the second stage, the initial learning rate is set to 5.0× 10−5, and the final learning rate is set to
5.0× 10−6. For both stages, the global batch size is set to 256.

• For Nemotron4-15B, the initial learning rate is set to 1.0× 10−5, the final learning rate is set to 0,
and the global batch size is set to 512.

We did not perform hyperparameter tuning, the above was purely arbitrary, but based on the following
intuition:
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Table 2: Number of components L retained by ESPACE for each layer. For models implementing Tensor
Parallelism (TP), we apply ESPACE per rank.

Attn QKV layers Attn Proj layers FC1 (H-to-4H) layers FC2 (4H-to-H) Layers
GPT3-1.3B (TP=1)

GEMM Dimension:
K = 2048 N = 6144

ESPACE: L = 512

Compression: 66%

GEMM Dimension:
K = 2048 N = 2048

ESPACE: L = 512

Compression: 50%

GEMM Dimension:
K = 2048 N = 8192

ESPACE: L = 512

Compression: 69%

GEMM Dimension:
K = 8192 N = 2048

ESPACE: L = 512

Compression: 69%
GPT3-8B (TP=4)

GEMM Dimension:
K = 4096 N = 12288

GEMM per rank:
K = 4096 N = 3072

ESPACE: L = 1024

Compression: 66%

GEMM Dimension:
K = 4096 N = 4096

GEMM per rank:
K = 1024 N = 4096

ESPACE: L = 256

Compression: 69%

GEMM Dimension:
K = 4096 N = 16384

GEMM per rank:
K = 4096 N = 4096

ESPACE: L = 1024

Compression: 69%

GEMM Dimension:
K = 16384 N = 4096

GEMM per rank:
K = 4096 N = 4096

ESPACE: L = 1024

Compression: 50%
GPT3-22B (TP=8)

GEMM Dimension:
K = 6144 N = 18432

GEMM per rank:
K = 6144 N = 2304

ESPACE: L = 2048

Compression: 56%

GEMM Dimension:
K = 6144 N = 6144

GEMM per rank:
K = 768 N = 6144

ESPACE: L = 256

Compression: 63%

GEMM Dimension:
K = 6144 N = 24576

GEMM per rank:
K = 6144 N = 3072

ESPACE: L = 2048

Compression: 58%

GEMM Dimension:
K = 24576 N = 6144

GEMM per rank:
K = 3072 N = 6144

ESPACE: L = 1024

Compression: 50%
Llama2-7B (TP=4)

GEMM Dimension:
K = 4096 N = 12288

GEMM per rank:
K = 4096 N = 3072

ESPACE: L = 1024

Compression: 66%

GEMM Dimension:
K = 4096 N = 4096

GEMM per rank:
K = 1024 N = 4096

ESPACE: L = 256

Compression: 69%

GEMM Dimension:
K = 4096 N = 22016

GEMM per rank:
K = 4096 N = 5504

ESPACE: L = 1024

Compression: 69%

GEMM Dimension:
K = 11008 N = 4096

GEMM per rank:
K = 2752 N = 4096

ESPACE: L = 512

Compression: 69%
Llama2-13B (TP=8)

GEMM Dimension:
K = 5120 N = 15360

GEMM per rank:
K = 5120 N = 1920

ESPACE: L = 2048

Compression: 47%

GEMM Dimension:
K = 5120 N = 5120

GEMM per rank:
K = 640 N = 5120

ESPACE: L = 256

Compression: 55%

GEMM Dimension:
K = 5120 N = 27648

GEMM per rank:
K = 5120 N = 3456

ESPACE: L = 2048

Compression: 53%

GEMM Dimension:
K = 13824 N = 5120

GEMM per rank:
K = 1728 N = 5120

ESPACE: L = 1024

Compression: 60%
Nemotron4 (TP=8)

GEMM Dimension:
K = 6144 N = 8192

GEMM per rank:
K = 6144 N = 1024

ESPACE: L = 2048

Compression: 42%

GEMM Dimension:
K = 6144 N = 6144

GEMM per rank:
K = 768 N = 6144

ESPACE: L = 256

Compression: 67%

GEMM Dimension:
K = 6144 N = 24576

GEMM per rank:
K = 6144 N = 3072

ESPACE: L = 2048

Compression: 58%

GEMM Dimension:
K = 24576 N = 6144

GEMM per rank:
K = 3072 N = 6144

ESPACE: L = 1024

Compression: 50%

• For GPT3 models, we use a smaller learning rate for larger models, and start with a learning rate
10× smaller than it’s pre-training value. We use identical batch sizes as pre-training.

• For Llama2 models, as pre-training hyperparameters are undisclosed, we use our best guess of
what could work well. The two stage training approach is inspired by a recent work on 1.58-bit
LLMs [49], while the choice of a batch size of 256 is inspired by ChipNemo [50].

B.4 GEMM latency measurements

Here we describe the methodology employed to measure GEMM latency as reported in Table 1. We
assume a batch size of 1, such that the M dimension of tensor X equals the sequence length (2048
and 4096 for GPT3 and Llama2 models, respectively). We also assume a single-GPU implementation
throughout, such that any tensor parallelism is first folded into single GEMM per-layer. Similar to
our accuracy experiments, we use BF16 precision for all latency measurements.

For each GEMM layer implementing either (1) or (3), we measure its latency individually. In Table 1,
we report aggregated measurements depending on the model configuration. Specifically, we measure
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Figure 5: Sensitivity studies on the choice of projection construction for (a) GPT3-1.3B, (b) GPT3-8B, (c)
GPT3-22B. For each layer, we apply ESPACE out-of-the-box using the six various candidates for the projection
matrix P constructed in Section 3. The black line corresponds to the baseline perplexity.

latency of computing QKV, Proj, FC1, and FC2 GEMMs with dimensions listed in Table 2, and then
add all results together for each transformer block of the corresponding model.

We measure individual GEMM latencies in Pytorch. Specifically, for each configuration, we sample
1000 set of matrices of appropriate dimension and compute the appropriate GEMM. We synchronize
before and after the computation occurs, and record times after synchronization. The elapsed times
are averaged and then aggregated. Since the measurements were taken with native PyTorch code, we
note that the implementation is un-optimized. Further improvements could be possible in future work
from removing PyTorch overheads, implementing custom fused kernels, or other optimizations.

19



V
al

id
at

io
n

 p
er

p
le

xi
ty

(l
o

w
er

 is
 b

et
te

r)

Attn QKV Attn Proj FC1 (H to 4H) FC2 (4H to H)

Layer index

𝑳 = 𝟏𝟎𝟐𝟒
(per rank)

comp. = 66%

𝑳 = 𝟐𝟓𝟔
(per rank)

comp. = 69%

𝑳 = 𝟏𝟎𝟐𝟒
(per rank)

comp. = 70%

𝑳 = 𝟓𝟏𝟐
(per rank)

comp. = 69%

(a)

V
al

id
at

io
n

 p
er

p
le

xi
ty

(l
o

w
er

 is
 b

et
te

r)

Attn QKV Attn Proj FC1 (H to 4H) FC2 (4H to H)

Layer index

𝑳 = 𝟐𝟎𝟒𝟖
(per rank)

comp. = 47%

𝑳 = 𝟐𝟓𝟔
(per rank)

comp. = 55%

𝑳 = 𝟐𝟎𝟒𝟖
(per rank)

comp. = 53%

𝑳 = 𝟏𝟎𝟐𝟒
(per rank)

comp. = 60%

(b)

Figure 6: Sensitivity studies on the choice of projection construction for (a) Llama2-7B, (b) Llama2-13B.
For each layer, we apply ESPACE out-of-the-box using the six various candidates for the projection matrix P
constructed in Section 3. The black line corresponds to the baseline perplexity.
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Figure 7: Validation perplexity when ESPACE is applied out-of-the-box one layer at a time using the best
calibrated projection matrix P as identified by the sensitivity study in Figures 5 and Figures 6. The black line
corresponds to the baseline perplexity and the dashed lines correspond to 1% increments over it.

C Additional experimental results

In this appendix, we include additional experimental results that were not included in the main paper.
These results are not essential to the description of our work nor its conclusion, and the main paper
integrally contains all essential information related to our contribution. The additional results listed in
this appendix are for the benefit of readers interested in going further and learning about fine-grained
details behind the main results of Section 4.
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Figure 8: Progressive out-of-the-box application of ESPACE on GPT3{1.3B, 8B} and Llama2-{7B, 13B}. The
plot for GPT3-22B was provided in the main text in Figure 3. The progressive application of ESPACE is based
on the ranking of layers from least to most destructive based on validation perplexity sensistivity in Figure 7.

C.1 Sensitivity studies on the construction of projection matrix

In Section 3, we presented theoretical results leading to six choices for the construction of projection
matrix P. These constructions were done in a manner to optimize one of the following fidelity
metrics: MSE, NMSE, GO-MSE, GO-MSE with L2-normalization, NL-MSE, and NL-MSE with
L2-normalization. Here we show the impact of various choices of P constructions on the validation
perplexity, at a per-layer granularity. Specifically, we apply the ESPACE projection out-of-the-box
one layer at a time, for each of the six candidates, and evaluate the resulting validation perplexity. In
this way, we are able to determine which of the six candidate choices of P works best at each layer.

The results of this sensitivity analysis are included in Figures 5 and 6 for GPT3 and Llama2 models,
respectively. It is shown that the best choice of projection matrix P depends on layer instance, and
there is no clear pattern to find out which solution works best a priori. This result justifies the need to
optimize several proxy metric for accuracy, not just the MSE of activation approximation. Particularly,
most solutions do appear to be related to GO-MSE and NL-MSE, as well as thei L2-normalized
variants. Therefore, these results provide supporting evidence on the importance of the results in
Proposition 3 and Theorem A.4. This also validates the choice of using bounds on GO-MSE and
NL-MSE for optimization since closed form solution for the unbounded metrics are elusive.

C.2 Progressive application of ESPACE to the layers of a network

Once the best projection matrix P is identified for each layer, we plot the corresponding validation
perplexity for out-of-the-box application of ESPACE at the corresponding layer using the correspond-
ing choice of P. These results are shown in Figure 7, where several observations are made. First,
larger models have more resilience to out-of-the-box application of ESPACE; this observation was
made in Section 4. Second, it appears that FC1 layers are the most sensitive ones, followed by FC2,
and QKV/Proj layers are generally robust to the application of ESPACE. Finally, we observe that in
some instances, some layers close to the input and output (i.e., on either ends of the model) appear
to be most sensitive to the application of ESPACE. This behavior was observed in other works on
compression, such as shortGPT [51].

As mentioned in Section 4, layers are then sorted according to their impact on perplexity from least to
most destructive. ESPACE is then progressively applied to out-of-the-box to all layers according to
this ranking. In Figure 3 in the main text, we had shown the results corresponding to this applciation
for GPT3-22B. In Figure 8, we show similar results for the other four networks we experimented on,
i.e., GPT3-{1.3B, 8B} and Llama2-{7B, 13B}. Similar to the findings on GPT3-22B, we do observe
an inflection point after which accuracy degradation accelerates. This inflection occurs around 20%
for GPT3-{1.3B, 8B} and Llama2-{7B, 13B}. With retraining, the healing process recovers accuracy
for all models, as detailed in Section 4.

We note the following:
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• For GPT3-1.3B, we exclude some layers from the application of ESPACE. These are the layers for
which out-of-the-box application of ESPACE leads to a validation perplexity increase of more than
2% compared to the baseline. These layers can be found in Figure 7 and correspond to several
FC1 and FC2 layers close to either ends of the model. For this reason, GPT3-1.3B is compressed
to 47% instead of 50% in Section 4 and Table 1.

• For GPT3-22B, we apply ESPACE to all layers since validation perplexity increase is very small
in Figure 7. For this reason, the overall compression for GPT3-22B is slightly over 50%; it is 55%
in Section 4 and Table 1.
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sion via model size and weight times activation GEMM latency reductions. We argued that a
more nuanced study is needed on the inference cost implications as Transformers comprise
other GEMMs, and the regime (context pre-fill versus auto-regressive phase) needs to be
taken into account. We have mentioned that a detailed study on inference cost with ESPACE
is part of future work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide detailed proofs in Appendix A for all results in the theoretical
Section 3. Furthermore, following each Theorem, Proposition, and Corollary in Section 3,
we also provide a teaser to the full proof in the main text, for the benefit of interested readers,
where we try to provide the main intuition before referring to full proofs in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details, including fine-grained configurations, software toolkit employed,
and training recipes including hyperaparameters are included in Appendix B. These are
also briefly mentioned in the main paper in Section 4, with references to Appendix B for the
readers interested in more details needed for full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: As was mentioned in the previous question, we have provided all implementa-
tion details required to reproduce our results, including hyperparameters and a description
of software implementation in Appendix B. We note that our implementation is based on the
open-source Megatron-LM [33] and that additions made to this software toolkit needed to
reproduce our results are included in Appendix B, where we also include an invitation to
the reader to reach out to us (after blind reviewing is over) with any questions regarding
reproducibility. As such, we believe the description of the work in the paper is sufficient for
reproducibility; yet, we are happy to consider open sourcing our code in the future.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so ’No’ is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, and this was already mentioned in our responses to the two questions
above. We provide all fine-grained details of our implementation in Appendix B, which is
referred to in the main text.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: While we do not report error bars, we do evaluate our method on a vari-
ety of downstream tasks, for the specific purpose of making conclusions with statistical
significance; rather than relying on one number here and there. We also note that this
approach of evaluating on several tasks is also widely adopted in the community for works
on compression of LLMs.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: These are reported in Section 4 and Appendix B.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we are only working on a method to compress LLMs using tensor decom-
position of activations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As per the guideline below, our work falls under the umbrella of optimization
to the implementation of LLMs. Similar to the example provided in the guideline, we believe
that there is no need to point out societal implications of making LLMs run faster.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks associated with our work, and as such the paper does
not describe safeguards.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have done our best to provide credit to any prior work upon which we have
built ours. This is mostly the case for Megatron-LM [33], which we used for our experiments,
and cited extensively throughout Section 4 and Appendix B.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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