
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURON, DO YOUR PART: SELF-ORGANIZING GLOBAL
COMPUTATION FROM LOCAL OBJECTIVE FUNCTIONS
BASED ON PARTIAL INFORMATION DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

In modern deep neural networks, the learning dynamics of the individual neurons
is often obscure, as the networks are trained via global optimization. Conversely,
biological systems build on self-organized, local learning, achieving robustness and
efficiency with limited global information. We here show how self-organization
between individual artificial neurons can be achieved by designing abstract bio-
inspired local learning goals. These goals are parameterized using a recent ex-
tension of information theory, Partial Information Decomposition (PID), which
decomposes the information that a set of information sources holds about an out-
come into unique, redundant and synergistic contributions. Our framework enables
neurons to locally shape the integration of information from various input classes,
i.e. feedforward, feedback, and lateral, by selecting which of the three inputs should
contribute uniquely, redundantly or synergistically to the output. This selection
is expressed as a weighted sum of PID terms, which, for a given problem, can be
directly derived from intuitive reasoning or via numerical optimization, offering
a window into understanding task-relevant local information processing. Achiev-
ing neuron-level interpretability while enabling strong performance using local
learning, our work advances a principled information-theoretic foundation for local
learning strategies.

1 INTRODUCTION

Most artificial neural networks (ANNs) optimize a single global objective function through algorithms
like backpropagation, orchestrating parameters across all computational elements of the network
as a unified computational structure. While this global objective approach has proven effective
across a large variety of tasks, the role of the individual neuron often remains elusive, hindering the
understanding of how local computation contributes to global task performance.

In contrast, biological neural networks exhibit a markedly different approach to learning, relying
strongly on self-organization between neurons. Further, biological neurons must individually learn
according to information that is locally available, because of being limited by physical constraints
regarding locality and communication bandwidth. Interestingly, these limitations come with the
advantage that computation of a neuron can also be interpreted locally, at least in principle. Combining
this local interpretability with the observation that biological neural networks achieve high levels of
efficiency and robustness even in the absence of a centrally coordinated objective raises the question:
Could ANNs benefit from similar local learning mechanisms to enhance the local interpretability of
their computations, while maintaining performance?

Neuroscience models have indeed shown that local learning rules (Hebb, 1949; Dan and Poo, 2004;
Song et al., 2000) can solve a variety of tasks, such as sequence learning, unsupervised clustering, and
classification tasks (Hebb, 1949; Földiak, 1990; Cramer et al., 2020). Being often formulated on the
basis of temporal coincidence (spike-timing), these very mechanistic rules do not offer direct insights
into the actual information processing at each neuron. To facilitate such functional insight, more
recently information theory has been used to formulate more abstract, but interpretable frameworks
for local learning rules (e.g., Kay 2000; Wibral et al. 2017).
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Information theory (Shannon, 1948) allows one to abstractly prescribe how much of the information
from different inputs should be conveyed to the output of a neuron (Kay, 2000). Moreover, it provides
a general and flexible mathematical framework, which captures the information processing at an
abstract and interpretable level free of details of the exact implementation. As such, information theory
has been employed to define general optimization goals, including global objectives like cross-entropy
loss (Goodfellow et al., 2016) and more localized ones such as local greedy infomax (Löwe et al.,
2019), and early attempts at passing only information that is coherent between multiple inputs (Kay
and Phillips, 2011).

Nevertheless, classical information theory falls short of describing how multiple sources work together
to produce an output. In fact, it completely lacks the capacity to describe how the information from
different sources is integrated in redundant, synergistic or unique ways in the output. These different
ways, or information atoms, however, contribute very differently to a neuron’s function: Redundant
information quantifies only coherent information from multiple sources – for example to have a
neuron forward only information that is in agreement between sensory input and internal context
information; while unique information reflects what can be obtained from a single source but not
from others – for example to make neurons not encode the same information that their peers already
encode. Lastly, synergy describes the synthesis of new information from taking multiple sources into
account simultaneously – for instance when comparing two signals and computing a difference or
error signal. This complexity of operations on input information from multiple classes of sources can
be quantified by using the recent framework of “Partial Information Decomposition (PID)” (Williams
and Beer, 2010; Gutknecht et al., 2021; Makkeh et al., 2021). Given multiple inputs to an output, it
can dissect the mutual information into different information atoms, which enumerate the different
ways in which the sources can interact to produce the target, as explained above. Through this
decomposition, one can paint a comprehensive, yet interpretable picture of how the different input
variables contribute to the local computation of an individual neuron.

PID has already been utilized to analyze the information representation and flows in DNNs (Ehrlich
et al., 2023a; Tax et al., 2017). We show how this approach can be inverted by using PID to
directly formulate goal functions on the individual neuron level. These “infomorphic neurons” then
have the ability to optimize for encoding specific parts of the information they receive from their
inputs, allowing for an application to tasks from supervised, unsupervised and memory learning, as
demonstrated explicitly in Makkeh et al. (2023). However, neurons with only two different inputs
struggle to achieve good performance on classification tasks. It seems that in general, three distinct
signals are necessary for local neuron learning: A receptive signal providing the input, a relevance
signal helping to filter this input and a distribution signal enabling self-organization between neurons.
In classical neural networks, these different classes of information are provided implicitly via the
global gradient signals of backpropagation.

In this work, we show how ANNs based on infomorphic neurons with three input classes can be used
to solve supervised classification tasks with a performance comparable to backpropagation, despite
relying only on locally available information. We demonstrate how the parameters for the objective
functions can either be determined from intuitive reasoning or be optimized by hyperparameter
optimization techniques. The latter approach then sheds light onto the local information processing
needed to solve a complex task. Through this approach, we demonstrate that local learning rules
rooted in information theory can provide an understanding of local ANN learning while maintaining
their performance.

The main contributions of this work are as follows: Firstly, we use information theory, and in particular
PID, to formulate interpretable, per-neuron goal functions with three input classes, significantly
advancing the capabilities of the approach originally presented in Makkeh et al. (2023). Secondly, we
systematically optimize the goal function parameters for these “infomorphic” neurons, provide an
intuitive interpretation, and thereby we provide insights into the local computational goals of typical
classification tasks. Thirdly, for classification tasks we show that PID-based learning can achieve
performance comparable to backpropagation despite being limited to local information only, while
being interpretable on a per-neuron basis.

Next, we give a succinct account of infomorphic neurons with two input classes following Makkeh
et al. (2023) before generalizing the framework to the more capable version with three input classes
in Section 3.
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Figure 1: Infomorphic neurons are abstract, information-theoretic neurons inspired by the
structure of pyramidal neurons (Wibral et al., 2017). They are trained by adjusting their
synaptic weights according to a PID-based goal function. A,B. Inspired by the distinction be-
tween apical and basal dendrites in cortical pyramidal neurons, infomorphic neurons are defined
as computational units with separate feedforward (F ) and contextual (C) input classes. C: Partial
information decomposition (PID) allows one to dissect the total entropy of the neuron into explain-
able components. D. PID enables one to distinguish how much information comes uniquely from
either the feedforward F (Πunq,F) or contextual C input (Πunq,C) and how much they contribute
redundantly (Πred), or synergistically (Πsyn). Classic information theory (top) cannot disentangle
these information atoms: The classic entities cover several of the atoms, so that effectively one can
only measure redundant minus synergistic information. E: Formulating goal functions Gneuron in
terms of PID-atoms Πneuron enables one to formulate how strongly redundant, unique, or synergistic
information should contribute to a neuron’s output. Figure adapted from Makkeh et al. (2023).

2 BIVARIATE INFOMORPHIC NEURONS

Neurons can be viewed as information processors that receive a number of input signals and process
them to produce their own output signal. From an information-theoretic perspective, the output Y
of a neuron can be considered a random variable, and the total output information can be quantified
using the Shannon entropy H(Y ). From an information channel perspective, this output information
consists of two parts: the mutual information I(Y : X) coming from the inputs X and the residual
entropy H(Y |X) arising from stochastic processes within the neuron.

Mutual information can be used to quantify the amount of information that is carried by different
input classes about the neuron’s output by considering the aggregated feedforward (F ), contextual
(C) and lateral inputs (L) as sources X individually. Nevertheless, classical information theory
cannot quantify how much of the information is provided redundantly, uniquely or synergistically
by different inputs, making it impossible to describe how exactly the information from two source
variables contribute to creating the output. Using PID, the total mutual information I(Y : F,C)
between the output of the neuron Y and two aggregated inputs, e.g., F and C, can be dissected into
four PID atoms (see Fig. 1.C): The unique information of the feedforward connection about the
output Y , Πunq,F, is the information which can only be obtained from the feedforward and not the
context input, with the unique information Πunq,C of the context being defined analogously. The
redundant information Πred reflects the information which can equivalently obtained from either
feedforward or contextual inputs about Y , while finally the synergistic information Πsyn can only
be obtained from both inputs considered jointly. All classical mutual information terms between
the target and subsets of source variables can be constructed from these PID atoms through the
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consistency equations (Williams and Beer, 2010)

I(Y : F,C) = Πred +Πunq,F +Πunq,C +Πsyn

I(Y : F ) = Πred +Πunq,F

I(Y : C) = Πred +Πunq,C.

(1)

However, these atoms are underdetermined as there are four unknown atoms with only three con-
sistency equations providing constraints (Williams and Beer, 2010). For this reason, an additional
quantity needs to be defined, which is usually a measure for redundancy (Williams and Beer, 2010).
Such a definition for redundancy, based on the concept of shared exclusions in probability space, is
given by the shared-exclusion PID, Isx∩ (Makkeh et al., 2021) (see Appendix A.2). Importantly, the
resulting PID is differentiable with respect to the underlying probability mass function, which allows
for a specification and subsequent optimization of learning goals based on PID.

Depending on the task the network is set to solve, different PID atoms become relevant to the
information processing. In this work, we focus on the application to supervised learning tasks, in
which the ground-truth label is provided as the context C during training. Here, the intuitive goal
for the neuron is to foster redundancy between the feedforward and context inputs in its output, to
capture only the feedforward signal that agrees with the label. Likewise, if the goal is unsupervised
encoding of the input, lateral connections between neurons can be used as the context signal and the
goal might become maximizing the unique information of the feedforward input about the output, i.e.,
to capture only the information which is not already encoded in other neurons (Makkeh et al., 2023).

PID can not only be used to describe the local information processing, but also to optimize it through
the maximization of a PID based objective function. Generally, such an objective function can be
expressed as a linear combination of PID atoms as

G = γredΠred + γunq,FΠunq,F + γunq,CΠunq,C + γsynΠsyn + γresHres = γTΠ, (2)

where the residual entropy Hres = H(Y |F,C), is included in the vector Π for brevity of notation.
As the Isx∩ measure is differentiable, the goal function can be optimized by adjusting the weights of
the incoming connections of the inputs F and C using gradient ascent – with the analytic formulation
of the gradients given in Makkeh et al. (2023), or using a suitable autograd algorithm.

While such infomorphic neurons can be used for supervised learning tasks when each neuron is
provided a part of the label to focus on (Makkeh et al., 2023), two input classes are insufficient for
fully self-organizing the necessary local information processing. This is because if each neuron is
tasked with encoding information that is redundant between the whole label and the feedforward
signal with no regard to the other neurons, they will inevitably start encoding much of the same
information, leading to poor performance. To avoid this, the neurons need to be made aware of what
the other neurons encode, similar to the unsupervised example. This can be achieved by incorporating
a third input class for lateral connections between neurons of the same layer, as presented next.

3 TRIVARIATE INFOMORPHIC NEURONS

Including a third source variable results in a so-called trivariate PID which is more complex than the
bivariate case, with atoms in general now describing redundancies between synergies. For example,
the atom Π{F}{C} denotes information that can be obtained redundantly from the feedforward and
context signal but is unavailable from the lateral inputs, making it ‘uniquely redundant’ to F and
C. Likewise, the atom Π{F}{C,L} denotes information that can be obtained from F alone but also
synergistically from the pair C,L (but not from C or L alone). Overall, upon the introduction
of a third source, the four PID atoms of the bivariate setup turn into a total of 18 trivariate PID
atoms (Gutknecht et al., 2021) as shown in Fig. 2.C. These PID atoms Πα can in general be addressed
by their antichains α, i.e., sets of sets of variables, with the inner sets describing synergies and the
outer set redundancies between them (Gutknecht et al., 2021).

Including the residual entropy Hres, the decomposition vector Π and goal parameter vector γ thus
have 19 elements each. The general goal function of a neuron is again given by G = γTΠ and can
be set and optimized in the same way as in the bivariate case:

G = γ{F}{C}{L}Π{F}{C}{L} + ...+ γ{FCL}Π{F,C,L} + γresHres = γTΠ. (3)
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Figure 2: Adding lateral connections as a third input class enables neurons to self-organize to
encode relevant and unique information. A,B. Infomorphic neuron with three inputs - namely
feed-forward (F ), contextual (C) and lateral (L) inputs. C. With three input classes, the number of
PID-atoms increases to 18, represented by different colors, plus the residual entropy Hres in the outer
circle. Classical information-theoretic quantities such as the entropy H(Y ) and mutual information I
with individual sources are depicted by ovals, indicating how they can be built from PID atoms. D.
Three input classes allow for the optimization of more complex goals based on 19 different terms
(compared to only five in Fig. 1.C). This trivariate PID allows to combine two bivariate objective
functions: In a supervised learning task, the intuitive goal is to maximize information in the neuron’s
output that is redundant between the feedforward input F and label C, while simultaneously ensuring
the neuron’s output stays unique with respect to lateral neurons L. While bivariate goal functions
only allow for optimizing one of these objectives at a time, both objectives can be combined to the
goal of maximising the single atom Π{F}{C} in the trivariate case.

Utilizing the expressiveness and interpretability of trivariate PID, heuristic goal functions can be
derived for different classes of tasks from intuitive reasoning. For the supervised learning task to be
solved here, the introduction of the lateral connections as a third input allows to synthesize an intuitive
goal function from the two bivariate goals introduced before (see Fig. 2.D). As outlined above, in the
bivariate case, canonical goals might either be to foster redundancy between the feedforward and
context signals with no regards to what lateral neurons do, or, alternatively, to optimize for uniqueness
of the output with respect to the lateral inputs, which does not differentiate between task relevance
of information. With trivariate infomorphic neurons, however, these goals can simultaneously be
achieved by optimizing for the atom Π{F}{C}, which represents the redundancy of the feedforward
and context signal which is at the same time unique with respect to the lateral inputs. In simple terms,
this enables the neuron to find coherent information between label and input data, that is not yet
encoded by other neurons.

4 EXPERIMENTS

We now explain how the general concept of trivariate infomorphic neurons can be practically utilized
to construct networks solving a supervised classification task, i.e., the MNIST supervised handwritten
image classification task. To this end, we demonstrate how an infomorphic network with one hidden
layer can be set up using either heuristic or optimized goal function parameters.
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Neuron structure and activation function To construct infomorphic networks, a number of
practical decisions need to be made for how the output signal is constructed from the inputs in the
forward pass. As a first step, the higher-dimensional signals from the different input classes are
aggregated to the single numbers F , C and L by a weighted sum. Subsequently, these aggregated
inputs are passed into an activation function, which can be chosen arbitrarily, but needs to fit the
requirements of the specific application. For the supervised classification task at hand, the function
A(F,C, L) = F [(1− α1 − α2) + α1 σ(β1FC) + α2 σ(β2FL)] has been chosen, where σ refers to
the sigmoid function and α1 = α2 = 0.1 and β1 = β2 = 2 are parameters that shape the influence of
the input compartments on the activation function. This activation function builds on concepts of
Kay (1994) and makes a clear distinction between the driving feedforward input and the modulatory
context and lateral inputs, ensuring that the network performs similarly during training, when the
context inputs is provided, and for evaluation, where it is withheld (i.e., by setting C = 0). To
show the independence of the infomorphic approach from a particular activation function, the results
are additionally compared to a simple linear activation function A(F,C, L) = F + 0.1L + 0.1C.
The output of the activation function is finally mapped to the unit interval by a sigmoid function,
whose output is used as a probability to stochastically output “1” (firing) or “-1” (non-firing). For
the bivariate output layer, the sigmoid is not sampled from but just interpreted as a firing probability,
with the neuron with the highest value being used as the network prediction. The lateral connections
between neurons add recurrence to the network, requiring for the same input to be shown multiple
times to ensure convergence of the activations. In practice, however, we have seen that presenting the
same input twice is sufficient to achieve proper network function (see Appendix A.9). The inference
procedure for infomorphic networks is summarized in pseudocode in Appendix A.1.

Discretization and local gradients To optimize a PID-based goal function during training, the
first step is to estimate the PID atoms. Since the original Isx∩ measure only works with discrete
variables, the aggregated inputs from a batch of samples are first discretized to 20 levels each (see
Appendix A.11). Subsequently, the empirical probability mass function is constructed from the batch,
from which the PID atoms are computed by means of a plug-in estimation. Finally, the current
value of the goal function can determined as a linear combination of PID atoms (Algorithm 2 and
Algorithm 3 in Appendix A.1). For the local gradient computation, the gradient of the individual
neuron’s objective function is backpropagated via the output to produce the neuron’s weight updates.

Choosing goal parameters The parameters γ for a PID goal function can be obtained in two distinct
ways - either heuristically from intuitive notions about the nature of the computations necessary to
solve the problem, as explained before, or optimized using a suitable hyperparameter optimization
procedure. In this work, we contrast both approaches. For the hyperparameter optimization, we
compared two established techniques: The tree-structured Parzen Estimator (TPE, Bergstra et al.,
2011), that splits the sample points into two groups with high and low performance, fits a model
to each group and draws the next sample points according to the ratio of probabilities, and the
Covariance Matrix Adaptation Evolution Strategy (CMA-ES, Hansen, 2016), which generates new
evaluation points by sampling from a multivariate Gaussian distribution that was fitted to the best
samples from previous iterations.

Network Setup To solve the MNIST task (LeCun et al., 1998), we devised a network architecture
consisting of an input layer, a hidden layer made up from Nhid trivariate infomorphic neurons and
an output layer consisting of 10 bivariate infomorphic neurons. The trivariate neurons in the hidden
layer each receive the whole image as their feedforward signal and the output of other neurons of the
same layer through lateral connections. The bivariate neurons in the output layer receive all outputs
of the hidden layer and additionally exactly one element of the one-hot label as context, which is
only provided during training, and are trained to maximize redundancy between their input and the
information about the one label they observe.

We explored three slightly different approaches to how the hidden layer can be set up using trivariate
infomorphic neurons, illustrated in Fig. 3.A. In setup 1, we use the fully connected label as C and
the output of all neurons of the same layer as all-to-all connected lateral input L. In setup 2, a
sparse connectivity of a maximum of 100 connections is used instead of all-to-all for L. In setup 3,
additionally to sparse L, the label is replaced by a fully connected feedback from the output layer as
context C, indicating a path towards how multiple hidden layers may be stacked in the future. For
comparison, we trained a benchmark network with the same connectivity as setup 1 using standard
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Figure 3: Infomorphic networks with three input classes approach the performance of a similar
network trained with backpropagation and outperform networks with two input classes on
the MNIST handwritten digit classification task. A. In the hidden layer of the network, the
infomorphic neurons receive feedforward and lateral connections as well as either the ground-truth
label or feedback from the output layer, outlined in three setups. B. Networks with trivariate
infomorphic neurons outperform models with bivariate neurons with both, heuristic and optimized
goals for a hidden layer size of 100 neurons. Only the setup with a feedback signal instead of the
label performs worse for this layer size but outperforms the bivariate models for larger hidden layers
as shown in Fig. 8. C. Infomorphic networks achieve similar performance as the same network
trained with backpropagation. For larger layers, using a sparse connectivity significantly improves
performance (setup 2). The lines indicate mean values, with the intervals depicting the maximum and
minimum of 10 runs. The goal function parameters have been optimized for networks with a hidden
layers size of 100 neurons, indicated by the dashed line in C.

backpropagation and cross-entropy loss. Additionally, we trained the output layer of a fixed random
hidden layer setup using step-function activation.

5 RESULTS

Performance The performance of all major setups for Nhid = 100 is shown in Fig. 3.B. The three
trivariate infomorphic setups use the same set of optimized goal parameters (see below) for all hidden
layer sizes and significantly outperform the random baseline as well as the networks with a bivariate
setup for the hidden layer. As shown in Fig. 3.C, Setup 1 matches the performance of backpropagation
for up to 100 neurons, and reaches its maximum test accuracy for 500 neurons before its performance
starts decreasing with larger layer sizes. This decrease in accuracy can be attributed to a lack of
convergence of the neurons (appendix Fig. 5), likely arising through the interaction of too many
neurons. To alleviate the convergence problem, we performed additional experiments (setup 2) with
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Figure 4: Given a set of optimized goal parameters, an ablation study allows for the identification
and interpretation of the most critical neural subgoals for a given task. A. The heuristically
defined goal function (see Fig. 2.D) shows 92.8% test accuracy in MNIST for Nhid = 100; optimizing
the goal function using hyperparameter optimization increases the test accuracy to 94.9%. The
optimized goal parameters include the heuristically found γ{F}{C}, but also additional PID atoms to
be maximized or minimized at the same time. B. For identifying the most important goal parameters,
we performed an ablation study (individually setting γ parameters to 0) and measured the change in
validation accuracy compared to a network trained with the full goal. C. A successive ablation of
parameters in order from lowest to highest individual effect identifies four parameters as being crucial
for network performance (see Table 3 for their definition and interpretation). The lines indicate
mean values, with the intervals depicting the maximum and minimum of 10 runs. D. To test whether
more complex image classification tasks require different atoms to be maximized, we perform a
separate hyperparameter optimization for setup 1, 100 neurons in CIFAR10 and reach a median test
accuracy of 42.5% (compared to 42.2% using backprop and 41.1% using the goal function originally
optimized for MNIST).

the number of lateral connections reduced to maximally 100, which leads to better convergence and
contributes to the continuous increase of performance for larger hidden layers, reaching a median test
accuracy of 97.5% for 2000 neurons, slightly below the 98.0% of the corresponding backpropagation
benchmark. Finally, experiments with setup 3 provide evidence that the direct label input to the
hidden layer can be replaced with feedback from the next layer, while still enabling solid performance
especially for large layers. Additionally, we tested the alternate linear activation function as outlined
in 4. Here, experiments using the optimized goal function parameters resulted in accuracies between
94.9% and 95.1% for 100 neurons, which is on par with the original activation function.

Goal parameters The optimized goal function parameters used for training the main three setups
at all sizes were obtained by maximizing the validation set accuracy using setup 1 for Nhid = 100
neurons. We performed a total of six hyperparameter optimizations of 1000 trials, three using TPE
and three using CMA-ES samplers, respectively (see Appendix Fig. 6). The best results were achieved
using the parameters shown in Fig. 4. The optimized objective functions outperform the heuristic
goal function Gheur = Π{F}{C} by including additional PID atoms besides the intuitively derived
Π{F}{C}. To compare to a more complex image classification task, a single CMA-ES optimization
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run has been performed for the CIFAR10 task (Krizhevsky et al., 2009), with the optimal parameters
presented in Fig. 4.D.

Parameter importance An analysis of the optimized hyperparameter values (Fig. 4.B) shows that
only relatively few parameters are of high importance for performance. By setting goal parameters
to zero individually (Figure 4B, right) we find that there are four goal parameters that are critically
non-zero for high performance on MNIST. This finding is confirmed by cumulatively setting goal
function parameters to zero in the order of the individual drop in performance, which is illustrated in
Fig. 4.C. Interestingly, we find that CIFAR10 two of the four critical goal parameters for MNIST
seem especially important. As a complementary measure of parameter importance, the results of
mean decrease in impurity (Breiman, 2001) can be found in Appendix A.6. The results of a more
detailed analysis of parameter importance, including the effects of varying parameter values, are
presented in Fig. 9.

Interpretation For the MNIST task, neurons aim for (i) encoding information that is redundant
between feedforward and context inputs and thus task relevant, but not already encoded in other
neurons (strongly positive γ{F}{C}), (ii) avoid encoding information that is not in the context,
thus not task-relevant, and already encoded by other neurons (strongly negative γ{F}{L}) and (iii)
allow redundancies of task relevant information between neurons (slightly positive γ{F}{C}{L}).
Additionally, neurons avoid synergies that require F and either C or L for their recovery (γ{FC}{FL})
(see Table 3 for an overview of the parameter values and interpretations). For the CIFAR10 task
(see Fig. 4.D), the two most important parameters γ{F}{C}{L} and γ{F}{C} point to a prioritization
of redundancy over uniqueness between neurons.

6 RELATED WORKS

We are not aware of any other attempts to use PID directly as a constructive tool for the design
of ANNs with local learning objectives, other than the bivariate implementation of infomorphic
networks (Makkeh et al., 2023). The most directly related work using other local information-
theoretic learning objectives is possibly the work on coherent infomax by Kay, Phillips and colleagues
(Kay and Phillips, 1997). Their idea of defining a neural goal function that ensures only information
coherent between the inputs being passed on in the output of a neuron inspired our idea of using
PID-based redundancy as a neural goal function. However, as analyzed in Wibral et al. (2017), the
lack of a PID at the time of invention of coherent infomax reduced the expressiveness of their goal
function, and also prevented an easily interpretable formulation for more than two input classes. As
shown here, however, three input classes seem to be necessary to unlock the potential of information
theoretic learning, in the sense that a neuron needs to know at least the data to transform (F ), the
relevance of various aspects of these data (C), and also what is not yet encoded well by other neurons
(via L).

Aside from PID proper, there are two prominent principles based on information theory that has been
employed to train deep neural networks: information maximization (InfoMax, Linsker, 1988) and
information bottleneck (IB, Tishby et al., 2000). The main idea of InfoMax is to learn representations
that encode as much information as possible about the task, while IB additionally penalizes informa-
tion that is irrelevant to the task (Yu et al., 2020). Various frameworks have employed InfoMax and
IB where unlike in our framework, information theory is employed at the level of group of neurons
(layer). Examples include Deep InfoMax where mutual information of high-level representations and
the input is maximized (Hjelm et al., 2018), InfoNCE that maximizes the mutual information of future
observations and the current latent representation (Oord et al., 2018), and Variational autoencoders
that employ an IB layer (Alemi et al., 2016).

Additionally, local learning rules based on concepts other than information theory have been developed
and show potential for scaling to larger, more capable networks (Lillicrap et al., 2020; Richards et al.,
2019; Jeon and Kim, 2023; Bredenberg et al., 2024). This includes learning rules based on concepts
from contrastive learning (Illing et al., 2021; Ahamed et al., 2023), predictive coding (Mikulasch
et al., 2023; Sacramento et al., 2018; Millidge et al., 2022), and many others (Launay et al., 2020;
Hinton, 2022; Høier et al., 2023; Lee et al., 2015; Nøkland and Eidnes, 2019; Lässig et al., 2023).
Most of these approaches are confined to specific learning paradigms and implementations, while
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our framework describes local learning goals in an abstract manner, making it applicable to various
learning paradigms, datasets and implementations, while still being interpretable.

In terms of abstract per-neuron objectives, recently very interesting complementary work has been
published, building on concepts from control theory (Moore et al., 2024) and reinforcement learning
(Ott, 2020). These efforts are in line with our work, and we believe similar creative, yet principled
approaches could provide a basis for deepening the understanding of local information processing.

Beyond the formulation of information theoretic learning rules, there is literature using PID to analyze
deep neural network function, such as Tax et al. (2017); Ehrlich et al. (2023a); Tokui and Sato (2021);
Liang et al. (2023a;b); Mohamadi et al. (2023). These studies necessarily differ from the perspective
on neural function taken here, as they analyze the function of neurons in feedforward networks trained
with backprop, where – different to the infomorphic approach – the learning signals are not directly
available as inputs to the neural activation function.

7 DISCUSSION

In this work we demonstrate how neurons can self-organize to solve classification tasks using
local PID-based goal functions. These local information-theoretic objectives of neural learning are
formulated in human interpretable terms – in contrast to the usual, more mechanistic description
of local learning rules, or the formulation of a purely global objective function. Our framework
expresses this local objective by selecting which output information should be uniquely, redundantly
or synergistically determined by the various classes of local inputs to a neuron. We show how to
derive the learning objective for supervised learning based on intuitive heuristic reasoning, and upon
some optimization of this simple rule demonstrate performance on MNIST that is comparable to the
same ANN trained with backpropagation.

By showing which PID atoms need to be optimized to solve a certain goal and assessing the
importance of each goal function parameter, infomorphic networks provide a novel insight into
the local information processing required at a local level to solve a global goal. Note that this
interpretability differs from other notions of interpretability: While other attempts at interpretability
focus on how specific tasks are solved, infomorphic neurons show on an abstract level what kind
of local information processing is necessary to solve a certain class of problems, e.g., classification.
These insights may in the future be used to discern which neurons fail to contribute to the overall task,
with the localizability of the Isx∩ redundancy measure revealing for which labels problems occur.

Limitations and Outlook We show that the infomorphic local optimization approach reaches a
performance comparable to backpropagation in a setup with one fully connected hidden layer. In
subsequent work, we will investigate the local information processing and connectivity required for
deeper networks. Preliminary experiments show that deeper networks train out of the box using the
same goal function parameters and reach the same or slightly higher accuracy compared to the single
hidden layer models (see subsection A.10). More work is needed to determine how this accuracy can
be improved, for instance by choosing different goal function parameters for the different layers.

The infomorphic neurons presented in this work use a discrete version of PID, which limits the
amount of information that individual neurons can convey. While this is similar to the binary output
states of “spike” and “no spike” in biological neurons, PID can also be applied to continuous variables
and thus could also enable learning in continuous neurons (Ehrlich et al., 2023b).

For the study of biological neural networks, infomorphic networks could potentially serve as a
powerful constructive modeling approach. While information-theoretic gradients are almost certainly
too complex to be directly implemented in a biological substrate, biological neurons may still strive
for similar objectives through simpler approximations and mechanistic local learning rules. Having a
principled and general way to formulate, identify and test local information processing objectives
could provide a new perspective on local learning in general. Additionally, subsequent work could
aim to establish a formal bridge between local goals and known local learning rules, reconciling
well-established Hebbian-like rules with novel principled approaches.

In conclusion, the formulation of local objective functions in the language of PID directly enables
an interpretation of the information processing of neurons. Our work represents an important step
towards a principled theory of local learning founded in information theory.

10
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A APPENDIX

A.1 PSEUDOCODE FOR TRAINING ALGORITHM (SETUP 1)

In this Section, we provide pseudocode detailing the procedure to train infomorphic networks with
dense lateral connections and label context (i.e., Setup 1 in Figure 3). The code is started from the
main function TrainModel, which invokes TrainNeuronTrivariate and TrainNeuronBivariate to update
hidden layer and output layer weights, respectively. These functions in turn make use of the auxiliary
functions ComputeIsxRedundancies, which computes generalized redundancies according to the
analytical definition by Makkeh et al. (2021), and ComputePIDAtoms, which performs a Moebius
inversion to compute the PID atoms from the generalized redundancies (Williams and Beer, 2010).
Note that since the linear operation performed by ComputePIDAtoms is fixed, it can be efficiently
implemented as a multiplication with a precomputed matrix.

Note that, as originally proposed by Kay (1994) and utilized by Makkeh et al. (2023), gradients for
the incoming weights are only computed with respect to the conditional probability p(y|f, c, l) (or
p(y|f, c)) of the output Y , since the empirical probability mass functions p(f, c, l) in Algorithm 2
and p(f, c) in Algorithm 3 are not differentiable. While we currently have no strong a priori argument
why the empirical probability mass functions can be assumed constant, the learning of PID over
training and the good task performance when using these gradients in experiments provides an ex
post justification for this procedure.

Function 1: TrainModel
Input: data, num_epochs
Output: trained model

1 INITIALIZE model;
2 foreach epoch in range(num_epochs) do
3 foreach (batch_samples, batch_labels) in data do
4 INITIALIZE hidden_state, output_state to zero;
5 hidden_state← forward_hidden_layer(f=batch_samples, c=batch_labels,

l=hidden_state);
6 hidden_state← forward_hidden_layer(f=batch_samples, c=batch_labels,

l=hidden_state);
7 output_state← forward_output_layer(f=hidden_state, c=batch_labels) ;
8 foreach neuron in hidden_layer do
9 TrainNeuronTrivariate(y=hidden_state[neuron], f=batch_samples, c=batch_labels,

l=last_outputs[other neurons]);
10 foreach neuron in output_layer do
11 TrainNeuronBivariate(y=output_state[neuron], f=hidden_state, c=batch_labels);

12 return trained model

Function 2: TrainNeuronTrivariate
Input: y, f, c, l

1 BIN continuous values f, c, l to 20 equally sized bins;
2 COUNT occurrences of tuples (f, c, l) in batch;
3 COMPUTE empirical probability masses p(f, c, l);
4 EVALUATE conditional probabilities p(y|f, c, l) from the neurons;
5 CONSTRUCT full joint probability mass function p(y, f, c, l) = p(f, c, l)p(y|f, c, l);
6 isx_redundancies← ComputeIsxRedundancies(p(y, f, c, l));
7 pid_atoms← ComputePIDAtoms(isx_redundancies);
8 goal← scalar_product(goal_params, pid_atoms);
9 PERFORM autograd to maximize goal;

10 UPDATE neuron weights;
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Function 3: TrainNeuronBivariate
Input: y, f, c

1 BIN continuous values f, c to 20 equally sized bins;
2 COUNT occurrences of tuples (f, c) in batch;
3 COMPUTE empirical probability masses p(f, c);
4 EVALUATE conditional probabilities p(y|f, c, l) from the neurons;
5 CONSTRUCT full joint probability mass function p(y, f, c) = p(f, c)p(y|f, c) isx_redundancies
← ComputeIsxRedundancies(p(y, f, c));

6 pid_atoms← ComputePIDAtoms(isx_redundancies);
7 goal← scalar_product(goal_params, pid_atoms);
8 PERFORM autograd to maximize goal;
9 UPDATE neuron weights;

Function 4: ComputeIsxRedundancies
Input: Joint probability mass function p(y, f, c, l)

1 foreach antichain α do
2 COMPUTE conditional probability mass functions P(Y = y|

∨
a∈α

∧
i∈a Si = si);

3 COMPUTE marginal probability mass function P(Y = y);

4 Isx∩ (Y : Sα)←
∑

y,f,c,l P(Y = y, F = f, C = c, L = l) log2
P(Y=y|

∨
a∈α

∧
i∈a Si=si)

P(Y=y) ;

5 return Isx∩ (Y : Sα) for all antichains α

Function 5: ComputePIDAtoms
Input: Isx∩ (Y : Sα) for all antichains α

1 COMPUTE pid atoms Πβ by inverting the linear system of equations Isx∩ (Y : Sα) =
∑

β⪯α Πβ

where β ⪯ α⇔ ∀a ∈ α ∃b ∈ β : a ⊆ b;
2 return Πβ for all antichains β
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A.2 DEFINITION OF SHARED-EXCLUSION REDUNDANCY

In this section, we briefly motivate and explain the shared-exclusion redundancy measure Isx∩ intro-
duced by Makkeh et al. (2021). The mutual information I(T : S1, S2) between a target variable T
and two source variables S1 and S2 can be interpreted in a Bayesian sense as an average measure for
how the prior belief of the target event T = t, needs to be updated in light of the event of observing
both source events S1 = s1 and S2 = s2 simultaneously:

I(T : S1, S2) =
∑

t,s1,s2

P(T = t, S1 = s1, S2 = s2) log2
P(T = t|S1 = s1 ∧ S2 = s2)

P(T = t)
.

Makkeh et al. (2021) build on this logic and define redundancy as an average measure for how the
beliefs about the target event T = t need to be updated if instead it is only known that S1 = s1 or
S2 = s2 have occurred:

Isx∩ (T : S1, S2) =
∑

t,s1,s2

P(T = t, S1 = s1, S2 = s2) log2
P(T = t|S1 = s1 ∨ S2 = s2)

P(T = t)
.

For more than two source variables si (where i is an index enumerating the set of source variables),
the term to condition on becomes a disjunction between conjunctions of the form

∨
a∈α

∧
i∈a Si = si

for the redundancy associated with the antichain α. The atoms Π can then be computed from these
redundancies via a Moebius inversion, as laid out in detail in Gutknecht et al. (2021).

The definition is symmetric with respect to permutation of the sources, fulfills a target chain rule and
is differentiable with respect to the underlying probability distribution (Makkeh et al., 2021), which
makes it a suitable definition for optimizing objective functions.

A.3 COMPUTE RESOURCES

For the figures in this paper, we performed a total of seven hyperparameter optimizations: Three TPE
optimizations and three CMA-ES optimizations of MNIST objective function parameter and a single
CMA-ES optimization for the CIFAR task. Each of these optimizations took ≤ 12 hours to compute
on a HPC cluster node with 32 cpu cores and two NVIDIA A100 GPUs with 40GB of VRAM each.

Including evaluation runs and earlier computations not shown in the results, we estimate to have
utilized a total of 200 hours of compute time on a compute node equivalent to the one described
earlier.

A.4 IMPLEMENTATION DETAILS AND MODEL PARAMETERS

We implemented infomorphic networks as a flexible and efficient python package using py-
torch (Paszke et al., 2019) for automatic differentiation of the local goal functions. Furthermore, the
optuna (Akiba et al., 2019) package was used to compute the TPE and CMA-ES hyperparameter
optimizations as well as the computation of the parameter importance via the mean decrease in
impurity.

In this paper, we use the MNIST (LeCun et al., 2015) and CIFAR10 (Krizhevsky et al., 2009) datasets.
The MNIST dataset consists of 70,000 grayscale images of handwritten digits, each sized 28x28
pixels. The dataset is split into a training set of 60,000 samples and a test set of 10,000 samples.
The CIFAR10 dataset consists of 60,000 images with three color channels and a resolution of 32x32
pixels. Of the 60,000 images, 50,000 are in the training set and 10,000 are in the test set. For each of
our training runs with either dataset, 20% of the training set samples are withheld randomly to be
used for validation.

To protect the anonymity of the authors, the software package is provided as a .zip archive for the
review process, but will be made available online after the review process has concluded.

The parameters used to train the models shown in Fig. 3 are listed in Table 1. The backpropagation
model was trained to optimize the cross-entropy loss between the prediction and the true label.
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Table 1: Model and training parameters for the models shown in Fig. 3. *The effect of different batch
sizes is analyzed in Fig. 10. **The efffect of the number of bins is analyzed in Fig. 11

Parameter Backprop Model Hidden Layer Output Layer

NEpochs 100 100 100
NBatch 1024 1024* 1024*
Optimizer Adam Adam Adam
Learning rate η 0.001 0.002 0.003
Weight decay 0.0 0.00035 0.00015
Number of bins per dim. - 20** 20**
Binning ranges - (-20,20) adaptive
Objective function cross-entropy trivariate γ γ = (−0.2, 0.1, 1.0, 0.1, 0.0)T

A.5 MODEL DYNAMICS DURING TRAINING

As a measure for the dynamics of the neurons during training, we introduce the self-cosine distance
of the feedforward receptive field as

D(t)
c = 1−

www
(t−1)
F ·www(t)

F

∥www(t−1)
F ∥∥www(t)

F ∥
(4)

where wwwF corresponds to feedforward weights of a single neuron of the hidden layer. The median
value of D(t)

c for the hidden neurons of a trivariate model are shown in Fig. 5. While the self-cosine
distance consistently increases with layer size in the dense setups, it does not increase in the sparse
setup after a layer size of 100 neurons which is also the number of lateral connections in all of the
larger sparse layers.

Figure 5: The median self-cosine distance of trivariate neurons for different layer sizes during the
course of training in a dense (left) and a sparse (right) lateral connected setup.

A.6 OPTIMIZED OBJECTIVE FUNCTIONS FOR THE TRIVARIATE NEURONS

To support the trivariate objective function that was obtained using hyperparameter optimization, we
repeated the optimizations three times for both, the TPE sampler and the CMA-ES sampler three times
each. The resulting objective functions are illustrated in Fig. 6. While the objective functions that
were optimized with the TPE sampler included all γ parameters, the optimization with the CMA-ES
sampler was only performed for the parameters that describe PID-atoms while the parameter for the
residual entropy was set to 0. This was done because we observed a strong correlation between the
parameter for the unique information of the feedforward input and the residual entropy which both
had to be small. In the figure, the respective values are set 0. In the figure, we also illustrate the mean
decrease impurity score which is a measure for the importance of a parameter.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

CMA-ES SamplerTPE Sampler

95.4 %

94.4 %

95.4 %

93.9 %

94.7 %

94.7 %

0.0 max

mean decrease impurity

0.0 max

mean decrease impurity

1.0 0.0 1.0

parameter value

Parameter Value Parameter ImportanceParameter Value Parameter Importance

1.0 0.0 1.0

parameter value

Figure 6: The three objective functions shown in the first column were obtained by utilizing the
TPE sampler while the objective functions in the third column were obtained with the CMA-ES
sampler. The performance illustrated below each of the objective functions corresponds to the
maximum validation accuracy during optimization. The column next to the objective functions show
the corresponding mean decrease impurity score of the corresponding goal parameter as a measure
for the importance of the parameters. While the objective functions obtained with CMA-ES have
a higher maximum validation accuracy than the goals obtained with the TPE, we observed that the
first objective function obtained with the TPE sampler (top-left) outperformed the others in terms of
median validation accuracy for larger layer sizes, which is why we used this objective function for
the main results.

A.7 TRIVARIATE CONSISTENCY EQUATIONS

For arbitrary numbers of sources, the PID consistency equations can be written as

I(Y : a) =
∑
a∈α

Πα. (5)
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In particular, the seven consistency equations for three input variables F , C and L can be written as

I(Y : F ) = Π{F} +Π{F}{C} +Π{F}{L} +Π{F}{CL} +Π{F}{C}{L}

I(Y : C) = Π{C} +Π{F}{C} +Π{C}{L} +Π{C}{FL} +Π{F}{C}{L}

I(Y : L) = Π{L} +Π{F}{L} +Π{C}{L} +Π{L}{FC} +Π{F}{C}{L}

I(Y : F,C) = Π{F} +Π{C} +Π{F}{C} +Π{F}{L} +Π{C}{L} +Π{F}{CL}

+Π{C}{FL} +Π{L}{FC} +Π{FC}{FL}{CL} +Π{FC}{FL} +Π{FC}{CL}

+Π{F}{C}{L} +Π{FC}

I(Y : F,L) = Π{F} +Π{L} +Π{F}{C} +Π{F}{L} +Π{C}{L} +Π{F}{CL}

+Π{C}{FL} +Π{L}{FC} +Π{FC}{FL}{CL} +Π{FC}{FL} +Π{FL}{CL}

+Π{F}{C}{L} +Π{FL}

I(Y : C,L) = Π{C} +Π{L} +Π{F}{C} +Π{F}{L} +Π{C}{L} +Π{F}{CL}

+Π{C}{FL} +Π{L}{FC} +Π{FC}{FL}{CL} +Π{FC}{CL} +Π{FL}{CL}

+Π{F}{C}{L} +Π{CL}

I(Y : F,C, L) = Π{F} +Π{C} +Π{L} +Π{F}{C} +Π{F}{L} +Π{C}{L}

+Π{F}{CL} +Π{C}{FL} +Π{L}{FC} +Π{FC}{FL}{CL} +Π{FC}{CL}

+Π{FL}{CL} +Π{FC}{FL} +Π{F}{C}{L} +Π{FC} +Π{FL} +Π{FL}

+Π{FCL}.

(6)

A.8 THE ATOMS OF THE PARTIAL INFORMATION DECOMPOSITION FOR THREE SOURCE
VARIABLES

H(Y)

Hres

I(Y : L)

I(Y : F)

I(Y : C)

{F}{C}

{F}{L}

{C}{L}

{F}{C}{L}

{C}{FL}

{C}

{FC}{CL}

{CL}

{FC}
{L}

{FL}{C
L}

{L}{F
C}

{F}

{F
}{

C
L}

{F
L}

{FCL}

{FC}{FL}

{FC}{FL}{CL}

Figure 7: To improve the clarity and intuition for the atoms of the partial information decomposition
with three source variables, this figure shows a larger version of Venn-diagram of the decomposition
already shown in Fig. 2.C. The meaning of the different information atoms are also listed in Table 2
as a guide for the reader.
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Table 2: A list of all atoms that are part of the Partial Information Decomposition with three source
variables and their meaning.

Atom (ΠAntichain) Meaning

Π{F}{C}{L} information that is redundant in all of the three sources

Π{F}{C} redundant information between feedforward and context input
Π{F}{L} redundant information between feedforward and lateral input
Π{C}{L} redundant information between context and lateral input

Π{F}{CL} information provided by both, the feedforward input and the synergy
between the context and the lateral input

Π{C}{FL} information provided by both, the context input and the synergy between
the feedforward and the lateral input

Π{L}{FC} information provided by both, the lateral input and the synergy between
the feedforward and the context input

Π{F} unique information provided by the feedforward input
Π{C} unique information provided by the context input
Π{L} unique information provided by the lateral input

Π{FC}{FL}{CL} information redundantly provided by each of the pairwise synergies

Π{FC}{FL} information provided by both, the synergy between the feedforward
and the context input and the synergy between the feedforward and the
context input

Π{FC}{CL} information provided by both, the synergy between the feedforward and
the context input and the synergy between the context and the lateral
input

Π{FL}{CL} information provided by both, the synergy between the feedforward and
the lateral input and the synergy between the context and the lateral input

Π{FC} synergy between the feedforward input and the context input
Π{FL} synergy between the feedforward input and the lateral input
Π{CL} synergy between the context input and the lateral input

Π{FCL} information encoded by all input sources synergistically

Table 3: The four most important non-zero goal parameters found through optimization on MNIST
and ablation lead to interpretable requirements on each neuron’s local information processing.

parameter definition value interpretation of local information processing goal
γ{F}{C} redundancy between

F and C
0.98 maximize information that is provided both by

feedforward AND context but not by other neu-
rons – and thus relevant for the task

γ{F}{L} redundancy between
F and L

-0.99 minimize information that is redundant with other
neurons, but NOT provided by the context – and
thus not relevant for the task

γ{F}{C}{L} redundancy between
F , C and L

0.33 moderately maximize information that is redundant
with other neurons AND the context – thus relevant,
but already encoded

γ{FC}{FL} redundancy between
synergies requiring F

-0.97 minimize synergistic information that requires F
and either C or L to be recovered

A.9 RECURRENCE OF THE HIDDEN LAYER

To perform an information decomposition which includes the information of the lateral activity,
we include lateral connections within the hidden layer as illustrated in Fig. 3.A. As described in
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Baseline Models

Comparison of Optimized ModelsComparison of Heuristic Models

Figure 8: An overview over the training and test performances of the heuristic (left) and optimized
(right) models with different model structures, neuron models and objective functions as well as the
performances of some baseline models. In the bivariate models, only one of the non driving inputs
(context or lateral) and the neurons optimized the heuristic objective functions illustrated in Fig. 2.D.
The corresponding optimized objectives were optimized with the CMA-ES sampler similar to the
trivariate objective function.

Appendix A.1, we only perform two iterations within the hidden layer i.e. one iteration to compute
the activity of the neurons within the layer and a second iteration to include this activity in the
final output of the neurons. Therefore, the lateral activity contributes to the neurons output. Due to
the stochasticity of the neurons, the lateral input will never fully converge. The continuous output
probabilities converge already after the second single iteration with only minor changes in the output
probabilities of the order of 10−4. This is due to the small influence of the lateral input on the output
which is limited to 0.1σ(2FL) i.e. a maximum change of ±0.1 in the activation.

A.10 DEEP INFOMORPHIC NETWORKS

A major factor in the success in many neural network architectures is their layered structure, allowing
the network to encode the relevant information in successive steps to make them more accessible to
the final output layer. For this reason, scaling infomorphic networks to multiple hidden layers is the
canonical next step for making them applicable to more complex tasks.

In preliminary experiments we found that networks with more hidden layers work out-of-the-box
(without any further optimization of the goal or other hyperparameters) and perform equally well
or slightly better than comparable shallower networks. We provide two examples: First, networks
with layer sizes 800-200-10 and 600-200-200-10 (each layer receiving the label as context) reach
a mean final test accuracy of 97.2 % and 97.1 % on MNIST. This matches the performance of
architecture 1000-10 (setup 2) with a slightly smaller model complexity (same number of neurons,
fewer parameters). Second, an architecture of 1600-400-10 (each layer receiving label and feedback
from the output layer as context) reaches a mean final test accuracy of 97.7 %, outperforming the

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.930

0.930

0.935

0.935

0.940

0.940

0.945

0.945

0.950

0.950

0.955

0.955

Final Validation Accuracy

(F)(C)(L)

(F)(C)

(F)(L)

(C)(L)

(F)(CL)

(C)(FL)

(L)(FC)

(F)

(C)

(L)

(FC)(FL)(CL)

(FC)(FL)

(FC)(CL)

(FL)(CL)

(FC)

(FL)

(CL)

(FCL)

H_res

M
od

ifi
ed

 G
am

m
a

Gamma Modification
Set 0
Reduced by 10%
Increased by 10%
Reduced by 0.1
Increased by 0.1

Figure 9: To estimate the importance of the different parameters of the trivariate objective function,
we modified individual parameters of the trivariate objective function. The performance change
induced by setting the parameters to 0 was already shown in Fig. 4.B and was used for the results
shown in Fig. 4.C. Additionally, we changed the individual goal parameter relative to the parameter
strength (±10%), but also in an absolute manner (±0.1) to get a better intuition about the importance
of the fine tuning of the parameters.

performance of 2000-10 (setup 2) with 97.5 %. These results provide evidence that stacking multiple
layers works in principle.

In subsequent work, we will optimize the goal function parameters for a feedback setup to evaluate
the efficacy of this approach and uncover differences to the setup with the label as context signal.
Furthermore, we will conduct an investigation into how the optimal goal parameters differ between
individual hidden layers of a deeper network.

As shown in figure 2.D we now created the goal function for the trivariate neurons by maximizing
the atom that corresponds to the overlap of the two bivariate atoms. This atom corresponds to the
redundant information between the feedforward and the contextual input, that is uniquely provided
by the two sources and not by the lateral input, resulting in the heuristic goal function of the form
Gtriv = Π{F}{C}. It is important to note, that even if this goal looks identical to Gcon, it is different
as the meaning of the atoms depends on the number of sources despite the identical notation.
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A.11 BATCH SIZE AND NUMBER OF BINS
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Figure 10: To evaluate whether a batch size of 1024 is sufficient for estimating the probability
distributions required for information decomposition, we conducted additional experiments with the
trivariate model. These experiments utilized the optimized goal function, the parameters listed in
Table 1, and a hidden layer size of Nhid = 100, while varying the batch size. Each configuration was
run in 10 different initializations and trained for 1000 epochs to ensure convergence, as demonstrated
in the right figure. The left figure reveals that performance remains consistent across different batch
sizes. However, models with smaller batch sizes converge faster, reducing the computational cost of
optimization. Consequently, a batch size of 1024 appears adequate for the requirements of this study.
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Figure 11: Building on our analysis of the dependence of training on batch size, we conducted
similar experiments, this time varying the number of bins used to estimate probability distributions.
Theoretically, using too few bins results in greater information loss, as more distinct samples are
grouped into the same bin. Conversely, too many bins make it challenging to reliably estimate
information-theoretic quantities. As shown in the figure, a high number of bins accelerates con-
vergence, while too few bins introduce noise into the training process. Consistent with theoretical
expectations, the optimal number of bins falls within a balanced range.
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