
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAT-3DGS: A CONTEXT-ADAPTIVE TRIPLANE AP-
PROACH TO RATE-DISTORTION-OPTIMIZED 3DGS
COMPRESSION

Anonymous authors
Paper under double-blind review

Figure 1: Comparison of the proposed CAT-3DGS and HAC (Chen et al., 2024). CARM: Channel-
wise Autoregressive Models. SARM: Spatial Autoregressive Models.

ABSTRACT

3D Gaussian Splatting (3DGS) has recently emerged as a promising 3D repre-
sentation. Much research has been focused on reducing its storage requirements
and memory footprint. However, the needs to compress and transmit the 3DGS
representation to the remote side are overlooked. This new application calls for
rate-distortion-optimized 3DGS compression. How to quantize and entropy en-
code sparse Gaussian primitives in the 3D space remains largely unexplored. Few
early attempts resort to the hyperprior framework from learned image compres-
sion. But, they fail to utilize fully the inter and intra correlation inherent in Gaus-
sian primitives. Built on ScaffoldGS, this work, termed CAT-3DGS, introduces
a context-adaptive triplane approach to their rate-distortion-optimized coding. It
features multi-scale triplanes, oriented according to the principal axes of Gaussian
primitives in the 3D space, to capture their inter correlation (i.e. spatial corre-
lation) for spatial autoregressive coding in the projected 2D planes. With these
triplanes serving as the hyperprior, we further perform channel-wise autoregres-
sive coding to leverage the intra correlation within each individual Gaussian prim-
itive. Our CAT-3DGS incorporates a view frequency-aware masking mechanism.
It actively skips from coding those Gaussian primitives that potentially have lit-
tle impact on the rendering quality. When trained end-to-end to strike a good
rate-distortion trade-off, our CAT-3DGS achieves the state-of-the-art compression
performance on the commonly used real-world datasets.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a promising representation for
3D scenes. It lends itself to novel view synthesis particularly within differentiable rendering frame-
works. Unlike Neural Radiance Fields (NeRF) (Mildenhall et al., 2021), which require many sam-
pling points per pixel for volumetric rendering, 3DGS, as a rasterization-based method, uses 3D
Gaussians as geometric primitives, achieving greater efficiency for real-time rendering and the state-
of-the-art rendering quality.

Despite these advantages, the redundancy inherent in the 3DGS representation has prompted new
research directions. Many prior works have been focused on a compact representation of Gaussian
primitives. This category of methods aim at minimizing the parameter count or quantizing param-
eters to save storage space and memory footprint. These techniques include pruning insignificant
Gaussian primitives (Lee et al., 2024; Fan et al., 2023; Girish et al., 2024; Ali et al., 2024; Wang
et al., 2024a), vector quantizing their attributes (Lee et al., 2024; Fan et al., 2023; Navaneet et al.,
2023; Niedermayr et al., 2024; Wang et al., 2024a; Morgenstern et al., 2023), developing compact
latent representations for attributes (Girish et al., 2024), and representing sparse Gaussian primitives
in a more structural way (Lu et al., 2024; Ren et al., 2024; Sun et al., 2024). However, most of them
overlook the needs to transmit the compressed 3DGS representation to the remote side, which calls
for entropy coding and rate-distortion-optimized compression.

Recently, the rate-distortion-optimized compression for 3DGS started to attract attention. Unlike the
compact 3DGS representation, this new school of thought (Wang et al., 2024a; Liu et al., 2024; Chen
et al., 2024; Wang et al., 2024b) aims to strike an optimized trade-off between the compressed bit
rate and rendering image quality in an end-to-end manner. Built on the vanilla 3DGS representation,
RDO-Gaussian (Wang et al., 2024a) adopts the entropy-constrained vector quantization to quantize
the attributes (e.g. opacity, scales, rotations and colors) of each Gaussian primitive. Instead of
performing vector quantization, HAC (Chen et al., 2024) and ContextGS (Wang et al., 2024b) turn
to the ScaffoldGS (Lu et al., 2024) representation to perform scalar quantization with respect to the
latent features of these attributes, a technique analogous to the well-established transform coding
plus scalar quantization for image/video compression. To entropy encode the quantized features,
both introduce the hyperprior from learned image compression (Ballé et al., 2018) to model their
coding probabilities. In formulating the hyperprior, HAC (Chen et al., 2024) draws inspiration from
BiRF (Shin & Park, 2024) to create multi-scale binary hash grids (Figure 1 (a)), whereas ContextGS
learns a separate feature as the hyperprior for each individual Gaussian primitive. Both assume the
components of the hyperpior are independent and identically distributed, in coding the hyperprior.
Notably, ContextGS organizes Gaussian primitives in the 3D space in a hierarchical manner in order
to benefit from the contextual coding of the quantized latent features. In this regard, CompGS (Liu
et al., 2024) shares parallels with ContextGS.

This work introduces a novel rate-distortion-optimized compression framework for 3DGS (Figure 1
(b)). First, motivated by the tensor decomposition (Fridovich-Keil et al., 2023), we project the
unorganized Gaussian primitives in the 3D space onto a set of multi-scale triplanes. These triplanes,
oriented according to the principal components of the Gaussian primitives (Figure 1 (d)), serve as
the hyperprior for coding their attributes in the latent space. Because they capture largely the inter
correlation (i.e. spatial correlation) between the Gaussian primitives in the 3D space, we are able
to encode efficiently the triplane-based hyperprior by spatial autoregressive models. This design
aspect differs significantly from most existing techniques, in which the hyperprior is assumed to be
factorial. Second, given that our triplane-based hyperprior has exploited much of the inter correlation
between the Gaussian primitives, we decouple their coding dependency and encode their latent
features independently by channel-wise autoregressive models. This avoids the challenge of having
to organize sparse Gaussian primitives in the 3D space to leverage their inter correlation. Moreover,
the intra correlation within each individual Gaussian primitive is explored for coding. Lastly, we
develop a view frequency-aware masking mechanism, skipping from coding the Gaussian primitives
that contribute little to the rendering quality (Figure 1 (c)). To sum up, our contributions include:

• A triplane-based hyperprior that leverages the inter correlation (i.e. spatial correlation) between
Gaussian primitives in the 3D space for efficient spatial autoregressive coding.

• A channel-wise autoregressive model with uneven slice partition that exploits the intra correla-
tion within each individual Gaussian primitive to further improve coding efficiency.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Taxonomy of the rate-distortion-optimized 3DGS compression.

• A view frequency-aware masking mechanism that evaluates the significance of Gaussian primi-
tives based on their impact on the rendering quality to skip less critical ones from coding.

With these novel elements, our scheme, called CAT-3DGS, is able to achieve the state-of-the-art
rate-distortion performance on several commonly used real-world datasets (Figure 1 (e)).

2 RELATED WORK

The related work can be divided into two main categories: the compact 3DGS representation and
the rate-distortion-optimized 3DGS compression.

Compact 3DGS Representation. This category of methods, being a weak form of compression,
aims to make more compact the 3DGS representation by pruning, quantizing, or structuring Gaus-
sian primitives. Typical methods that involve pruning include Compact3DGS (Lee et al., 2024),
LightGaussian (Fan et al., 2023), EAGLES (Girish et al., 2024), and Trimming the fat (Ali et al.,
2024). Compact3DGS features a learnable binary mask and a mask loss to suppress less criti-
cal Gaussian primitives during training. In contrast, LightGaussian and EAGLES adopt a post-
processing strategy to remove less significant Gaussians based on score-based criteria. In a similar
vein, Trimming the fat (Ali et al., 2024) performs pruning progressively. Other methods that in-
volve structuring sparse Gaussian primitives are ScaffoldGS (Lu et al., 2024), OctreeGS (Ren et al.,
2024), and F3DGS (Sun et al., 2024). For instance, ScaffoldGS takes an anchor-based approach,
where each anchor represents a group of Gaussian primitives whose attributes are represented col-
lectively by a latent feature vector.

Rate-distortion-optimized 3DGS Compression. This emerging research area targets the gen-
eration and coding of Gaussian primitives in an end-to-end and rate-distortion-optimized manner.
Figure 2 presents a taxonomy for methods in this category, including RDO-Gaussian (Wang et al.,
2024a), CompGS (Liu et al., 2024), ContextGS (Wang et al., 2024b), and HAC (Chen et al., 2024).
Unlike the compact 3DGS representation, these compression techniques involve entropy coding the
quantized Gaussian primitives. One central theme is how to predict the probability distributions
of the coding features and/or attributes. To this end, some (Chen et al., 2024; Liu et al., 2024;
Wang et al., 2024b) borrow the idea of hyperprior from learned image compression to model the
distributions of the latent features of Gaussian primitives. One exception is RDO-Gaussian (Wang
et al., 2024a), which applies entropy-constrained vector quantization to the Gaussian attributes. As
opposed to HAC (Chen et al., 2024), ContextGS (Wang et al., 2024b) and CompGS (Liu et al.,
2024) additionally introduce contextual coding in the latent space to leverage the inter correlation
between Gaussian primitives. In common, all these schemes consider the hyperprior to be factorial.
From Figure 2, our CAT-3DGS represents a novel attempt that makes use of both inter and intra
correlation for coding Gaussian primitives. In terms of the use of inter correlation, it differs from
ContextGS (Wang et al., 2024b) and CompGS (Liu et al., 2024) in performing spatial autoregressive
coding in the hyperprior domain, which is made possible with our triplane-based hyperprior. More
than that, it makes full use of the intra correlation within each individual Gaussian primitive by per-
forming channel-wise autoregressing coding in the latent domain, which is first proposed for 3DGS
compression.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARY

ScaffoldGS (Lu et al., 2024) builds upon 3DGS (Kerbl et al., 2023) and introduces a storage-
efficient, anchor-based representation of 3D Gaussian primitives. Instead of directly storing a large
number of Gaussian primitives and their attributes, ScaffoldGS introduces the notion of anchor
points, with each representing a cluster of Gaussian primitives. The attributes of a Gaussian prim-
itive include its 3D position µg , scale s, rotation r, spherical harmonic coefficients c, and opacity
α. Likewise, each anchor is characterized by its position x, latent feature f , scaling factor l, and
K learnable offsets {Oi}Ki=1. The latent feature f encodes the attributes of the Gaussian primitives
attached to the same anchor, effectively reducing the data redundancy. The learnable offsets indicate
their relative positions with respect to that of the anchor.

With ScaffoldGS, rendering a 2D image involves decoding the view-dependent attributes for all the
Gaussians primitives from an anchor representation according to the anchor feature f and camera
position xc:

{ci, ri, si,αi}Ki=1 = FS(f ,σc, d⃗c), (1)

where σc = ∥(x−xc)∥2, d⃗c = x−xc/∥x− xc∥2, and FS is an MLP decoder. The position µg
i of

a Gaussian in the cluster is evaluated by adding the anchor position x to the offsets Oi, regularized
by the scaling factor l, as follows:

{µg
i }

K
i=1 = x+ {Oi}Ki=1 · l. (2)

Given these parameters, the rendering process proceeds similarly to 3DGS (Kerbl et al., 2023).

4 PROPOSED METHOD: CAT-3DGS

Based on ScaffoldGS, this work (termed CAT-3DGS) introduces a content-adaptive triplane ap-
proach to coding the anchors’ attributes (i.e. the latent feature f ∈ R50, scaling factor l ∈ R6, and
offsets {Oi ∈ R3}Ki=1) in an end-to-end, rate-distortion-optimized fashion. Our CAT-3DGS adopts
a hyperprior framework to model the probability distributions of the anchors’ attributes. Because of
the unordered and sparse nature of the anchor points, which collectively form an unorganized point
cloud in the 3D space, we project them onto the multi-scale, dense triplanes oriented according to
the principal components of the anchor points. As such, our triplane-based hyperprior organizes the
projected anchor points in an ordered way on the 2D triplanes. This enables us to use spatial autore-
gressive models to exploit their inter correlation (i.e. spatial correlation) for better entropy coding
the hyperprior itself and thus the anchors’ attributes. In comparison, the 3D hash-based grid hy-
perprior (Chen et al., 2024), although compact, is not able to exploit such inherent inter correlation
due to the pseudo random mapping between the dense grid points and their hyperprior representa-
tions in the hash table. In addition, CAT-3DGS features a channel-wise contextual coding scheme
to leverage the intra correlation among the components of individual latent features f for their cod-
ing. Lastly, we incorporate a view frequency-aware masking mechanism to skip from coding those
Gaussian primitives that contribute little to the rendering quality in different views.

4.1 SYSTEM OVERVIEW

Figure 3 illustrates our CAT-3DGS framework. The encoding of a 3D scene begins with the gen-
eration of the anchor points characterized by their positions x ∈ R3 and attributes, including the
latent feature f ∈ R50, offsets {Oi ∈ R3}Ki=1 and scaling l ∈ R6. Given the geometry infor-
mation x of the anchor points, we formulate multi-scale, dense triplanes by conducting a principal
component analysis. These triplanes consist of regularly structured grid points, which are quantized
and coded by our lightweight spatial autoregressive models (Sec. 4.2). They serve the purpose of
the hyperprior, and are queried and decoded to arrive at the coding distributions of the learned at-
tributes associated with an anchor point according to its position x (Sec. 4.2). Considering that the
latent features f collectively constitute a large portion of the compressed bitstream, they each are
encoded recursively by channel-wise autoregressive coding (Sec. 4.4). During the learning process,
our view frequency-aware masking mechanism is incorporated to mask out the Gaussian primitives
which have a minimal impact on the rendering quality (Sec. 4.5). With CAT-3DGS, the information
to be compressed in the bitstream include (a) the triplanes, (b) the anchors’ attributes and positions,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Illustration of our CAT-3DGS framework. CARM: Channel-wise Autoregressive Models.
SARM: Spatial Autoregressive Models.

(c) the binary mask, (d) the network weights of the MLP decoder Fs, spatial autoregressive model
Fh, hyperprior decoder Ftri, and channel-wise autoregressive model Fch. The anchors’ positions x
and the network weights are signaled in 16-bit and 32-bit floating-point formats, respectively. The
binary mask is entropy encoded.

The rendering of a 2D image proceeds in much the same way as Scaffold-GS (Lu et al., 2024).
Specifically, we use an MLP decoder FS to decode the coded latent feature f̂ of an anchor point
to obtain the attributes (i.e. color, opacity, rotation, scale) of all the Gaussian primitives belonging
to the same anchor. Accordingly, the coded offsets {Ôi}Ki=1 and scaling l̂ are combined with the
anchor’s position x to reconstruct their positions. The same decoding process is repeated for the
remaining anchor points needed to render the 2D image of a specific viewpoint.

4.2 TRIPLANE-BASED HYPERPRIOR

Our triplane-based hyperprior aims to learn the prior distributions on the attributes (the latent fea-
tures f , offsets {Oi}Ki=1 and scaling l) of the anchor points. Conceptually, a triplane is composed
of three 2D planes, denoted as Pc, c ∈ {xy, yz, zx}, of the same 2D spatial resolution and channel
dimension (See Figure 1 (b)). The notion of triplanes originates from decomposing a dense, 3D grid,
which is costly to represent, into three 2D planes, which are storage friendly yet with more restricted
expressiveness. Each grid point in these 2D planes is a learnable parameter. Our CAT-3DGS learns
multiple triplanes of various resolutions to capture both coarse and fine detail. We thus augment Pc

with an upsampling scale r as Pr,c ∈ Rch×rB×rB , where ch denotes the number of channels, r are
integers denoting the upsampling scales and B denotes the spatial resolution of the triplane at the
lowest scale (i.e. r = 1).

To retrieve the hyperprior h(x) for an anchor point x in the 3D space, we project x onto each 2D
plane Pr,c, with the projected 2D coordinates given by πr,c(x). When πr,c(x) is fractional, we
interpolate between the nearest integer grid points with an interpolation kernel ψ to get the triplane
feature. In symbols, we have ψ(Pr,c, πr,c(x)). The same process is repeated for every combination
of permissible r and c, with the resulting triplane features concatenated to formulate the hyperprior
h(x):

h(x) =
⋃
r

⋃
c∈{xy,yz,zx}

ψ(Pr,c, πr,c(x)). (3)

In doing so, we notice that x may potentially be unbounded. However, the spatial resolutions of the
triplanes must be bounded, because these triplanes need to be signaled in the bitstream. With their
finite spatial resolutions, a contraction function (Barron et al., 2022b) is applied in order to fit the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

potentially unbounded x to our bounded triplanes:

contract(x) =

{
x if ∥x∥ ≤ 1

(2− 1
∥x∥ )(

x
∥x∥ ) if ∥x∥ > 1.

(4)

Careful examination of Eq. (4) reveals that x needs to be normalized in order to minimize the
impact of the non-linear scaling applied to x with ∥x∥ > 1 while maximizing the usage of the grid
points in each triplane to represent those x with ∥x∥ ≤ 1. To this end, we conduct a principal
component analysis (PCA) with respect to the positions x of the anchor points, performing a linear
transformation T (x) of x before it is contracted with Eq. (4). More specifically, T (x) is given by

x′ = T (x) = contract(
Rx(x− µx)

σx
), (5)

where µx ∈ R3 is the mean vector, σx ∈ R3 are the variances along the three principal axes, and
Rx ∈ R3×3 is the PCA rotation matrix. As illustrated in Figure 1 (d), this transformation centers
the point cloud of the anchor points, allowing most of the central anchor points to be linearly scaled.
We finally substitute T (x) into Eq. (3) to evaluate the hyperprior h(x′).

To entropy encode (or decode) the quantized attributes â ∈ {f̂1, {Ôi}, l̂}) of an anchor, an MLP
Ftri is used to decode h(x′) to predict their means, variances, and quantization step size. That
is, (µ,σ, q) = Ftri(h(x

′)). Notably, each of these attributes is assumed to follow a Gaussian
distribution, with their coding probabilities given by

p(â|h(x′)) =

∫ â+ q
2

â− q
2

N (µ,σ) da. (6)

The acute reader may have observed that only part of the latent feature f̂ is involved in Eq. (6). The
coding of the remaining part (i.e. f̂2, f̂3, ...) will be elaborated in Sec. 4.4.

4.3 SPATIAL AUTOREGRESSIVE MODELS (SARM) FOR TRIPLANE CODING

The triplane-based hyperprior must be encoded into the bitstream. Observing that the grid points
in each 2D plane capture to a large extent the inter correlation (i.e. spatial correlation) between
the anchor points in the 3D space, we introduce spatial autoregressive models for triplane coding.
Currently, a dedicated autoregressive model FARM is learned and shared for 2D planes Pr,c of the
same orientation c ∈ {xy, yz, zx} without regard to its upsampling scale r. Thus, a total of three
FARM , one for each orientation, are learned. Moreover, the 2D plane Pr,c has ch channels. These
channels are encoded (and decoded) independently of each other with the same FARM to strike a
balance between complexity and coding efficiency. In fact, all the channels from these 2D planes
Pr,c can be encoded (and decoded) in parallel.

To entropy encode (and decode) a grid point yi,j,k in the channel k of the 2D plane Pr,c, FARM

formulates the context ci,j,k by referring to the previously decoded grid points of the same channel
in the neighborhood specified by ci,j,k = [ŷi−2:i−1,j−2:j+2,k; ŷi,j−2:j−1,k] (Figure 3 (e)). It outputs
the parameters (µi,j,k, σi,j,k) = FARM (ci,j,k) of a Laplace distribution that models the distribution
of yi,j,k. The coding probability of the quantized grid point ŷi,j,k is then given by

p(ŷi,j,k|ci,j,k) =
∫ ŷi,j,k+

Q
2

ŷi,j,k−Q
2

Laplace(µi,j,k, σi,j,k) dyi,j,k, (7)

where Q = 1/16 is the quantization step size. This small quantization step is chosen to make the
training more stable when the training process transitions from the non-quantization-aware training
to the quantization-aware training.

4.4 CHANNEL-WISE AUTOREGRESSIVE MODELS (CARM) FOR FEATURE CODING

The coding of the latent features f deserves additional effort as they normally represent a con-
siderable portion of the compressed bitstream. For efficient feature coding, we leverage the intra
correlation among the components of a feature f . We divide every individual feature f into M

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

slices along the channel dimension, followed by introducing a channel-wise autoregressive models
for coding these slices. The coding of slice fm with m > 1 is able to benefit from referring to
the previous coded slices, i.e. {fi|i < m}, and the hyperprior. In symbols, we have the coding
probability of the quantized slice f̂m as

p(f̂m|h(x′), f̂0:m−1) =

∫ f̂m+ q
2

f̂m− q
2

N(µ+ µch,σ + σch)df , (8)

where (µ,σ, q) = Ftri(h(x
′)) and (µch,σch) = Fch(f̂0:m−1). In our design, the slices are

unevenly partitioned, with further details provided in Sec. 5.3.

4.5 VIEW FREQUENCY-AWARE MASKING

Our view frequency-aware masking is designed to distinguish between Gaussian primitives in terms
of their potential contribution to the rendering quality. As observed in Compact-3DGS (Lee et al.,
2024) and HAC (Chen et al., 2024), using a learnable binary mask Mn,k to mask out the k-th Gaus-
sian primitive of the n-th anchor can be effective in reducing the number of Gaussian primitives to
be signaled, thereby saving the storage space and transmission bandwidth. This masking mechanism
is usually implemented as Mn,k = 1(sigmoid(mn,k) > ϵ), where mn,k is a learnable parameter
and ϵ is a global hyperparameter shared across every Gaussian primitive to determine its existence.
Although effective, this blind approach may risk removing some critical Gaussian primitives. A
question that arises naturally is whether we could prioritize Gaussian primitives in the masking
process according to their potential contribution to the rendering quality. We observe that during
training, some Gaussian primitives are more frequently used in rendering the training views. As
such, we attach to each Gaussian primitive a weight pn,k that reflects its relative frequency of being
used in rendering these training views. We adopt pn,k in our masking function:

Mn,k = 1(sigmoid(mn,k) · pn,k > ϵ). (9)

With the same ϵ applied to every Gaussian primitive, a higher pn,k requires sigmoid(mn,k) to
approach zero more closely in order to skip the corresponding Gaussian primitive, making the task
more difficult. As a result, more Gaussian primitives that are critical to rendering the training views
are retained. For this scheme to work well, the basic premise is that the distribution of training views
should be similar to that of test views. We argue that this is true to some extent because when their
distributions differ significantly, there is little guarantee of the rendering quality in those test views.

4.6 TRAINING OBJECTIVES

The training of CAT-3DGS involves minimizing the rate-distortion cost LScaffold + λrLrate together
with a masking loss λmLm:

L = LScaffold + λrLrate + λmLm, (10)

where we follow Scaffold-GS Lu et al. (2024) to evaluate LScaffold, which includes the distortion
between the original and rendered images as well as a regularization term imposed on the scales s
of Gaussian primitives. Lrate indicates the number of bits needed to signal the hyperprior and the
anchors’ attributes:

Lrate =
1

N(50 + 6 + 3K)
(LA

rate + λtriL
P
rate), (11)

where LA
rate = −

∑
â log2 p(â) is the estimated bit rate of the anchors’ attributes, LP

rate =
−
∑

ŷ log2 p(ŷ) is the triplanes’ bit rate, and N(50 + 6 + 3K) is the total number of parameters
of anchors’ attributes. In Eq. (10), Lm is the mask loss adopted from Compact3DGS (Lee et al.,
2024) to regularize the view frequency-aware masking:

Lm =

N∑
n=1

K∑
k=1

sigmoid(mn,k). (12)

In particular, λm = max(10−3, 0.3 · λr) changes with the rate parameter λr. Further details about
this design aspect are provided in Appendix B.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Rate-distortion comparison of our CAT-3DGS, HAC, ContextGS, RDO-Gaussian,
CompGS, and several other compact 3DGS representations (normally without entropy coding and
visualized as rate-distortion points).

Figure 5: Qualitative results of our CAT-3DGS, HAC and ScaffoldGS.

5 EXPERIMENTAL RESULTS

5.1 IMPLEMENTATION DETAILS

This part summarizes some crucial implementation details for reproduciability. First, the spatial
resolution B of the triplane at the lowest scale (r = 1) is determined in proportional to the number
of anchor points obtained after 10k training iterations. The same anchor points in this stage are also
utilized to conduct PCA (Sec. 4.2). The choices of the other hyperparemters include: the channel
number ch = 72, ϵ = 0.01 (0.0004 for BungeeNeRF) for the view frequency-aware masking,m = 4
with uneven slices (5, 10, 15, 25) for the channel-wise autoregressive coding. The rate parameter λr
ranges from 0.002 to 0.04, and from 0.001 to 0.02 for BungeeNeRF. Lastly, our triplanes have only
two scales; that is, r = 1, 2. The training details are provided in Appendix A.

5.2 RATE-DISTORTION COMPARISON

Baselines. For comparison, our baseline methods include (1) the vanilla 3DGS, (2) ScaffoldGS
(our base model), and (3) four rate-distortion-optimized approaches–namely, HAC (Chen et al.,
2024), RDO-Gaussian (Wang et al., 2024a), CompGS (Liu et al., 2024), and ContextGS (Wang
et al., 2024b). Notably, ContextGS is a concurrent work of our CAT-3DGS. Due to the emerging
nature of the rate-distortion-optimized 3DGS compression, there are only few early attempts. We
thus also include for comparison several compact 3DGS techniques without joint rate-distortion-
optimized training (Lee et al., 2024; Fan et al., 2023; Niedermayr et al., 2024; Navaneet et al.,
2023; Morgenstern et al., 2023; Girish et al., 2024; Ali et al., 2024). Generally, these techniques
do not consider entropy coding. They are visualized as individual rate-distortion points in our rate-
distortion plots.

Datasets. We follow the common test protocol to test our CAT-3DGS on real-world scenes, includ-
ing Mip-NeRF 360 (Barron et al., 2022a), Tanks & Temples (Knapitsch et al., 2017), Deep Blend-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: (a) Rate-distortion curves comparing our triplanes and the binary hash grids in HAC. (b)
Rate-distortion curves comparing our SARM with the factorized model (FM).

ing (Hedman et al., 2018) and BungeeNeRF (Xiangli et al., 2022). For comparison, we choose the
same scenes from each dataset as those used in the prior works (Lu et al., 2024; Chen et al., 2024).

Metrics. We compare the rate-distortion performance of the competing methods by visualizing
their rate-distortion plots. The quality metric is PSNR measured in the RGB domain. The bit rate is
the file size of the compressed bitstream obtained by performing entropy encoding. When reporting
the rate-distortion results for a dataset, we take the average of the per-sequence PSNRs and file sizes.
In our ablation study, we additionally report the BD-rate saving (Bjontegaard, 2001) to single out the
contribution of individual components. In particular, the BD-rate saving is evaluated for each test
scene and averaged across all the scenes in the dataset. Negative values suggest rate saving at the
same quality level as compared to the anchor (a chosen baseline method) and vice versa. Note that
evaluating the BD-rate requires at least 4 rate-distortion points and largely overlapping distortion
intervals. We thus use it only in our ablation study.

Compression Results. In Figure 4, our CAT-3DGS outperforms the competing methods (partic-
ularly those rate-distortion-optimized ones) across all the datasets, achieving the state-of-the-art
rate-distortion performance. On the Mip-NeRF 360 dataset, our CAT-3DGS achieves (at its sec-
ond highest rate point) 78× and 26x rate reductions than 3DGS and ScaffoldGS, respectively, while
achieving slightly higher PSNR by 0.16 dB. Figure 5 offers the subjective quality comparison among
ScaffoldGS, HAC, and our CAT-3DGS. On the bicycle scene, our CAT-3DGS achieve a 57% size re-
duction while showing similar visual quality to HAC. Likewise, on the amsterdam scene, it achieves
0.32dB higher PSNR and better subjective quality than HAC, but with a similar file size.

5.3 ABLATION EXPERIMENTS

We conduct ablation experiments on the Mip-NeRF360 dataset for its diverse scenes.

Triplanes versus Binary Hash Grids. This study investigates the benefits of our triplane-based
hyperprior. Based on the HAC framework, we change its hyperprior from the binary hash grids to
our multi-scale triplanes with spatial autoregressive coding. The remaining components and training
procedure are the same as HAC. From Figure 6 (a), our triplane-based hyperprior achieves an 18%
BD-rate saving. It highlights the advantage of the triplane representations, which are able to capture
the spatial correlation of the anchor points and enable more efficient entropy coding with spatial
autoregressive models.

Spatial Autoregressive Models (SARM) versus Factorized Models (FM). Based on CAT-
3DGS, this ablation study replaces our SARM with FM. The latter assumes that the triplane-based
hyperprior has independent and identically distributed components. For fair comparison, 3 FMs (one
for each plane orientation) are trained and used for coding the triplanes. The result on Mip-NeRF360
indicates that our SARM achieves 19% BD-rate saving as compared to FM. The result suggests the
strong spatial correlation in the triplane-based hyperprior. Figure 6 (b) offers a breakdown anal-
ysis, showing that SARM benefits not only the coding of the triplane-based hyperprior, but more
importantly that of the anchors’ attributes, which constitute the major portion of the compressed
bitstream.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Breakdown analysis of different coding parts w/
and w/o our CARM for the bicycle scene.

Table 1: The impact of the slice number
and partition in our CARM on compres-
sion performance The results are ob-
tained with Mip-NeRF 360.

M Slices Channels per Slice BD-rate
1 50 0
2 25, 25 -6.3
2 15, 35 -8.9
4 12, 12, 13, 13 -8.9
4 5, 10, 15, 20 -11.9

Table 2: Comparison of decoding time and rendering throughput: Ours (CAT-3DGS) vs. HAC.

Scene Anchor Count (K) Base Resolution B
Decoding Time (s) ↓ Rendering Speed (FPS) ↑

Triplane Anchor Attributes Total

Ours room 109.5 64 11.4 2.2 13.6 127.0
amsterdam 1599.1 128 47.4 17.0 64.4 83.4

HAC room 686.3 N/A N/A - 6.6 103.1
amsterdam 1450.6 N/A N/A - 11.3 77.9

Channel-wise Autoregressive Models (CARM). Figure 7 presents two pie charts to single out
the contribution of our CARM on the bicycle scene. As shown, CARM reduces the compressed
size of the latent features from 5.7 MB to 3.4 MB, amounting to a 40% rate reduction in this part
of the bitstream. We also observe a similar trend in the other scenes. More results are provided in
Appendix F. From Table 1, more slices lead to improved coding performance. Unevenly-partitioned
slices perform slightly better than evenly-partitioned slices. With uneven slices, we found that more
essential information is packed in the first or two slices, an effect that is similar to energy compaction
and is much desirable for coding purposes. More discussions are presented in Appendix C.

View Frequency-Aware Masking. We conduct another ablation study that disables the view
frequency-aware masking in our CAT-3DGS. In other words, we remove the weight pn,k in the
masking function. Doing so results in a 16% BD-rate drop on Mip-NeRF360. The removal of
Gaussian primitives less critical to the rendering quality helps reduce the bit rate. More results are
provided in Appendix D.

Decoding Time and Rendering Throughput. Table 2 compares the decoding time (seconds) and
rendering throughput (frames per second) of our CAT-3DGS and HAC for two scenes, amsterdam
in BungeeNeRF (Xiangli et al., 2022) and room in Mip-NeRF360 (Barron et al., 2022b). This
information is collected on one NVIDIA V100. CAT-3DGS has much higher decoding time than
HAC due to the use of autoregressive models. However, in terms of rendering throughput, our CAT-
3DGS is faster than HAC. This is because our frequency-aware masking effectively reduces the
number of anchors. The decoding time of CAT-3DGS can be further improved by making full use
of the parallelism in decoding triplanes. Recall that all the 2D planes in our triplane-based hyerprior
are independently decodable and so are the channels in each 2D plane (Sec. 4.3). Currently, only
the channel parallelism is used in our implementation. The decoding of different anchor attributes is
parallelizable to some extent. The coding dependency is in the channel dimension and not between
the anchors’ attributes. Last but not least, the 3DGS system normally has decoding and rendering as
two decoupled processes. The Gaussian primitives are decoded first, followed by rendering images
in different views. The decoding is generally less time sensitive and has little impact on the rendering
process, which is the same as ScaffoldGS (Lu et al., 2024) with our CAT-3DGS.

6 CONCLUSIONS

This work presents a novel rate-distortion-optimized 3DGS compression framework. In an effort
to leverage the inter correlation between Gaussian primitives for coding, it features PCA-guided
triplanes as the hyperprior and incorporates a spatial autoregressive model for their coding. Fur-
thermore, a channel-wise autoregressive model is introduced for the first time to explore the in-
tra correlation within each individual Gaussian primitive for coding. When combined with a view
frequency-aware masking mechanism, these features lead to the state-of-the-art coding performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, and Enzo Tartaglione. Trimming the fat:
Efficient compression of 3d gaussian splats through pruning. arXiv preprint arXiv:2406.18214,
2024.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior, 2018. URL https://arxiv.org/abs/1802.
01436.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 5470–5479, 2022a.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-
nerf 360: Unbounded anti-aliased neural radiance fields, 2022b. URL https://arxiv.org/
abs/2111.12077.

Gisle Bjontegaard. Calculation of average psnr differences between rd-curves. ITU SG16 Doc.
VCEG-M33, 2001.

Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, and Weiyao Lin. Hac: Hash-grid assisted
context for 3d gaussian splatting compression. arXiv preprint arXiv:2403.14530, 2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps, 2023.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg, Benjamin Recht, and Angjoo Kanazawa.
K-planes: Explicit radiance fields in space, time, and appearance, 2023. URL https://
arxiv.org/abs/2301.10241.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. European Conference on Computer Vision, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 21719–21728, 2024.

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting. arXiv preprint arXiv:2404.09458,
2024.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654–20664, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene repre-
sentation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299, 2023.

11

https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/1802.01436
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2111.12077
https://arxiv.org/abs/2301.10241
https://arxiv.org/abs/2301.10241


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compact3d: Compressing gaussian splat radiance field models with vector quantization. arXiv
preprint arXiv:2311.18159, 2023.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10349–10358, June 2024.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-
gs: Towards consistent real-time rendering with lod-structured 3d gaussians. arXiv preprint
arXiv:2403.17898, 2024.

Seungjoo Shin and Jaesik Park. Binary radiance fields. Advances in neural information processing
systems, 36, 2024.

Xiangyu Sun, Joo Chan Lee, Daniel Rho, Jong Hwan Ko, Usman Ali, and Eunbyung Park. F-
3dgs: Factorized coordinates and representations for 3d gaussian splatting. arXiv preprint
arXiv:2405.17083, 2024.

Henan Wang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian, and Zhibo Chen. End-
to-end rate-distortion optimized 3d gaussian representation. arXiv preprint arXiv:2406.01597,
2024a.

Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C Kot, and Bihan Wen. Contextgs:
Compact 3d gaussian splatting with anchor level context model. arXiv preprint arXiv:2405.20721,
2024b.

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai,
and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene
rendering. In European conference on computer vision, pp. 106–122. Springer, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A TRAINING PROCESS

Figure 8: Detailed Training Process of our CAT-3DGS.

Figure 8 depicts our detailed training procedure. It includes the following training stages.

Anchor Spawning In this stage, we adopt ScaffoldGS to ensure a stable start of both anchor
attribute training and anchor spawning. However, to simulate the quantization effect, we introduce
noise to the attributes of the anchor points starting at iteration 3000. To prevent the generation of an
excessive number of anchors, we disable anchor growing during iterations 3000 to 4000.

Triplane-based Hyperprior After adding noise to the attributes of the anchor points during itera-
tions 3000 to 10,000, we begin using the triplane as a hyperprior to learn the distribution of anchors’
attributes starting from the 10,000th iteration.

Spatial Autoregressive Models for Triplane Coding We start triplane coding at iteration 15,000.
Specifically, we warm up the spatial autoregressive model while freezing the other learnable param-
eters between iterations 15,000 and 16,000.

B RATE-AWARE MASK TRADE-OFF (RMT)

Figure 9: Rate-distortion comparison w/ and w/o our rate-aware mask trade-off. RMT: Rate-aware
Mask Trade-off.

Based on the observation that the number of anchors can be further reduced while maintaining
similar PSNR, we accordingly relate the mask hyperparameter λm to the rate hyperparameter λr
using the relationship λm = max(10−3, 0.3 · λr). This implies that, at higher bit rates, λr decreases
and more offsets (i.e. Gaussian primitives) and anchors are kept. Conversely, at lower bit rates, λr
increases and more offsets and anchors are removed.

In Figure 9 (a), we evaluate the performance with a fixed mask trade-off set to 0.0005 (labeled “w/o
RMT”) and compare it with the rate-aware mask trade-off approach (labeled “w/ RMT”) on Mip-

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

NeRF 360. The rate-aware mask trade-off has greater coding performance gain, particularly at lower
bit rates. For further details regarding this gain, we select the treehill scene from Mip-NeRF 360,
as shown in Figure 9 (b). Our method with RMT demonstrates that, at the lowest rate point, the
number of anchor points is only one-third of that “w/o RMT”, and the total size achieves a 60%
reduction, while maintaining similar PSNR.

C THE IMPACT OF SLICE PARTITIONING ON OUR CARM

Table 3: Analysis the number of bits per channel within a slice in different cases.
Method slices Channels per slice Size per channel within one slice (kB) Size for f (MB) Total size (MB) PSNR

w/o CARM 1 (50) (8.91) 0.44 1.69 30.78
w/ CARM (even) 4 (12, 12, 13, 13) (22.2, 6.38, 4.65, 3.98) 0.45 1.74 30.85

w/ CARM (uneven) 4 (5, 10, 15, 20) (17.22, 9.61, 5.35, 3.64) 0.33 1.59 30.89

In this section, we further analyze the number of bits per channel within a slice in the cases of w/o
CARM, w/ CARM (even), and w/ CARM (uneven), as shown in Table 3. We observe that when
only one slice is used, indicating CARM is disabled, the kilo bytes per channel is 8.91. However,
when CARM is enabled, the first slice uses 22.2 kilo bytes per channel for the even partition case
and 17.22 kilo bytes per channel for the uneven case. The data suggest that the earlier slices contain
more information, resulting in larger sizes. This also indicates that the richer information in the
earlier slices can help the coding of the subsequent slices, allowing them to use fewer bits. As for
the even and uneven cases, we observe that the uneven partition yields a better result, reducing the
size of f by 0.12MB compared to the even case.

D VIEW FREQUENCY-AWARE MASKING

Figure 10: Rate-distortion comparison w/ and w/o our view frequency-aware masking. VFM: View
Frequency-aware Masking.

In Figure 10, we compare CAT-3DGS (denoted by “w/ VFM”) with a variant (denoted by “w/o
VFM”) that removes the weight pn,k in the masking function. The view frequency-aware masking
has a significant effect at low bit rates, reducing the total size by 29% at the lowest rate point while
PSNR drops by only 0.1dB. At the highest rate point, it reduces the total size by 14% while still
maintaining similar PSNR. This indicates that the view frequency-aware masking can retain more
important points while pruning a larger number of relatively less important ones, even when most of
the anchors are masked out.

E BITSTREAM OF EACH COMPONENT

Our bit stream consists of seven components: the anchor positions a, three anchor attributes (features
f , offsets {Oi}, and scaling factors l), a set of triplanes P , binary masks M , and MLPs FS , Ftri,
Fch, Fh. After applying our triplane hyperprior and channel-wise autoregressive model, the size of
the attributes has been significantly reduced. Additionally, due to the spatial autoregressive model,

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

the triplane size occupies only a small portion. The rate-aware mask tradeoff further allows us to
reduce the number of anchors that need to be compressed at low bit rates, thereby reducing the total
size.

Table 4: Bitstream of each component. The result is for the scene treehill on Mip-NeRF 360 dataset.

Number of Bitstream of Each Component (MB) Total size (MB) Fidelity
Anchors (K) Position Feature Scaling Offsets Masks MLPs Triplane PSNR SSIM

treehill (high-rate) 516.3 3.10 7.75 2.47 3.19 0.53 0.35 0.11 17.5 23.28 0.646
treehill (low-rate) 85.1 0.51 0.33 0.28 0.18 0.06 0.35 0.04 1.74 22.71 0.558

F ADDITIONAL BREAKDOWN RESULTS FOR CARM

Figure 11: The breakdown analyses of different coding parts w/ and w/o our CARM for the flower
and bonsai scenes, respectively.

Figure 11 provides additional breakdown results for flower and bonsai scenes. The results confirm
again that our CARM effectively reduces the compressed size of the latent features associated with
anchors’ attributes.

G THE IMPACT OF CARM ON DECODING TIME

Table 5: Comparison of the decoding time w/ and w/o our CARM.

Scene Method Decoding Time (s)
Triplane Anchor Attributes Total

room CAT-3DGS (w/ CARM) 11.4 2.2 13.6
CAT-3DGS w/o CARM 11.3 2.1 13.4

amsterdam CAT-3DGS (w/ CARM) 47.4 17.0 64.4
CAT-3DGS w/o CARM 47.2 14.9 62.1

We compare the decoding time of our schemes w/ and w/o CARM in Table 5. The results indicate
that CARM has a negligible impact on the decoding time.

H COMPLETE BREAKDOWN OF QUANTITATIVE RESULTS

Quantitative results For a more comprehensive data presentation, we present detailed information
on the rate-distortion curves, as shown in Figure 4, and the quantitative results are shown in Table
6.

Per-scene Results of Our CAT-3DGS Framework The detailed results of our approach for Mip-
NeRF 360 dataset (Barron et al., 2022a) are presented in Table 7.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

The detailed results of our approach for BungeeNeRF dataset (Xiangli et al., 2022) are presented in
Table 8.

The detailed results of our approach for Tank&Temples dataset (Knapitsch et al., 2017) are presented
in Table 9.

The detailed results of our approach for Deep Blending dataset (Hedman et al., 2018) are presented
in Table 10.

Per-scene Results of the Baseline Models Per-scene results for all datasets from our two baseline
models, ScaffoldGS (Lu et al., 2024) and HAC (Chen et al., 2024) are also provided in Table 15
and Table 11 12 13 14, respectively.

Table 6: The Quantitative results of our CAT-3DGS and other approaches. 3DGS (Kerbl et al.,
2023) and ScaffoldGS (Lu et al., 2024) are baseline methods, which are presented in the first sec-
tion. Approaches in the second section are compact representation, while the third section covers
rate-distortion-optimized compression approaches. For comparison, we also provide two results of
different size and fidelity tradeoffs by adjusting λr. The size is measured in megabytes (MB).

Datasets Mip-NeRF360 Tank&Temples DeepBlending BungeeNeRF
Methods psnr ↑ ssim ↑ lpips ↓ size ↓ psnr ↑ ssim ↑ lpips ↓ size ↓ psnr ↑ ssim ↑ lpips ↓ size ↓ psnr ↑ ssim ↑ lpips ↓ size ↓

3DGS(SIGGRAPH’23) 27.49 0.813 0.222 744.7 23.69 0.844 0.178 431.0 29.42 0.899 0.247 663.9 24.87 0.841 0.205 1616
ScaffoldGS (CVPR’24) 27.50 0.806 0.252 253.9 23.96 0.853 0.177 86.50 30.21 0.906 0.254 66.00 26.62 0.865 0.241 183.0

EAGLES(ECCV’24) 27.15 0.808 0.238 68.89 23.41 0.840 0.200 34.00 29.91 0.910 0.250 62.00 25.24 0.843 0.221 117.1
LightGaussian 27.00 0.799 0.249 44.54 22.83 0.822 0.242 22.43 27.01 0.872 0.308 33.94 24.52 0.825 0.255 87.28
Compact3DGS (CVPR’24) 27.08 0.798 0.247 48.80 23.32 0.831 0.201 39.43 29.79 0.901 0.258 43.21 23.36 0.788 0.251 82.60
Compressed3D (CVPR’24) 26.98 0.801 0.238 28.80 23.32 0.832 0.194 17.28 29.38 0.898 0.253 25.30 24.13 0.802 0.245 55.79
Morgenstern et al. 26.01 0.772 0.259 23.90 22.78 0.817 0.211 13.05 28.92 0.891 0.276 8.40 - - - -
Navaneet et al. 27.16 0.808 0.228 50.30 23.47 0.840 0.188 27.97 29.75 0.903 0.247 42.77 24.63 0.823 0.239 104.3
Trimming the fat 27.13 0.798 0.248 20.057 23.68 0.831 0.210 8.555 29.42 0.897 0.267 12.49 - - - -

CompGS (high-rate) 27.26 0.802 0.239 16.5 23.70 0.835 0.205 9.61 29.33 0.900 0.270 10.4 - - - -
CompGS (low-rate) 26.79 0.791 0.258 11.0 23.105 0.815 0.235 5.89 28.99 0.900 0.280 7.00 - - - -
RDO-Gaussian (high-rate) 27.05 0.802 0.239 23.46 23.34 0.835 0.195 12.02 29.63 0.902 0.252 18.00 - - - -
RDO-Gaussian (low-rate) 24.43 0.683 0.406 1.71 22.09 0.755 0.318 1.32 28.38 0.872 0.331 1.22 - - - -
HAC (ECCV’24)(high-rate) 27.77 0.811 0.230 21.87 24.40 0.853 0.177 11.24 30.34 0.906 0.258 6.35 27.05 0.868 0.217 26.16
HAC (ECCV’24)(low-rate) 26.11 0.759 0.312 5.96 23.11 0.809 0.238 3.68 28.62 0.888 0.302 2.64 24.56 0.768 0.327 9.74

Ours (high-rate) 27.77 0.809 0.241 12.35 24.41 0.853 0.189 6.93 30.29 0.909 0.269 3.56 27.35 0.886 0.183 26.59
Ours (low-rate) 25.82 0.730 0.362 1.72 22.97 0.786 0.293 1.42 28.53 0.878 0.336 0.93 25.19 0.808 0.279 10.14

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Results of Our approach for each scene from Mip-NeRF 360 dataset (Barron et al., 2022a).
λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.002

bicycle 25.04 0.735 0.280 21.42
bonsai 32.98 0.947 0.192 6.06
counter 29.66 0.915 0.197 6.33
flower 21.41 0.580 0.375 18.92
garden 27.49 0.847 0.152 18.64
kitchen 31.34 0.926 0.135 6.92
room 31.95 0.924 0.212 4.11
stump 26.79 0.766 0.271 11.23
treehill 23.28 0.646 0.359 17.50
AVG 27.77 0.809 0.241 12.35

0.004

bicycle 25.16 0.738 0.280 16.56
bonsai 32.74 0.944 0.198 4.79
counter 29.51 0.911 0.203 4.98
flower 21.37 0.576 0.383 14.28
garden 27.30 0.840 0.164 14.55
kitchen 30.97 0.922 0.140 5.36
room 31.73 0.921 0.221 3.22
stump 26.87 0.766 0.278 8.50
treehill 23.27 0.642 0.370 13.20
AVG 27.66 0.807 0.249 9.49

0.01

bicycle 25.03 0.728 0.302 9.40
bonsai 31.67 0.932 0.217 2.94
counter 28.89 0.898 0.225 3.15
flower 21.25 0.564 0.403 8.13
garden 26.83 0.816 0.210 8.65
kitchen 30.37 0.911 0.160 3.32
room 31.24 0.911 0.243 2.06
stump 26.62 0.752 0.309 4.45
treehill 23.22 0.629 0.400 7.17
AVG 27.24 0.793 0.274 5.47

0.015

bicycle 24.80 0.714 0.323 6.59
bonsai 31.25 0.927 0.227 2.35
counter 28.51 0.886 0.244 2.45
flower 21.12 0.552 0.419 6.13
garden 26.56 0.803 0.231 6.82
kitchen 29.90 0.902 0.174 2.59
room 30.90 0.902 0.262 1.60
stump 26.38 0.736 0.333 3.25
treehill 23.08 0.616 0.423 5.13
AVG 26.94 0.782 0.293 4.10

0.03

bicycle 24.38 0.676 0.368 3.35
bonsai 29.99 0.905 0.260 1.58
counter 27.63 0.860 0.285 1.49
flower 20.74 0.519 0.455 3.32
garden 25.81 0.755 0.304 3.85
kitchen 28.76 0.878 0.216 1.53
room 30.19 0.887 0.292 1.05
stump 25.64 0.690 0.389 1.83
treehill 22.84 0.580 0.472 2.44
AVG 26.22 0.750 0.338 2.27

0.04

bicycle 24.02 0.646 0.399 2.36
bonsai 29.44 0.892 0.277 1.30
counter 27.14 0.845 0.306 1.23
flower 20.44 0.496 0.477 2.42
garden 25.40 0.727 0.337 3.01
kitchen 28.16 0.862 0.244 1.20
room 29.73 0.879 0.307 0.88
stump 25.30 0.666 0.415 1.35
treehill 22.71 0.558 0.499 1.74
AVG 25.82 0.730 0.362 1.72

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Results of Our approach for each scene from BungeeNeRF dataset (Xiangli et al., 2022).
λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001

amsterdam 27.57 0.908 0.148 31.98
bilbao 28.25 0.897 0.165 25.38

hollywood 25.16 0.815 0.254 24.58
pompidou 25.82 0.864 0.214 28.83

quebec 30.59 0.943 0.144 21.72
rome 26.74 0.887 0.178 27.06
AVG 27.35 0.886 0.184 26.59

0.002

amsterdam 27.52 0.903 0.159 27.33
bilbao 28.15 0.892 0.176 22.03

hollywood 25.12 0.808 0.268 20.95
pompidou 25.70 0.857 0.224 24.26

quebec 30.23 0.938 0.154 17.84
rome 26.57 0.881 0.190 23.17
AVG 27.22 0.880 0.195 22.60

0.003

amsterdam 27.28 0.897 0.169 24.47
bilbao 28.13 0.888 0.181 19.41

hollywood 25.05 0.801 0.280 18.72
pompidou 25.69 0.854 0.232 21.52

quebec 30.04 0.934 0.163 15.89
rome 26.42 0.875 0.200 20.81
AVG 27.10 0.875 0.204 20.14

0.006

amsterdam 26.96 0.882 0.194 19.38
bilbao 27.72 0.876 0.202 15.63

hollywood 24.68 0.778 0.307 14.90
pompidou 25.21 0.839 0.251 17.22

quebec 29.53 0.925 0.178 13.28
rome 25.78 0.856 0.223 16.87
AVG 26.65 0.859 0.226 16.21

0.01

amsterdam 26.32 0.863 0.215 15.96
bilbao 27.26 0.861 0.222 12.73

hollywood 24.41 0.757 0.325 12.71
pompidou 24.86 0.825 0.267 14.33

quebec 28.84 0.914 0.197 10.68
rome 25.13 0.834 0.245 13.86
AVG 26.14 0.842 0.245 13.38

0.02

amsterdam 25.65 0.833 0.253 12.33
bilbao 26.30 0.829 0.258 9.74

hollywood 23.80 0.714 0.361 9.12
pompidou 23.78 0.789 0.298 10.75

quebec 27.76 0.891 0.225 8.28
rome 23.85 0.790 0.283 10.63
AVG 25.19 0.808 0.280 10.14

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Results of Our approach for each scene from Tank & Temples dataset (Knapitsch et al.,
2017).

λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.002
train 22.68 0.820 0.221 6.28
truck 26.14 0.885 0.157 7.57
AVG 24.41 0.853 0.189 6.93

0.004
train 22.45 0.817 0.226 5.06
truck 25.98 0.882 0.162 5.88
AVG 24.22 0.850 0.194 5.47

0.01
train 22.31 0.802 0.249 3.43
truck 25.68 0.871 0.184 3.74
AVG 23.99 0.837 0.217 3.58

0.015
train 22.23 0.794 0.262 2.71
truck 25.55 0.866 0.195 3.00
AVG 23.89 0.830 0.228 2.86

0.03
train 22.01 0.769 0.295 1.80
truck 24.97 0.842 0.238 1.89
AVG 23.49 0.806 0.266 1.85

0.04
train 21.42 0.750 0.315 1.47
truck 24.51 0.822 0.271 1.38
AVG 22.97 0.786 0.293 1.42

Table 10: Results of Our approach for each scene from Deep Blending (Hedman et al., 2018).
λr Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.002
drjohnson 29.67 0.906 0.266 4.27
playroom 30.90 0.911 0.272 2.85

AVG 30.29 0.909 0.269 3.56

0.004
drjohnson 29.51 0.904 0.272 3.43
playroom 30.81 0.909 0.279 2.21

AVG 30.16 0.906 0.275 2.82

0.01
drjohnson 29.23 0.898 0.288 2.12
playroom 30.23 0.903 0.295 1.46

AVG 29.73 0.900 0.292 1.79

0.015
drjohnson 29.06 0.892 0.299 1.76
playroom 29.91 0.897 0.309 1.21

AVG 29.48 0.894 0.304 1.48

0.03
drjohnson 28.52 0.879 0.323 1.20
playroom 29.19 0.887 0.331 0.85

AVG 28.85 0.883 0.327 1.03

0.04
drjohnson 28.31 0.874 0.332 1.09
playroom 28.74 0.881 0.340 0.76

AVG 28.53 0.878 0.336 0.93

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 11: Results of HAC (Chen et al., 2024) for each scene from Mip-NeRF 360 dataset (Barron
et al., 2022a).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001

bicycle 25.11 0.742 0.259 39.15
bonsai 32.97 0.948 0.180 12.72
counter 29.74 0.918 0.184 10.44
flower 21.27 0.575 0.377 27.55
garden 27.46 0.849 0.139 32.17
kitchen 31.63 0.930 0.122 12.07
room 31.90 0.926 0.198 7.85
stump 26.59 0.763 0.264 25.26
treehill 23.26 0.648 0.345 29.65
AVG 27.77 0.811 0.230 21.87

0.002

bicycle 25.10 0.742 0.262 33.14
bonsai 32.70 0.945 0.184 10.51
counter 29.65 0.915 0.189 8.88
flower 21.32 0.576 0.377 23.73
garden 27.43 0.847 0.143 27.52
kitchen 31.46 0.928 0.125 10.05
room 31.87 0.925 0.201 6.47
stump 26.59 0.761 0.268 21.75
treehill 23.34 0.647 0.350 24.83
AVG 27.72 0.809 0.233 18.54

0.004

bicycle 25.05 0.742 0.264 27.54
bonsai 32.28 0.942 0.189 8.56
counter 29.35 0.911 0.195 7.26
flower 21.26 0.572 0.381 19.59
garden 27.28 0.842 0.151 22.69
kitchen 31.16 0.923 0.131 8.05
room 31.55 0.921 0.208 5.53
stump 26.58 0.762 0.269 18.11
treehill 23.30 0.645 0.356 20.04
AVG 27.53 0.807 0.238 15.26

0.01

bicycle 24.79 0.733 0.284 17.80
bonsai 31.27 0.933 0.208 5.16
counter 28.68 0.898 0.220 4.54
flower 21.18 0.561 0.400 12.15
garden 26.76 0.822 0.188 14.53
kitchen 30.51 0.914 0.149 4.85
room 31.20 0.912 0.234 3.27
stump 26.54 0.752 0.296 11.21
treehill 23.13 0.628 0.392 12.27
AVG 27.12 0.795 0.263 9.53

0.02

bicycle 24.60 0.717 0.306 14.97
bonsai 30.51 0.922 0.225 4.24
counter 27.78 0.878 0.248 3.30
flower 20.84 0.537 0.425 8.90
garden 26.34 0.800 0.222 10.87
kitchen 29.86 0.902 0.169 3.69
room 30.51 0.900 0.256 2.56
stump 26.20 0.730 0.326 8.68
treehill 23.03 0.610 0.418 9.25
AVG 26.63 0.777 0.288 7.38

0.035

bicycle 24.16 0.694 0.333 11.59
bonsai 29.63 0.909 0.242 3.72
counter 27.19 0.864 0.269 2.68
flower 20.57 0.513 0.449 7.17
garden 25.86 0.780 0.252 8.90
kitchen 29.09 0.886 0.191 3.08
room 29.94 0.889 0.276 2.15
stump 25.77 0.707 0.358 7.03
treehill 22.82 0.591 0.443 7.32
AVG 26.11 0.759 0.312 5.96

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 12: Results of HAC (Chen et al., 2024) for each scene from BungeeNeRF dataset (Xiangli
et al., 2022).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001

amsterdam 27.25 0.886 0.190 31.84
bilbao 27.98 0.886 0.190 24.38

hollywood 24.59 0.772 0.319 23.41
pompidou 25.58 0.851 0.236 29.19

quebec 30.30 0.934 0.163 21.23
rome 26.61 0.876 0.203 26.91
AVG 27.05 0.868 0.217 26.16

0.002

amsterdam 27.13 0.880 0.202 27.14
bilbao 28.02 0.880 0.205 20.91

hollywood 24.43 0.763 0.330 20.09
pompidou 25.27 0.842 0.249 24.85

quebec 29.98 0.929 0.175 17.90
rome 26.28 0.866 0.219 23.07
AVG 26.85 0.860 0.230 22.33

0.003

amsterdam 26.95 0.873 0.214 24.41
bilbao 27.82 0.872 0.218 18.76

hollywood 24.27 0.753 0.342 17.87
pompidou 25.34 0.837 0.255 22.49

quebec 29.67 0.924 0.185 16.15
rome 25.98 0.855 0.231 20.83
AVG 26.67 0.852 0.241 20.08

0.004

amsterdam 26.80 0.865 0.224 22.49
bilbao 27.65 0.864 0.231 17.14

hollywood 24.25 0.748 0.347 16.55
pompidou 25.16 0.829 0.266 20.40

quebec 29.33 0.918 0.192 15.06
rome 25.68 0.845 0.243 19.30
AVG 26.48 0.845 0.250 18.49

0.008

amsterdam 26.13 0.839 0.258 17.22
bilbao 26.81 0.842 0.262 14.01

hollywood 23.83 0.713 0.377 12.90
pompidou 24.48 0.807 0.289 16.10

quebec 28.60 0.906 0.216 11.71
rome 24.71 0.811 0.276 15.34
AVG 25.76 0.820 0.280 14.55

0.02

amsterdam 25.03 0.788 0.308 11.92
bilbao 25.84 0.799 0.308 9.08

hollywood 22.92 0.640 0.425 8.38
pompidou 23.16 0.759 0.332 10.43

quebec 27.15 0.872 0.262 8.18
rome 23.25 0.750 0.327 10.47
AVG 24.56 0.768 0.327 9.74

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 13: Results of HAC (Chen et al., 2024) for each scene from Tank & Temples dataset
(Knapitsch et al., 2017).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001
truck 26.02 0.883 0.147 12.42
train 22.78 0.823 0.207 10.07
AVG 24.40 0.853 0.177 11.24

0.004
truck 25.88 0.878 0.158 9.26
train 22.19 0.815 0.216 6.94
AVG 24.04 0.846 0.187 8.10

0.01
truck 25.69 0.874 0.172 7.04
train 22.13 0.807 0.230 5.26
AVG 23.91 0.841 0.201 6.15

0.02
truck 25.36 0.863 0.189 5.59
train 22.02 0.795 0.250 3.97
AVG 23.69 0.829 0.219 4.78

0.035
truck 24.96 0.853 0.208 5.04
train 21.96 0.783 0.266 3.17
AVG 23.46 0.818 0.237 4.10

0.045
truck 24.81 0.847 0.216 4.64
train 21.42 0.771 0.279 2.72
AVG 23.11 0.809 0.248 3.68

Table 14: Results of HAC (Chen et al., 2024) for each scene from Deep Blending dataset (Hedman
et al., 2018).

λe Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

0.001
playroom 30.84 0.906 0.262 5.03
drjohnson 29.85 0.906 0.255 7.67

AVG 30.34 0.906 0.258 6.35

0.002
playroom 30.66 0.905 0.265 4.12
drjohnson 29.69 0.905 0.258 6.51

AVG 30.17 0.905 0.262 5.32

0.004
playroom 30.44 0.902 0.272 3.15
drjohnson 29.53 0.903 0.265 5.55

AVG 29.98 0.902 0.269 4.35

0.01
playroom 30.31 0.906 0.279 2.58
drjohnson 29.34 0.901 0.275 4.23

AVG 29.83 0.903 0.277 3.40

0.02
playroom 29.87 0.900 0.292 2.23
drjohnson 28.81 0.893 0.288 3.65

AVG 29.34 0.897 0.290 2.94

0.035
playroom 29.26 0.893 0.302 2.01
drjohnson 27.97 0.883 0.302 3.26

AVG 28.62 0.888 0.302 2.64

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 15: Results of ScaffoldGS (Lu et al., 2024) for all evaluated datasets.

Datasets Scenes PSNR↑ SSIM↑ LPIPS↓ SIZE↓

Mip-NeRF360

bicycle 24.50 0.705 0.306 248.00

bonsai 32.70 0.946 0.185 258.00

counter 29.34 0.914 0.191 194.00

flower 21.14 0.566 0.417 253.00

garden 27.17 0.842 0.146 271.00

kitchen 31.30 0.928 0.126 173.00

room 31.93 0.925 0.202 133.00

stump 26.27 0.784 0.284 493.00

treehill 23.19 0.642 0.410 262.00

AVG 27.50 0.806 0.252 253.89

Tank&Temples

truck 25.77 0.883 0.147 107.00

train 22.15 0.822 0.206 66.00

AVG 23.96 0.853 0.177 86.50

DeepBlending

playroom 30.62 0.904 0.258 63.00

drjohnson 29.80 0.907 0.250 69.00

AVG 30.21 0.906 0.254 66.00

BungeeNeRF

amsterdam 27.16 0.898 0.188 223.00

bilbao 26.60 0.857 0.257 178.00

hollywood 24.49 0.787 0.318 155.00

pompidou 24.94 0.839 0.271 209.00

quebec 30.28 0.936 0.190 159.00

rome 26.23 0.873 0.225 174.00

AVG 26.62 0.865 0.241 183.00

23


	Introduction
	Related work
	Preliminary
	Proposed Method: CAT-3DGS
	System Overview
	Triplane-based Hyperprior
	Spatial Autoregressive Models (SARM) for Triplane Coding
	Channel-wise Autoregressive Models (CARM) for Feature Coding
	View Frequency-Aware Masking
	Training Objectives

	Experimental Results
	Implementation Details
	Rate-Distortion Comparison
	Ablation Experiments

	Conclusions
	Training Process
	Rate-aware Mask Trade-off (RMT)
	The impact of slice partitioning on our CARM
	View frequency-aware masking
	Bitstream of each component
	Additional Breakdown Results for CARM
	The Impact of CARM on Decoding Time
	Complete Breakdown of Quantitative Results

