
TA-VLA: Elucidating the Design Space of
Torque-aware Vision-Language-Action Models

Zongzheng Zhang∗1, Haobo Xu∗2, Zhuo Yang∗1,
Chenghao Yue1, Zehao Lin1, Huan-ang Gao1, Ziwei Wang3, Hao Zhao† 1,2

∗Equal Contribution; †Corresponding author
1 Beijing Academy of Artificial Intelligence, BAAI

2 Institute for AI Industry Research (AIR), Tsinghua Univeristy
3 Nanyang Technological University

zhaohao@air.tsinghua.edu.cn

https://zzongzheng0918.github.io/Torque-Aware-VLA.github.io/

Abstract: Many robotic manipulation tasks require sensing and responding to
force signals such as torque to assess whether the task has been successfully
completed and to enable closed-loop control. However, current Vision-Language-
Action (VLA) models lack the ability to integrate such subtle physical feedback.
In this work, we explore Torque-aware VLA models, aiming to bridge this gap
by systematically studying the design space for incorporating torque signals into
existing VLA architectures. We identify and evaluate several strategies, leading to
three key findings. First, introducing torque adapters into the decoder consistently
outperforms inserting them into the encoder. This is because torque signals align
more closely with the decoder’s input, and the decoder is more sensitive to varia-
tions in input. Second, torque history proves to be a critical signal. We find that
the most effective way to incorporate it is by summarizing the entire history into
a single token, as this preserves the original input pattern of the decoder. Third,
inspired by joint prediction and planning paradigms in autonomous driving, we
propose predicting torque as an auxiliary output, which further improves perfor-
mance. This strategy encourages the model to build a physically grounded internal
representation of interaction dynamics. Extensive quantitative and qualitative ex-
periments across contact-rich manipulation benchmarks validate our findings.

Keywords: Torque Integration, VLA Models

1 Introduction
Understanding physical interactions through force cues is essential for mastering real-world robotic
manipulation. One particularly informative signal is joint torque, which reflects subtle variations
in end-effector contact dynamics without requiring external force sensors [1, 2, 3]. As shown in
Figure 1(a), different outcomes in a seemingly simple task like charger insertion—no contact, failed
insertion, and successful plug-in—can be clearly distinguished by the joint torque profiles of a 7-
DoF arm. These torque responses offer rich physical context that is otherwise imperceptible from
RGB observations alone. However, despite the growing success of Vision-Language-Action (VLA)
models [4, 5, 6, 7, 8] in bridging vision and control, their ability to interpret and leverage such phys-
ical feedback remains limited. Our work aims to bridge this gap by integrating torque signals into
pretrained VLA models, enabling contact-sensitive decision-making without compromising gener-
alization or scalability.

The challenge lies in how to embed torque into VLA architectures. Torque is a proprioceptive
signal, structurally different from image and language inputs, and varies across time, especially
during contact-rich phases. As illustrated in Figure 1(c), multiple torque integration strategies exist
across three axes—when (immediate vs. historical vs. predictive), where (encoder vs. decoder), and

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://zzongzheng0918.github.io/Torque-Aware-VLA.github.io/

① Shoulder Yaw

② Shoulder Pitch

③ Shoulder Roll

④ Elbow

⑤Wrist Yaw

⑥Wrist Pitch

⑦ Gripper

1
2

3
4

5

67
Contact
without
Insertion

Before

Contact

Successful

Insertion

Decoder

Imme-
diate

Pre-
Concat

Encoder

History

Single-
Token

Future

Post-
Concat

Multi-
Tokens

Design Space

(a) Torque Response During Charger Insertion

(b) 7-DoF Arm Torque Mapping

(c) Design Space of Torque Usage

Figure 1: (a) Torque response of the 7-DoF arm during a charger-insertion task. Shaded gray regions
mark periods of no contact, where torques remain nearly flat. The orange-tinted segment shows a
failed insertion attempt—contact is made but the plug does not enter the socket, producing only
small torque fluctuations. The green-tinted segment highlights a successful insertion, characterized
by large, distinctive torque spikes as the plug seats fully. (b) Visualization of the 7-DoF robot arm,
highlighting joint torque mappings. (c) Design space of torque-based features explored in this work,
spanning current, historical, and future signals.

how (single token vs. multi-token). These options form a broad design space, but lack systematic
understanding. Our motivation is thus twofold: (i) identify the most effective design choices for
torque-aware VLA models, and (ii) derive generalizable principles that guide future integration of
physical modalities.

Our first insight is that torque signals should be integrated into the decoder, not the encoder.
As validated through HSIC analysis [9] and ablation (Sec. 4.1), decoder-side integration aligns
torque with other proprioceptive signals (like joint angles) during action generation. This place-
ment leverages the decoder’s higher sensitivity to fine-grained variations—critical in contact-rich
scenarios (e.g., distinguishing a failed vs. successful plug in Figure 1(a)).

Our second insight is that historical torque information is more informative than single-frame
input. However, injecting multiple tokens can disrupt the decoder’s learned input patterns. We
find that encoding the entire torque history into a single token in the decoder (Figure 4(c)) balances
informativeness with architectural stability. This design choice outperforms both per-frame and
encoder-side history integration (Sec. 4.2), enabling robust temporal modeling of contact dynamics,
as seen during insertion and retries in Figure 7.

Our third insight is that predicting future torque alongside actions helps build a physically
grounded latent space. Inspired by multi-task architectures in autonomous driving [10], we propose
a unified action–torque diffusion model (Sec. 5), which allows the policy not only to act but also to
anticipate physical consequences (see prediction curves in Figure 6). This auxiliary task encourages
the model to internalize contact dynamics beyond observation alone.

Finally, we validate our full system with extensive real-world experiments across 10 diverse
tasks—including five contact-rich ones where torque feedback is critical. Our final model
(π0+obs+obj) achieves consistent gains over strong VLA baselines [11, 7, 6] (Table 5), and gen-

2

eralizes across both model architectures and robot embodiments. These results confirm that torque-
aware VLA models not only improve task success but also increase robustness and generalization.

In summary, our contributions are: (1) We propose a systematic design space for torque-aware VLA
modeling, spanning where and how torque is integrated (Figure 1(c)). (2) We find that decoder-
side, single-token torque history yields the best proprioceptive alignment and performance. (3) We
introduce a unified action–torque diffusion model that enables anticipatory learning through torque
prediction. (4) We demonstrate significant performance gains on contact-rich manipulation tasks
across models and embodiments.

2 Related Work
Vision-Language-Action Model. Recently, Large Language Models (LLMs) [12, 13, 14, 15] and
Vision-Language Models (VLMs) [16, 17, 18, 19, 20, 21, 22, 23] have achieved remarkable success,
while generative models have enabled continuous outputs such as image generation [24, 25, 26, 27].
These techniques pave the way for the advent of VLA models, which combine visual perception,
language understanding, and action generation abilities, and demonstrate strong generalizability,
utilizing millions of training data samples including different tasks and devices [28, 29, 30, 31, 32,
33, 34]. Recent works regarding VLA models can be categorized into several modes based on action
generation methods, including diffusion policy-based models [5, 7], flow matching-based models
[6], and autoregressive generation models [35, 4, 36]. For example, Octo [5] and RDT-1B [7] utilize
a diffusion head and a transformer backbone to predict actions, while π0 [6] uses conditional flow
matching to generate high-frequency action sequences. Models with hybrid architectures further
combine multiple generative techniques to leverage the strengths of each. For instance, HybridVLA
[37] merges diffusion and autoregressive approaches within a single model.

Imitation Learning with Force/Torque. While most of the existing work regarding imitation learn-
ing utilizes joint-position and visual information [6, 8], force/torque information as an extra input
is gaining more and more attention. Recent studies have demonstrated that force/torque signals
could equip controlling policies with the ability to handle a wide range of real-world tasks, which
include subtle and precise manipulation [38, 39, 40, 41, 42, 43]. From the perspective of sources
of force/torque, most approaches rely on additional sensors to obtain 6D wrench measurements
[44, 45, 46, 47, 43], which leads to higher economic costs and limitations in harsh operating con-
ditions. Furthermore, although some works are trying to incorporate force/torque information with
visual and text inputs, they typically train policies from scratch and fail to leverage the advantages
of pretrained VLA models [48, 49, 50, 51]. For example, FACTR [52] requires a complex training
pipeline to align different modalities and lacks flexibility. In contrast, incorporating the force modal-
ity into pretrained VLA models offers two major benefits. 1) VLA models already possess a strong
foundation in cross-modal learning, having been trained on large-scale datasets; thus, integrating an
additional modality is easier. 2) VLA models typically learn shared feature representations across
modalities, making it more efficient to accommodate new modality. In this work, we systemati-
cally explore ways to enrich pretrained VLA models with force information, allowing them to act as
world models that accurately perceive and predict the environment through a unified understanding
of vision, force, and instruction over historic, immediate, and future states.

3 Torques are Good Indicators for End-effector Status
In robotic manipulation, external contact at the end-effector induces mechanical responses across the
entire kinematic chain. These responses manifest as observable variations in joint torques. In this
section, we formalize how joint torque signals encode contact force information via the mechanical
arm’s differential kinematics and dynamics.

Formulation. Suppose that the manipulator has n degrees of freedom, with joint configuration
vector q ∈ Rn. The full-body dynamics in the presence of external contact are given by:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τ cmd + τ ext, (1)

where τ cmd ∈ Rn is the commanded torque, and τ ext ∈ Rn is the torque contribution caused by
external forces applied at the end-effector. The term M(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈

3

Conditioning
Encoder

instruction

Diffusing
Decoder

noisy actions

images

ViT MLP

denoised actions

Conditioning
Encoder

instruction

Diffusing
Decoder

images

ViTMLP

t tq

MLP noisy actions

denoised actions

 ttq ;

Conditioning
Encoder

instruction

Diffusing
Decoder

images

ViT

tq

MLP

t

MLP

denoised actions

noisy actions

(a) Enc Architecture (b) DePre Architecture (c) DePost Architecture

Figure 2: Architectures for embedding torque signals.

Rn×n is the Coriolis and centrifugal force matrix, and G(q) ∈ Rn is the gravity torque vector. Here,
q̇ ∈ Rn is the joint angular velocity vector, and q̈ ∈ Rn is the joint angular acceleration vector.

Mapping. Assume that the end-effector makes contact with a rigid environment and experiences
a spatial force (wrench) denoted as F ext ∈ R6. Given that the virtual end-effector displacement is
related to joint displacement by δx = J(q)δq, we obtain:

τ ext = J⊤(q)F ext ∈ Rn. (2)

Here, J(q) ∈ R6×n is the Jacobian matrix, which maps the velocity from the end-effector space
to the joint space. This equation is fundamental: it states that any external force acting on the end-
effector is projected back into joint space through the transpose of the Jacobian matrix. Therefore,
when a contact event occurs (e.g., the robot touches a surface), the resulting torque signal can be
decomposed as:

τmeasured = τmodel + J⊤(q)F ext. (3)

Here, τmeasured is the observed joint torque, and τmodel accounts for the expected torque due to
internal dynamics. This expression shows that observing variations in joint torques allows us to
infer the net external wrench acting on the end-effector, provided that the manipulator dynamics are
accurately modeled.

Conclusion. The joint torque vector τmeasured inherently carries information about external contacts
through the relationship Eq. (2). This result forms the theoretical basis for torque-based contact
estimation, where joint torque deviations from the nominal model are used to infer spatial interaction
forces, enabling sensorless force estimation, collision detection, and compliant manipulation.

4 Sense What Was: Torques as Observations
In this section, we integrate torque signals as an additional observation into the VLA framework
and investigate its effects. Most VLA models consist of two main components: a conditioning en-
coder and a denoising decoder, which we refer to simply as the encoder and the decoder. The
encoder percepts the environment, while the decoder yields actions. To be specific, the encoder pro-
cesses images inputs I and language instruction L into a unified latent space to construct contextual
representations, and the decoder then progressively refines noisy inputs Ât:t+H to generate action
sequences At:t+H . For example, RDT [7] applies cross-attention over visual and language features
to form the conditioning and employs a denoising backbone operating on low-dimensional proprio-
ceptive inputs and noised action chunks. Similarly, π0 [6] leverages a PaliGemma [53] backbone to
fuse vision and language inputs, followed by an action decoder.

Using π0 as a representative case, we explore the design space of torques as inputs with following
questions: (1) where to incorporate torque signals—into conditioning encoder or denoising decoder
(Sec. 4.1) and (2) how historical torque signals can be leveraged (Sec. 4.2).

4.1 Where to Embed? Conditioning Encoder vs. Denoising Decoder
At each time step t, the policy π0 observes multiple RGB images, a textual instruction, and the
robot’s joint angle state, denoted as ot =

[
It1 , . . . , Itn , Lt, qt

]
, where Iti is the feature vector of

the i-th image, Lt is the sequence of language tokens, and qt is the current robot state vector. In the
original π0 architecture, the image features {Iti} together with Lt form the conditioning context,
while qt is provided as a token to the denoising module.

4

Regarding using torque signals and integrating it into the VLA architecture, we explore two inte-
gration ways: integrating τt into the encoder’s inputs to leverage its multi-modality capabilities, or
incorporating τt into the decoder alongside qt to enrich the state representation. Specifically, we
evaluate three possible strategies for embedding τt (see Figure 2):

• Encoder Embedding (Enc): encode τt via an adapter into a token which is concatenated with
{It1 , . . . , Itn ,Lt} as an extra conditioning input (Figure 2(a));

• Decoder Pre-Concatenation Embedding (DePre): directly integrate τt into the zero-padded
dimensions of qt, concatenating them to form a single combined token (Figure 2(b));

• Decoder Post-Concatenation Embedding (DePost): encode τt through an adapter and prepend
the resulting token to the action expert’s state inputs (Figure 2(c)).

Specifically, we employ an MLP as the torque adapter. We conducted real-world experiments on two
contact-rich tasks using the three different architectures. The results are shown in Table 1, which
shows that embedding torque signals into decoder outperforms into encoder, and embedding it to a
single token outperforms integrating it to the original proprioceptive state token. The reasons for the
result can be summarized as follows.

act
ion

an
gle

tor
qu

e
im

ag
e

tex
t

action

angle

torque

image

text

1.000 0.225 0.264 0.132 0.043

0.225 1.000 0.957 0.266 0.085

0.264 0.957 1.000 0.300 0.114

0.132 0.266 0.300 1.000 0.023

0.043 0.085 0.114 0.023 1.000 0.00

0.25

0.50

0.75

1.00

Figure 3: Normalized HSIC values
across hidden states from different
modality input tokens.

Better Input Alignment. Integrating torque signals τt
into decoder outperforms placing it in encoder. Since τt
and joint angles qt are both proprioceptive signals, fusing
them during denoising better exploits their correlation,
such as consistency and redundancy in contact-rich inter-
actions. To verify this, we conduct experiments to eval-
uate the Normalized Hilbert-Schmidt Independence Cri-
terion (HSIC) [9] values between the high-dimensional
features of the inputs (together with the action) to evalu-
ate their similarities. Figure 3 shows that torque informa-
tion is significantly more aligned with joint angle signals.
Therefore, torque signals should be integrated in decoder
to better enhance the proprioceptive perception.

Sensitivity of Decoder. The encoder, designed for diverse, ambiguous vision-language inputs, pro-
cesses coarser features, whereas decoder is designed to capture subtle variations in inputs. To verify
this, we add random noise to each input token of encoder and decoder, respectively, and evaluate the
performance. Table 2 shows that, with the effect of noise, decoder shows worse performances, indi-
cating that decoder is more sensitive to the variations in inputs; therefore, introducing τt to denoising
enables finer utilization of subtle torque variations. Moreover, the Pre-Concatenation method sig-
nificantly alters the original input token, acting as additional noise, leading to worse performance
compared to the Post-Concatenation approach.

Task π0 Enc DePre DePost

Button Pushing 5/20 7/20 8/20 10/20

Charger Plugging 0/20 8/20 11/20 12/20

Table 1: Results of different architectures for em-
bedding torque signals.

Task π0 Enc-Noised Dec-Noised

Bottle Pick and Place 14/20 12/20 8/20

Button Pushing 5/20 4/20 0/20

Table 2: Results of noised encoder and decoder
with random noise.

4.2 Torque Histories Beat Single Frames

Unlike the fixed language instruction and relatively stable visual observations—which exhibit min-
imal changes after end-effector contact due to occlusions—torque signals vary significantly upon
contact, as illustrated in Figure 1. To capture the dynamic patterns of torques, a single-frame torque
input is insufficient. Encoding the history of torque signals provides the VLA model with richer
patterns of physical interaction, thereby enabling better performance on contact-rich tasks.

Task π0 Enc-1 Enc-H Dec-1 Dec-H

Button Pushing 5/20 1/20 4/20 15/20 9/20

Charger Plugging 0/20 3/20 6/20 16/20 7/20

Table 3: Results of different architectures for em-
bedding torque history.

Task π0 Enc-Disrupted Dec-Disrupted

Bottle Pick and Place 14/20 13/20 8/20

Button Pushing 5/20 5/20 2/20

Table 4: Results of disrupted encoder and de-
coder with extra noised tokens.

5

Conditioning
Encoder

instruction

images

ViT

t H 1:t − +

MLP

Conditioning
Encoder

instruction

images

ViT

Diffusing
Decoder

tq

MLP

denoised actions

noisy actionsMLP

t H 1:t − +

(a) Conditioning – 1 Token

MLP MLP

Diffusing
Decoder

tq

MLP

denoised actions

noisy actionsMLPMLP

t H 1 − + tt H 1 − + t

(c) Denoising – 1 Token (d) Denoising – H Tokens(b) Conditioning – H Tokens

Figure 4: Architectures for embedding torque history.

To investigate the optimal way of encoding torque history, we explore two strategies: (1) frame-wise
tokenization, encoding each torque frame {τ t−H+1, · · · , τ t} as a separate token, and (2) aggregate
tokenization, encoding the entire history τ t−H+1:t into a single token. For completeness, we also
examine whether historical torque signals should be inserted into the encoder (Figure 4(a)-(b)) or
the decoder (Figure 4(c)-(d)). The results are shown in Table 3, indicating that encoding the entire
torque history as one single token into the decoder is the best choice. The reason is as follows.

Input Pattern Completeness. Aggregating tokenization outperforms frame-wise tokenization, as
the large number of history tokens disrupts the decoder’s original input pattern completeness. To
verify this hypothesis, we add extra noise tokens to the encoder and decoder, respectively. As shown
in Table 4, the added noise tokens easily disrupt the perception ability of the decoder. This also
holds when adding extra torque history tokens, which may interfere with the patterns the decoder
learned during pretraining. Therefore, even if fewer history tokens may lead to information loss,
the effect of disrupting the decoder’s state patterns dominates the trade-off. Moreover, in Table 4,
the encoder shows robustness to changes in input patterns and performs better with multiple history
tokens which contain more information. However, as mentioned in Sec. 4.1, encoding torque signals
provides advantages in proprioceptive alignment and finer-grained perception; therefore, a single
token of history information to the decoder outperforms other methods.

5 Predict What will Be: Torques as Objectives
Conditioning

Encoder

instruction

Diffusing
Decoder

ViT MLP

tq

 tta ;  1t HH t1;a − ++ −

 t tâ ;̂

 H 1t tH 1;a ˆˆ + − + −

Figure 5: Architectures for
Action-Torque Diffusion.

Motivation. Current VLA policies treat modalities purely as observa-
tions, missing the opportunity to internalise the robot’s own interaction
dynamics. Inspired by multi-task planning in autonomous driving [10]
and by our findings that torque information is a strong proprioceptive
cue in Sec. 4, we propose to predict future torques together with
future actions. This auxiliary task nudges the model to build a physi-
cally grounded latent space, leading to more reliable contact-rich manipulation.

Unified Loss for Action–Torque Diffusion. We now describe in detail how we train the model
to predict both actions and torques, maintaining individual losses but sharing diffusion weights for
efficiency. Let At ∈ RH×da denote the action chunk [at, . . . , at+H−1] and T t ∈ RH×dτ denote
the torque chunk [τt, . . . , τt+H−1]. The clean joint token can be expressed by Zt = [At; T t] ∈
RH×(da+dτ). We sample Gaussian noise ϵ ∼ N (0, I) and a time step α ∈ [0, 1], forming a noisy
input Zα

t = αZt + (1−α) ϵ. To ensure both action and torque predictions remain well-calibrated,

we define two mean-squared error objectives: Laction(θ) = EZt,ϵ,α

∥∥∥vθ(Z
α
t , ot)A − (ϵA −At)

∥∥∥2
2
,

Ltorque(θ) = EZt,ϵ,α

∥∥∥vθ(Z
α
t , ot)T − (ϵT − T t)

∥∥∥2
2
, where vθ(·)A and vθ(·)T denote, respectively,

the action- and torque-components of the model’s output, and ϵA, ϵT are the corresponding slices
of the noise. However, unlike the commonly adopted method that multiple types of outputs are
predicted through separate modules or shared weights with different projection heads, to save cost
and leverage pre-trained weights, we use a single linear layer instead that outputs concatenated
action and torque predictions together, then split them back for their respective losses. We adopt the
combination of the two losses: Ljoint(θ) = Laction(θ)+β Ltorque(θ), where β is a weighting factor
balancing action fidelity and torque accuracy.

6

0 20 40
Timestep

0

1

2

3

To
rq

ue
 V

al
ue

(a) Joint 2

0 20 40
Timestep

0.0

0.5

1.0

1.5

To
rq

ue
 V

al
ue

(b) Joint 3

0 20 40
Timestep

0

1

2

3

To
rq

ue
 V

al
ue

(c) Joint 5
prediction
ground truth

Figure 6: Future torque signal prediction for joints.
Empirical Results. To evaluate the precision of future torques across joints predicted by the action-
torque diffusion method, we compare with ground-truth values in validation data. As shown in
Figure 6, the predicted torques highly comply with the ground-truth variations, which implies that
through the proposed joint diffusion method, the model is able to successfully sense the future
changes. This ability will further enable the model to yield better actions (results are shown in
Sec. 6.2), because joint torque-action prediction strategy strengthens the model’s understanding of
contact dynamics by learning the causal relationship between actions and the resulting torque re-
sponses. By learning a unified action–torque representation, the model aligns proprioceptive signals
with intended motor commands, which enhances performance in contact-rich scenarios.

6 Experiment
6.1 Experimental Setup

Hardware Platform. We use the Cobot Magic ALOHA, a dual-arm robot with 7 degrees of freedom
per arm. It is equipped with three D435 depth cameras: two on the wrists and one front-facing. The
joint torques are derived from the robot’s motors based on the electrical currents supplied to them.
Each motor has a specific current-to-torque constant kt, which relates the current i to the generated
torque τ , calculated as τ = kti. By measuring the current supplied to each motor, we can accurately
estimate the joint torque in real-time without the need for external force sensors.

Baselines. We evaluate against strong baselines in robotic manipulation: ACT [11], RDT [7], and
π0 [6]. All models are fine-tuned from publicly available pretrained weights on our collected dataset
under the same experimental setup. ACT leverages action chunking with transformers, while RDT
and π0 are two state-of-the-art VLA models with strong cross-task performance.

6.2 Quantitative Results

We evaluate the baseline model together with multiple ways to incorporate torque signals to π0.
Specifically, we adopt (1) DePost-1 Token Architecture in Sec. 4 to embed immediate and past torque
observations, denoted as π0+obs; (2) the unified training objective in Sec.5, denoted as π0+obj;
and (3) their combination, denoted as π0+obs+obj. We conduct real-world experiments across 10
tasks—5 contact-rich and 5 regular. Results in Table 5 show that both torque observations and
torque-based objectives benefit VLA models. The combined approach leverages the strengths of
both, yielding the best overall performance. Also, torque signals improve not only contact-rich tasks
but also tasks where torque appears less relevant, indicating their utility across diverse scenarios.

6.3 Visualization

We visualize part of contact-rich and regular tasks the proposed method can achieve. Regarding
contact-rich tasks, as shown in Figure 7. When detecting a failed attempt due to abnormal changes
in joint torque caused by misalignment or slippage (the second and third images in Figure 7(a)-(b)),
leveraging torque feedback, the robot autonomously retries the motion and successfully completes
the task on the second attempt (the fourth and fifth images in Figure 7(a)-(b)). Additionally, with
torque signals, the robot can complete various regular tasks with high precision (Figure 7(c)).

6.4 Cross Model
Method Button Pushing Charger Plugging Bottle Pick and Place
RDT 4/20 1/20 17/20
RDT + obs + obj 16/20 15/20 19/20

Table 6: Cross Model Results. Success rates
across contact-rich and regular tasks on RDT.

To evaluate the generalization capability of
torque observations and torque-based objec-
tives across different VLA models, we conduct

7

Task Contact-rich Task
Method Button Pushing Charger Plugging USB Plugging Socket Unplugging Door Handle Turning
ACT 2/20 0/20 0/20 12/20 0/20
RDT 4/20 1/20 0/20 10/20 0/20
π0 5/20 0/20 0/20 16/20 2/20
π0 + obs 15/20 16/20 15/20 19/20 13/20
π0 + obj 11/20 10/20 12/20 19/20 12/20
π0 + obs + obj 18/20 17/20 17/20 19/20 15/20

Task Regular Task
Method Bottle Pick and Place Liquid Pouring Stacking Cubes Push-to-Position Opening a Drawer
ACT 15/20 13/20 12/20 13/20 16/20
RDT 17/20 17/20 12/20 15/20 16/20
π0 17/20 16/20 17/20 16/20 19/20
π0 + obs 18/20 16/20 18/20 16/20 19/20
π0 + obj 17/20 16/20 17/20 16/20 18/20
π0 + obs + obj 19/20 17/20 17/20 18/20 18/20

Table 5: Quantitative Results. Success rates across 5 contact-rich tasks and 5 regular tasks, each
evaluated 20 trials. Our method consistently outperforms baselines, especially in contact-rich tasks.

Approaching

Button

First Contact

(misaligned)
Retreating to Retry

Second Press

(aligned)
Task Completed

(a) Button Pushing

(c) Regular Tasks

Bottle

Pick and Place
Liquid Pouring Stacking Cubes Push-to-Position Opening a Drawer

(b) Door Handle Turning

Contacting Handle Pressing Down Press Failed
Second Turn

Attempt
Door Opened

Figure 7: Visualization. (a) Button Pushing: First attempt fails due to misalignment; second suc-
ceeds. (b) Door Handle Turning: Initial turn fails; second opens the door. (c) 5 regular tasks.

experiments on RDT [7] across both contact-rich and regular tasks. As shown in Table 6, incor-
porating both torque observations and the torque-based objective leads to significantly improved
performance. These results suggest that the torque integration strategies introduced in Sec.4 and
Sec.5 generalize well to other VLA models.

6.5 Cross Embodiment

Connector successfully
inserted into charging port.

Initial contact with charging
port edge (misaligned).

(a) (b)

Figure 8: Cross Embodiment Visualization.

To evaluate the generalization capability of our
method across different robotic embodiments, we
conduct experiments on a ROKAE SR robotic arm.
As shown in Figure 8, the robot performs an elec-
tric vehicle charger insertion task. After detecting a
failed insertion attempt using torque feedback (Fig-

ure 8(a)), the robot successfully completes the task on its second attempt (Figure 8(b)).

7 Conclusion

In this paper, we analyze joint torques as effective indicators of end-effector status and explore how
to best incorporate them into VLA models. We find that encoding immediate and historical torques
as a single decoder token yields the best results. Further, jointly predicting actions and torques with a
unified diffusion loss improves performance. Experiments on contact-rich and regular tasks confirm
the effectiveness and generalization of both torque-based enhancements.

8

8 Limitations
The method relies on accurate torque estimation from internal motor currents. This estimation can
be affected by motor calibration, sensor noise, or thermal drift, potentially degrading performance in
prolonged or high-load tasks. Moreover, while torque signals prove valuable, it remains unclear how
scalable the framework is when extending to other physical modalities like tactile sensing or tem-
perature, especially under shared token budgets in transformer architectures. Future work is needed
to evaluate robustness in more diverse, real-world scenarios, as well as to explore the alignment and
integration of richer multimodal signals.

References
[1] N. Likar and L. Žlajpah. External joint torque-based estimation of contact information. Inter-

national Journal of Advanced Robotic Systems, 11(7):107, 2014.

[2] S. Shan and Q.-C. Pham. Fine robotic manipulation without force/torque sensor. IEEE
Robotics and Automation Letters, 9(2):1206–1213, 2023.

[3] X. Xu, L. Cheng, L. Miao, X. Zhou, J. Li, and Y. Ke. End-effector contact force estimation for
the industrial robot in automated fiber placement processes with dynamic end-load variations.
CIRP Journal of Manufacturing Science and Technology, 55:390–402, 2024.

[4] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[5] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,
T. Kreiman, C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

[6] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. π0: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024.

[7] S. Liu, L. Wu, B. Li, H. Tan, H. Chen, Z. Wang, K. Xu, H. Su, and J. Zhu. Rdt-1b: a
diffusion foundation model for bimanual manipulation. International Conference on Learning
Representations, 2025.

[8] P. Intelligence, K. Black, N. Brown, J. Darpinian, K. Dhabalia, D. Driess, A. Esmail, M. Equi,
C. Finn, N. Fusai, et al. π0.5: a vision-language-action model with open-world generalization.
arXiv preprint arXiv:2504.16054, 2025.

[9] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with
hilbert-schmidt norms. In International conference on algorithmic learning theory, pages 63–
77. Springer, 2005.

[10] S. Shi, L. Jiang, D. Dai, and B. Schiele. Motion transformer with global intention localization
and local movement refinement. Advances in Neural Information Processing Systems, 35:
6531–6543, 2022.

[11] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[12] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[13] X. Bi, D. Chen, G. Chen, S. Chen, D. Dai, C. Deng, H. Ding, K. Dong, Q. Du, Z. Fu,
et al. Deepseek llm: Scaling open-source language models with longtermism. arXiv preprint
arXiv:2401.02954, 2024.

9

[14] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

[15] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al.
Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.

[16] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow, A. Welihinda,
A. Hayes, A. Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

[17] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
26296–26306, 2024.

[18] B. Li, Y. Zhang, D. Guo, R. Zhang, F. Li, H. Zhang, K. Zhang, P. Zhang, Y. Li, Z. Liu, et al.
Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326, 2024.

[19] S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, et al.
Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[20] X. Liu, B. Tian, Z. Wang, R. Wang, K. Sheng, B. Zhang, H. Zhao, and G. Zhou. Delving into
shape-aware zero-shot semantic segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2999–3009, 2023.

[21] P. Li, B. Tian, Y. Shi, X. Chen, H. Zhao, G. Zhou, and Y.-Q. Zhang. Toist: Task oriented
instance segmentation transformer with noun-pronoun distillation. Advances in Neural Infor-
mation Processing Systems, 35:17597–17611, 2022.

[22] K. Ding, B. Chen, Y. Su, H.-a. Gao, B. Jin, C. Sima, W. Zhang, X. Li, P. Barsch, H. Li, et al.
Hint-ad: Holistically aligned interpretability in end-to-end autonomous driving. arXiv preprint
arXiv:2409.06702, 2024.

[23] B. Jin, Y. Zheng, P. Li, W. Li, Y. Zheng, S. Hu, X. Liu, J. Zhu, Z. Yan, H. Sun, et al. Tod3cap:
Towards 3d dense captioning in outdoor scenes. In European Conference on Computer Vision,
pages 367–384. Springer, 2024.

[24] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

[25] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[26] Y. Lipman, R. T. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. arXiv preprint arXiv:2210.02747, 2022.

[27] Z. Zhang, X. Li, S. Zou, G. Chi, S. Li, X. Qiu, G. Wang, G. Zheng, L. Wang, H. Zhao,
et al. Chameleon: Fast-slow neuro-symbolic lane topology extraction. arXiv preprint
arXiv:2503.07485, 2025.

[28] Q. Li, Y. Liang, Z. Wang, L. Luo, X. Chen, M. Liao, F. Wei, Y. Deng, S. Xu, Y. Zhang, et al.
Cogact: A foundational vision-language-action model for synergizing cognition and action in
robotic manipulation. arXiv preprint arXiv:2411.19650, 2024.

[29] J. Huang, S. Yong, X. Ma, X. Linghu, P. Li, Y. Wang, Q. Li, S.-C. Zhu, B. Jia, and S. Huang.
An embodied generalist agent in 3d world. arXiv preprint arXiv:2311.12871, 2023.

[30] X. Li, M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing, W. Zhang, H. Liu,
et al. Vision-language foundation models as effective robot imitators. arXiv preprint
arXiv:2311.01378, 2023.

10

[31] D. Qu, H. Song, Q. Chen, Y. Yao, X. Ye, Y. Ding, Z. Wang, J. Gu, B. Zhao, D. Wang, et al.
Spatialvla: Exploring spatial representations for visual-language-action model. arXiv preprint
arXiv:2501.15830, 2025.

[32] J. Wen, Y. Zhu, J. Li, M. Zhu, Z. Tang, K. Wu, Z. Xu, N. Liu, R. Cheng, C. Shen, et al.
Tinyvla: Towards fast, data-efficient vision-language-action models for robotic manipulation.
IEEE Robotics and Automation Letters, 2025.

[33] A. Jiang, Y. Gao, Z. Sun, Y. Wang, J. Wang, J. Chai, Q. Cao, Y. Heng, H. Jiang, Y. Dong, et al.
Diffvla: Vision-language guided diffusion planning for autonomous driving. arXiv preprint
arXiv:2505.19381, 2025.

[34] H. Chi, H.-a. Gao, Z. Liu, J. Liu, C. Liu, J. Li, K. Yang, Y. Yu, Z. Wang, W. Li, et al. Impromptu
vla: Open weights and open data for driving vision-language-action models. arXiv preprint
arXiv:2505.23757, 2025.

[35] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid,
Q. Vuong, V. Vanhoucke, H. Tran, R. Soricut, A. Singh, J. Singh, P. Sermanet, P. R. San-
keti, G. Salazar, M. S. Ryoo, K. Reymann, K. Rao, K. Pertsch, I. Mordatch, H. Michalewski,
Y. Lu, S. Levine, L. Lee, T.-W. E. Lee, I. Leal, Y. Kuang, D. Kalashnikov, R. Julian, N. J.
Joshi, A. Irpan, B. Ichter, J. Hsu, A. Herzog, K. Hausman, K. Gopalakrishnan, C. Fu, P. Flo-
rence, C. Finn, K. A. Dubey, D. Driess, T. Ding, K. M. Choromanski, X. Chen, Y. Chebotar,
J. Carbajal, N. Brown, A. Brohan, M. G. Arenas, and K. Han. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. In Conference on Robot Learning, pages
2165–2183. PMLR, 2023.

[36] K. Pertsch, K. Stachowicz, B. Ichter, D. Driess, S. Nair, Q. Vuong, O. Mees, C. Finn, and
S. Levine. Fast: Efficient action tokenization for vision-language-action models. arXiv preprint
arXiv:2501.09747, 2025.

[37] J. Liu, H. Chen, P. An, Z. Liu, R. Zhang, C. Gu, X. Li, Z. Guo, S. Chen, M. Liu, et al. Hy-
bridvla: Collaborative diffusion and autoregression in a unified vision-language-action model.
arXiv preprint arXiv:2503.10631, 2025.

[38] Y. Chen, A. Sipos, M. Van der Merwe, and N. Fazeli. Visuo-tactile transformers for manipula-
tion. arXiv preprint arXiv:2210.00121, 2022.

[39] W. Liu, J. Wang, Y. Wang, W. Wang, and C. Lu. Forcemimic: Force-centric imitation
learning with force-motion capture system for contact-rich manipulation. arXiv preprint
arXiv:2410.07554, 2024.

[40] K. Ding, B. Chen, R. Wu, Y. Li, Z. Zhang, H.-a. Gao, S. Li, G. Zhou, Y. Zhu, H. Dong, et al.
Preafford: Universal affordance-based pre-grasping for diverse objects and environments. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
7278–7285. IEEE, 2024.

[41] Y. Hou, Z. Liu, C. Chi, E. Cousineau, N. Kuppuswamy, S. Feng, B. Burchfiel, and S. Song.
Adaptive compliance policy: Learning approximate compliance for diffusion guided control.
arXiv preprint arXiv:2410.09309, 2024.

[42] C. Chen, Z. Yu, H. Choi, M. Cutkosky, and J. Bohg. Dexforce: Extracting force-
informed actions from kinesthetic demonstrations for dexterous manipulation. arXiv preprint
arXiv:2501.10356, 2025.

[43] W. van den Bogert, M. Iyengar, and N. Fazeli. Built different: Tactile perception to overcome
cross-embodiment capability differences in collaborative manipulation. arXiv e-prints, pages
arXiv–2409, 2024.

11

[44] Z. He, H. Fang, J. Chen, H.-S. Fang, and C. Lu. Foar: Force-aware reactive policy for contact-
rich robotic manipulation. arXiv preprint arXiv:2411.15753, 2024.

[45] M. Aburub, C. C. Beltran-Hernandez, T. Kamijo, and M. Hamaya. Learning diffu-
sion policies from demonstrations for compliant contact-rich manipulation. arXiv preprint
arXiv:2410.19235, 2024.

[46] B. Huang, Y. Wang, X. Yang, Y. Luo, and Y. Li. 3d-vitac: Learning fine-grained manipulation
with visuo-tactile sensing. arXiv preprint arXiv:2410.24091, 2024.

[47] T. Kamijo, C. C. Beltran-Hernandez, and M. Hamaya. Learning variable compliance control
from a few demonstrations for bimanual robot with haptic feedback teleoperation system. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
12663–12670. IEEE, 2024.

[48] H. Xue, J. Ren, W. Chen, G. Zhang, Y. Fang, G. Gu, H. Xu, and C. Lu. Reactive diffusion
policy: Slow-fast visual-tactile policy learning for contact-rich manipulation. arXiv preprint
arXiv:2503.02881, 2025.

[49] Y. Wu, Z. Chen, F. Wu, L. Chen, L. Zhang, Z. Bing, A. Swikir, A. Knoll, and S. Haddadin.
Tacdiffusion: Force-domain diffusion policy for precise tactile manipulation. arXiv preprint
arXiv:2409.11047, 2024.

[50] T. Kobayashi, M. Kobayashi, T. Buamanee, and Y. Uranishi. Bi-lat: Bilateral control-based
imitation learning via natural language and action chunking with transformers. arXiv preprint
arXiv:2504.01301, 2025.

[51] K. Li, S. M. Wagh, N. Sharma, S. Bhadani, W. Chen, C. Liu, and P. Kormushev. Haptic-
act: Bridging human intuition with compliant robotic manipulation via immersive vr. arXiv
preprint arXiv:2409.11925, 2024.

[52] J. J. Liu, Y. Li, K. Shaw, T. Tao, R. Salakhutdinov, and D. Pathak. Factr: Force-attending
curriculum training for contact-rich policy learning. arXiv preprint arXiv:2502.17432, 2025.

[53] L. Beyer, A. Steiner, A. S. Pinto, A. Kolesnikov, X. Wang, D. Salz, M. Neumann, I. Alabdul-
mohsin, M. Tschannen, E. Bugliarello, et al. Paligemma: A versatile 3b vlm for transfer. arXiv
preprint arXiv:2407.07726, 2024.

12

Elucidating the Design Space of Torque-aware
Vision-Language-Action Models

A Appendix

In this appendix, we provide a comprehensive elaboration of the technical, experimental, and im-
plementation details of our study. Sec. A.1 presents additional qualitative visualizations to supple-
ment the main text, highlighting the system’s performance in various scenarios. Sec. A.2 metic-
ulously derives the wrench-to-torque mapping for a 7-DOF manipulator, including the full spatial
Jacobian, joint-specific partitions, and a quasi-static simplification for efficient torque computation.
Sec. A.3 and A.4 detail the experimental protocols for the torque-integration and torque-history en-
coding strategies, ensuring reproducibility. Sec. A.5 outlines the implementation specifics of the
joint action-torque diffusion objective, clarifying how torque prediction is achieved alongside ac-
tion generation. Sec. A.6 provides further insights into the experimental setup, quantitative results,
and cross-model as well as cross-embodiment evaluations, ensuring a robust understanding of our
results. Sec. A.7 describes the architectural specifications of the baseline VLA models (π0 and
RDT). Sec. A.8 evaluates the system’s efficiency in terms of training and inference, demonstrat-
ing that our torque-aware enhancements do not significantly impact computational performance.
Sec. A.9 ablates the loss weight β for the joint action–torque diffusion objective on Button Push-
ing. Sec. A.10 compares torque-history aggregation (MLP, RNN, attention) under identical settings.
Finally, Sec. A.11 clarifies torque-signal usage and preprocessing.

A.1 Additional Visualizations

We provide additional visualizations of the model’s execution process for the tasks described in
the main text in Figures 9 and 10. For the contact-rich tasks, the torque response of the Shoulder
Pitch, Shoulder Roll, and Wrist Yaw joints during execution is plotted in the last column, similar to
Figure 1. We have marked the torque changes corresponding to failed and successful attempts for
each task. See our project page for complete videos.

A.2 Detailed Wrench-to-Torque Mapping for a 7-DOF Manipulator

Below we expand the derivation in Sec.3, make explicit the structure of the Jacobian, and specialize
it to a 7-DOF arm in which the first six joints are revolute actuators (shoulder→wrist) and the 7-th
joint is the gripper’s open/close degree of freedom.

A.2.1 Full Spatial Jacobian

For a serial arm with n joints, the geometric Jacobian J(q) ∈ R6×n stacks the linear and angular
velocity components:

J(q) =

[
Jv(q)
Jω(q)

]
, Jv, Jω ∈ R3×n. (4)

For a revolute joint j with axis ẑj and origin pj (in the base frame):

Jv[:,j] = ẑj × (pe − pj),

Jω[:,j] = ẑj ,
(5)

where pe is the end-effector position.

A.2.2 Partition for the 7-DOF Arm

Let the joint order be:

[q1, . . . , q6, q7] = [Sh. Yaw, Sh. Pitch, Sh. Roll, Elb., Wr. Yaw, Wr. Pitch,︸ ︷︷ ︸
arm (1-6)

Gripper open/close]︸ ︷︷ ︸
7

.

(6)

1

https://zzongzheng0918.github.io/Torque-Aware-VLA.github.io/

(d) Socket Unplugging

Approaching
Charger

First Attempt
(failed) Retrying to Unplug Unplugged

(b) Charger Plugging

(c) USB Plugging

Approaching
Button

First Contact
(misaligned) Retreating to Retry Second Press

(aligned)

(a) Button Pushing

Approaching
Charger

First Attempt
(misaligned) Retrying to Plug Plugged

Approaching
Socker

First Attempt
(misaligned) Retrying to Plug Plugged

Figure 9: Visualization of contact-rich tasks. The last column visualizes the torque response of
some joints during the task. For each task, the first failed attempt is marked with a red arrow, and
the final successful attempt is marked with a green arrow.

Then:
J(q) = [Jarm(q); Jgrip(q)], Jarm ∈ R6×6, Jgrip ∈ R6×1. (7)

Gripper column. The gripper’s opening motion does not change the Cartesian pose of the
tool-centre-point (TCP), so:

Jgrip(q) = 06×1 ⇒ τext,7 = 0. (8)

Consequently, forces at the TCP do not back-propagate torque to q7 :

τext,7 = J⊤
gripF ext = 0. (9)

Arm columns 1:6. Each column is computed using the revolute formula above. For clarity we show
the symbolic structure:

Jarm =

[
ẑ1 × (pe − p1) . . . ẑ6 × (pe − p6)

ẑ1 . . . ẑ6

]
. (10)

A.2.3 Wrench–Torque Projection

Given the external wrench F ext = [f ,m]⊤ ∈ R6:

τ ext = J⊤(q)F ext =

[
J⊤

armF ext
0

]
∈ R7, (11)

where τext,1:6 = J⊤
armF ext, and τext,7 = 0.

A.2.4 Quasi-static Simplification

Under low-velocity manipulation q̇, q̈ ≈ 0, Eq. (1) simplifies to:

τmeasured ≈ G(q) +

[
J⊤

armF ext
0

]
. (12)

2

(d)

(e)

(c)

(b)

(a)

Figure 10: Visualization of general tasks. (a) Bottle pick and place. (b) Liquid pouring. (c)
Stacking cubes. (d) Push-to-position. (e) Opening a drawer.

Subtracting G(q) yields the external component δτ ext, where only joints 1–6 are informative for
contact detection. Large residuals in those joints directly indicate contact onset, direction, and
magnitude, while small residuals in q7 confirm that gripper actuation alone does not contribute
contact-induced torques.

A.2.5 Practical Notes for Implementation

• Gravity term G: Estimate via CAD model; recalibrate with payload when grasping heavy
objects.

• Torque from motor currents: Use manufacturer-provided kt with thermal compensation.

• Contact detection: Threshold δτ values per joint to detect abnormal force events.

This detailed formulation clarifies the exact Jacobian structure, shows why the gripper joint is
torque-insensitive to TCP forces, and provides concrete implementation guidance suitable for re-
producibility in a top-tier robotics venue.

A.3 Experimental Protocols for Sec. 4.1: Torque-Integration Architectures

Experiment about Comparison between Architectures. For the Enc and DePost architectures
(Figure 2(a)(c)), we randomly initialize a MLP to project the effort token into the latent space.
This MLP is structured with layers mapping from an input dimension of 14 (effort dim) to 2 ×
width, followed by a Swish activation, and then mapping from 2 × width to width. The width
here corresponds to the model’s internal dimension: 2048 for the conditioning encoder in the Enc
architecture and 1024 for the diffusion decoder in the DePost architecture. The state input of π0 is
composed of the 14-dimensional joint positions, followed by 18 dimensions of zero-padding. For the
DePre architecture (Figure 2(b)), we place the 14-dimensional joint efforts into the last 14 positions
of this 32-dimensional state.

Experiment about Better Input Alignment. HSIC is a powerful nonparametric measure capable
of detecting complex nonlinear relationships between variables without requiring assumptions about
their distribution. Normalized HSIC provides a value between 0 and 1, where higher values indicate

3

stronger statistical dependence. To evaluate modality alignment, we analyze the π0 model trained
using the DePost method on the Button Pushing task. We process input tokens obtained from frames
randomly sampled from the training dataset of this task through the model’s transformer backbone
(18 layers total). We then extract the intermediate representations, specifically the hidden states at
the output of the 12th layer, corresponding to these input tokens. For the HSIC computation, the
number of these extracted intermediate token representations used for each modality (action, angle,
torque, image, and text instruction) is downsampled to 32. The normalized HSIC is then computed
pairwise between each combination of modalities using RBF kernels, shown in Figure 3.

Experiment about Sensitivity of Decoder. To assess the sensitivity of the encoder and decoder
to input variations, we add additive Gaussian noise with a standard deviation of 0.1 to the input
tokens. For the encoder, noise is applied to all input tokens, whereas for the decoder, noise is
applied specifically to the state token (the first token in the input sequence). The results are presented
in Table 2.

A.4 Experimental Protocols for Sec. 4.2: Torque-History Encoding

Experiment about Comparison between Architectures. For historical effort input, we uniformly
sampled 10 frames from the past 2 seconds, including the current frame. In the H Tokens configura-
tion, each of these 14-dimensional effort tokens is processed independently using an MLP with the
same architecture as described in Appendix A.3, which projects it into the latent space. Conversely,
in the 1 Token configuration, the historical effort from all 10 frames is flattened and concatenated
into a single 140-dimensional token before being fed into the MLP.

Experiment about Better Input Pattern Completeness. To investigate the completeness of the
input pattern, we introduced an additional token into the input token sequence. This token was
sampled from a standard normal distribution and had the same shape as other tokens in the sequence.
We then modified the input and autoregressive masks accordingly, following the masking patterns
applied to the effort tokens to integrate this new token into the sequence processing. Table 4 shows
the results of the experiment.

A.5 Implementation of the Joint Action-Torque Diffusion Objective (Sec. 5)

To enable the model to simultaneously output future effort (torque) for supervision alongside action
predictions, we expanded the dimension of the action input and output projection linear layer of
the original model (Figure 5). When loading the pre-trained weights, we initialized the portion of
the modified weight matrix corresponding to the original action output dimensions with the pre-
trained values. The remaining weights, which correspond to the newly added dimensions for future
effort prediction, were initialized using smaller values. This initialization strategy is designed to
minimally affect the original pre-trained behavior initially, allowing the model to gradually learn the
new prediction task during the finetuning process. The predicted future effort sequence has a length
H = 50 steps, matching the action chunk length. Figure 6 shows an example inference from the
model trained on the Button Pushing task. The figure plots the model’s predicted future effort per
frame against the corresponding ground truth for three selected axes, using an observation frame
sampled from the task’s validation data as input.

A.6 Additional Details in Sec. 6

A.6.1 Details in Experimental Setup

In the π0 experiments, we followed the original setup using images from three viewpoints as input:
top, left wrist, and right wrist. All π0 experiments were based on its publicly available pre-trained
checkpoint and finetuned both encoder and decoder using LoRA. Training was performed for 30k
gradient steps on 4 × NVIDIA L20 GPUs. The RDT experiments used the same GPU setup for
full parameter training for 40k gradient steps. For ACT, we use 600 training epochs with a chunk
size of 32. All baseline models use AdamW optimizer. Inference was performed using an onboard

4

(a)

(b)

Figure 12: Cross-Embodiment Task Execution: Charging Connector Insertion. (a) The robotic
manipulator successfully inserts a fast-charging connector into the charging port. (b) The robotic
manipulator inserts a slow-charging connector into the charging port.

RTX 4090 GPU. All variants of π0 used an inference action horizon of 50 steps, and RDT used
64 steps. Other settings remained consistent with the original implementation. For all tasks, 400
demonstrations were collected using teleoperation.

A.6.2 Details about Quantitative Results

In the experiments (Table 5), for +obj settings, we set the value of β to 1. For +obs+ obj settings,
we set the value of β to 0.1. For the ACT and RDT models, their inference action horizons were 8
and 64 steps, respectively.

A.6.3 Details about Cross Model Results

Regarding the RDT+obs+obj model (Figure 11, Table 6), following the model’s approach for lan-
guage and image adapters, we implement the effort projector as a two-layer MLP with a single
GELU activation. This MLP maps the effort input into a 2048-dimensional vector, matching the
width of RDT’s transformer backbone. The projected effort token is then concatenated after the
state token. This combined sequence is further concatenated with the noisy action token, forming
the input for the denoising process in RDT. We extended the state space input and output projectors
and loaded pre-trained weights in a manner similar to that used in π0.

A.6.4 Details about Cross Embodiment Results

RDT

!"
MLPMLP
! " #$!! " +

images
ViT

instruction
T5

[]!!" #! ![]!" ## "!$% !" ++ "

[]! !"# $ "!
![]! "# #! "$% && !+ " + "

cross
attn

Figure 11: Architecture of
RDT+obs+obj model.

To further assess the generalization capability of our
torque-aware VLA model across different robotic embod-
iments, we conducted cross-embodiment experiments us-
ing the ROKAE SR robotic arm. Specifically, we trained
the π0+obs+obj with 200 demonstrations of the robot in-
serting a fast-charging connector into the charging port,
using torque feedback to guide the insertion process. The
model was trained for 50K gradient steps, and as shown in Figure 12(a), it successfully achieved the
fast-charging insertion task with high reliability. To further evaluate generalization, we altered the
task setup by replacing the fast-charging port with a slow-charging port. Without any architecture
modification, the model was able to adapt seamlessly, successfully inserting the slow-charging con-
nector into the port, as demonstrated in Figure 12(b). This result highlights the model’s capacity to
generalize torque-aware manipulation strategies to new end-effector configurations, demonstrating
robust cross-embodiment performance.

A.7 Architectural Specifications of Baseline VLA Models (π0 and RDT)

π0 is a VLA model built by adding a 300M action expert on top of the PaliGemma 3B pretrained
VLM backbone and trained on a large-scale cross-embodiment robot dataset. The action expert
and the VLM are two independent sets of weights within a single transformer, interacting only
through the self-attention layers. During each inference step, the model receives three RGB images,

5

a language instruction, and the robot’s proprioceptive state. The images and language instruction
are fed directly into the VLM as conditions. Proprioception is concatenated with a noisy action
chunk of length 50 and input to the action expert. π0 uses Conditional Flow Matching to model the
continuous action distribution. The action expert outputs a vector field, and the final action chunk is
generated by performing 10 integration steps on this vector field.

RDT (Robotics Diffusion Transformer) is a 1B-parameter Diffusion Transformers (DiTs) model
pre-trained using 1M multi-robot trajectories (including 46 datasets). It utilizes a physically inter-
pretable 128-dimensional unified observation and action space, encoding low-dimensional inputs
using MLPs with Fourier features. During each inference step, the model’s inputs include propri-
oception, a noisy action chunk (size 64), and the diffusion timestep. Language instruction and ob-
servations (including 2 history frames of three images, proprioceptive state, and control frequency)
are input to the model as conditions. Images are processed by SigLIP, while language is processed
by T5-XXL, this conditional information is alternately injected into different layers of the DiTs us-
ing cross attention. The model predicts the denoised action chunk, and the final action is produced
through 5 denoising steps.

A.8 System Efficiency

We use the Button Pushing task as an example to compare the training and inference times for π0,
π0+obs, π0+obj, and π0+obs+obj. The training speed is reported as the average throughout the
training process measured on 4 × NVIDIA L20 GPUs, and the inference speed is averaged over 10
runs on an RTX 4090 GPU. The results are shown in Table 7 and Table 8, which indicate that the
proposed designs do not significantly affect efficiency.

Model Variant Training Time (s/iter)

π0 1.703
π0 + obs 1.628
π0 + obj 1.648
π0 + obs + obj 1.640

Table 7: Training Time for Different Designs

Model Variant Inference Time (ms)

π0 90.70
π0 + obs 90.81
π0 + obj 90.61
π0 + obs + obj 93.96

Table 8: Inference Time for Different Designs

A.9 Ablation Studies for Hyperparameter β

We test β on π0+obj and π0+obs+obj in button pushing task (Tab. 9). For π0+obj: Success rises
from 6/20 at β = 0.01 and reaches a plateau from 0.2 to 1, so we let β = 1. For π0+obs+obj: Peak
success (18/20) occurs at lower β before dropping at higher values, so we set it as 0.1 to balance the
two newly introduced components: auxiliary loss and torque observation modality.

β 0.01 0.1 0.2 0.5 1

π0 + obj 6/20 8/20 10/20 9/20 11/20
π0 + obs + obj 14/20 18/20 18/20 15/20 12/20

Table 9: Ablation study on β.

Aggregation MLP RNN Attention

π0 + obs 15/20 7/20 13/20
π0 + obs + obj 18/20 10/20 17/20

Table 10: Inference Time for Different Designs

A.10 Ablation Studies for Torque Aggregation Methods

We compare three aggregation methods for torque history in button pushing task, using the same
hyperparameters. As shown in Table 10, a simple MLP outperforms others. We attribute it to the
parameter efficiency: with limited fine-tuning data, more complex sequence models (RNN/attention)
tend to underfit.

A.11 Torque Signal Interpretation and Preprocessing

We use torque signals from all 7 joints, not only the end-effector. Due to robot dynamics, some
joints—especially near the shoulder (e.g., Joint 2 in Figure 1(b)) exhibit variation during non-contact

6

Joint 2 Joint 3 Joint 5
0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n
Ef

fo
rt

Ra
ng

e

0.836

0.305 0.347

1.188

0.842
0.741

Non-Contact
Contact

Figure 13: Torque Signals

motion (e.g., 20–36 timestamps in Figure 1(a)). These changes are not noise, and are much smaller
than contact-induced signals (Figure 13). Additionally, to ensure stability and keep meaningful
patterns, we normalize each joint using training data statistics, as is done for states and actions.

7

	Introduction
	Related Work
	Torques are Good Indicators for End-effector Status
	Sense What Was: Torques as Observations
	Where to Embed? Conditioning Encoder vs. Denoising Decoder
	Torque Histories Beat Single Frames

	Predict What will Be: Torques as Objectives
	Experiment
	Experimental Setup
	Quantitative Results
	Visualization
	Cross Model
	Cross Embodiment

	Conclusion
	Limitations
	Appendix
	Additional Visualizations
	Detailed Wrench‑to‑Torque Mapping for a 7‑DOF Manipulator
	Full Spatial Jacobian
	Partition for the 7-DOF Arm
	Wrench–Torque Projection
	Quasi-static Simplification
	Practical Notes for Implementation

	Experimental Protocols for Sec. 4.1: Torque‑Integration Architectures
	Experimental Protocols for Sec. 4.2: Torque‑History Encoding
	Implementation of the Joint Action‑Torque Diffusion Objective (Sec. 5)
	Additional Details in Sec. 6
	Details in Experimental Setup
	Details about Quantitative Results
	Details about Cross Model Results
	Details about Cross Embodiment Results

	Architectural Specifications of Baseline VLA Models (0 and RDT)
	System Efficiency
	Ablation Studies for Hyperparameter
	Ablation Studies for Torque Aggregation Methods
	Torque Signal Interpretation and Preprocessing

