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Abstract001

Text-to-SQL systems face increasing chal-002
lenges in managing complex query genera-003
tion tasks while maintaining computational ef-004
ficiency. While recent approaches leverage005
Large Language Models (LLMs) through chain-006
based decomposition, they often struggle with007
error propagation and limited adaptability. To008
navigate these challenges, we propose TAL-009
ENT, a hybrid framework that addresses these010
limitations through tree-structured task plan-011
ning and reinforcement learning optimization.012
Our solution contributes two methodological013
advancements: (1) a flexible tree-based decom-014
position framework that enables targeted error015
recovery and reduces inter-task coupling, and016
(2) a reinforcement learning-enhanced adaptive017
path optimization mechanism that leverages his-018
torical execution patterns to enhance model per-019
formance. Our empirical evaluation, conducted020
on the Spider benchmark demonstrate TAL-021
ENT’s effectiveness, achieving 85.8% execu-022
tion accuracy with minimal training examples.023
Through systematic ablation studies and arti-024
fact analysis, we further demonstrate the frame-025
work’s enhanced robustness against dataset bi-026
ases. These results indicate that structured task027
orchestration coupled with self-improving opti-028
mization can effectively address the demands029
for accuracy and reliability of text-to-SQL con-030
version. The complete implementation is avail-031
able at https://github.com/FIC/TALENT.032

1 Introduction033

Text-to-SQL systems have become essential in034

modern human-computer interaction. While con-035

ventional end-to-end neural architectures have036

shown success in direct translation (Shi et al.,037

2018), they face increasing challenges as databases038

grow in complexity: complex syntax interpreta-039

tion, task complexity management, and semantic040

disambiguation (Liu et al., 2023).041

The emergence of Large Language Models042

(LLMs) has introduced a paradigm shift in address-043

ing these challenges through task decomposition. 044

Recent approaches like DINSQL (Pourreza and 045

Rafiei, 2024) and C3SQL (Dong et al., 2023) have 046

shown promise using the chain-based decomposi- 047

tion approach (Chain of Thought (Wei et al., 2022)). 048

They face two fundamental challenges: error prop- 049

agation in tightly coupled sub-tasks and limited 050

adaptive capabilities (Suzgun et al., 2022). Their 051

tightly coupled sequential structure means early- 052

stage errors can propagate through the entire chain, 053

while the interdependence between sub-tasks com- 054

plicates error recovery. 055

We identify two distinct types of failures: execu- 056

tion errors (e.g., invalid SQL syntax) and planning 057

errors (suboptimal task decomposition). While Ex- 058

ecution errors provide clear signals for correction, 059

planning errors often remain undetected until ir- 060

reparable downstream failures occur. 061

Existing methods, such as ReACT (Yao et al., 062

2023) and Reflexion (Shinn et al., 2024), tackle 063

this problem through global re-execution and re- 064

planning. However, this resource-intensive ap- 065

proach yields diminishing returns, with each itera- 066

tion consuming more resources. 067

Building upon these insights, we propose TAL- 068

ENT, a hybrid system guided by two principles: (1) 069

Task decoupling to minimize error propagation and 070

(2) Information augmentation through execution 071

histories. Our key contributions include: 072

• A tree-structured task planning framework 073

that enables flexible decomposition and tar- 074

geted error recovery to address chain-based 075

approaches’ limitations. 076

• A Planning Enhancement Model that inte- 077

grates curriculum-driven reinforcement learn- 078

ing. Using tree-structured decomposition pat- 079

terns and execution feedback, developing path 080

optimization skills. 081

Extensive evaluation on the Spider (Yu et al., 082
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2018) benchmark demonstrates TALENT’s effec-083

tiveness in addressing core text-to-SQL challenges:084

achieving state-of-the-art performance with simple085

random one-shot prompting, surpassing existing086

In-Context-Learning Enhanced systems, including087

C3SQL, DINSQL, and DAILSQL. These results088

validate our approach’s effectiveness in address-089

ing the core challenges of text-to-SQL translation090

while enhancing robustness.091

2 Related Work092

The evolution of data access tools presents a trade-093

off between usability and functionality. While094

form-based interfaces prioritize accessibility, SQL095

offers comprehensive query capabilities at the cost096

of significant learning barriers (Codd, 1974). Text-097

to-SQL research emerges to bridge this gap by com-098

bining natural language’s intuitiveness with SQL’s099

computational power (Katsogiannis-Meimarakis100

and Koutrika, 2023).101

Early approaches utilizing end-to-end neural ar-102

chitectures (Zhong et al., 2017; Xu et al., 2017)103

faced complex syntax interpretation and seman-104

tic disambiguation challenges. The advent of105

LLMs (Touvron et al., 2023; Achiam et al., 2023)106

has revolutionized this field, introducing two pri-107

mary methodological streams: In-Context Learning108

(ICL) and planning-based methods.109

ICL approaches leverage few-shot demonstra-110

tions to guide LLMs in SQL generation (Gao et al.,111

2023). While methods like DAIL-SQL enhance112

performance through adaptive example selection,113

their effectiveness remains dependent on demon-114

stration quality and selection strategy. Planning-115

based methods, evolving from Chain-of-Thought116

(CoT) prompting (Wei et al., 2022), decompose117

complex queries into manageable sub-tasks. This118

approach, exemplified by DINSQL (Pourreza and119

Rafiei, 2024) and C3SQL (Dong et al., 2023), has120

demonstrated promising results. Recent error cor-121

rection mechanisms (Shinn et al., 2024; Yao et al.,122

2023) further enhance robustness through environ-123

ment feedback and task re-planning.124

While these approaches have advanced the field,125

they face three key limitations: error propagation126

due to tightly coupled sub-tasks, computational127

overhead from iterative correction processes, and128

suboptimal decomposition strategies resulting from129

linear execution patterns. Our work addresses these130

challenges through a hybrid framework combining131

tree-structured planning with reinforcement learn-132

ing optimization, enabling flexible error recovery 133

while maintaining computational efficiency. 134

3 Methodology 135

Complex text-to-SQL tasks face three main chal- 136

lenges: query decomposition, error recovery, and 137

schema understanding. Chain-based methods of- 138

ten fail due to linear execution and limited error 139

resilience, while optimizing closed-source LLMs 140

for specific tasks incurs high operational costs. 141

To address this, we propose TALENT, a hy- 142

brid framework integrating: (1) A tree-structured 143

task planning integrated with a knowledge graph 144

(KG)-based schema linking mechanism that en- 145

ables flexible task decomposition, adaptive error 146

recovery, and accurate database understanding; 147

(2) A reinforcement learning module that refines 148

decomposition strategies based on historical pat- 149

terns. The system’s architecture, illustrated in 150

Fig. 1, demonstrates how these components col- 151

laboratively achieve both execution accuracy and 152

computational efficiency. 153

3.1 Tree-based Task Planning 154

Our tree-structured task planning system consists 155

of three key components: (1) a hierarchical task 156

decomposition mechanism, (2) a dynamic error re- 157

covery module, and (3) a knowledge graph-driven 158

schema linking approach. These components work 159

collaboratively to break down complex queries, 160

handle execution failures, and ensure accurate 161

schema understanding. 162

3.1.1 Task Tree Construction 163

While chain-based mechanisms like Chain of 164

Thought (CoT) (Wei et al., 2022) decompose tasks 165

linearly, complex query processing requires a more 166

comprehensive approach (Khot et al., 2022). We 167

propose a hierarchical decomposition framework 168

that progressively breaks tasks into manageable 169

sub-tasks. The construction process consists of 170

three main phases, as illustrated in Fig. 2: 171

Figure 2: Detail Process of Task Tree Building
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Figure 1: General architecture of TALENT

Initial Tree Formation Given a complex task172

(e.g., “ABCDE”), our system first establishes a root173

node containing the complete task description. This174

serves as the starting point for subsequent decom-175

position.176

Recursive Decomposition For each non-leaf177

node, we perform:178

1) Complexity Assessment: The system evalu-179

ates task complexity through:180

C = argmax
C∈{0,1}

P (C|x,R), (1)181

where x denotes the task description, C indicates182

complexity (1 for complex, 0 for simple), and R183

represents predefined evaluation criteria. The as-184

sessment considers structural complexity regarding185

required tables and joins, semantic complexity re-186

garding nested queries and aggregations, and data187

manipulation complexity based on operation types.188

2) Sub-task Generation: For tasks identified189

as complex (C = 1), the system generates optimal190

sub-tasks according to:191

P = argmax
p∈P

P (p|x, S)

=

n∏
t=1

P (pt|x, S, p1, ..., pt−1),
(2)192

where x is the query, S is schema information, and193

{p1, p2, ..., pn} denotes the sub-task sequence.194

Leaf Node Formation The decomposition pro-195

cess continues recursively until all sub-tasks are196

classified as “simple”. These terminal nodes form197

the executable components of our task tree.198

This tree-structured design achieves dual ben-199

efits. The sequential connectivity of leaf nodes200

naturally generates executable plans. In contrast,201

parent nodes enable complete traceability across202

the execution pathway, facilitating efficient task 203

execution while providing robust error recovery 204

capabilities, as discussed in the following section. 205

3.1.2 Error Recovery Mechanism 206

Chain-based correction mechanisms like ReACT 207

and Reflexion struggle with structural-level error re- 208

covery due to their linear execution nature (Ji et al., 209

2024). We propose an error recovery mechanism 210

that leverages our tree-structured architecture to en- 211

able dynamic error recovery. The process consists 212

of three phases, as illustrated in Fig. 3: 213

Figure 3: Detail Process of Erroneous Sub-Tree Re-
Building

Error Detection and Assessment When node 214

execution fails (e.g., node C ′∗ in Fig. 3), our system 215

first attempts standard ReACT recovery. If the 216

error persists, the associated sub-tree is marked 217

as “Erroneous,” triggering our specialized recovery 218

mechanism. 219

Selective Tree Reconstruction The recovery 220

proceeds in two steps: 221

1) Pruning Operation: Inspired by CART’s 222

pruning methodology (Lewis, 2000), the system 223

performs targeted removal of affected components 224

while preserving valid executions: 225

Tpruned = T − S(C ′∗) (3) 226
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where S(C ′∗) represents sibling nodes of the error227

node, and T denotes the original task tree. This228

selective pruning ensures minimal disruption to229

successfully executed branches.230

2) Sub-tree Regeneration: The system recon-231

structs the affected sub-tree using structured error232

information:233

T ′ = Tpruned ∪ T ′
subtree

= Tpruned ∪Mrebuild(C
′∗, B′, E(C ′∗)),

(4)234

where Mrebuild represents our specialized LLM235

agent that incorporates error context E(C ′∗) to gen-236

erate optimized recovery plans.237

Execution Resumption Following successful238

sub-tree reconstruction, execution resumes from239

node B, ensuring seamless integration of the recov-240

ered branch with the existing execution state.241

This recovery mechanism achieves two key ad-242

vantages. First, it enables structural-level error han-243

dling, significantly enhancing recovery robustness.244

Second, it maintains computational efficiency by245

preserving valid execution states and unaffected246

branches. These capabilities form the foundation247

for our subsequent schema-linking mechanism, fur-248

ther enhancing query understanding.249

3.1.3 Knowledge Graph-driven Schema250

Linking251

Database schema understanding is crucial for SQL252

generation. However, both insufficient and re-253

dundant contextual information can impair the254

model performance, leading to the “illusion phe-255

nomenon” (Ji et al., 2023). To address this, we pro-256

pose a lightweight, property-oriented knowledge257

graph module that enhances schema understanding258

while maintaining computational efficiency.259

Unlike conventional KG approaches that require260

extensive model training (Chen et al., 2020), our261

knowledge graph requires no model training to fit262

in dynamic database environments (See Section A.1263

for more details), automatically extracts and orga-264

nizes database components (tables, columns, and265

relationships) into semantic triples. We employ266

a two-stage inference process to identify relevant267

schema information:268

KGopt = ffilter(ftable(KGfull, q), q), (5)269

where KGfull represents the complete database270

schema, q is the input query, ftable identifies rele-271

vant tables, and ffilter selectively includes columns272

when the table count exceeds a predefined thresh- 273

old τ (empirically set as 2 for Spider dataset). 274

The effectiveness of our KG-driven approach is 275

particularly evident in disambiguating semantically 276

ambiguous queries. Consider the ambiguous query: 277

“Find students who took Biology and Chemistry.” 278

This could mean either (a) students enrolled in both 279

subjects or (b) students enrolled in at least one 280

subject. As shown in Fig. 4, our KG representation 281

naturally resolves this ambiguity through its one- 282

to-many relationship between students and courses, 283

favoring the conjunctive interpretation. 284

Figure 4: Database Schema’s Role in Query Disam-
biguation

This mechanism ensures that only the most per- 285

tinent schema information is provided to the exe- 286

cution agents, effectively addressing information 287

insufficiency and redundancy problems while main- 288

taining LLM compatibility. 289

3.2 Path Optimization via Reinforcement 290

Learning 291

While our tree-based framework facilitates task de- 292

composition, optimizing execution paths requires a 293

systematic approach (Latif, 2024). Although LLMs 294

are effective in decomposition and execution, they 295

face limitations in computational efficiency. 296

We propose a curriculum-driven reinforcement 297

learning framework that progressively optimizes 298

decomposition strategies through historical exe- 299

cution patterns. This approach combines super- 300

vised preheating for establishing basic capabilities 301

with curriculum-based RL for adaptive optimiza- 302

tion (Silver et al., 2014), ensuring efficiency and 303

adaptability. 304

3.2.1 Problem Formulation 305

Our solution employs a transformer-based archi- 306

tecture with a policy network fθ : S → ∆(A) 307

mapping states to action distributions, and a value 308

network vϕ : S → R estimating expected returns. 309

Given a problem instance x ∈ X and initial state 310

s0, we aim to find an optimal policy π∗ that maxi- 311

mizes the objective: 312
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π∗ = argmax
π∈Π

Vπ(s0)

log(1 + λC(π))
(6)313

where C(π) denotes the expected resource cost,314

Vπ(s0) represents the expected cumulative reward315

under policy π:316

Vπ(s0) = Eτ∼π

[
T∑
t=0

γtR(st, at)|s0

]
(7)317

3.2.2 Training Process318

Due to the large discrete action space and the multi-319

objective nature of our task, direct reinforcement320

learning in such a setting would be unstable, as ran-321

dom exploration rarely yields successful paths, and322

the reward signals are inherently sparse (Van Has-323

selt et al., 2016). We implement a two-stage train-324

ing framework to address these challenges by com-325

bining supervised learning’s efficiency with re-326

inforcement learning’s adaptability (Silver et al.,327

2016).328

Data Collection and Preparation For each ques-329

tion x, we leverage our tree construction module to330

generate n diverse candidate paths {p1, p2, ..., pn}.331

Each path pi is executed to obtain feedback (ci, ri),332

where ci ∈ {0, 1} is the success indicator and333

ri = [tokens,APIcalls, time] captures resource334

usage.335

Supervised Preheating The first stage es-336

tablishes basic path generation capabilities337

through weighted maximum likelihood estimation338

(WMLE) (Shen et al., 2015). By assigning higher339

weights to high-quality paths, we guide the model340

toward solutions that balance success rates and341

resource efficiency:342

LWMLE = −E(x,pi)∼D

T∑
t=1

wi · log πθ(at|st),

wi =
exp(η · (ci − γ∥ri∥2))∑n
j=1 exp(η · (cj − γ∥rj∥2))

,

(8)343

where at is the t-th node in the path pi, st344

represents the state including the problem x345

and previously generated nodes, η scales the346

weight sensitivity, and γ balances correctness347

and resource efficiency. The resource norm348

∥ri∥2 =
√
wtokenr

2
i1 + wAPIr2i2 + wtimer2i3 com-349

bines weighted token, API, and time costs.350

Curriculum-Driven Reinforcement Learning 351

The second stage employs curriculum learn- 352

ing (Bengio et al., 2009) to shift optimization fo- 353

cus from efficiency to correctness progressively. 354

Following the Spider dataset’s complexity catego- 355

rization, we partition problems into four difficulty 356

levels and design a dynamic reward function in- 357

spired by reward-shaping techniques (Wiewiora 358

et al., 2003): 359

R(pi) = α(s) · ci + β(s) · (1− ∥ri∥2
rmax

),

α(s) = αinit · (1−
s− 1

4
), β(s) = 1− α(s),

(9) 360

where s ∈ {1, 2, 3, 4} is the curriculum stage. 361

Early stages emphasize efficiency (β-weighted), 362

while later stages emphasize execution success (α- 363

weighted). 364

Our model is fine-tuned using Proximal Pol- 365

icy Optimization (PPO) (Schulman et al., 2017) 366

with a KL penalty scaled by the coefficient factor 367

βKL (Kakade and Langford, 2002). The training 368

objective combines policy improvement, value esti- 369

mation, and behavioral regularization: 370

LTotal = Lpolicy + Lvalue + βKL ·KL(πθ∥πθold) (10) 371

The PPO policy loss uses importance sampling 372

with clipping to ensure conservative updates (Schul- 373

man et al., 2017): 374

Lpolicy = E
[
min

(
πθ
πθold

Ât, clip

(
πθ
πθold

, 1− ϵ, 1 + ϵ

)
Ât

)]
, (11) 375

where Ât is the advantage estimate comparing ob- 376

served returns to value predictions, and ϵ controls 377

the policy update magnitude. 378

3.3 Module Integration and Interaction 379

TALENT integrates four core components: task 380

tree construction, error recovery, schema link- 381

ing, and path optimization into a cohesive system 382

through the following interactions: 383

• Tree Construction and Error Recovery: 384

The hierarchical tree structure provides natu- 385

ral checkpoints, enabling targeted error isola- 386

tion and recovery while preserving valid com- 387

putations in unaffected branches. 388

• KG-driven schema linking: The KG-driven 389

schema linking enhances decomposition ac- 390

curacy by providing precise database context 391

during the planning phase, preventing seman- 392

tic errors before execution. 393
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• Path Optimization: The RL optimizer re-394

fines decomposition strategies based on exe-395

cution feedback and historical patterns.396

This integrated design creates a self-improving397

system where each component benefits the overall398

pipeline performance.399

4 Experimental Evaluation400

4.1 Experiment Setup401

We implement gpt-3.5 and gpt-4 as the base LLM402

for Tree-based Task Planning, with the temperature403

set to 0 to ensure output stability. For the Path Opti-404

mization component, we employ Llama-3-8B, bal-405

ancing computational cost, reasoning ability, and406

RL training efficiency.407

Dataset We conduct experiments on a widely-408

used text-to-SQL benchmark: Spider (Yu et al.,409

2018). Spider is a comprehensive cross-domain410

text-to-SQL dataset with 10,181 instances and411

5,693 distinct complex SQL queries, categorized412

based on complexity levels.413

Metrics Given the potential for different SQL414

queries to convey the same semantic concept, we415

adopt the official Spider execution accuracy (EX)416

metric, which compares the execution results of417

predicted SQL and ground truth SQL queries.418

Baselines We compared TALENT against two419

types of baselines:420

• LLM Baselines: Zero-shot and few-shot per-421

formance of GPT-3.5-turbo and GPT-4.0 1.422

• In-Context Learning Methods: State-of-the-423

art approaches, including: DINSQL (chain-424

based decomposition) (Pourreza and Rafiei,425

2024), C3SQL (three-stage framework com-426

bining CoT with SQL generation) (Dong et al.,427

2023), and DAILSQL (structure-aware exam-428

ple selection with domain adaptation) (Gao429

et al., 2023). 2430

We integrate a one-random-prompt text-to-SQL431

agent for direct SQL generation for a fair compari-432

son (detailed in Section B.3).433

1results from DAIL-SQL
2Since the LLM-powered Agent approaches have higher

difficulty in re-producing, to ensure a fair and transparent
comparison, we consider the projects that have their predicted
gold file released as high-confidence projects and choose them
as our baselines.

4.2 Baseline Comparison 434

We evaluate TALENT through extensive experi- 435

ments on the Spider development set, comparing 436

it with both pure in-context learning (ICL) ap- 437

proaches (Table 1) and chain-based methods (Table 438

2). Our results demonstrate that planning mecha- 439

nisms significantly enhance performance on com- 440

plex tasks, and TALENT’s tree-structured approach 441

outperforms existing planning strategies across dif- 442

ferent model architectures and sample settings. 443

Execution Accuracy (EX) - Pure ICL Approaches
LLM Planning ICL Approach Overall

GPT-3.5

/ 0-shot 74.4
/ 1-shot (Random) 73.9
/ 3-shot (Random) 73.6
TALENT (Ours) 1-shot (Random) 75.0
/ 5-shot (DAIL-SQL) 75.7

GPT-4.0

/ 0-shot 72.3
/ 1-shot (Random) 77.4
/ 3-shot (Random) 79.4
/ 5-shot (DAIL-SQL) 83.1
TALENT (Ours) 1-shot (Random) 83.2

Table 1: Spider Execution Rate (EX) - Pure In-Context
Learning Approaches

Execution Accuracy (EX) - Chain based ICL Approaches
LLM Planning ICL Approach Overall

GPT-3.5
TALENT (Ours) 1-shot (Random) 75.0
CoT 0-shot + C3SQL 81.8

GPT-4.0
CoT 0-shot + DIN-SQL 72.9
CoT 14-shot + DIN-SQL 82.8
TALENT (Ours) 1-shot (Random) 83.2

Table 2: Spider Execution Rate (EX) - Chain based ICL
Approaches

Conventional approaches show clear perfor- 444

mance limitations in pure ICL scenarios (Table 445

1). With GPT-3.5, increasing demonstration ex- 446

amples from zero-shot to three-shot yields only 447

marginal improvements in execution accuracy 448

(+0.8%). In contrast, TALENT achieves 75.0% ac- 449

curacy with single-shot random examples, surpass- 450

ing the three-shot setting by 1.4%. This improve- 451

ment is more pronounced with GPT-4.0, where 452

TALENT achieves 83.2% accuracy using one-shot 453

examples, outperforming even the carefully curated 454

five-shot DAIL-SQL approach (83.1%). These re- 455

sults demonstrate how structured planning can over- 456

come the limitations of traditional ICL methods 457

through systematic task decomposition. 458
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The advantages of planning mechanisms become459

more evident in chain-based scenarios (Table 2).460

On GPT-4.0, TALENT achieves state-of-the-art ac-461

curacy (83.2%) with one-shot examples, surpass-462

ing DIN-SQL’s performance (82.8%), requiring463

14 demonstration examples. This validates TAL-464

ENT’s ability to reduce error propagation through465

non-linear inference paths, offering superior robust-466

ness compared to linear chain reasoning.467

TALENT demonstrates three key advantages468

over existing approaches:469

• Sample Efficiency: Under identical model470

conditions, TALENT achieves 83.2% accu-471

racy with single-shot random examples, while472

DAIL-SQL and DIN-SQL require 5 and 14473

examples to achieve comparable performance.474

This demonstrates TALENT’s ability to max-475

imize information utility through dynamic476

planning strategies.477

• Task Generalization: Unlike DAIL-SQL and478

DIN-SQL, which rely on domain-specific op-479

timizations, TALENT achieves comparable480

performance using random demonstration ex-481

amples. This demonstrates its effectiveness in482

establishing a generalizable problem-solving483

framework through structured planning.484

• Model Compatibility: TALENT shows con-485

sistent improvements across model architec-486

tures, with performance gains on GPT-3.5 and487

GPT-4.0, respectively, indicating its capability488

to leverage larger model capacities.489

These results validate TALENT’s effectiveness490

in combining structured planning with ICL, offer-491

ing a robust and efficient approach for text-to-SQL492

tasks. The method’s strong performance with mini-493

mal demonstrations makes it particularly valuable,494

as high-quality examples are usually limited.495

4.3 Analysis of Spider Development Set496

Inconsistencies497

Following our baseline experiments, a detailed498

analysis of the evaluation results revealed several499

inconsistencies in the Spider development set’s500

ground truth answers.501

We identified three primary types of inconsisten-502

cies through examination: semantic discrepancies,503

misspelled words, and grammatical errors. Fig. 5504

illustrates a representative case.505

Figure 5: Example of ground truth inconsistency in Spi-
der DEV set: incorrect aggregation operator in a query
comparing population statistics between continents

To address these issues, we developed a correc- 506

tion algorithm that rectifies these inconsistencies 507

while preserving the dataset’s fundamental eval- 508

uation principles. The complete implementation 509

details are available in our code repository. 510

Performance Analysis We gained insights from 511

applying our corrected evaluation metrics (Table 3). 512

While most approaches show improvements in 513

EASY queries (+0.8% to +1.6% points), the per- 514

formance variations become more pronounced in 515

complex categories, where TALENT shows consis- 516

tent improvements in both categories, while other 517

approaches show mixed results. 518

Methodology Analysis The results suggest that 519

underlying methodologies would strongly influ- 520

ence robustness: 521

• Chain-based Fixed Few-shot Methods 522

(DIN-SQL): Using few-shot prompts with 523

identical examples for all queries, DIN-SQL 524

shows the most significant performance de- 525

crease under corrected metrics, suggesting its 526

sensitivity to dataset-specific biases. 527

• Dynamic Few-shot Methods (DAIL-SQL): 528

Despite using only 5-shot prompts, DAIL- 529

SQL’s dynamic example selection strategy 530

shows robust performance, indicating the ad- 531

vantages of adaptive example selection in gen- 532

eralization improvement. 533

• Multi-stage Generation (C3): The three- 534

stage SQL generation approach demonstrates 535

stable performance improvements, with no- 536

table gains in the MEDIUM and HARD cat- 537

egories. This indicates that the multi-stage 538
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Corrected Spider Execution Rate (EX) - DEV Set

LLM Approach
EASY MEDIUM HARD EXTRA OVERALL

Origin New Change Origin New Change Origin New Change Origin New Change Origin New Change

CodeX davinci DIN-SQL 93.1 94.7 1.6 81.6 81.2 -0.4 69 70.8 1.8 50.6 47.6 -3 77.3 75 -2.3

GPT-3.5 TALENT (Ours) 91.5 92.3 0.8 84.5 84.9 0.4 56.3 59.3 3 44.6 45.8 1.2 75 76.2 1.2

GPT-4 DIN-SQL 92.3 93.1 0.8 87.4 83.4 -4 76.4 74.6 -1.8 62.7 56.1 -6.6 82.8 79.9 -2.9

GPT-3.5 C3 92.7 92.7 0 85 87 2 77.6 79.4 1.8 62 63.8 1.8 81.8 83.3 1.5

GPT-4 DAIL-SQL 91.5 92.3 0.8 89.2 91.2 2 77 78.8 1.8 60.2 60.8 0.6 83.2 84.7 1.5

GPT-4 TALENT (Ours) 93.5 94.3 0.8 93.3 95.7 2.4 69.5 72.5 3 54.8 60.2 5.4 83.2 85.8 2.6

Table 3: Comparison of original and corrected execution accuracy (EX) on the Spider development set. Green
indicates positive changes in performance under corrected metrics, while red suggests in the opposite.

reasoning process helps maintain robustness539

in SQL generation tasks.540

• Tree-structured Planning (TALENT): Our541

approach shows the most consistent improve-542

ments across all categories, including strong543

gains in complex queries. The tree-structured544

decomposition provides better robustness545

against dataset artifacts, maintaining high per-546

formance on corrected metrics.547

These findings highlight the importance of548

choosing a methodology to develop robust text-549

to-SQL systems. While fixed prompting strate-550

gies achieve high performance on standard metrics,551

more flexible and adaptive approaches appear to552

have better generalization ability. Our corrected553

evaluation framework provides a more reliable554

benchmark for assessing true model capabilities555

and reveals the advantages of adaptive decomposi-556

tion strategies in complex text-to-SQL tasks.557

4.4 Ablation Studies558

Our systematic ablation study evaluates the con-559

tribution of individual modules to system perfor-560

mance. The results presented in Table 4 illustrate a561

significant decrease in overall performance when562

any of these modules are omitted.563

The tree construction framework proves partic-564

ularly crucial for complex query processing. Its565

absence forces the model to rely on basic coT plan-566

ning, significantly weakening its capacity for struc-567

tured query resolution and self-correction, leading568

to a substantial performance drop, especially in569

Hard and Extra-difficulty queries.570

Similarly, removing KG-driven schema linking571

introduces input redundancies and negatively im-572

pacts SQL generation, particularly in medium-to-573

hard queries, where schema understanding is cru-574

cial. The Path Optimization module also proves575

essential, as its removal leads to a consistent perfor-576

mance decline across all difficulty levels, highlight-577

ing its role in guiding query execution and ensuring 578

overall system reliability. 579

Model Approach EASY MEDIUM HARD EXTRA OVERALL

TALENT
(GPT-4)

Default 94.3 95.7 72.5 60.2 85.8
w/o KG 92.3 92.7 66.7 53.0 81.9
w/o Path Optimization 91.9 87.2 65.6 44.6 77.2
w/o Error Recovery 92.7 87.2 60.3 44.6 78.0
w/o Tree Construction 91.9 91.5 58.0 42.2 77.2

TALENT
(GPT-3.5)

Default 92.3 84.9 59.3 45.8 76.2
w/o KG 90.3 82.1 54.6 41.0 72.8
w/o Path Optimization 88.7 81.6 54.0 40.4 72.0
w/o Error Recovery 89.9 81.8 51.1 36.7 71.3
w/o Tree Construction 89.1 82.3 48.3 30.7 69.9

Table 4: Ablation study on TALENT’s performance
(EX) on the development set, with and without each
module.

5 Conclusion & Limitations 580

This work addresses three fundamental challenges 581

in complex text-to-SQL tasks: query decomposi- 582

tion, error recovery, and schema understanding. 583

Traditional chain-based approaches often struggle 584

with these challenges due to their linear execution 585

patterns and limited error resilience. To overcome 586

these limitations, we present TALENT, a hybrid 587

framework that combines tree-structured planning 588

with knowledge graph-based schema linking and 589

reinforcement learning optimization. 590

Experiments on the Spider benchmark demon- 591

strate TALENT’s effectiveness, and our analysis 592

of Spider development set inconsistencies shows 593

that TALENT’s adaptive decomposition strategy 594

and error recovery mechanism outperforms fixed 595

template-based methods. Furthermore, integrating 596

reinforcement learning enhanced path optimization 597

further enhances the system’s ability to refine de- 598

composition strategies. 599

Despite these strengths, scaling to enterprise 600

databases, particularly in maintaining reasoning 601

efficiency with increased schema complexity, re- 602

mains a challenge. Future work will focus on en- 603

hancing the scalability of our method and explor- 604

ing more sophisticated reinforcement learning al- 605

gorithms for decomposition optimization. 606
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A Extensive Experiments745

A.1 Cross-domain Evaluation on Economic746

Database747

A.1.1 Experimental Setup748

To evaluate TALENT’s cross-domain generaliza-749

tion capability, we conducted extensive experi-750

ments on a real-world macroeconomic database.751

This database consists of 46 interconnected tables752

containing various economic indicators, including753

GDP metrics, financial indices, and commodity754

prices across multiple countries.755

The evaluation followed the Spider benchmark’s756

difficulty stratification, with: 10 easy queries (ex-757

ecuted 3 times each), 10 medium queries (exe-758

cuted 3 times each), 3 hard queries (executed 10759

times each), 3 extra hard queries (executed 10 times760

each).761

We evaluated our approach against three estab-762

lished LLM-driven agent planning methodologies:763

Chain-of-thought (Wei et al., 2022), ReACT (Yao764

et al., 2023), and Reflection (Shinn et al., 2024).765

The evaluation was conducted in two phases: Ini-766

tially, these methodologies were implemented with-767

out our schema linking module, utilizing standard768

prompt templates with complete database schema769

information as input. Subsequently, we integrated770

our KG-driven Schema Linking methods into these771

approaches to assess performance changes.772

A.1.2 Dataset Characteristics773

The economic database exhibits three key charac-774

teristics that distinguish it from the Spider dataset:775

• Scale Complexity: Contains extensive time-776

series data with multiple interconnected eco-777

nomic metrics778

• Naming Diversity: Employs domain-specific779

terminology and varied naming conventions780

• Schema Complexity: Features complex rela-781

tionships between different economic indica-782

tors783

A.1.3 Results and Analysis784

The experimental results in Table 5 demonstrate785

TALENT’s promising performance in handling786

complex real-world databases. Two key observa-787

tions emerge:788

• The KG Schema Linking module consistently789

improves performance across all approaches,790

with particularly significant gains in medium791

and hard queries.792

• TALENT maintains its performance advan- 793

tage across all difficulty levels, showing partic- 794

ular strength in complex queries where base- 795

line methods struggle significantly. 796

A.2 Ablation Study: RL vs. LLM Agent in 797

Path Optimization 798

A.2.1 Implementation Details 799

To validate the effectiveness of our reinforcement 800

learning-based path optimization, we implemented 801

a pure LLM agent-based alternative for compari- 802

son. The agent-based approach follows a similar 803

workflow but relies entirely on LLM for path opti- 804

mization decisions, as illustrated in Figure 6. 805

Figure 6: Process of Path Optimization

As illustrated in Fig. 6, the LLM agent-based op- 806

timization module operates in three primary stages. 807

First, it extract each parent node’s task descrip- 808

tion and potential SQL operations (derived from 809

the initial task decomposition phase). 810

Second, the system would search the exemplar 811

base to identify matching exemplars, including the 812

negative and positive ones. 813

Third, the process proceeds by sending three key 814

components to our Assess Agent: (1) the selected 815

exemplars, (2) the parent node’s task description, 816

and (3) its corresponding sub-tasks. 817

Through comparative analysis of these compo- 818

nents, the Agent evaluates the effectiveness of the 819

current decomposition strategy. When the evalua- 820

tion indicates suboptimal decomposition, the sys- 821

tem triggers a re-decomposition of the parent node. 822

This algorithm is also formally presented in Alg. 1. 823

A.2.2 Performance Comparison 824

Comparison between RL and Agent approach

Path Optimization Approach Overall EX Ave Time Cost

TALENT LLM Agent 81.9 29.3s

TALENT Reinforcement Learning 83.2 20.7s

Table 6: Comparison between Reinforcement Learning
enhanced and Agent approach

11



Performance Comparison on Economic Database with and without KG Schema Linking
LLM Approach EASY MEDIUM HARD EXTRA

W/O W W/O W W/O W W/O W
GPT-4 Chain-of-Thought (Wei et al., 2022) 53.3 70.0 33.3 63.3 0.0 0.0 0.0 0.0

GPT-4 ReACT (Yao et al., 2023) 56.7 76.7 46.7 70.0 0.0 11.1 0.0 0.0

GPT-4 Reflexion (Shinn et al., 2024) 66.6 86.7 53.3 73.3 11.1 22.2 0.0 11.1
GPT-4 TALENT (Ours) 86.7 93.3 80.0 90.0 66.7 77.8 46.7 55.6

Table 5: Performances on real-world database environment - with & without KG Schema Linking

The comparative analysis reveals two key advan-825

tages of the Reinforcement Learning-based ap-826

proach:827

• Performance Advantage: The RL-based828

method achieves higher execution accuracy829

(83.2% vs 81.9%), demonstrating more reli-830

able path optimization.831

• Efficiency Gain: A significant 29.3% reduc-832

tion in average processing time (from 29.3s to833

20.7s) indicates superior computational effi-834

ciency.835

These improvements can be attributed to: (1) RL836

model’s ability to learn optimal decomposition pat-837

terns from historical executions. (2) Reduced token838

consumption compared to LLM-based agents. (3)839

More systematic exploration of the solution space.840

Algorithm 1 Tree Optimization841

Input: tree: treelib.Tree, db info: dict842

Output: tree: treelib.Tree843

1: function IF REBUILD(parent, tree)844

2: pos case, neg case = Get Cases (parent)845

3: is correct = Contrastive Learning (pos case,846

neg case, parent, children)847

4: return is correct848

5: end function849

6:850

7: function TREE OPTIMIZATION(tree, db info)851

8: for parent in tree.parents do852

9: flag = IF REBUILD (parent, tree)853

10: if ! flag then854

11: tree.remove children(parent)855

12: tree = NODE GORWING (parent,856

db info, tree)857

13: end if858

14: end for859

15: return tree860

16: end function861

A.3 Supplementary Materials 862

A.3.1 Database Schema Details 863

Sample Database Schema

CREATE TABLE
‘101_gdpingermany_namegdp‘ ( ‘time‘
datetime DEFAULT NULL, ‘china‘
double DEFAULT NULL, ‘usa‘ double
DEFAULT NULL, ‘japan‘ double
DEFAULT NULL, ‘germany‘ double
DEFAULT NULL, ‘u.k.‘ double DEFAULT
NULL, ‘switzerland‘ double DEFAULT
NULL ) ENGINE = InnoDB DEFAULT
CHARSET = utf8mb4 COLLATE =
utf8mb4_general_ci;

864

A.3.2 Knowledge Graph Structure 865

Knowledge Graph Sample

[time, data_type, datetime]
[spot_uaedubai_crudeoil, data_type,
double]
[spot_wti, data_type, double]
[spot_brent, data_type, double]
[spot_china_crudeoil, data_type,
double]
[spot_opec_crudeoil, data_type,
double]

866

A.3.3 Evaluation Tasks 867

Tasks were carefully designed to cover various com- 868

plexity levels and economic scenarios. Example 869

tasks include: 870

Sample Tasks

(1) Easy: “I want to know the
highest spot price of gold in
Japan.”

871
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(2) Easy: “I want to know Japan’s
actual GDP after year 2000.”
(3) Easy: “Can you show me Japan’s
GDP per capita in 2012?”
(4) Easy: “How about the
unemployment rate of Japan after
year 2010?”
(5) Easy: “I would like to know how
much foreign direct investment the
U.K. had in 2008.”
(6) Easy: “How much foreign
exchange storage does the U.S.A
have in 2020?”
(7) Easy: “What was Japan’s stock
market index in 1950?”
(8) Easy: “What is the lowest energy
price in Switzerland?”
(9) Easy: “I’d like to see the
five highest spot cotton prices in
Japan.”
(10) Easy: “In how many years
has Japan’s GDP per capita above
10,000?”
(11) Medium: “I’d like to see the
years when Japan’s actual GDP was
higher than its name GDP.”
(12) Medium: “Between 1990 and 2020,
in how many years did Japan’s GDP
per capita exceed 10,000?”
(13) Medium: “For how many times was
Japan’s stock market index higher
than that of the U.S.A?”
(14) Medium: “How much lower is the
highest actual GDP in Japan than the
highest actual GDP in the US?”
(15) Medium: “What are Germany’s
stock market indexes when its
industrial production index is
above 10?”
(16) Medium: “When Japan’s real GDP
is greater than 10, what are the
interest rate for the corresponding
times?”
(17) Medium: “What are the
corresponding energy prices of
Japan when its savings rate is lower
than 45?”
(18) Medium: “What was Japan’s
highest spot gold price during
Japan’s cotton futures prices were

872

above 13000?”
(19) Medium: “What is the highest
GDP per capita in Germany in years
when the Japanese stock market index
is above 30,000?”
(20) Medium: “What is the average
GDP per capita in Japan in years
when the Japan’s house price index
is higher than 25?”
(21) Hard: “I want to know the
Japan’s stock market index at the
time Japan’s house price index
reached its highest pitch.”
(22) Hard: “What were Japan’s
interest rate and consumer price
index when Japan’s unemployment
rate peaked?”
(23) Hard: “What is the average
spot cotton price of Japan in years
when the Japan’s house price index
is above 25 and the U.K. frequent
account balance is above 120?”
(24) Extra: “I want to see the
spot London prices of all metals
at 2012-12-12.”
(25) Extra: “I’d like to see Japan’s
spot prices of grains(wheat, corn,
soybeans) on July 1, 2022.”
(26) Extra: “I want to know
the historical highest spot London
prices of all metals.”

873

B Prompt Design 874

B.1 Tree Construction 875

Prompt 1: Task Decompose

Now you are a professional SQL
engineer, I’m going to give you
a [original task] and a [database
information] to accomplish the task.
If you think the [original task]
is too hard for one LLM to finish,
then try to decompose the [original
task] into several [sub-tasks].
Your one action should follow the
framework below:
input:
[original task]: data selection
task, given externally.

876
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[database information]: Database
information, given externally
output:
[thinking]: Fully based on the
given [original task], please think
step by step, find out how
to decompose the [original task]
reasonably.
[Decompose or not]: Answer ’yes’,
or ’no’
[Sub-tasks]: Sub-tasks that are
decomposed from the [original task].
If the task don’t need to be
decomposed, leave this part empty.

877

B.2 Knowledge Graph878

Prompt 2: Related KG Searching

I’m going to give you a goal and
several tables, you need to think
step by step, and help me find
the tables that may be used when
accomplishing the goal. As you
only know the table name, to make
sure all needed tables are included,
you should think more carefully and
return all the relevant tables. for
each [goal] provided below, extract
and list the tables that might be
used.
Input:
[goal]: The goal that should be
accomplished, given externally.
[tables]: All the data tables that
are provided in the database, given
externally.
Output:
[thinking]: Your thinking about
related tables.
[related tables]: The list of
related tables.

879

B.3 Task Execution Agents880

Prompt 3.1: Code Checking

You are a professional SQL engineer,
I’m going to give you a task, a sql
code and a description of database.
According to the given information,
tell me if the code could finish the

881

task, if not, try to fix it, or just
tell me “correct”. Your one action
should follow the framework below:
input:
[task]: Task that should be
finished, given externally.
[SQL code]: Half-completed SQL
code, given externally.
[database description]:
Description of database, given
externally.
output:
[thinking]: According to the given
[task], [SQL code], and [database
description], think step by step,
figure out if the code given to
you could achieve the task, if not,
where is the problem.
[correct or not]: Based on the given
information and your thinking, if
the code is correct, return yes, if
not, return no.(Just return “yes”
or “no”!)
[final SQL]: SQL code that you
generated.

882

Prompt 3.2: Bug Fixing

You are a professional SQL engineer,
I’m going to give you a SQL code,
a description of database, and a
error message. According to the
given information, modify the SQL
code. Your one action should follow
the framework below:
input:
[SQL code]: Half-completed SQL
code, given externally
[database description]:
Description of database, given
externally
[error message]: Error caused when
using the SQL code
output:
[thinking]:According to the given
[sql code], [database description]
and [error message], think step
by step, figure out where is the
problem and give a suggestion on
code modification.

883
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[final SQL]: SQL code that you
generated.

884

Prompt 3.3: Code Generating

You are a professional SQL engineer,
I’m going to give you a task,
a half-completed SQL code and a
description of database. According
to the given information, generate
a SQL code to accomplish the task.
Your one action should follow the
framework below:
input:
[task]: Task that should be
finished, given externally.
[half-completed SQL code]:
Half-completed SQL code, given
externally.
[tasks already finished]:
Tasks that have finished, the
[half-completed SQL code] is the
code that could accomplish those
tasks.
[database description]:
Description of database, given
externally.
output:
[thinking]: According to the given
[task], [half-completed SQL code],
and [database description], think
step by step, and try to generate a
SQL code that could accomplish the
task.
[final SQL]: SQL code that you
generated.

885
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