TALENT: Tree-structured Adaptive Learning for Efficient Text-to-SQL
Generation

Anonymous ACL submission

Abstract

Text-to-SQL systems face increasing chal-
lenges in managing complex query genera-
tion tasks while maintaining computational ef-
ficiency. While recent approaches leverage
Large Language Models (LLMs) through chain-
based decomposition, they often struggle with
error propagation and limited adaptability. To
navigate these challenges, we propose TAL-
ENT, a hybrid framework that addresses these
limitations through tree-structured task plan-
ning and reinforcement learning optimization.
Our solution contributes two methodological
advancements: (1) a flexible tree-based decom-
position framework that enables targeted error
recovery and reduces inter-task coupling, and
(2) a reinforcement learning-enhanced adaptive
path optimization mechanism that leverages his-
torical execution patterns to enhance model per-
formance. Our empirical evaluation, conducted
on the Spider benchmark demonstrate TAL-
ENT’s effectiveness, achieving 85.8% execu-
tion accuracy with minimal training examples.
Through systematic ablation studies and arti-
fact analysis, we further demonstrate the frame-
work’s enhanced robustness against dataset bi-
ases. These results indicate that structured task
orchestration coupled with self-improving opti-
mization can effectively address the demands
for accuracy and reliability of text-to-SQL con-
version. The complete implementation is avail-
able at https://github.com/FIC/TALENT.

1 Introduction

Text-to-SQL systems have become essential in
modern human-computer interaction. While con-
ventional end-to-end neural architectures have
shown success in direct translation (Shi et al.,
2018), they face increasing challenges as databases
grow in complexity: complex syntax interpreta-
tion, task complexity management, and semantic
disambiguation (Liu et al., 2023).

The emergence of Large Language Models
(LLMs) has introduced a paradigm shift in address-

ing these challenges through task decomposition.
Recent approaches like DINSQL (Pourreza and
Rafiei, 2024) and C3SQL (Dong et al., 2023) have
shown promise using the chain-based decomposi-
tion approach (Chain of Thought (Wei et al., 2022)).
They face two fundamental challenges: error prop-
agation in tightly coupled sub-tasks and limited
adaptive capabilities (Suzgun et al., 2022). Their
tightly coupled sequential structure means early-
stage errors can propagate through the entire chain,
while the interdependence between sub-tasks com-
plicates error recovery.

We identify two distinct types of failures: execu-
tion errors (e.g., invalid SQL syntax) and planning
errors (suboptimal task decomposition). While Ex-
ecution errors provide clear signals for correction,
planning errors often remain undetected until ir-
reparable downstream failures occur.

Existing methods, such as ReACT (Yao et al.,
2023) and Reflexion (Shinn et al., 2024), tackle
this problem through global re-execution and re-
planning. However, this resource-intensive ap-
proach yields diminishing returns, with each itera-
tion consuming more resources.

Building upon these insights, we propose TAL-
ENT, a hybrid system guided by two principles: (1)
Task decoupling to minimize error propagation and
(2) Information augmentation through execution
histories. Our key contributions include:

* A tree-structured task planning framework
that enables flexible decomposition and tar-
geted error recovery to address chain-based
approaches’ limitations.

* A Planning Enhancement Model that inte-
grates curriculum-driven reinforcement learn-
ing. Using tree-structured decomposition pat-
terns and execution feedback, developing path
optimization skills.

Extensive evaluation on the Spider (Yu et al.,

https://github.com/FIC/TALENT

2018) benchmark demonstrates TALENT’s effec-
tiveness in addressing core text-to-SQL challenges:
achieving state-of-the-art performance with simple
random one-shot prompting, surpassing existing
In-Context-Learning Enhanced systems, including
C3SQL, DINSQL, and DAILSQL. These results
validate our approach’s effectiveness in address-
ing the core challenges of text-to-SQL translation
while enhancing robustness.

2 Related Work

The evolution of data access tools presents a trade-
off between usability and functionality. While
form-based interfaces prioritize accessibility, SQL
offers comprehensive query capabilities at the cost
of significant learning barriers (Codd, 1974). Text-
to-SQL research emerges to bridge this gap by com-
bining natural language’s intuitiveness with SQL’s
computational power (Katsogiannis-Meimarakis
and Koutrika, 2023).

Early approaches utilizing end-to-end neural ar-
chitectures (Zhong et al., 2017; Xu et al., 2017)
faced complex syntax interpretation and seman-
tic disambiguation challenges. The advent of
LLMs (Touvron et al., 2023; Achiam et al., 2023)
has revolutionized this field, introducing two pri-
mary methodological streams: In-Context Learning
(ICL) and planning-based methods.

ICL approaches leverage few-shot demonstra-
tions to guide LLMs in SQL generation (Gao et al.,
2023). While methods like DAIL-SQL enhance
performance through adaptive example selection,
their effectiveness remains dependent on demon-
stration quality and selection strategy. Planning-
based methods, evolving from Chain-of-Thought
(CoT) prompting (Wei et al., 2022), decompose
complex queries into manageable sub-tasks. This
approach, exemplified by DINSQL (Pourreza and
Rafiei, 2024) and C3SQL (Dong et al., 2023), has
demonstrated promising results. Recent error cor-
rection mechanisms (Shinn et al., 2024; Yao et al.,
2023) further enhance robustness through environ-
ment feedback and task re-planning.

While these approaches have advanced the field,
they face three key limitations: error propagation
due to tightly coupled sub-tasks, computational
overhead from iterative correction processes, and
suboptimal decomposition strategies resulting from
linear execution patterns. Our work addresses these
challenges through a hybrid framework combining
tree-structured planning with reinforcement learn-

ing optimization, enabling flexible error recovery
while maintaining computational efficiency.

3 Methodology

Complex text-to-SQL tasks face three main chal-
lenges: query decomposition, error recovery, and
schema understanding. Chain-based methods of-
ten fail due to linear execution and limited error
resilience, while optimizing closed-source LLMs
for specific tasks incurs high operational costs.

To address this, we propose TALENT, a hy-
brid framework integrating: (1) A tree-structured
task planning integrated with a knowledge graph
(KG)-based schema linking mechanism that en-
ables flexible task decomposition, adaptive error
recovery, and accurate database understanding;
(2) A reinforcement learning module that refines
decomposition strategies based on historical pat-
terns. The system’s architecture, illustrated in
Fig. 1, demonstrates how these components col-
laboratively achieve both execution accuracy and
computational efficiency.

3.1 Tree-based Task Planning

Our tree-structured task planning system consists
of three key components: (1) a hierarchical task
decomposition mechanism, (2) a dynamic error re-
covery module, and (3) a knowledge graph-driven
schema linking approach. These components work
collaboratively to break down complex queries,
handle execution failures, and ensure accurate
schema understanding.

3.1.1 Task Tree Construction

While chain-based mechanisms like Chain of
Thought (CoT) (Wei et al., 2022) decompose tasks
linearly, complex query processing requires a more
comprehensive approach (Khot et al., 2022). We
propose a hierarchical decomposition framework
that progressively breaks tasks into manageable
sub-tasks. The construction process consists of
three main phases, as illustrated in Fig. 2:

Root

Task
Tree

Building

=========

o
H R

[ATeTclole] [aleslec

Figure 2: Detail Process of Task Tree Building

Task Planning

Database Query (Natural Language)

Tree

.

C

i \ -
RO ! Knowledge Graph- | Building
o 0° i driven i
e) ! Schema Linking 1 L

Task Execution

If fail

Action |====

RL-enhanced]
Path i

1

1

Optimization Predicted SQL

Figure 1: General architecture of TALENT

Initial Tree Formation Given a complex task
(e.g., “ABCDE”), our system first establishes a root
node containing the complete task description. This
serves as the starting point for subsequent decom-
position.

Recursive Decomposition For each non-leaf
node, we perform:

1) Complexity Assessment: The system evalu-
ates task complexity through:

C = argmax P(C|x, R),
Ce{0,1}

ey

where x denotes the task description, C' indicates
complexity (1 for complex, O for simple), and R
represents predefined evaluation criteria. The as-
sessment considers structural complexity regarding
required tables and joins, semantic complexity re-
garding nested queries and aggregations, and data
manipulation complexity based on operation types.

2) Sub-task Generation: For tasks identified
as complex (C' = 1), the system generates optimal
sub-tasks according to:

P = argmax P(p|z, S)

peP

n
HP(pt|$7 Sapl) "'7pt—1)7
t=1

2

where z is the query, S is schema information, and
{p1,p2, ..., pn} denotes the sub-task sequence.

Leaf Node Formation The decomposition pro-
cess continues recursively until all sub-tasks are
classified as “simple”. These terminal nodes form
the executable components of our task tree.

This tree-structured design achieves dual ben-
efits. The sequential connectivity of leaf nodes
naturally generates executable plans. In contrast,
parent nodes enable complete traceability across

the execution pathway, facilitating efficient task
execution while providing robust error recovery
capabilities, as discussed in the following section.

3.1.2 Error Recovery Mechanism

Chain-based correction mechanisms like ReACT
and Reflexion struggle with structural-level error re-
covery due to their linear execution nature (Ji et al.,
2024). We propose an error recovery mechanism
that leverages our tree-structured architecture to en-
able dynamic error recovery. The process consists
of three phases, as illustrated in Fig. 3:

Erroneous
Sub-Tree
Re-

Building Tree Structure Tree Structu Tree Structure
[ABCDE] [ABCDE | [ABCDE |
AT "B T o€] AT B T e (AT B T oE
[— 1 I — [

[ATeTeTo[E] [aT [DTE] [ATesTcTolE]
L

5 | c- A |8

Rosut | Resut Rosutt| Resut

Figure 3: Detail Process of Erroneous Sub-Tree Re-
Building

Error Detection and Assessment When node
execution fails (e.g., node C’* in Fig. 3), our system
first attempts standard ReACT recovery. If the
error persists, the associated sub-tree is marked
as “Erroneous,” triggering our specialized recovery
mechanism.

Selective Tree Reconstruction The recovery
proceeds in two steps:

1) Pruning Operation: Inspired by CART’s
pruning methodology (Lewis, 2000), the system
performs targeted removal of affected components
while preserving valid executions:

Tpruned =T- S(C/*) (3)

where S(C"*) represents sibling nodes of the error
node, and 7" denotes the original task tree. This
selective pruning ensures minimal disruption to
successfully executed branches.

2) Sub-tree Regeneration: The system recon-
structs the affected sub-tree using structured error
information:

T, = Tpruned U Ts,ubtree ()
= Lpruned) Mrebuild(cl*, B/, E(C/*)),

where M.cpyi1q4 Tepresents our specialized LLM
agent that incorporates error context £(C"*) to gen-
erate optimized recovery plans.

Execution Resumption Following successful
sub-tree reconstruction, execution resumes from
node B, ensuring seamless integration of the recov-
ered branch with the existing execution state.

This recovery mechanism achieves two key ad-
vantages. First, it enables structural-level error han-
dling, significantly enhancing recovery robustness.
Second, it maintains computational efficiency by
preserving valid execution states and unaffected
branches. These capabilities form the foundation
for our subsequent schema-linking mechanism, fur-
ther enhancing query understanding.

3.1.3 Knowledge Graph-driven Schema
Linking
Database schema understanding is crucial for SQL
generation. However, both insufficient and re-
dundant contextual information can impair the
model performance, leading to the “illusion phe-
nomenon” (Ji et al., 2023). To address this, we pro-
pose a lightweight, property-oriented knowledge
graph module that enhances schema understanding
while maintaining computational efficiency.
Unlike conventional KG approaches that require
extensive model training (Chen et al., 2020), our
knowledge graph requires no model training to fit
in dynamic database environments (See Section A.1
for more details), automatically extracts and orga-
nizes database components (tables, columns, and
relationships) into semantic triples. We employ
a two-stage inference process to identify relevant
schema information:

KGopt = ffilter(ftable(KGfulla Q)> Q)7 (5)

where K G, represents the complete database
schema, q is the input query, f;qs. identifies rele-
vant tables, and f e, selectively includes columns

when the table count exceeds a predefined thresh-
old 7 (empirically set as 2 for Spider dataset).

The effectiveness of our KG-driven approach is
particularly evident in disambiguating semantically
ambiguous queries. Consider the ambiguous query:
“Find students who took Biology and Chemistry.”
This could mean either (a) students enrolled in both
subjects or (b) students enrolled in at least one
subject. As shown in Fig. 4, our KG representation
naturally resolves this ambiguity through its one-
to-many relationship between students and courses,
favoring the conjunctive interpretation.

Find students who took Biology and ‘:D:‘ 7, [students who took both Biology AND
Chemistry. b Students (e —| Chemistry
name

(100)

Enroliments (s.nam
ent_id KEY, Students s
Enroliments e1

(<0,

4 (20),
KEY (student_id)
Students(student_id)

Figure 4: Database Schema’s Role in Query Disam-
biguation

This mechanism ensures that only the most per-
tinent schema information is provided to the exe-
cution agents, effectively addressing information
insufficiency and redundancy problems while main-
taining LLM compatibility.

3.2 Path Optimization via Reinforcement
Learning

While our tree-based framework facilitates task de-
composition, optimizing execution paths requires a
systematic approach (Latif, 2024). Although LLMs
are effective in decomposition and execution, they
face limitations in computational efficiency.

We propose a curriculum-driven reinforcement
learning framework that progressively optimizes
decomposition strategies through historical exe-
cution patterns. This approach combines super-
vised preheating for establishing basic capabilities
with curriculum-based RL for adaptive optimiza-
tion (Silver et al., 2014), ensuring efficiency and
adaptability.

3.2.1 Problem Formulation

Our solution employs a transformer-based archi-
tecture with a policy network fp : S — A(A)
mapping states to action distributions, and a value
network vy : S — R estimating expected returns.
Given a problem instance x € X and initial state
S0, we aim to find an optimal policy 7* that maxi-
mizes the objective:

* Vﬂ'(so)
T = argmax

M gl aC) O

where C'(7) denotes the expected resource cost,
Vi (s0) represents the expected cumulative reward
under policy 7:

T
Ve(50) = Ermr [Z th(st,amsO] (7

t=0

3.2.2 Training Process

Due to the large discrete action space and the multi-
objective nature of our task, direct reinforcement
learning in such a setting would be unstable, as ran-
dom exploration rarely yields successful paths, and
the reward signals are inherently sparse (Van Has-
selt et al., 2016). We implement a two-stage train-
ing framework to address these challenges by com-
bining supervised learning’s efficiency with re-
inforcement learning’s adaptability (Silver et al.,
2016).

Data Collection and Preparation For each ques-
tion x, we leverage our tree construction module to
generate n diverse candidate paths {p1, p2, ..., pn }-
Each path p; is executed to obtain feedback (c;, 7;),
where ¢; € {0,1} is the success indicator and
r; = [tokens, APIcalls,time] captures resource
usage.

Supervised Preheating The first stage es-
tablishes basic path generation capabilities
through weighted maximum likelihood estimation
(WMLE) (Shen et al., 2015). By assigning higher
weights to high-quality paths, we guide the model
toward solutions that balance success rates and
resource efficiency:

T
Lwmie = —E(py~p Z w; - log mp(ag|st),
t=1 3)
exp(n - (¢ — ylrill2))
> exp(n - (¢j —vllrjll2))’

w; =

where a; is the ¢-th node in the path p;, s¢
represents the state including the problem =z
and previously generated nodes, 1 scales the
weight sensitivity, and ~ balances correctness
and resource efficiency. The resource norm

_ 2 2 2
||riH2 = \/wtokenril + WAPIT}H + WiimeTj3 COM-
bines weighted token, API, and time costs.

Curriculum-Driven Reinforcement Learning
The second stage employs curriculum learn-
ing (Bengio et al., 2009) to shift optimization fo-
cus from efficiency to correctness progressively.
Following the Spider dataset’s complexity catego-
rization, we partition problems into four difficulty
levels and design a dynamic reward function in-
spired by reward-shaping techniques (Wiewiora
et al., 2003):

R(ps) = als) - e + B(s) - (1 — Mmill2y,
T'mazx (9)

L), Bls) = 1—als),

s —

4

a(s) = tnit - (1 —

where s € {1,2,3,4} is the curriculum stage.
Early stages emphasize efficiency (3-weighted),
while later stages emphasize execution success (-
weighted).

Our model is fine-tuned using Proximal Pol-
icy Optimization (PPO) (Schulman et al., 2017)
with a KL penalty scaled by the coefficient factor
Br 1 (Kakade and Langford, 2002). The training
objective combines policy improvement, value esti-
mation, and behavioral regularization:

LTotal = Lpolicy + Cvalue + ﬁKL . KL(T"GHWGUM) (10)

The PPO policy loss uses importance sampling
with clipping to ensure conservative updates (Schul-
man et al., 2017):

Lpoticy = E [min < 7o At,clip (6 1—e 14 e) At>} , (1 1)

TBoiq T o1

where A, is the advantage estimate comparing ob-
served returns to value predictions, and € controls
the policy update magnitude.

3.3 Module Integration and Interaction

TALENT integrates four core components: task
tree construction, error recovery, schema link-
ing, and path optimization into a cohesive system
through the following interactions:

* Tree Construction and Error Recovery:
The hierarchical tree structure provides natu-
ral checkpoints, enabling targeted error isola-
tion and recovery while preserving valid com-
putations in unaffected branches.

* KG-driven schema linking: The KG-driven
schema linking enhances decomposition ac-
curacy by providing precise database context
during the planning phase, preventing seman-
tic errors before execution.

* Path Optimization: The RL optimizer re-
fines decomposition strategies based on exe-
cution feedback and historical patterns.

This integrated design creates a self-improving
system where each component benefits the overall
pipeline performance.

4 Experimental Evaluation

4.1 Experiment Setup

We implement gpt-3.5 and gpt-4 as the base LLM
for Tree-based Task Planning, with the temperature
set to 0 to ensure output stability. For the Path Opti-
mization component, we employ Llama-3-8B, bal-
ancing computational cost, reasoning ability, and
RL training efficiency.

Dataset We conduct experiments on a widely-
used text-to-SQL benchmark: Spider (Yu et al.,
2018). Spider is a comprehensive cross-domain
text-to-SQL dataset with 10,181 instances and
5,693 distinct complex SQL queries, categorized
based on complexity levels.

Metrics Given the potential for different SQL
queries to convey the same semantic concept, we
adopt the official Spider execution accuracy (EX)
metric, which compares the execution results of
predicted SQL and ground truth SQL queries.

Baselines We compared TALENT against two
types of baselines:

* LLM Baselines: Zero-shot and few-shot per-
formance of GPT-3.5-turbo and GPT-4.0 !.

* In-Context Learning Methods: State-of-the-
art approaches, including: DINSQL (chain-
based decomposition) (Pourreza and Rafiei,
2024), C3SQL (three-stage framework com-
bining CoT with SQL generation) (Dong et al.,
2023), and DAILSQL (structure-aware exam-
ple selection with domain adaptation) (Gao
etal., 2023). 2

We integrate a one-random-prompt text-to-SQL
agent for direct SQL generation for a fair compari-
son (detailed in Section B.3).

'results from DAIL-SQL

*Since the LLM-powered Agent approaches have higher
difficulty in re-producing, to ensure a fair and transparent
comparison, we consider the projects that have their predicted
gold file released as high-confidence projects and choose them
as our baselines.

4.2 Baseline Comparison

We evaluate TALENT through extensive experi-
ments on the Spider development set, comparing
it with both pure in-context learning (ICL) ap-
proaches (Table 1) and chain-based methods (Table
2). Our results demonstrate that planning mecha-
nisms significantly enhance performance on com-
plex tasks, and TALENT’s tree-structured approach
outperforms existing planning strategies across dif-
ferent model architectures and sample settings.

Execution Accuracy (EX) - Pure ICL Approaches

LLM Planning ICL Approach Overall
/ 0-shot 74.4
/ 1-shot (Random) 73.9

GPT-3.5 | / 3-shot (Random) 73.6
TALENT (Ours) 1-shot (Random) 75.0
/ 5-shot (DAIL-SQL) 75.7
/ 0-shot 72.3
/ 1-shot (Random) 77.4

GPT-4.0 | / 3-shot (Random) 79.4
/ 5-shot (DAIL-SQL) 83.1
TALENT (Ours) | 1-shot (Random) 83.2

Table 1: Spider Execution Rate (EX) - Pure In-Context
Learning Approaches

Execution Accuracy (EX) - Chain based ICL Approaches
LLM Planning ICL Approach Overall
GPT-3.5 TALENT (Ours) 1-shot (Random) 75.0

CoT 0-shot + C3SQL 81.8
CoT 0-shot + DIN-SQL 72.9
GPT-4.0 | CoT 14-shot + DIN-SQL 82.8
TALENT (Ours) | 1-shot (Random) 83.2

Table 2: Spider Execution Rate (EX) - Chain based ICL
Approaches

Conventional approaches show clear perfor-
mance limitations in pure ICL scenarios (Table
1). With GPT-3.5, increasing demonstration ex-
amples from zero-shot to three-shot yields only
marginal improvements in execution accuracy
(+0.8%). In contrast, TALENT achieves 75.0% ac-
curacy with single-shot random examples, surpass-
ing the three-shot setting by 1.4%. This improve-
ment is more pronounced with GPT-4.0, where
TALENT achieves 83.2% accuracy using one-shot
examples, outperforming even the carefully curated
five-shot DAIL-SQL approach (83.1%). These re-
sults demonstrate how structured planning can over-
come the limitations of traditional ICL methods
through systematic task decomposition.

The advantages of planning mechanisms become
more evident in chain-based scenarios (Table 2).
On GPT-4.0, TALENT achieves state-of-the-art ac-
curacy (83.2%) with one-shot examples, surpass-
ing DIN-SQL’s performance (82.8%), requiring
14 demonstration examples. This validates TAL-
ENT’s ability to reduce error propagation through
non-linear inference paths, offering superior robust-
ness compared to linear chain reasoning.

TALENT demonstrates three key advantages
over existing approaches:

* Sample Efficiency: Under identical model
conditions, TALENT achieves 83.2% accu-
racy with single-shot random examples, while
DAIL-SQL and DIN-SQL require 5 and 14
examples to achieve comparable performance.
This demonstrates TALENT’s ability to max-
imize information utility through dynamic
planning strategies.

¢ Task Generalization: Unlike DAIL-SQL and
DIN-SQL, which rely on domain-specific op-
timizations, TALENT achieves comparable
performance using random demonstration ex-
amples. This demonstrates its effectiveness in
establishing a generalizable problem-solving
framework through structured planning.

* Model Compatibility: TALENT shows con-
sistent improvements across model architec-
tures, with performance gains on GPT-3.5 and
GPT-4.0, respectively, indicating its capability
to leverage larger model capacities.

These results validate TALENT’s effectiveness
in combining structured planning with ICL, offer-
ing a robust and efficient approach for text-to-SQL
tasks. The method’s strong performance with mini-
mal demonstrations makes it particularly valuable,
as high-quality examples are usually limited.

4.3 Analysis of Spider Development Set
Inconsistencies

Following our baseline experiments, a detailed
analysis of the evaluation results revealed several
inconsistencies in the Spider development set’s
ground truth answers.

We identified three primary types of inconsisten-
cies through examination: semantic discrepancies,
misspelled words, and grammatical errors. Fig. 5
illustrates a representative case.

: population < (SELECT

y min(population) FROM
:country WHERE Continent
1= “Asia”

max(population) FROM
country WHERE Continent
= “Asia”

1 1
1 Original: I 1 Corrected: !
orig ® @:
: SELECT Name :SELECT Name :
1 FROM country 1 FROM country |
' WHERE | WHERE 1
Continent = “Africa” 1 Continent = “Africa” :
1
[}
1
1
1
[}
[}
1

1
1
i
! :
1
1
| AND 1 1AND
' population < (SELECT '
1
! !
! 1
! 1

Figure 5: Example of ground truth inconsistency in Spi-
der DEV set: incorrect aggregation operator in a query
comparing population statistics between continents

To address these issues, we developed a correc-
tion algorithm that rectifies these inconsistencies
while preserving the dataset’s fundamental eval-
uation principles. The complete implementation
details are available in our code repository.

Performance Analysis We gained insights from
applying our corrected evaluation metrics (Table 3).
While most approaches show improvements in
EASY queries (+0.8% to +1.6% points), the per-
formance variations become more pronounced in
complex categories, where TALENT shows consis-
tent improvements in both categories, while other
approaches show mixed results.

Methodology Analysis The results suggest that
underlying methodologies would strongly influ-
ence robustness:

* Chain-based Fixed Few-shot Methods
(DIN-SQL): Using few-shot prompts with
identical examples for all queries, DIN-SQL
shows the most significant performance de-
crease under corrected metrics, suggesting its
sensitivity to dataset-specific biases.

* Dynamic Few-shot Methods (DAIL-SQL):
Despite using only 5-shot prompts, DAIL-
SQL’s dynamic example selection strategy
shows robust performance, indicating the ad-
vantages of adaptive example selection in gen-
eralization improvement.

* Multi-stage Generation (C3): The three-
stage SQL generation approach demonstrates
stable performance improvements, with no-
table gains in the MEDIUM and HARD cat-
egories. This indicates that the multi-stage

Corrected Spider Execution Rate (EX) - DEV Set
LLM Approach _ EASY _ MEDIUM _ HARD _ EXTRA _ OVERALL
Origin New Change | Origin New Change | Origin New Change | Origin New Change | Origin New Change
CodeX davinci DIN-SQL 93.1 947 1.6 81.6 81.2 -0.4 69 70.8 1.8 50.6 47.6 -3 773 75 223
GPT-3.5 TALENT (Ours) | 91.5 923 0.8 845 849 0.4 563 593 3 446 458 1.2 75 76.2 1.2
GPT-4 DIN-SQL 923 931 0.8 874 834 -4 764 74.6 -1.8 627 56.1 -6.6 828 799 -2.9
GPT-3.5 C3 927 927 0 85 87 2 776 794 1.8 62 63.8 1.8 81.8 833 1.5
GPT-4 DAIL-SQL 915 923 0.8 892 912 2 77 78.8 1.8 60.2 608 0.6 832 847 1.5
GPT-4 TALENT (Ours) | 93.5 943 0.8 933 957 24 69.5 725 3 548 602 54 832 858 2.6

Table 3: Comparison of original and corrected execution accuracy (EX) on the Spider development set. Green
indicates positive changes in performance under corrected metrics, while red suggests in the opposite.

reasoning process helps maintain robustness
in SQL generation tasks.

* Tree-structured Planning (TALENT): Our
approach shows the most consistent improve-
ments across all categories, including strong
gains in complex queries. The tree-structured
decomposition provides better robustness
against dataset artifacts, maintaining high per-
formance on corrected metrics.

These findings highlight the importance of
choosing a methodology to develop robust text-
to-SQL systems. While fixed prompting strate-
gies achieve high performance on standard metrics,
more flexible and adaptive approaches appear to
have better generalization ability. Our corrected
evaluation framework provides a more reliable
benchmark for assessing true model capabilities
and reveals the advantages of adaptive decomposi-
tion strategies in complex text-to-SQL tasks.

4.4 Ablation Studies

Our systematic ablation study evaluates the con-
tribution of individual modules to system perfor-
mance. The results presented in Table 4 illustrate a
significant decrease in overall performance when
any of these modules are omitted.

The tree construction framework proves partic-
ularly crucial for complex query processing. Its
absence forces the model to rely on basic coT plan-
ning, significantly weakening its capacity for struc-
tured query resolution and self-correction, leading
to a substantial performance drop, especially in
Hard and Extra-difficulty queries.

Similarly, removing KG-driven schema linking
introduces input redundancies and negatively im-
pacts SQL generation, particularly in medium-to-
hard queries, where schema understanding is cru-
cial. The Path Optimization module also proves
essential, as its removal leads to a consistent perfor-
mance decline across all difficulty levels, highlight-

ing its role in guiding query execution and ensuring
overall system reliability.

Model Approach EASY | MEDIUM | HARD EXTRA | OVERALL

Default 94.3 95.7 72.5 60.2 85.8

TALENT w/o KG 92.3 92.7 66.7 53.0 81.9
(GPT-4) w/o Path Optimization | 91.9 87.2 65.6 44.6 712
w/o Error Recovery 92.7 87.2 60.3 44.6 78.0

w/o Tree Construction | 91.9 915 58.0 422 772

Default 923 84.9 59.3 45.8 76.2

TALENT wlo KG 90.3 82.1 54.6 41.0 72.8
(GPT-3.5) w/o Path Optimization | 88.7 81.6 54.0 40.4 72.0
) w/o Error Recovery 89.9 81.8 5.1 36.7 71.3

w/o Tree Construction | 89.1 82.3 483 30.7 69.9

Table 4: Ablation study on TALENT’s performance
(EX) on the development set, with and without each
module.

5 Conclusion & Limitations

This work addresses three fundamental challenges
in complex text-to-SQL tasks: query decomposi-
tion, error recovery, and schema understanding.
Traditional chain-based approaches often struggle
with these challenges due to their linear execution
patterns and limited error resilience. To overcome
these limitations, we present TALENT, a hybrid
framework that combines tree-structured planning
with knowledge graph-based schema linking and
reinforcement learning optimization.

Experiments on the Spider benchmark demon-
strate TALENT’s effectiveness, and our analysis
of Spider development set inconsistencies shows
that TALENT’s adaptive decomposition strategy
and error recovery mechanism outperforms fixed
template-based methods. Furthermore, integrating
reinforcement learning enhanced path optimization
further enhances the system’s ability to refine de-
composition strategies.

Despite these strengths, scaling to enterprise
databases, particularly in maintaining reasoning
efficiency with increased schema complexity, re-
mains a challenge. Future work will focus on en-
hancing the scalability of our method and explor-
ing more sophisticated reinforcement learning al-
gorithms for decomposition optimization.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yoshua Bengio, Jérome Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international confer-
ence on machine learning, pages 41-48.

Zhe Chen, Yuehan Wang, Bin Zhao, Jing Cheng, Xin
Zhao, and Zongtao Duan. 2020. Knowledge graph
completion: A review. leee Access, 8:192435-
192456.

Edgar F Codd. 1974. Seven steps to rendezvous with the
casual user, volume 1333. IBM Corporation.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Zhenlan Ji, Daoyuan Wu, Pingchuan Ma, Zongjie Li,
and Shuai Wang. 2024. Testing and understanding
erroneous planning in 1lm agents through synthesized
user inputs. arXiv preprint arXiv:2404.17833.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko
Ishii, and Pascale Fung. 2023. Towards mitigating
Ilm hallucination via self reflection. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 1827-1843.

Sham Kakade and John Langford. 2002. Approximately
optimal approximate reinforcement learning. In Pro-
ceedings of the Nineteenth International Conference
on Machine Learning, pages 267-274.

George Katsogiannis-Meimarakis and Georgia Koutrika.
2023. A survey on deep learning approaches for text-
to-sql. The VLDB Journal, 32(4):905-936.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Ehsan Latif. 2024. 3p-llm: Probabilistic path planning
using large language model for autonomous robot
navigation. arXiv preprint arXiv:2403.18778.

Roger J Lewis. 2000. An introduction to classification
and regression tree (cart) analysis. In Annual meeting
of the society for academic emergency medicine in
San Francisco, California, volume 14. Citeseer.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2015. Minimum
risk training for neural machine translation. arXiv
preprint arXiv:1512.02433.

Tianze Shi, Kedar Tatwawadi, Kaushik Chakrabarti,
Yi Mao, Oleksandr Polozov, and Weizhu Chen. 2018.
Incsql: Training incremental text-to-sql parsers
with non-deterministic oracles. arXiv preprint
arXiv:1809.05054.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering

the game of go with deep neural networks and tree
search. nature, 529(7587):484-489.

David Silver, Guy Lever, Nicolas Heess, Thomas De-
gris, Daan Wierstra, and Martin Riedmiller. 2014.
Deterministic policy gradient algorithms. In Interna-
tional conference on machine learning, pages 387-
395. Pmlr.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, et al. 2022. Challenging big-bench tasks and
whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016.
Deep reinforcement learning with double g-learning.
In Proceedings of the AAAI conference on artificial
intelligence, volume 30.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

Eric Wiewiora, Garrison W Cottrell, and Charles Elkan.
2003. Principled methods for advising reinforcement
learning agents. In Proceedings of the 20th interna-
tional conference on machine learning (ICML-03),
pages 792-799.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sql-
net: Generating structured queries from natural lan-
guage without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

10

A Extensive Experiments

A.1 Cross-domain Evaluation on Economic
Database

A.1.1 Experimental Setup

To evaluate TALENT’s cross-domain generaliza-
tion capability, we conducted extensive experi-
ments on a real-world macroeconomic database.
This database consists of 46 interconnected tables
containing various economic indicators, including
GDP metrics, financial indices, and commodity
prices across multiple countries.

The evaluation followed the Spider benchmark’s
difficulty stratification, with: 10 easy queries (ex-
ecuted 3 times each), 10 medium queries (exe-
cuted 3 times each), 3 hard queries (executed 10
times each), 3 extra hard queries (executed 10 times
each).

We evaluated our approach against three estab-
lished LLM-driven agent planning methodologies:
Chain-of-thought (Wei et al., 2022), ReACT (Yao
et al., 2023), and Reflection (Shinn et al., 2024).
The evaluation was conducted in two phases: Ini-
tially, these methodologies were implemented with-
out our schema linking module, utilizing standard
prompt templates with complete database schema
information as input. Subsequently, we integrated
our KG-driven Schema Linking methods into these
approaches to assess performance changes.

A.1.2 Dataset Characteristics

The economic database exhibits three key charac-
teristics that distinguish it from the Spider dataset:

* Scale Complexity: Contains extensive time-
series data with multiple interconnected eco-
nomic metrics

* Naming Diversity: Employs domain-specific
terminology and varied naming conventions

* Schema Complexity: Features complex rela-
tionships between different economic indica-
tors

A.1.3 Results and Analysis

The experimental results in Table 5 demonstrate
TALENT’s promising performance in handling
complex real-world databases. Two key observa-
tions emerge:

* The KG Schema Linking module consistently
improves performance across all approaches,
with particularly significant gains in medium
and hard queries.

11

* TALENT maintains its performance advan-
tage across all difficulty levels, showing partic-
ular strength in complex queries where base-
line methods struggle significantly.

A.2 Ablation Study: RL vs. LLM Agent in
Path Optimization

A.2.1 Implementation Details

To validate the effectiveness of our reinforcement
learning-based path optimization, we implemented
a pure LLLM agent-based alternative for compari-
son. The agent-based approach follows a similar
workflow but relies entirely on LLM for path opti-
mization decisions, as illustrated in Figure 6.

Overall

Process

Global
Path
Optimization

Figure 6: Process of Path Optimization

As illustrated in Fig. 6, the LLM agent-based op-
timization module operates in three primary stages.

First, it extract each parent node’s task descrip-
tion and potential SQL operations (derived from
the initial task decomposition phase).

Second, the system would search the exemplar
base to identify matching exemplars, including the
negative and positive ones.

Third, the process proceeds by sending three key
components to our Assess Agent: (1) the selected
exemplars, (2) the parent node’s task description,
and (3) its corresponding sub-tasks.

Through comparative analysis of these compo-
nents, the Agent evaluates the effectiveness of the
current decomposition strategy. When the evalua-
tion indicates suboptimal decomposition, the sys-
tem triggers a re-decomposition of the parent node.
This algorithm is also formally presented in Alg. 1.

A.2.2 Performance Comparison

Comparison between RL and Agent approach

Overall EX | Ave Time Cost
81.9 29.3s
83.2 20.7s

Path Optimization Approach
LLM Agent

Reinforcement Learning

TALENT
TALENT

Table 6: Comparison between Reinforcement Learning
enhanced and Agent approach

Performance Comparison on Economic Database with and without KG Schema Linking
LLM Approach EASY MEDIUM HARD EXTRA
WO | W WO | W |[WO| W | WO | W
GPT-4 | Chain-of-Thought (Wei et al., 2022) | 53.3 | 70.0 | 333 | 63.3 | 00 | 0.0 | 0.0 | 0.0
GPT-4 ReACT (Yao et al., 2023) 56.7 | 76.7 | 46.7 | 70.0 | 0.0 | 11.1 | 0.0 | 0.0
GPT-4 Reflexion (Shinn et al., 2024) 66.6 | 86.7 | 53.3 | 73.3 | 11.1 | 222 | 0.0 | 11.1
GPT-4 TALENT (Ours) 86.7 | 93.3 | 80.0 | 90.0 | 66.7 | 77.8 | 46.7 | 55.6

Table 5: Performances on real-world database environment - with & without KG Schema Linking

The comparative analysis reveals two key advan-
tages of the Reinforcement Learning-based ap-
proach:

¢ Performance Advantage: The RL-based
method achieves higher execution accuracy
(83.2% vs 81.9%), demonstrating more reli-
able path optimization.

« Efficiency Gain: A significant 29.3% reduc-
tion in average processing time (from 29.3s to
20.7s) indicates superior computational effi-
ciency.

These improvements can be attributed to: (1) RL
model’s ability to learn optimal decomposition pat-
terns from historical executions. (2) Reduced token
consumption compared to LLM-based agents. (3)
More systematic exploration of the solution space.

Algorithm 1 Tree Optimization

Input: tree: treelib.Tree, db_info: dict
Output: tree: treelib.Tree
. function IF REBUILD(parent, tree)

—_

2: pos_case, neg case = Get Cases (parent)
3: is_correct = Contrastive Learning (pos_case,
neg case, parent, children)
4: return is_correct
5: end function
6:
7: function TREE OPTIMIZATION(tree, db in fo)
8: for parent in tree.parents do
9: flag = IF REBUILD (parent, tree)
10 if | flag then
11: tree.remove _children(parent)
12: tree = NODE_GORWING (parent,
db info, tree)
13: end if
14: end for
15: return tree
16: end function

A.3 Supplementary Materials
A.3.1 Database Schema Details

Sample Database Schema

CREATE TABLE
‘101_gdpingermany_namegdp‘ (‘time°
datetime DEFAULT NULL, ‘china‘
double DEFAULT NULL, ‘usa‘ double
DEFAULT NULL, ‘japan‘ double
DEFAULT NULL, ‘germany‘ double

DEFAULT NULL, ‘u.k.‘ double DEFAULT

NULL, ‘switzerland‘ double DEFAULT
NULL) ENGINE = InnoDB DEFAULT
CHARSET = utf8mb4 COLLATE =

utf8mb4_general_ci;

\

A.3.2 Knowledge Graph Structure

Knowledge Graph Sample

[time, data_type, datetime]
[spot_uaedubai_crudeoil, data_type,
double]

[spot_wti, data_type, double]
[spot_brent, data_type, double]

[spot_china_crudeoil, data_type,
double]
[spot_opec_crudeoil, data_type,
double]

\.

A.3.3 Evaluation Tasks

Tasks were carefully designed to cover various com-
plexity levels and economic scenarios. Example
tasks include:

“I want to know the
of gold in

(1) Easy:

highest
Japan.”

spot price

12

(2) Easy: “I want to know Japan’s
actual GDP after year 2000.”

(3) Easy: “Can you show me Japan’s
GDP per capita in 20127”

(C)) Easy: “How about the
unemployment rate of Japan after
year 2010?”

(5) Easy: “I would like to know how
much foreign direct investment the
U.K. had in 2008.”

(6) Easy: “How much foreign
exchange storage does the U.S.A
have in 2020?”

(7) Easy: “What was Japan’s stock
market index in 19507”

(8) Easy: “What is the lowest energy
price in Switzerland?”

(9) Easy: “I’d like to see the
five highest spot cotton prices in
Japan.”

(10) Easy: “In how many years
has Japan’s GDP per capita above
10,0007?”

(11) Medium: “I’d like to see the
years when Japan’s actual GDP was
higher than its name GDP.”

(12) Medium: “Between 1990 and 2020,
in how many years did Japan’s GDP
per capita exceed 10,000?”

(13) Medium: “For how many times was
Japan’s stock market index higher
than that of the U.S.A?”

(14) Medium: “How much lower is the
highest actual GDP in Japan than the
highest actual GDP in the US?”
(15) Medium: “What are Germany’s

stock market indexes when its
industrial production index is
above 107?”

(16) Medium: “When Japan’s real GDP
is greater than 10, what are the
interest rate for the corresponding
times?”

(17) Medium: “What are the
corresponding energy prices of
Japan when its savings rate is lower
than 457?”

(18) Medium: “What was Japan’s
highest spot gold price during
Japan’s cotton futures prices were

13

above 130007?”

(19) Medium: “What is the highest
GDP per capita in Germany in years
when the Japanese stock market index
is above 30,0007?”

(20) Medium: “What is the average
GDP per capita in Japan in years
when the Japan’s house price index
is higher than 25?7

(21) Hard: “I want to know the
Japan’s stock market index at the
time Japan’s house price index
reached its highest pitch.”

(22) Hard: “What were Japan’s
interest rate and consumer price
index when Japan’s unemployment
rate peaked?”

(23) Hard: “What is the average

spot cotton price of Japan in years
when the Japan’s house price index
is above 25 and the U.K. frequent
account balance is above 1207?”
(24) Extra: “I want to see the
spot London prices of all metals
at 2012-12-12.”

(25) Extra: “I’d like to see Japan’s

spot prices of grains(wheat, corn,
soybeans) on July 1, 2022.”
(26) Extra: “I want to know

the historical highest spot London
prices of all metals.”

B Prompt Design

B.1 Tree Construction

Prompt 1: Task Decompose

Now you are a professional SQL
engineer, I’'m going to give you
a [original task] and a [database
information] to accomplish the task.
If you think the [original task]
is too hard for one LLM to finish,
then try to decompose the [original
task] into several [sub-tasks].
Your one action should follow the
framework below:

input:

[original task]: data selection
task, given externally.

[database information]: Database
information, given externally
output:

[thinking]: Fully based on the
given [original task], please think
step by step, find out how
to decompose the [original task]
reasonably.
[Decompose or not]:
or ’'no’
[Sub-tasks]:

Answer ’yes’,
Sub-tasks that are

If the task don’t need to be
decomposed, leave this part empty.

\

decomposed from the [original task].

B.2 Knowledge Graph

Prompt 2: Related KG Searching

I’'m going to give you a goal and
several tables, you need to think
step by step, and help me find
the tables that may be used when
accomplishing the goal. As you
only know the table name, to make
sure all needed tables are included,
you should think more carefully and
return all the relevant tables. for
each [goal] provided below, extract
and list the tables that might be
used.

Input:

[goal]l: The goal that should be
accomplished, given externally.

[tables]: All the data tables that
are provided in the database, given
externally.

Output:

[thinking]: Your thinking about

related tables.
[related tables]:
related tables.

The 1list of

\

B.3 Task Execution Agents

Prompt 3.1: Code Checking

You are a professional SQL engineer,
I’'m going to give you a task, a sql

According to the given information,
tell me if the code could finish the

code and a description of database.

task, if not, try to fix it, or just
tell me “correct”. Your one action
should follow the framework below:
input:

[task]: Task that should be
finished, given externally.

[SQL code]: Half-completed SQL
code, given externally.

[database description]:
Description of database, given
externally.

output:

[thinking]: According to the given
[task], [SQL codel], and [database
description], think step by step,
figure out if the code given to
you could achieve the task, if not,
where is the problem.

[correct or not]: Based on the given
information and your thinking, if
the code is correct, return yes, if

not, return no.(Just return “yes”
or “no”!)
[final SQL]: SQL code that you
generated.

Prompt 3.2: Bug Fixing

You are a professional SQL engineer,
I'm going to give you a SQL code,
a description of database, and a
error message. According to the
given information, modify the SQL
code. Your one action should follow
the framework below:

input:

[SQL code]: Half-completed SQL
code, given externally

[database description]:
Description of database, given
externally

[error message]: Error caused when
using the SQL code

output:

[thinking]:According to the given
[sql code], [database description]
and [error message], think step
by step, figure out where is the
problem and give a suggestion on
code modification.

14

\

[final SQLJ]: SQL code that you
generated.

Prompt 3.3: Code Generating

You are a professional SQL engineer,
I'm going to give you a task,
a half-completed SQL code and a
description of database. According
to the given information, generate

a SQL code to accomplish the task.

Your one action should follow the
framework below:

input:

[task]: Task that should be
finished, given externally.
[half-completed SQL code]:
Half-completed SQL code, given
externally.

[tasks already finished]:

Tasks that have finished, the
[half-completed SQL code] is the
code that could accomplish those
tasks.

[database description]:
Description of database, given
externally.

output:

[thinking]: According to the given
[task], [half-completed SQL codel,
and [database description], think
step by step, and try to generate a
SQL code that could accomplish the
task.

[final SQL]: SQL code that you
generated.

15

	Introduction
	Related Work
	Methodology
	Tree-based Task Planning
	Task Tree Construction
	Error Recovery Mechanism
	Knowledge Graph-driven Schema Linking

	Path Optimization via Reinforcement Learning
	Problem Formulation
	Training Process

	Module Integration and Interaction

	Experimental Evaluation
	Experiment Setup
	Baseline Comparison
	Analysis of Spider Development Set Inconsistencies
	Ablation Studies

	Conclusion & Limitations
	Extensive Experiments
	Cross-domain Evaluation on Economic Database
	Experimental Setup
	Dataset Characteristics
	Results and Analysis

	Ablation Study: RL vs. LLM Agent in Path Optimization
	Implementation Details
	Performance Comparison

	Supplementary Materials
	Database Schema Details
	Knowledge Graph Structure
	Evaluation Tasks

	Prompt Design
	Tree Construction
	Knowledge Graph
	Task Execution Agents

