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ABSTRACT

Molecular graph representation learning is widely used in chemical and biomedi-
cal research. While pre-trained 2D graph encoders have demonstrated strong per-
formance, they overlook the rich molecular domain knowledge associated with
submolecular instances (atoms and bonds). While molecular pre-training ap-
proaches incorporate such knowledge into their pre-training objectives, they typ-
ically employ designs tailored to a specific type of knowledge, lacking the flexi-
bility to integrate diverse knowledge present in molecules. Hence, reusing widely
available and well-validated pre-trained 2D encoders, while incorporating molec-
ular domain knowledge during downstream adaptation, offers a more practical al-
ternative. In this work, we propose MOLGA, which adapts pre-trained 2D graph
encoders to downstream molecular applications by flexibly incorporating diverse
molecular domain knowledge. First, we propose a molecular alignment strategy
that bridge the gap between pre-trained topological representations with domain-
knowledge representations. Second, we introduce a conditional adaptation mech-
anism that generates instance-specific tokens to enable fine-grained integration
of molecular domain knowledge for downstream tasks. Finally, we conduct ex-
tensive experiments on eleven public datasets, demonstrating the effectiveness of
MOLGA. Codes are available at https://anonymous.4open.science/
r/MolGa—43F 3/ for anonymous reviewing.

1 INTRODUCTION

Molecular graph representation learning has emerged as a mainstream technique in computational
chemical and biomedical research (Gilmer et al., [2017; Rong et al.| 2020). Early studies primarily
leveraged graph encoders, such as graph neural networks (GNNs) (Kipf & Welling,[2017;|Velickovic
et al} |2018) and transformers (Ying et al.,|2021; |Yun et al.| 2019)), to encode 2D topological struc-
tures of molecules, where nodes represent atoms and edges represent chemical bonds. However,
their effectiveness relies heavily on large amounts of labeled data, which are expensive to obtain
through labor-intensive wet-lab experiments or computationally demanding physics-based simula-
tions. To overcome this limitation, graph pre-training methods have emerged as a promising solu-
tion. They typically follow a two-stage paradigm: first, the graph encoder learns task-agnostic and
intrinsic properties from large-scale unlabeled graphs in a self-supervised manner; then, it is fine-
tuned on downstream tasks using limited labeled data (Luong & Singh, 2023} |Sypetkowski et al.,
2024} Yang et al.l 2024; Méndez-Lucio et al.| 2024).

Beyond 2D topological structures, molecules contain a variety of molecular domain knowledge that
characterizes the chemical and physical properties of submolecular instances (atoms and bonds),
as illustrated in Fig. Eka). For example, 3D conformations (Schiitt et al.l [2017; |Zaidi et al., 2023)
capture the spatial arrangement of atoms in three-dimensional space. Chemical bond types describe
different bonding relationship between atoms, such as single and double bonds (Liu et al., [2022d;
Wang et al.| [2022). Atom energy reflects the intrinsic chemical energy associated with each atom or
bond (Zou et al}[2023;|Wang et al.,|2025)). Leveraging such rich information, recent studies have ex-
tended 2D graph learning methods by integrating molecular domain knowledge into graph encoders
to enhance their expressiveness (Zaidi et al.| 2023} [Wang et al., 2025)). Additionally, molecular do-
main knowledge has been incorporated into pre-training objectives (Liu et al.l [2022bj [Fang et al.,
20225 Yu et al.,|20244a)), leading to the development of molecular pre-training methods.
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Figure 1: Motivation of MOLGA. (a) 2D topological and molecular domain knowledge in
molecules. (b) Comparison of pre-training and downstream adaptation settings in 2D pre-training
methods, molecular pre-training approaches and MOLGA.

Current molecular pre-training approaches typically incorporate molecular domain knowledge dur-
ing the pre-training phase (Liu et al.| 2022b; [Fang et al., |2022)), and the pre-trained model are fur-
ther fine-tuned for downstream tasks involving the same type of domain knowledge. However, a
plethora of well-established pre-trained 2D graph encoders already exist, demonstrating robustness
and generalization with extensive empirical validation (Sypetkowski et al., 2024} |Yang et al.| [2024).
Leveraging existing pre-trained 2D graph encoders could significantly reduce costs compared with
pre-training a new molecular encoder, which generally involves greater complexity and a larger
number of parameters (Schiitt et al.,|2017; |Liu et al.,|2022d; [Wang et al., [2022). Moreover, existing
molecular pre-training methods typically focus on a single type of domain knowledge, thereby over-
looking the benefits of incorporating different forms of molecular information (Liu et al.| [2023bj
Zhou et al.l 2023} [Kim et al., 2023; Wang et al.| [2025)). These observations naturally raise a fun-
damental question: Given a pre-trained 2D graph encoder, can downstream adaptation flexibly
integrate different types of molecular domain knowledge to enhance its performance in molecular
applications? In this work, we propose a Molecular Graph Adaptation framework, MOLGA, which
adapts pre-trained 2D graph encoders to downstream molecular tasks by flexibly incorporating di-
verse molecular domain knowledge. A comparative overview of the pre-training and downstream
adaptation settings across 2D graph pre-training, molecular pre-training, and MOLGA is illustrated
in Fig.[T(b). The realization of MOLGA is non-trivial due to two key challenges.

First, how do we align pre-trained 2D topological representations with molecular domain knowledge
for downstream adaptation? Pre-trained 2D graph encoders typically capture flattened topological
patterns, such as atom connectivity and graph motifs. In contrast, molecular domain knowledge
differs across submolecular instances (atoms and bonds), with instance-specific chemical or phys-
ical characteristics that can vary among similar topological patterns. This discrepancy leads to
conflict, rather than synergy, when the two sources of knowledge are naively fused in downstream
adaptation. In MOLGA, we employ a contrastive alignment strategy that bridges the gap between
pre-trained topology and molecular domain knowledge. Specifically, for each atom and bond, we
aim to maximize the similarity between its 2D topological representation and its domain-knowledge
representation, while minimizing similarity across different instances.

Second, how can we leverage the aligned knowledge to adapt to fine-grained, instance-specific char-
acteristics for molecular applications? Existing molecular pre-training approaches typically lever-
age a one-size-fits-all adaptation (fine-tuning) strategy for downstream tasks (Liu et al.| [2022b} [Fang
et al.}[2022};Zong et al., 2024; |Wang et al.,|2025)), disregarding the heterogeneity of submolecular in-
stances. Within a molecule, different atoms and bonds exhibit heterogeneous topological, chemical
and physical properties, reflecting their unique roles in the molecule. For example, in formaldehyde
(CH20), the oxygen atom, due to its high electronegativity, renders the C=0 bond highly polar-
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ized; the carbon atom bears a partial positive charge, making it a favorable site for nucleophilic
attack; the C—H bonds are relatively stable, primarily serving to maintain the structural framework
of the molecule (Xu et al.,[2018)). Therefore, fine-tuning all submolecular instances uniformly over-
looks such intrinsic variability, limiting the expressiveness and effectiveness of their downstream
representations. In MOLGA, we introduce a parameter-efficient, instance-specific adaptation strat-
egy. Inspired by conditional prompting (Zhou et al., 2022} |Yu et al.l 2025b), MOLGA employs
lightweight conditional networks that condition on the aligned instance-level representations to gen-
erate a series of instance-specific tokens. The atom-specific tokens are used to adjust atom features
before feeding them into the frozen pre-trained graph encoder, while bond-specific tokens are in-
jected into the message passing process. By updating only the conditional networks while keeping
the encoder frozen, MOLGA enables fine-grained yet lightweight adaptation to downstream tasks.

In summary, the contributions of this work are threefold. (1) We propose a contrastive alignment
strategy to bridge the representational gap between pre-trained 2D topological knowledge and down-
stream molecular domain knowledge. (2) Realizing that various submolecular instances exhibit
distinct topological, chemical and physical characteristics, we introduce an instance-specific down-
stream adaptation mechanism using lightweight conditional networks. (3) We conduct extensive
experiments on a wide array of benchmarks, demonstrating that MOLGA consistently outperforms
state-of-the-art methods across various molecular applications.

2 RELATED WORK

We briefly review related work on molecular graph representation and pre-training.

Molecular graph representation learning. To model the 2D topological structure in molecules,
GNNs (Kipf & Welling, 2017} |Velickovi¢ et al.l [2018) and transformers Yun et al.| (2019); Ying
et al.| (2021) have become mainstream techniques. While GNNs aggregate information from local
neighborhoods through message passing, Transformers leverage attention to capture interactions
between nodes across the graph. However, molecules are also associated with rich physical and
chemical domain knowledge, such as 3D conformations and chemical bond types. Hence, recent
studies have further incorporated molecular domain knowledge (Schiitt et al., 2017} |Liu et al.| 2022d;
Wang et al., |2022), embedding such information directly into node representations. Despite their
success, both 2D graph and molecular encoders require substantial labeled data to train for each new
task and dataset, limiting their generalizability and scalability.

Molecular graph pre-training. To address the limitations of supervised methods, graph pre-
training techniques have been developed to capture task-agnostic structural patterns in a self-
supervised manner (Kipf & Welling, 2016 [Hu* et al.| [2020; You et al., [2020; Hu et al., 2020;
Yu et al.| [2024b). These methods typically pre-train a 2D graph encoder to learn inherent proper-
ties from unlabeled graphs and then adapt (fine-tune) the encoder on downstream tasks (Luong &
Singhl, 2023} Sypetkowski et al., [2024} [Yang et al., [2024; [Méndez-Lucio et al., 2024). While 2D
graph pre-training approaches focus on topological structures, molecular-specific pre-training meth-
ods have been proposed to capture rich molecular domain knowledge. Some approaches focus on
denoising or reconstructing the 3D geometry of molecules during pre-training (Liu et al., [2023b;
Zhou et al 2023 Kim et al.| [2023; Wang et al.| 2025)), while others incorporate both 2D topologi-
cal structures and molecular knowledge, including stereochemistry and atom-level interactions, into
their pre-training objectives (Stark et al., 2022; |Liu et al., 2022aj [2023a; |Chen et al.| 2023} Zong
et al., |2024). However, existing molecular pre-training methods typically adopt a one-size-fits-all
downstream adaptation for all instances, overlooking the distinct chemical and physical character-
istics exhibited by different instances. Moreover, these methods require pre-training a molecular
graph encoder with a significantly larger number of parameters compared to 2D graph encoders.

3 PRELIMINARIES

In this section, we introduce related preliminaries and the scope of our work.

Molecular graph. A 2D graph is defined as G = (V, £), where V and £ denotes the set of nodes
(atoms) and edges (bonds), respectively. A molecular graph is defined as G = (V, &, M), which
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further includes a set of molecular domain knowledge M = {M;, My, ..., Mk}. Each M} € M
represent a type of domain knowledge on atoms or bonds. Moreover, each atom v; € V is associated
with a feature vector x; € R?, and the entire atom feature matrix is denoted as X € RIVI*d Wwe
write a collection of molecular graphs as G = {G1,Ga,...,Gn}.

2D Graph encoder. A typical implementation utilizes GNNs, which update each node’s embedding
by iteratively aggregating information from its local neighborhood. Let H}, € RIVI*? be the node
embedding matrix at the [-th layer, where each row h! represents the embedding of node v;. In
layer I, the forward propagation is given by h! = MP(h!"! {h!=1 : u € A,};0'), where N,
is the neighboring atoms of v, MP(-) is the message-passing function and #' denotes the learnable
parameters of the [-th layer. In the first layer, the the input feature vector x,, serves as the initial
embedding h?, and the final output of the GNN after L layers is denoted as h,, which is a row of
the node embedding matrix H,,. We denote the overall encoding process over L layers as

HV = GE(XvG; @)7 (l)

where GE(-) denotes the 2D graph encoder, and © = {6,602, ... 6%} represents the set of trainable
parameters across all layers. For the edge embedding matrix Hg, each row hy, .)c¢ is computed
as the concatenation of the embeddings of the connected nodes, h(, ) = Concat(h,,h,). The
pre-trained GE with learned weights © can be fine-tuned for downstream tasks.

4 PROPOSED APPROACH

In this section, we introduce MOLGA, starting with a high-level overview of the framework, and
then detail its core components.

4.1 OVERALL FRAMEWORK

We illustrate the overall framework of MOLGA in Fig. [2b), which comprises two core components:
molecular alignment and molecular adaptation. Given a pre-trained 2D graph encoder in Fig. [2[a),
MOLGA first aligns the pre-trained topological representations with downstream molecular domain
knowledge, as shown in Fig. [2fc). For each type of molecular domain knowledge, MOLGA trains
a projector to map its representation into the pre-trained embedding space, and further employs
a contrastive strategy to align the submolecular instances across their topological and molecular
knowledge-based representations. Next, conditioned on the aligned representations, we employ
conditional networks to generate instance-specific tokens, as depicted in Fig. P[d). These tokens
incorporate fine-grained, instance-specific molecular domain knowledge into the adaptation process
without updating the pre-trained 2D graph encoder, either by modifying the input features to the
frozen encoder or by injecting them into the message-passing process.

4.2 MOLECULAR ALIGNMENT

2D topological encoding. We first feed the 2D version of the downstream molecular graph G
into the pre-trained 2D graph encoder GE to obtain the atom embedding matrix Hy, and the bond
embedding matrix Hg as introduced in Sect.

Molecular domain knowledge extraction. For the k-th type of domain knowledge M € M,
we employ a rule-based extractor Extry(-), following prior work (Wang et al., 2022, to obtain the
initial representations of My, as follows.

My = Extrk(Mk). (2)
The rule-based extractors are non-parametric and their details are presented in Appendix [D]

Molecular domain knowledge projection. Next, we map the initial representations of each type of
molecular domain knowledge into the pre-trained atom embedding space by learnable projectors:

My, = fi(My; ¢x), 3)
where f(+) denotes the projector for the k-th type of knowledge, parameterized by learnable weights
¢ € ®. The output M, shares the same dimension as its corresponding atom embedding Hy, or
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Figure 2: Overall framework of MOLGA. Building upon an existing pre-trained 2D encoder,
MOLGA performs molecular alignment and adaptation for downstream tasks.

edge embedding H¢, depending on whether Mj, is atom-level or bond-level knowledge. Let m; x
be the i-th row in M, corresponding to the k-th type information for the i-th atom or bond.

Contrastive alignment. While the projection ensures that M, and the instance representations
(Hy or H¢) share the same embedding dimension, they are not inherently aligned. Thus, we em-
ploy a contrastive alignment strategy to explicitly bridge the representations derived from molecular
domain knowledge and topology. Ideally, the 2D topological representation of an instance should
implicitly reflect its chemical and physical properties (Pairault et al.l |2023; Koppe et al., [2025).
Hence, similar in spirit to multimodal alignment (Radford et al., [2021), we adopt a contrastive
learning strategy to align the two sources of representation for each instance. Specifically, we pull
the 2D and domain-knowledge representations of the same instance closer in the latent space, while
pushing apart those from different instances. Formally, given a molecular graph G, the contrastive
alignment loss for the k-th type of domain knowledge (M},) is defined as:

k o exp(sim(hg, g )/T)
Lalign((bk) - Za,beG In >, CXp(Slm(ha,l';b ) /7))’ “4)

where h,, is the embedding of instance a. S = |V| or |£| is the number of instances in G, depending
on the type of information. The temperature parameter 7 is used to modulate the sharpness of the
cosine similarity function sim(-). Thus, the overall molecular alignment loss is:

K
Latign(®) = 37321 Lijign (61)- (5)
4.3 MOLECULAR ADAPTATION

Instance-specific token generation. The aligned 2D topological and molecular knowledge repre-
sentations are then used for downstream adaptation. Since submolecular instances, including atoms
and bonds, manifest distinct topological, physical and chemical characteristics, it is advantageous to
adapt to fine-grained, instance-level variations. To this end, for each type of domain knowledge, we
employ a conditional network (Zhou et al., 2022} Yu et al.} 2025ajb)) that conditions on the fused 2D
and molecular knowledge representations, and dynamically generates atom- or bond-specific tokens
to guide the downstream instance encoding process in an instance-aware manner, thus effectively
adapting the pre-trained 2D graph encoder to downstream tasks without updating the entire encoder.
Formally, for the k-th type of knowledge, we train a conditional network CondNet; parameterized
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by 7, which generates a set of tokens as follows:
T), = CondNet,(Concat(H, My); vx), (6)

where H stands for the atom embeddings Hy, or bond embeddings H¢ depending on the type of
knowledge. The conditional network acts as a hypernetwork (Ha et al.| [2022)—a compact neural
network, such as a multi-layer perceptron (MLP)—that generates instance-specific tokens for the
primary network. T share the same dimension with the instance embeddings H. Each row of T},
denoted t; 1, is a unique adaptation token for the ¢-th instance.

Instance adaptation. The generated tokens are then used to guide the adaptation of the pre-trained
2D graph encoder, enabling effective integration with molecular domain knowledge for downstream
tasks. On one hand, for atom-level knowledge, atom-specific tokens modulate atom features as

Xi=X0Ty, (7

where X is the original atom feature matrix, T, is the token matrix for the k-th type of knowledge
(for atoms), and ® represents element-wise multiplication. The modified features X, are then fed
into the pre-trained graph encoder, obtaining the output embedding H, through the frozen 2D graph
encoder (Eq.[I). On the other hand, for bond-level knowledge, we inject the bond-specific tokens
into the message-passing process. Specifically, the [-th layer message passing is adapted as

h! , =Mp (hf;,j, {t(u,v),k b ue Nv} ;el) Vo e V. ®)

We then aggregate the K output embeddings conditioned on the K types of molecular domain
knowledge, as follows.

Hy =30 Hys ©)

Finally, we readout the representation of a molecular graph G by sum pooling:

H; = Readout(flv). (10)

Optimization. We focus on two popular downstream tasks, namely, molecular property prediction
and molecular classification. Given a labeled dataset Dyown = {(G1,¥1), (G2,¥2), ... } for a down-
stream task, where GG; denotes a molecular graph and y; is its associated label (i.e., a real-valued
property or class label), we train a task head to infer the label of a given graph G. The task loss is
denoted as Ly (P, ', ), where 7 represent the learnable parameters in the task head, while ¢ and
T" represent the parameters of the projectors and conditional networks, respectively. We integrate
this task loss with the contrastive alignment loss (Eq.[5) to form the final optimization objective:

L((I)7 Fa ;s /8) = Bal(‘clask(q)a F7 77)7 [’align((b); ﬁ)a (1 1)

where Bal(-) is a balancing function parameterized by 5. In our experiments, we adopt Grad-
Norm (Chen et al) [2018) to adaptively balance the contributions of the two objectives. During
downstream adaptation, only @ in the projectors, I" in the conditional networks, 7 in the task head
and [ in the balancing function are updated, whereas © in the pre-trained encoder are kept frozen.
This parameter-efficient design ensures strong performance even under low-resource settings, where
the downstream training set D contains only a few labeled examples. We outline the algorithm of
MOLGA in Appendix

5 EXPERIMENTS
In this section, we conduct experiments to evaluate MOLGA and analyze the empirical results.
5.1 EXPERIMENTAL SETUP

Datasets. We utilize eleven benchmark datasets for evaluation, with BBBP (Martins et al., 2012),
SIDER (Kuhn et al.| [2016), ClinTox (Gayvert et al., 2016), MUV (Rohrer & Baumann, [2009) and
BACE (Wu et al.l [2018) for molecular classification task, QM8 (Ramakrishnan et al., [2015)), QM9
(Ramakrishnan et al., 2014), ESOL (Delaney, 2004), Lipophilicity (Gaulton et al., 2012), FreeSolv
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Table 1: Summary of the datasets.

Dataset Task No. molecules Avg. atoms Avg. bonds Molecular domain knowledge
BBBP Classification 2,039 24.1 26.0 Chemical bonds
SIDER Classification 1,427 33.6 354 Chemical bonds
ClinTox Classification 1,478 26.2 27.9 Chemical bonds
MUV Classification 93,087 24.2 26.3 Chemical bonds
BACE Classification 1,513 34.1 36.9 Chemical bonds
QM8 Property prediction 21,786 16.1 16.3 3D conformation
QM9 Property prediction 133,885 18.0 18.4 3D conformation
ESOL Property prediction 1,128 13.3 13.7 Chemical bonds
Lipophilicity =~ Property prediction 4,200 27.0 29.5 Chemical bonds
FreeSolv Property prediction 643 8.7 8.4 Chemical bonds
MD17-aspirin ~ Property prediction 211,762 21 140.4 3D conformation + atom forces

(Mobley & Guthrie, [2014) and MD17-aspirin (Chmiela et al.,|2017) for molecular property predic-
tion task. We summarize these datasets in Table([I] and provide detailed descriptions in Appendix B}

Baselines. We compare MOLGA with four types of state-of-the-art methods: (1) Supervised 2D
graph encoders: GCN (Kipf & Welling| 2017) and GAT (Velickovi¢ et al.,|2018)) are trained directly
on downstream labeled data in a fully supervised manner, without any pre-training or use of molec-
ular domain knowledge. (2) Supervised molecular graph encoders: DIMENET++ (Gasteiger et al.,
2020), SPHERENET (Liu et al., 2022d), and COMENET (Wang et al.l |2022)) incorporate molecular
domain knowledge into the message passing during downstream training, but without pre-training.
(3) 2D graph pretraining method: GRAPHCL (You et al 2020) and GRAPHPROMPT (Liu et al.
2023c)) conduct unsupervised pre-training on unlabeled 2D graphs. They are later adapted to down-
stream tasks via fine-tuning or prompt learning, while keeping the pre-trained encoder frozen. (4)
Molecular graph pretraining methods: GRAPHMVP (Liu et al., 2022a), GEM (Fang et al.| [2022),
and MOLEBLEND (Yu et al.| [2024a) leverage molecular domain knowledge during both the pre-
training and adaptation phases. They design self-supervised pre-training objectives grounded in
molecular domain knowledge to learn molecular graph encoders, which are subsequently fine-tuned
in a uniform manner across all instances for downstream tasks. Detailed descriptions of the baseline
methods are provided in Appendix [C] with additional implementation details for both the baselines
and MOLGA in Appendix [D}]

Pre-training setting. For all baselines and MOLGA, we randomly sample 20% of molecules from
the QM9 dataset (Ramakrishnan et al.,|2014)), resulting in a subset of 25,000 molecules. Specifically,
for 2D graph pre-training methods and MOLGA, only the 2D molecular graphs—without any molec-
ular domain knowledge—are used for pre-training. To further evaluate the effectiveness of MOLGA,
we also compare it with molecular graph pre-training methods, which leverage both the 2D graph
structure and the associated molecular domain knowledge during pre-training and adaptation. We
leverage the their officially released pre-trained molecular graph encoders, which are trained on
significantly larger datasets: GRAPHM VP is pre-trained on GEOM (Axelrod & Gomez-Bombarelli,
2022) with 50,000 molecules, GEM on ZINC15 (Sterling & Irwinl[2015)) with 2,000,000 molecules,
and MOLEBLEND on PCQM4Mv2 (Hu et al.l 2021) with 3,370,000 molecules. Since molecu-
lar graph pre-training methods utilize substantially more data and incorporate molecular domain
knowledge during pre-training, they are not directly comparable to MOLGA.

Adaptation setting. We evaluate MOLGA on both molecular classification and molecular property
prediction tasks. For molecular classification, we follow an m-shot classification setting: for each
class, m labeled instances are randomly selected for training, and the remaining instances are used
for testing. In our main experiments, we set . = 5, which corresponds to less than 1% of the
dataset. For molecular property prediction, we randomly sample 100 molecules for downstream
adaptation training, 100 for validation, and use the remaining molecules for testing. For QM9 which
is used for pre-training, the samples are drawn from the remaining 80% of data not used during
pre-training. For other datasets, sampling is performed from the full dataset.

Evaluation. For molecular classification, we follow previous study (Ruddigkeit et al.l [2012), em-
ploying the ROC-AUC (Bradley, [1997) as the evaluation metric. We construct 100 independent
m-shot tasks via repeated sampling, and evaluate each task using five distinct random seeds, result-
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Table 2: ROC-AUC (%) evaluation of molecular classification.

Methods | Pre-train ~ Adapt |  BBBP SIDER ClinTox MUV BACE

GCN X 2D 66.23+13.83 52.43+ 5.30 5459+ 533 5248+ 991 50.53+ 6.20
GAT X 2D 59.72£12.42 50.84+ 5.50 5291+ 457 51.434+1041 5021+ 5.55
DIMENET++ X 2D+Mol | 66.41+10.43 50.85+ 4.83 54.254+10.54 54.54+ 7.66 54.06£13.00
SPHERENET X 2D+Mol | 65.54£10.51 50.26+ 5.92 53.83+10.87 55.40+ 5.79 54.43+13.41
COMENET X 2D+Mol | 66.89+ 9.94 50.52+ 6.22 55.89+ 9.09 56.69+ 6.21 54.574+10.21

GRAPHCL ‘ 2D 2D ‘ 64.61+12.24 51.594+ 445 5558+ 6.84 5835+ 9.03 52.20% 6.19
|

GRAPHPROMPT 2D 2D 68.88+11.03 51.53+ 4.20 55.67+ 7.08 59.87+ 6.27 52.43+ 3.62
MOLGA 2D 2D+Mol | 71.97+12.34 52,614+ 542 57314+ 6.87 6272+ 544 5494+ 537
Molecular graph pre-training approaches (for reference only)

GRAPHMVP 2D+Mol 2D+Mol | 69.05+ 8.00 50.82+ 4.19 57.43+ 6.12 59.59+ 7.75 55.46+ 6.10
GEM 2D+Mol 2D+Mol | 71.78+ 7.80 54.17+ 6.30 62.32+ 7.31 5321+ 8.03 58.07+ 9.24
MOLEBLEND 2D+Mol 2D+Mol | 71.45+ 9.45 52.85+ 4.25 60.56+ 6.36 61.81+ 7.96 57.17+ 8.19

“x” indicates without pre-training; “2D” denotes the use of 2D topology; “Mol” signifies that molecular domain knowledge is leveraged.
Among the comparable methods (excluding those for reference only), the best results are bolded and the second-best results are underlined.

Table 3: RMSE evaluation of molecular property prediction.

Methods | Pre-train ~ Adapt | QMBS QM9 ESOL  Lipophilicity =~ FreeSolv. MD17-aspirin
GCN X 2D 0.11840.003 1.400+0.023 2.764+0.122 1.466+0.131 4.298+0.143 4.87240.061
GAT X 2D 0.1204+0.003 1.160+0.020 2.635+0.116 1.445+0.068 4.267+0.203 4.95840.022
DIMENET++ X 2D+Mol | 0.10440.004 1.03440.054 2.37740.078 1.37940.133 4.049+0.213 4.781£0.092
SPHERENET X 2D+Mol | 0.07240.007 0.92840.023 2.13540.151 1.33540.127 3.900+0.138 4.77240.066
COMENET X 2D+Mol | 0.06040.013 0.91840.042 2.3174+0.210 1.30940.048 4.049+0.285 4.755+0.081
GRAPHCL 2D 2D 0.10340.007 1.018+0.011 2.03840.047 1.24940.014 4.612+40.133 4.90040.145
GRAPHPROMPT 2D 2D 0.100+0.096 0.976+0.022 2.052+0.045 1.242+0.017 4.517+0.129 4.84340.068
MOLGA ‘ 2D 2D+M01‘0.056i0.001 0.8554-0.027 1.973+0.043 1.18740.015 3.60240.131 4.7554-0.049
Molecular graph pre-training approaches (for reference only)
GRAPHMVP 2D+Mol 2D+Mol | 0.032£0.004 0.88540.023 2.25740.043 0.945+0.014 2.76740.122 4.782+0.033
GEM 2D+Mol 2D+Mol | 0.028+£0.011 0.652+0.003 1.17540.020 0.84040.220 1.95740.073 4.761+0.014
MOLEBLEND | 2D+Mol 2D+Mol | 0.030+0.013 0.590+0.009 1.496+0.032 0.774+£0.012 1.851£0.068 4.708-0.082

ing in a total of 500 results. For molecular property prediction, we adopt RMSE (Hodson, [2022)
as the evaluation metric, following prior work (Ruddigkeit et al.l [2012)) and assess with 5 different
random seeds. For both molecular classification and property prediction, we report the mean and
standard deviation across all runs.

5.2 PERFORMANCE EVALUATION

We first evaluate MOLGA on both molecular classification and molecular property prediction tasks.
Then we access with various amounts of labeled data for downstream adaptation.

Molecular classification and property prediction. We present the results of molecular classifi-
cation in Table [2] and molecular property prediction in Table 3] We observe that: (1) MOLGA
consistently outperforms other baselines, demonstrating the effectiveness of incorporating molec-
ular domain knowledge during the adaptation phase of 2D pre-trained graph encoders; (2) Since
molecular graph pre-training methods utilize a significant larger (2x ~ 134x) amount of data
for pre-training and are thus not directly comparable, their results are reported only for reference.
Nevertheless, MOLGA still achieves competitive performance, further validating its efficacy.

Various amount of labeled data. To assess the impact of labeled data size, we evaluate MOLGA
and several strong baselines on molecular classification tasks under with various number of shots, as
shown in Fig.[3] We make the following observations. (1) MOLGA generally surpasses all compet-
ing baselines from 1 to 10 shots, demonstrating its robustness. (2) As the number of labeled instances
increases (e.g., m > 5), performance typically improves for all models. However, MOLGA exhibits
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Figure 3: Impact of labeled data size (number of shots) on molecular classification.

Table 4: Ablation study on the effects of different components.

Methods ‘ AL CN Molecular classification Molecular property prediction

2D Mol| BBBP ClinTox MUV BACE QM8 ESOL  Lipophilicity FreeSolv
VARIANT 1| X X X [6529+1204 55.88+735 62.61+477 52.61+333]0.070+0001 2.035+0075 1.21140023 3.710+0.122
VARIANT 2| X v X [70.16+11.59 56.66+683 60.47+648 53.45+540|0.057+0001 2.063+0042 1.199+0015 3.716+0.124
VARIANT 3| X X v [69.87+1300 54.83+669 59.05+589 49.96+2.61|0.057+0001 2.0734+0057 1.200+0.015 3.668-0.097
VARIANT 4| X v v |71.10+1071 56.75+678 61.40+633 53.91+598(0.059+0004 2.018+0055 1.186+0.010 3.624-+0.208
VARIANT 5| v x X | 71.53+011 57.13+602 60.51+7.11 54.11+5386|0.059+0001 1.980+0.042 1.19310011 3.610+0.144
MOLGA vV vV 719711234 57314687 62.72+544 54.94+537|0.056+0001 1.973+0043 1.187+0015 3.602-+0.131

“AL” is short for molecular alignment; “CN” is short for conditional networks; “2D” denotes conditioning on pre-trained 2D topological
knowledge; “Mol” stands for conditioning on molecular domain knowledge.

a steeper performance gain compare to other methods. (3) In low-shot scenarios (e.g., m < 5),
MOLGA remains highly competitive, frequently achieving the best or near-best results.

5.3 ABLATION STUDY

To understand the the effect of integration with molecular domain knowledge, molecular alignment
and molecular adaptation, we compare MOLGA with five ablated variants and report the results
in Table d We observe that: (1) Integrating molecular domain knowledge benefits the adaptation
of pre-trained 2D graph encoders. This is evidenced by Variant 4 outperforming Variant 2. How-
ever, molecular knowledge alone is insufficient, as Variant 4 also surpasses Variant 3, suggesting
the necessity of effective integration of both 2D topological and molecular domain knowledge. (2)
Molecular alignment effectively bridges the representational gap between pre-trained 2D topological
embeddings and associated molecular knowledge, as Variant 5 outperforms Variant 1, and MOLGA
further outperforms Variant 4. This highlights the advantage of aligning these two modalities. (3)
Conditional networks are beneficial for both molecular classification and molecular property predic-
tion, as MOLGA surpasses Variant 5, and Variant 2 outperforms Variant 1. This demonstrates that
modeling instance-specific characteristics—rather than applying a uniform task head—is crucial for
fully leveraging both 2D topological structures and molecular domain knowledge.

5.4 ADDITIONAL EXPERIMENTS

We conduct additional experiments including: (1) an evaluation of the impact of hyperparameters in
Appendix [E.T] (2) an analysis of parameter efficiency in Appendix [E.2] (3) a study on the flexibility
of incorporating various 2D graph pre-training methods in Appendix and (4) a visualization of
MOLGA and its ablated variants in Appendix [E.4]

6 CONCLUSIONS

In this paper, we studied the adaptation of pre-trained 2D graph encoder to downstream molecular
applications by flexibly integrating diverse molecular domain knowledge. Our proposed method,
MOLGA, employs a molecular alignment strategy to bridge the gap between the pre-trained 2D
topological representation and downstream molecular domain knowledge. Furthermore, we propose
a conditional molecular adaptation mechanism that modulates the pre-trained encoder conditioned
on aligned topological and molecular knowledge. Extensive experiments on eleven benchmarks
demonstrate the effectiveness of MOLGA.
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APPENDICES

A ALGORITHM

We detailed the key steps for downstream tuning of MOLGA in Algorithm [T] First, we extract
molecular domain knowledge and project them into the topological embedding space (line 5-9).
Then, in line 10 — 11, we calculate contrastive alignment loss. In line 14—17, we employ conditional
networks to generate molecular tokens, which are then used to modify molecular graphs in line
18-24. Specifically, for atom associated molecular domain knowledge, tokens modify the input
atom features before fed into the frozen 2D graph encoder (line 19-21 ), while for bond associated
molecular domain knowledge, generated tokens are injected into the message-passing process (line
22-24) . Then we readout the molecular embedding and calculate task loss (line 25-28). Finally,
we calculate and backpropagate the overall loss and optimize ®,T", n, 8 (line 29-30).

B FURTHER DESCRIPTIONS OF DATASETS

We summarize all datasets in Table (1| and provide further comprehensive descriptions of these
datasets.

* BBBP (Martins et al., 2012) is a molecular dataset of 2,039 molecules, each representing a drug-
like compound. Atom features denote element types, and labels indicate blood—brain barrier per-
meability (penetrating or non-penetrating).

Algorithm 1 DOWNSTREAM ADAPTATION FOR MOLGA

Input: Pre-trained 2D graph encoder GE with frozen parameters ©o, labeled data D for downstream adaptation;

Output: Optimized parameters I' in conditional networks, ® in projectors, 7 in task head, and g in balancing
function.

1: ®&,T",n, B «+ initialization

2: while not converged do

3: (Hy,H¢) « GE(X, G;00)

4: /* Molecular alignment */

5: for k =1to K do

6: /* Molecular domain knowledge extraction by Eq.[2]*/
7. M, Extrk(Mk)

8: /* Molecular domain knowledge projection by Eq. [3]*/
9: My, < fi(My; ¢)
10: /* Contrastive alignment loss */
11: for k =1to K do
12: Calculate Lfﬁign (¢x) by Eq.

130 Laign ¢ 24 Ly (Bq.[5)

14: /* Molecular adaptation */

15: /* Molecular token generation by Eq. []*/
16: for k = 1to K do

17: Ty CondNetk(Concat(H7 Mk);fyk)

18: for k =1to K do

19: if M, is atom-level then

20: X X0 Tg

21 Hy ;. < GE(Xx,G; 0) (Eq.[l)

22: else if M}, is bond-level then

23: for Each layer [ in GE do

24: B =MP (W), {6 B [ue N} i0') Yo ey (Eq.

25: I:IV — Z}i(:l I:'Iv,k; Hg Readout(Hv)

26: /* Task loss */

27: 9 < TaskHead(Hg;n); Lux < L(9,y)

28: Calculate L(®, T, n, 3) by Eq.

29: Update @,T", n, 8 by backpropagating £(®,T", n, 5)
30: return {®,T",n, 5}
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* SIDER (Kuhn et al., 2016) contains 1,427 molecules annotated with adverse drug reaction cate-
gories. Labels represent the presence or absence of hepatobiliary adverse effects.

* ClinTox (Gayvert et al.,|2016) includes 1,478 molecules associated with toxicity-related informa-
tion. Labels denote FDA approval status (approved or not approved).

* MUV (Rohrer & Baumann,[2009) comprises 93,087 molecules curated for virtual screening across
17 assays. Labels indicate activity against Sphingosine-1-Phosphate Receptor 1 (active or inac-
tive).

* BACE (Wu et al [2018) is a set of 1,513 molecules targeting 3-secretase 1 (BACE-1) inhibition.
Labels denote active or inactive status of the molecule, derived from IC5y measurements.

* OMS8 (Ramakrishnan et al., 2015)) consists of 21,786 molecules with associated excited-state prop-
erties, including excitation energies and oscillator strengths.

* OM9 (Ramakrishnan et al. |2014) contains 133,885 small organic molecules with multiple
quantum-chemical properties (e.g., Uy, enthalpy, free energy, heat capacity, dipole, polarizabil-
ity, HOMO/LUMO energies, and energy gap). Each molecule includes both atom/bond features
and equilibrium 3D coordinates.

* ESOL (Delaneyl 2004) is a curated dataset of 1,128 molecules aimed at predicting aqueous solu-
bility, a key pharmacokinetic property.

* Lipophilicity (Gaulton et al., | 2012) includes 4,200 molecules for predicting the octanol/water dis-
tribution coefficient, an important descriptor of bioavailability and membrane permeability.

* FreeSolv (Mobley & Guthrie,2014)) provides 642 molecules with experimentally measured hydra-
tion free energies (AG). The dataset targets subtle intermolecular effects and is used for regression
tasks involving noncovalent interactions.

* MDI7 (Chmiela et al., 2017) contains 211,762 conformations of CoHgO, sampled at different
time steps, each associated with varying levels of molecular energy.

C FURTHER DESCRIPTIONS OF BASELINES

In this section, we provide additional details about the baselines used in our experiments.

(1) Supervised 2D graph neural networks.

* GCN (Kipf & Welling, |2017): A graph neural network that aggregates node information
using mean-pooling, thereby enabling nodes to capture structural information from their
neighbors.

* GAT (Velickovic et al.l [2018): Unlike GCN, GAT incorporates attention mechanisms to
assign different weights to neighboring nodes, refining the aggregation process based on
their relative importance.

(2) Supervised molecular graph encoders.

* DimeNet++ (Gasteiger et al., 2020): A directional message-passing network for molecular
graphs that encodes inter-atomic distances and angles using spherical Bessel functions and
spherical harmonics, enabling efficient modeling of three-body interactions and improved
stability over DimeNet (Gasteiger et al., [2021)).

* SphereNet (Liu et al) 2022d)): A spherical message-passing architecture that represents
local geometry in spherical coordinates and explicitly incorporates distance, bond angle,
and dihedral angle terms, strengthening the capture of 3D structural dependencies.

* ComENet (Wang et all 2022): A complete-and-efficient molecular graph encoder that
augments standard edge-to-node updates with angle/dihedral-aware interactions, allowing
simultaneous modeling of 2-body, 3-body, and 4-body geometric relations while maintain-
ing computational efficiency.

(3) 2D graph pre-training methods.
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* GraphCL (You et al., [2020): A contrastive pre-training framework that maximizes agree-
ment between two stochastically augmented views of the same graph via an InfoNCE ob-
jective. It employs graph-specific augmentations and an MLP projection head; negatives
are other graphs in the batch. This yields transferable 2D topological representations under
minimal task-specific supervision.

¢ GraphPrompt (Liu et al.,2023c)): A prompt-based adaptation method for graphs in which
small, learnable prompt vectors are injected into the input or intermediate layers to steer a
(typically frozen) encoder toward downstream tasks with minimal parameter updates.

(4) Molecular graph pre-training methods.

¢ GraphMVP (Liu et al 2022a): A multi-view pre-training framework that aligns 2D
molecular graphs with 3D conformations via contrastive objectives and complementary
self-supervised tasks, encouraging cross-modal consistency between topology and geome-
try.

* GEM (Fang et al.,[2022): A geometry-enhanced molecular pretraining approach that cou-
ples 2D structural cues with 3D geometric supervision (e.g., distance/angle-aware tasks and
masked attribute recovery) to learn spatially informed representations.

* MoleBlend (Yu et al.}[2024a): A relation-level, blend-then-predict pretraining strategy that
first blends 2D/3D atom-relation signals into a unified input for a single encoder, then pre-
dicts modality-specific targets, enabling fine-grained 2D-3D alignment within one model.

D IMPLEMENTATION DETAILS

Environment. The environment in which we run experiments is:

* Operating system: Ubuntu 22.04.1
¢ CPU information: Intel(R) Xeon(R) Platinum 8368Q
¢ GPU information: NVIDIA L40(48G)

Optimizer. For all experiments, we use the Adam optimizer.

Details of baselines. For all open-source baselines, we leverage the officially provided code. Each
method is tuned based on the settings recommended in their respective literature to achieve optimal
performance.

For both GCN(Kipf & Welling, [2017) and GAT(Velickovic et al., [2018]), we employ a 3-layer archi-
tecture, and set the hidden dimension to 64.

For GraphCL (You et al.| 2020)), a 3-layer GCN is also employed as its base model, with the hidden
dimension set to 64. Specifically, we select edge dropping as the augmentations, with a default
augmentation ratio of 0.2.

For GraphPrompt (Liu et al.,|2023c)), a 3-layer GCN is used as the base model for all datasets, with
the hidden dimension set to 64.

For DimeNet++ (Gasteiger et al.| 2020), we use the default settings provided in the original imple-
mentation: 4 interaction layers, hidden dimension of 128, and a cutoff radius of 5.0.

For SphereNet (Liu et al., 2022d), we adopt the default configuration: 4 layers with a hidden dimen-
sion of 128 and cutoff radius of 5.0. The basis sizes are kept as default with 7 spherical harmonics
and 6 radial basis functions. Output block settings are also maintained as default, with no additional
hyperparameter tuning.

For ComENet (Wang et al.l 2022), we employ the composite-energy message passing scheme to
efficiently encode complete 3D information within 1-hop neighborhoods. Following the DIG frame-
work defaults, we configure the model with 4 layers, a hidden dimension of 256, middle dimension
of 64, and a cutoff radius of 8.0. The basis sizes are set to 3 spherical harmonics and 2 radial basis
functions, and output layers remain unchanged.
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Figure 4: Impact of hidden dimension s in the conditional networks.

Table 5: Comparison of the number of tunable parameters during the downstream adaptation stage.

Methods | No. parameters
GCN 33,537
GAT 17,921
DIMENET++ 1,919,750
SPHERENET 1,916,870
COMENET 996,236
GRAPHCL 128
GRAPHPROMPT 64
MOLGA \ 13,824

For GraphMVP (Liu et al., 2022a), We utilize a 5-layer GIN as the 2D encoder with a hidden
dimension of 300. For the molecular graph encoder, we adopt a 6-layer SchNet (Liu et al., [2022c])
with a hidden dimension of 128.

For GEM (Fang et al,, 2022)), we employ GeoGNN (Fang et al., 2022)) as the molecular graph
encoder, consisting of 8 blocks with a hidden dimension of 32.

For MoleBlend (Yu et al.| [2024a), we use a unified Transformer backbone with 12 layers and 32
attention heads, where the hidden dimension is set to 768.

Details of MOLGA. For our proposed MOLGA, we follow COMENET (Wang et al., 2022) to
extract 3D conformations and chemical bond types as bond-level attributes. For atomic force, we
directly use the original energy values as atom-level attribute. We using GCN as backbones, which
hidden dimension is set to 64. We use a dual-layer MLP with bottleneck structure as the conditional
network, and set the hidden dimension of the conditional network as 32.

E ADDITIONAL EXPERIMENTS

E.1 IMPACT OF HYPERPARAMETERS

In our experiments, the conditional network is implemented as a two-layer MLP. To investigate the
impact of its design, we vary the hidden dimension s of conditional network and report the results in
Fig. [l We observe that s = 32 generally achieves best or near-best performance on both molecular
classification and molecular property prediction tasks, thus we set s = 32 in our experiments.

E.2 PARAMETER EFFICIENCY

Finally, we evaluate the parameter efficiency of MOLGA by comparing it with representative base-
lines. We report the number of parameters that need to be tuned during the downstream adaptation
phase, as shown in Table[5] We draw the following observations: (1) Supervised learning methods,
including GCN, GAT, DIMENET++, SPHERENET, and COMENET, are trained end-to-end, requir-
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Table 6: Evaluation of MOLGA with different 2D graph pre-training methods.

Molecular classification Molecular property prediction

Pre-train Me‘h"d‘ SIDER ClinTox MUV BACE ‘ QM8 ESOL  Lipophilicity ~ FreeSolv

JOAOV2 52.61+£5.42 57.31+6.87 62.72+5.44 54944537 | 0.056+0001  1.878+0.042 1.187+0.015 3.622+0.131
GraphCL 51.61£5.33  57.74+£6.23  60.81+£6.42 54.174£5.71 | 0.059+0001  1.950-+0.044 1.189+0015  3.530-+0.092

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5
Figure 5: Visualization of embedding space of atoms.

ing all model parameters to be updated during downstream training. Thus, these models exhibit
poor parameter efficiency. Moreover, compared to GCN and GAT, which only utilize 2D topolog-
ical structures, the others further incorporate molecular domain knowledge, resulting in a signifi-
cantly larger number of trainable parameters. (2) 2D graph pre-training-based methods, GRAPHCL,
GRAPHPROMPT freeze the pre-trained 2D graph encoder during downstream adaptation, only tune a
task head, significantly improving parameter efficiency. (3) MOLGA achieves the best parameter ef-
ficiency compared to both supervised learning and molecular graph pre-training methods. Although
MOLGA introduces additional lightweight modules (projection heads and conditional networks).
While MOLGA tunes slightly more parameters than 2D pre-training methods, the increase is negli-
gible, and does not pose a bottleneck in practice.

E.3 IMPACT OF PRE-TRAIN METHOD ON DOWNSTREAM PERFORMANCE

To assess the impact of different 2D graph pre-training methods, we employ two representative
approaches, GraphCL and JOAOv2 (You et al.| 2021), and report the results in Table @ We ob-
serve that MOLGA consistently outperforms comparable baselines across all pre-training methods,
demonstrating its flexibility and general applicability. Moreover, using JOAOV?2 as the pre-training
method generally yields better performance than GraphCL, thus we adopt JOAOV2 in our main
experiments.

E.4 VISUALIZATION

To further demonstrate the effectiveness of our core components, we present the atom embedding
space on the BBBP dataset in Fig. 5] with different colors indicating distinct atom classes. We ob-
serve that, with the incorporation of molecular alignment and conditional adaptation, atom embed-
dings from different classes exhibit clear separation. This structure reflects a well-organized latent
space shaped jointly by 2D topological information and molecular domain knowledge, highlighting
the effectiveness of MOLGA.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM was used in the preparation of this manuscript exclusively as language-polishing tools. Specif-
ically, we employed LLM to refine grammar, improve clarity, and enhance readability of the text.
All research ideas, methodologies, experiments, analyses, and conclusions presented in this work
are entirely the authors’ own. The LLMs did not contribute to the conception of the research, exper-
imental design, data analysis, or interpretation of results. The authors take full responsibility for the
accuracy, originality, and integrity of all scientific content.
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G DATA ETHICS STATEMENT

We conducted experiments using only publicly available benchmark datasets, i.e., BBBFEI, SIDE
ClinTox| BACH] QM§] QM| ESOLF] Lipophilicityf] FreeSoly} and MD17-aspiri
All datasets were utilized in compliance with their respective terms of use. We further confirm
that our research does not involve human participants, animal subjects, or any form of personally
identifiable information.

1http://deepchem.io.s3fwebsite7usfwestfl.amazonaws.com/datasets/BBBP.
CSV
“http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/sider.
CsSV.gz
’http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/
clintox.csv.gz
*https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/muv.csv.gz
5http://deepchem.io.s3—website—us—west—l.amazonaws.com/datasets/bace.
CSsv
%http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/gdb8.
tar.gz
'http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/gdb9.
tar.gz
Shttp://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/
delaney—-processed.csv
http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/
Lipophilicity.csv
“https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_
publish/FreeSolv.zip
"http://quantum-machine.org/gdml/data/npz/mdl7_aspirin.npz
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