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Abstract— Understanding working memory's genetic and 
neural bases is crucial for advancing cognitive neuroscience and 
identifying biomarkers for cognitive impairments, particularly 
in the older population. This study integrates SNP and 
neuroimaging data from the UK biobank to improve the 
classification of high vs. low working memory capacity and 
reveal genetic factors associated with brain structure. 1060 
SNPs belonging to Protein-Protein Interaction networks of 
amyloid precursor protein and Aβ of Alzheimer's disease were 
integrated with latent features of whole brain gray matter 
density, extracted by a pre-trained CNN, via supervised 
contrastive learning. Our model effectively extracts latent 
representations of both modalities through enhancing genetic-
imaging relation within individuals and within working memory 
groups, in contrast to across individuals and groups. Features 
derived from contrastive learning outperformed other baseline 
models in terms of classification. Sparse canonical correlation 
analysis was applied to the latent representations and uncovered 
significantly related genetic variants and brain regions.  Genetic 
components highlight SNPs in genes FYN, RPL28, MAPT, 
enriched in the pathways of dendrite and synapse, among 
others. The linked brain regions support the cerebellum and 
striatum's role in cognitive functions. These findings provide 
new insights into the genetic and neural mechanisms underlying 
working memory, potentially guiding future research and 
therapeutic strategies for cognitive impairment. 

Keywords—Working memory, Genetic variants, 
Neuroimaging, Contrastive learning, Sparse Canonical 
Correlation Analysis 

I. INTRODUCTION  
WORKING MEMORY (WM), a fundamental cognitive 

function, enables individuals to hold and manipulate 
information over short periods, essential for reasoning, 
learning, and decision-making. It is influenced by both 
genetic and neural factors. Understanding its genetic and 
neural basis can help identify biomarkers for cognitive 
impairment in neurodegenerative diseases [1]  in the old 
population, as working memory declines in normal aging, 
Mild Cognitive Impairment and Alzheimer's disease (AD) 
[2].  Furthermore, working memory is also one of earliest 
key symptoms in AD [3], making it a good phenotypical 
outcome to study for genetic mutations associated with AD.  

    Previous research has established various links between 
genetic variants and brain structure/function that underpin 
working memory performance. As reviewed in [4] one of the 

most studied genes is COMT (Catechol-O-
Methyltransferase), which encodes an enzyme that degrades 
dopamine in the prefrontal cortex, a region critical for 
working memory [5]. Yet its genetic variants may code 
normal working memory variation in the population. 
Specifically interested in the working memory decline in the 
old population, we leverage the knowledge of protein-protein 
interaction networks in AD [6], and conduct a focused study 
on genetics involved in pathogenesis of AD with brain 
structure serving WM function. Among many genes, for 
instance, ADAM10 (a member of the A Disintegrin And 
Metalloproteinase (ADAM) family) is known to be involved 
in the cleavage of amyloid precursor protein, a key process of 
AD pathogenesis, and also helps normal synaptic functions 
and hippocampal neurogenesis [7]. 
    Neuroimaging studies have identified specific brain 
regions whose function or structural variations are crucial for 
WM. Functional MRI (fMRI) studies consistently show that 
the prefrontal cortex, particularly the dorsolateral prefrontal 
cortex (DLPFC), is heavily involved in WM tasks [8].  Recent 
studies have highlighted the role of the cerebellum in WM, 
especially the left cerebellum being implicated in verbal WM 
tasks [9-11]. A transdiagnostic study has revealed consistent 
patterns of dysfunction in the prefrontal and parietal cortices, 
as well as cerebellum, across various psychiatric and 
neurological diagnoses [12]. In parallel, structural MRI 
(sMRI) studies echo the findings of fMRI, where DLPFC 
surface area independently contributes to WM performance 
[13], and grey matter volumes in the inferior frontal and 
cerebellum are associated with WM across age groups [14].  

The integration of genetic and imaging data provides 
deeper insights into how genetic variants influence brain, 
thereby affecting WM. Heck et al. performed genome-wide 
gene set enrichment analyses in multiple data sets, young and 
aged, and identified the voltage-gated cation channel activity 
gene set was linked to WM-related tasks and parietal cortex 
and the cerebellum [15]. Previous works have linked a set of 
single nucleotide polymorphisms (SNP) to gray matter 
alterations in the frontal region underlying WM deficits in 
adults and adolescents with attention-deficit/hyperactivity 
disorder. The SNPs highlighted MEF2C, CADM2, and 
CADPS2, relevant for modulating neuronal substrates 
underlying high-level cognition [16]. 

Both traditional data fusion approaches, such as 
Canonical Correlation Analysis (CCA) [17, 18] and parallel This research was funded by NIH grant RF1AG063153 to 
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independent component analyses [19], and deep learning 
based approaches [20] have been implemented for integrating 
neuroimaging data and genetics. Yet due to heterogeneous 
characteristics of imaging and genetics, it is a still changeling 
task to effectively integrate datasets. Contrastive learning 
techniques have recently emerged as powerful tools for multi-
modal data integration. These methods learn shared 
representations from different data types by maximizing their 
agreement, making them particularly suitable for tasks 
involving genetic and imaging data. A recent study by Taleb 
et al. (2022) introduced ContIG, a self-supervised multimodal 
contrastive learning framework for medical imaging with 
genetics. ContIG effectively learns joint representations by 
contrasting positive pairs (genetic and imaging data from the 
same subject) against negative pairs (data from different 
subjects), and subsequently enhances the performance of 
prediction tasks [21]. 

 In this study, we leverage the strength of both CCA 
and contrastive learning for integration, along with transfer 
learning Convolutional Neural Network (CNN) and MLP for 
latent feature extraction and build a three-stage imaging 
guided SNP representation model for classification of WM 
capacity. The contribution of this project includes: 1) a 
transfer learning component from brain aging to WM for 
neuroimaging feature extraction, 2) a multi-modal contrastive 
learning approach that integrates genetic and imaging data to 
capture their complex relationships, 3) a sCCA interpretation 
for the learned representations to identify significant imaging 
and genetic components with shared variance. The findings 
could provide new insights into the biological pathways for 
both risk genetics and brain structure involved in WM, 
identify potential biomarkers for cognitive decline and 
impairment. 

II. MATERIALS AND METHODS 
In this section we first introduce our cohort and data. Then 

we detail the proposed novel model, followed by baseline 
models for comparison. Finally, we explain the post analyses 
for model and results interpretation.   

A. Cohort 
UK Biobank [22] contains de-identified data of a million 

UK participants and over 40,000 participants with brain MRI 
and genetic data. Informed consent was obtained from all 
participants, and the study was approved by the North-West 
Multi-center Research Ethics Committee. 26,534 subjects 
participated in the WM assessment by maximum digits 
remembered correctly during a backward digit span task, 
ranging from 2 digits to 12 digits with distribution as shown 
in Fig. 1. We selected a subpopulation of 5469 participants 
from two groups i) participants with memory scores ranging 
from 2 to 5 and ii) participants with scores in the range of 9 to 
12. The segregation was based on the Miller's Law of clinical 
psychology which states that individuals, on average, can hold 
about 7 ± 2 items at a time in their WM [23]. We adjusted 
based on the distribution of our dataset to 7 ± 1 as the average 
capacity. Thus, group I is termed as low WM capacity and 
group II is high WM capacity. Among them, 4995 had both 
MRI and genetic data for our analyses, with 3192 in low WM 
group (age: 55.95±7.58, 1317 male), and 1803 in high WM 
group (age: 42.35±7.08, 1034 male). 

B. MRI Preprocessing 
T1-weighted MRI images collected from three centers 

with identical scanners were segmented into six types of 
tissues (gray matter, white matter, etc.) using SPM 12 with 
default TPM template and modulated option, and normalized 
into Montreal Neurological Institute space, and resliced and 
smoothed with a 6×6×6mm3 Gaussian kernel. Details of 
pipeline can be seen in [14].   Each image has a voxels matrix 

of 128×141×128. Further quality control was conducted to 
retain individual images with a correlation larger than 0.9 
with the averaged gray matter image. 
 

C. Single Nucleotide Polymorphisms (SNP) Preprocessing  
The genomic data after imputation [24] were first filtered 

with imputation r2 ≤ 0.3, missingness rate ≥ 5%, minor allele 
frequency ≤ 0.01, Hardy–Weinberg Equilibrium p value ≤ 
1×10-6. Then, a subset of SNPs was selected based on 
expression quantitative trait loci (eQTL) for brain tissue 
published by PsychENCODE [24], i.e., SNPs regulating gene 
expression in brain. Further, to increase the likelihood of 
identifying the biologically relevant genes we selected SNPs 
that are also part of the Protein-Protein Interaction network 
of amyloid precursor protein and Abeta of Alzheimer's 
disease[25]., yielding 1060 SNPs.  Each SNP was coded as 
0,1, and 2 reflecting number of minor alleles. 

D. Contrastive Genetic-Neuroimaging Integration (CGNI) 
We propose a three-stage imaging genetic integration 

framework as shown in Fig. 2. The input includes whole brain 
gray matter images and 1060 SNPs. The output is twofold: 
one is the classification of WM group, and the other is 
associated with latent representations of imaging and genetic 
data. Stage 1 is to extract imaging latent representations using 
transfer learning. Stage 2 is to extract genetic representations 
guided by the imaging representations via contrastive 
learning. Finally, Stage 3 combines these representations to 
perform WM classification. The details of each stage are 
provided in the following sections. 

 
1) Imaging Representation Learning Using Transfer 

Learning 
 Stage 1 shows the model to extract imaging 
representation. First, we pre-trained a 3D CNN model for 
brain age prediction task following the work of [26], using a 

 

Fig. 1. Distribution of working memory scores 
of 26,534 participants. 



large sample size of 39,755. The 3D CNN architecture is 
composed of five convolutional blocks and each block has a 
3D convolutional layer, a batch normalization layer, followed 
by a max pool layer, and a ReLU. The convolutional layers 
used 32, 64, 128, 256, 256 channels, respectively, with stride 
of one and no padding was used. The output images from the 

final convolutional block are flattened and passed to the fully 
connected layer which takes 1024 inputs and outputs the 
predicted brain age. The fully connected layer has a dropout 
rate of 0.2. 
    Using transfer learning combined with heuristic self-
transfer-training [27] method, the best trained brain age 
model was used to initialize the classification  model for the 
prediction of the WM. We denote the flattened outputs of the 
final convolutional block of the 3D CNN model as ℎ!" =
𝑓!(𝑥!" ), where 𝑥!"  is the imaging modality of the participant i 
∈	{1,	…	,4995}.	
	

2) Imaging Guided SNP Representation Learning via 
Contrastive Learning 

Each individual sample, 𝑋", where i ∈ {1, … ,4995}, has 
an imaging modality, 𝑥!" , a genetic modality, 𝑥#" , and a label 
𝑦" ∈ {low = 0, high = 1}. We train our contrastive model in 
batches of size b, where b >1. Our model, as shown in stage 
2 of Fig. 2, is comprised of two encoders, one for each 
modality.  

The encoders transform each modality into respective 
representations using the contrastive loss functions described 
in the following section. For imaging encoder, denoted as 𝑒!, 
we use the output from the 3D CNN of the baseline model 
(see section D.i), ℎ!" , as the input. The imaging encoder input 
layer takes 512 inputs and has three hidden layers. The size 
of each hidden layer is 250, 200, and 150 neurons, 
respectively. The output layer is of size 100, denoted as 𝑧!" =
𝑒!(ℎ!" ) 	∈ ℝ$%%.Similarly, the genetic encoder, denoted as 𝑒#, 
is a fully-connected neural network with 1060 SNPs as input 
and has five hidden layers of size 400, 600, 400, 300, and 150 

neurons, respectively. The output layer is of size 100, denoted 
as 𝑧#" = 𝑒#7𝑥#" 8 	∈ ℝ$%%.	 

For every ith pair of imaging representation and genetic 
data, (ℎ!" , 𝑥#" ), (𝑧!" , 𝑧#" ) are representations from the encoders 
(𝑒!, 𝑒# ), in a batch of b samples. We constrain our batch 

selection such that |{𝑦" = 0}| > 0, and |{𝑦" = 1}| > 0, to ensure 
at least one sample from each label. We then define our loss 
function using following loss terms where τ is a temperature 
parameter that scales the embeddings to control the range of 
the dot product, and 𝑃(𝑖) ≡ {𝑝 ∈ {1…𝒃}	\	𝑖	: 𝑦& = 𝑦"} 

In (1)—imaging-to-genetics, for every imaging modality 
(ℎ!" ) in a batch, we consider its corresponding genetic pair 
(𝑥#" ) as the positive sample with all other genetic samples 
(𝑥#

'; 	𝑗 ≠ 𝑖) as negatives to be contrasted against. Similarly, 
in (2)—genetics-to-imaging, imaging ℎ!"  is the positive of the 
genetic sample 𝑥#"  and contrasted against all other images in 
the batch (ℎ!

' ; 	𝑗 ≠ 𝑖). In (3)—imaging-to-imaging, and (4)—
genetic-to-genetic loss terms, by taking advantage of the 
labels, we use intra-modal contrasting to align the 
representations of the samples of same class to be close to 
each other, while the samples from the other class are pushed 
apart.  Finally, we combine the four loss terms and define the 
contrastive batch loss function. 
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Fig. 2. Schematic illustration for the steps of our proposed method. In Stage 1, we perform feature learning of the images using 
Convolutional Neural Networks. In stage 2, we learn representations of the genetic modality guided by the imaging features via 
contrastive learning. In stage 3, we finally combine the representations from both the modalities and perform classification of working 
memory.    
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𝐿6789(𝑣, 𝑔) = λ𝐿(𝑣, 𝑔) + 𝜎𝐿(𝑔, 𝑣) + 𝛾𝐿(𝑣, 𝑣)
+	𝜃𝐿(𝑔, 𝑔) (5)	

Where λ, σ, γ, θ	 ∈ [0,1]  are weighting hyperparameters. 
By incorporating these inter- and intra-modal contrastive 
losses, our model ensures that each modality independently 
learns meaningful and discriminative representations. These 
representations are then combined for the final classification 
task, enhancing the overall performance of the model. In 
addition, we trained the model with different combinations of 
these loss terms and compare the quality of the 
representations by fine-tuning to the classification task shown 
in Stage 3. 

 
3) Classification of WM 
In stage 3, we combined genetic representations obtained 

from the contrastive training ( 𝑧#" ) with the imaging 
representations from the 3D CNN model (ℎ!" ), resulting in an 
input dimension of 612 (100 from genetic encoder and 512 
from the imaging CNN) and trained a fully-connected neural 
network. The neural network has three hidden layers of size 
250, 200, and 150, respectively. The output layer has two 
neurons for classification of WM. 

E. Baseline models 
We compare the performance of our model with the 

following four baseline models. For the first two models, we 
trained two supervised models for each modality separately. 
Next, we combined the latent representations from the 
individual modalities and trained iii) a linear classifier using 
Support Vector Machine (SVM), and iv) a fully connected 
neural network classifier. 

Imaging CNN: For classification of WM using only the 
imaging modality we used the same model described in the 
stage 1 of the CGNI framework.  

Sparse Genetic Classification Models: The genetic data 
was processed using a fully connected neural network (NN) 
designed to capture the complex relationships within the 1060 
SNPs. The architecture of the NN is as follows: the input 
layer of the network takes an input of 1060 SNP features. The 
hidden layers are of size 800, 600, and 400 neurons 
respectively. The final layer is a 2-neuron output layer to 
classify the WM scores. To prevent overfitting and ensure 
sparsity, L1 regularization was applied to the hidden layers.  
The activation function used for the hidden layers is the 
ReLU.  We denote the output of the last hidden layer (size of 
400 neurons) as ℎ#" = 𝑓#7𝑥#" 8 	∈ ℝ:%% , where 𝑥#"  is the 
genetic modality of the participant i ∈ {1, …, 4995}. 

Imaging-Genetic Integration Models (linear and non-
linear): Finally, we combined the output embeddings of the 
two modalities,  ℎ!" ⊕ 	ℎ#" , and trained a Support Vector 

Machine (SVM) for linear classification and a fully 
connected NN. The input layer of this NN has 912 neurons. 
The input layer is followed by two hidden layers of size 500 
and 200 neurons. The output layer has 2 nodes corresponding 
to high memory or low memory. ReLU activation was used 
after each layer to incorporate non-linearity into the model. 
While training, L1 regularization was applied to all the layers 
to prevent overfitting. 

F. Post Analyses for results interpretation 
In our post analyses, first, we utilized Sparse Canonical 

Correlation Analysis (SCCA) to identify the relationships 
between the imaging and genetic latent representations, and 
top contributing features. Next, from the identified genetic 
features, we further performed gene enrichment analysis to 
reveal their biological significance.  

1) Sparse CCA Analysis for Understanding Imaging-
Genetics Relationships 

To understand the relationships between the imaging and 
genetic representations of the contrastive training, we 
performed SCCA on the encoder outputs 𝑧!" , 𝑧#" . We utilized 
the iterative penalized SCCA method proposed by Mai et. al. 
[28] due to its ability to handle high-dimensional and enforce 
sparsity to reduce overfitting. We considered the number of 
components as one of the hyperparameter along with the 
sparsity penalization for each modality and selected the 
sCCA model via GridSearchCV and 5-fold cross validation. 
We used the implementation provided by Chapman et. al. 
[29].  

For the correlated components from the imaging and 
genetic modalities, to identify the top contributing important 
features, we used feature occlusion sensitivity method. We 
denote the ith sample with kth feature occluded as	𝑥;<" , where 
m is the modality. The feature occluded imaging encoder 
𝑧!<" =	𝑒! i𝑓!7𝑥!<" 8j  and 	𝑧#<" =	𝑒#7𝑥#<" 8  as the genetic 
encoder output. For imaging modality, we partitioned the 
brain into 116 brain regions based on [30]. For genetic 
modality, we considered the individual SNPs as features and 
computed their contribution. Given for each correlated 
component identified from sCCA, only fewer latent 
representation nodes are involved. We computed the 
contribution of each feature to the largest weighted (highest 
absolute canonical weight) representation node. The 
contribution value is computed as the mean difference of the 
actual encoder output 𝑧;" ), and encoder output with feature 
occluded𝑧;<" ) as shown in (6). 

  

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛< =	
∑ 𝑧;" −	𝑧;<"=
"-% 	

𝑁 	∀	𝑘 ∈ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠	 (6) 

 
The top contributing features to each component are the brain 
regions and SNPs whose contribution scores are greater than 
2.5 and 3 standard deviations away, respectively, from the 
mean contribution scores. 

2) Gene Set Enrichment Analysis 
To further understand the biological significance of the 

set of SNPs that are identified to have significant contribution 
to the sCCA components, we have performed a gene 
enrichment analysis using the gProfiler online software [31]. 
First, we matched the SNPs to the Ensemble ID of the genes 
(these were part of the eQTL dataset obtained from 



psychEncode) and used the g:Convert function to get the gene 
names, then used g:GOSt function to perform the enrichment 
test [31]. 

G. Experimental Setup 
Across all experiments, we used the same splits of data 

for training, validation, and test set. We ensured there was no 
cross-contamination of samples between the splits. We split 
the data into two sets, 90% for training and 10% for test set. 
Using the training set we performed five-fold cross validation 
for each set of hyperparameters. For fully-connected 
networks, we vary the number of hidden layers and the size 
of each layer, learning rate. We used the Adam optimizer for 
optimizing the neural networks. For the CNN models we used 
a batch size of 25 images on A100 GPU. For the contrastive 
model we used a batch size of 50 and for the WM 
classification model the batch size is 75. For classification 
tasks we used balanced accuracy as our metric.        

III. RESULTS 

A. Baseline Model Results 
As a benchmark comparison for the contrastive training 

model, we have reported the performance of several 
baselines. In TABLE 1, we report the mean balanced 
accuracy across five-folds of the imaging-genetic baseline 
model along with other models trained on individual 
modalities.  
 

TABLE 1 
COMPARISON OF BALANCED ACCURACIES OF MODELS 

 

WM 
Classification  

Training Validation Holdout  

Imaging CNN    81.34 ± 
2.34 

75.32 ± 0.49 87.02 ± 
1.31 

Sparse Genetic 
NN  

59.80 ± 
0.42 

59.35 ± 0.45 59.28 ± 
0.57 

Imaging-
Genetic SVM 
(linear) 

95.5 ± 
2.59 

65.08 ± 1.56 65.23 ± 
2.38 

Imaging-
Genetic NN 
(non-linear) 

87.47 ± 
0.45 

87.08 ± 0.80 87.02 ± 
0.67 

Imaging-Genetic 
contrastive 
learning (proposed 
with best terms) 

91.37 ±  
0.30 

90.39 ± 0.11 88.91 ±  
0.66 

 
To pre-train the CNN model for brain age prediction task, 

we achieved the best results (MAE of 2.82 ± 0.04 on training, 
2.88 ± 0.05 on validation, 2.47 ± 0.2 on test set). By 
transferring the first two layers of the brain age model, we 
achieved high mean balanced accuracy (87.02) on the holdout 
set. For genetic modality, With the addition of L1 sparsity 
explicitly and L2 sparsity via the weight decay parameter of 
the Adam optimizer the model achieved balanced accuracies 
around 59% Finally, the multi-modal imaging-genetic model 
exhibited the highest performance with balanced accuracies 
above 87% across all splits, indicating robust generalization. 

B. Comparison of Combinations of Contrastive Loss Terms 
We systematically tested various combinations of loss 

terms in (5) and recorded the balanced accuracies on the 
training, validation, and test sets. The results are summarized 
in the Table 2. 
 
 

Table 2 
BALANCED ACCURACIES ACHIEVED FOR DIFFERENT LOSS TERM 

COMBINATIONS  
 

Loss Term Train Validation Holdout 
Imaging-to-
genetics (L1) 

89.96 ± 
0.80 

88.55 ± 
1.10 

88.31 ± 
0.31 

Genetics-to-
imaging (L2) 

89.81 ± 
0.95 

87.97 ± 
0.91 

87.51 ± 
0.20 

Imaging-to-
imaging (L3) 

88.99 ± 
0.74 

87.45 ± 
1.60  

86.80 ± 
0.34 

Genetics-to-
genetics (L4)  

90.03 ± 
0.87 

88.04 ± 
0.76 

88.1 ± 
0.41 

L1 + L2  88.98 ± 
1.13 

88.03 ± 
1.26 

87.76 ± 
0.94 

L1 + L3 90.09 ± 1.1 88.14 ± 
0.98 

88.19 ± 
0.67 

L1 + L4  89.75 ± 
1.21 

89.33 ± 
0.11 

88.01 ±  
0.08 

L2 + L3 90.45 ± 
0.37 

87.89 ± 
0.87 

89.66 ± 
0.31 

L2 + L4 90.49 
±0.84 

88.27 ± 
1.31 

88.07 ± 
0.83 

L3 + L4 88.95 ± 
1.71  

87.96 ± 
0.86 

87.74 ±  
0.43 

L1 + L2 + L3  89.60 ± 
0.98 

88.22 ± 
1.03 

88.18 ± 
0.34 

L2 + L3 + L4 90.00 ± 
1.09 

88.14 ± 
1.01  

87.79 ± 
0.33 

L1 + L2 + L4 91.37 ±  
0.30 

90.39 ± 
0.11 

88.91 ±  
0.66 

L1+ L2+ L3+ 
L4  

89.81 ± 
0.73 

88.38 ± 
0.99 

88.61 ± 
0.56 

 
All individual loss terms have shown improvement over 

the baseline accuracies. The combination of loss terms (1), 
(2), and (4) yielded the highest balanced accuracies on the 
training (91.37 ± 0.30%), validation (90.39 ± 0.11%), and test 
sets (88.91 ± 0.66%). The values of the loss term weighting 
hyperparameters (λ, σ, θ) for each of the loss term were 0.7, 
0.3, and 0.4, respectively. Individual loss terms (1) and (4) 
also performed well, particularly in the holdout sets (88.31 ± 
0.31% and 88.10 ± 0.41%, respectively). 

C.  Post Analysis Results 
The SCCA analysis performed on the representations of 

the contrastive model with loss terms (1), (2), and (4) using 
the GridSearchCV resulted in selection of five components. 
In  

Table 3, we reported the correlation coefficients for these 
five component pairs across the training, validation, and 
holdout sets. The correlations for each component pair are 
relatively consistent between the training and validation sets, 
indicating the stability of the CCA model. The top 
contributing brain regions and SNPs are listed in Table 4 and 



Table 5, and plotted in Fig. 3. Brain regions in red indicate 
increased effect and blue regions indicate decreased effect. 
 

 
Table 3 

CCA CORRELATION OF COMPONENTS  
 

Component Training Validation  Holdout 
1 0.68 0.67 0.57 
2 0.67 0.65 0.54 
3 0.66 0.65 0.55 
4 0.65 0.65 0.52 
5 0.63 0.63 0.57 

 
Across five SCCA components we identified seven brain 

regions and the 28 genes corresponding to the identified 
SNPs. Most of the selected regions and SNPs are similar 
among all the components.  

 
Table 4 

GENES WITH SIGNIFICANT CONTRIBUTION SCORES FOR EACH 
COMPONENT 

 
Component Genes 

1 ADAM10, LRRK2, RAB6A, GSK3B, 
BTBD1, RBM11, BIN1, FIS1, RNH1, 

STAU1, CD9 
2 ADAM10, LRRK2, RAB6A, ATP9A, 

BTBD1, MAPT, CALHM1, RPL28, FIS1, 
STAU1, GSE1, CD9 

3 ADAM10, LRRK2, RAB6A, BTBD1, 
MAPT, RPL28, RCAN1, FYN, KLHL35, 

STAU1, CD9 
4 MFF, RAB6A, BTBD1, BIN1, CALHM1, 

FIS1, SLC40A1, CENPV, RNH1, STAU1 
5 LRRK2, ATP9A, BTBD1, CALHM1, FIS1, 

CCNA1, SLC40A1, RNH1, STAU1 
 

Table 5 
BRAIN REGIONS WITH SIGNIFICANT CONTRIBUTION SCORES FOR 

EACH COMPONENT 
 

Component Brain Regions 

1 Left Cerebellum, Left Insula, Left Putamen, 
Left Caudate 

2 Right Occipital Inferior, Left Caudate, 
Right Cuneus 

3 Left Cerebellum, Left Insula, Left Caudate 

4 Left Temporal Middle, Right Cuneus, Left 
Caudate 

5 Right Occipital Inferior, Right Cuneus, Left 
Caudate 

D. Gene Enrichment Pathway Analysis 
The gene enrichment test in three GO categories revealed 

enrichment in dendrite (p = 9.69e-6), synapse (p= 5.08e-5), 
and exocytic vesicle (p = 3.87e-4) in cellular components; 
regulation of mitochondrial fission, and developmental 
process in biological pathways, and protein binding in 
molecular function. The results of the analysis can be found 
here (https://biit.cs.ut.ee/gplink/l/H8Pp77ilQy).  

IV. DISCUSSION  

 This study aimed to integrate genetic and imaging data 
using a novel contrastive learning framework to identify 
significant associations between genetic variants and brain 
regions associated with cognitive function of WM. Our 
comprehensive analysis, which included transfer learning 
contrastive learning, SCCA, and gene enrichment tests, 
yielded several important findings. 

The performance of various models on WM classification 
tasks demonstrated that integrating imaging and genetic data 
outperformed models using only one data type. The Imaging-
genetic neural network achieved the highest balanced 
accuracy (87.02 ± 0.67) on the holdout set, indicating the 
potential of multi-modal approaches in classification of WM. 
The study of different combinations of the loss terms further 
showed that including terms (L1, L2, L4) resulted in the best 
performance, highlighting the importance of capturing 
relationships between both modalities. The inclusion of (4) in 
the loss function (i.e., the loss term L(g,g)) showed 
substantial improvement in validation accuracy (89.33 ± 
0.11%) compared to other combinations, indicating its 
importance for generalization. This combination effectively 
leverages the complementary information from both imaging 
and genetic data, resulting in superior performance in WM 
classification tasks. 

Our post analysis performed to identify the associations 
between brain regions and genes indicate that a decrease in 
the Grey Matter Volume (GMV) of regions left cerebellum, 
left insula, left putamen, left Caudate, and increase in the 
GMV of regions right occipital inferior, right cuneus, and left 
temporal middle is associated with the increase in the minor 
allele in the SNPs of all identified genes except gene STAU1. 
Recent research has shown that the reductions in cerebellar 
volume accompanying aging and are correlated with 
cognitive decline [32] which underscores our finding 
regarding left cerebellum in relation to working memory in 
older population.    

The gene enrichment analysis highlighted several 
biological processes and cellular components significantly 
associated with the identified genes. The identified SNPs and 
associated genes provide insights into the genetic 

Fig 3: Significant brain regions identified across five SCCA 
components 



underpinnings of cognitive function. Notably, the regulation 
of mitochondrial fission and developmental processes were 
prominent, suggesting that these pathways may play crucial 
roles in maintaining WM capacity and preventing 
neurodegeneration. Recent research has identified several 
genetic variants that significantly impact WM performance. 
For instance, genes like ADAM10, LRRK2, RAB6A, and 
BTBD1 have been implicated in various neural processes 
relevant to WM. ADAM10, involved in amyloid precursor 
protein processing, has been linked to Alzheimer's disease 
and cognitive decline [7]. Variants in LRRK2, associated 
with synaptic vesicle trafficking, also play a role in 
neurodegenerative diseases such as Parkinson's, influencing 
cognitive functions [33]. The integration of these genetic data 
with neuroimaging findings helps elucidate the complex 
interplay between genetic predispositions and brain structure 
in maintaining WM. While our study provides valuable 
insights, several limitations should be noted. The sample size, 
while sufficient for the current analysis, limits the 
generalizability of the findings. Larger, more diverse cohorts 
are needed to validate these results. The identified genetic 
variants and pathways require further functional validation to 
establish causal relationships with WM capacity. 

V. CONCLUSION AND FUTURE WORK 
In conclusion, our study demonstrates the power of 

integrating genetic and imaging data using contrastive 
learning techniques. The identified genetic variants and brain 
regions, along with their associated biological pathways, 
provide a foundation for further exploration into the genetic 
basis of WM. This integrated approach holds promise for 
advancing our understanding of the complex interactions 
underlying WM capacity and its decline in neurodegenerative 
diseases. 

To further validate our findings, we plan to apply the 
model to other large-scale biobanks such as the Human 
Connectome Project which encompass diverse populations 
and different environments, will allow us to assess the 
generalizability of our model.  We also envision that with 
continued development, our model could predict not only 
WM capacity but also the progression of memory 
performance over time. This information could be valuable in 
clinical settings, where it could guide treatment plans by 
identifying individuals at higher risk of memory decline. 
Moreover, as contrastive learning models improve, they can 
help handle the challenges of applying the model to new 
cohorts from different hospitals, where sequencing or 
imaging methods may vary. 
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