
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Computational Optics for
Mobile Terminals in Mass Production

Shiqi Chen, Ting Lin, Huajun Feng, Zhihai Xu, Qi Li, and Yueting Chen

Abstract—Correcting the optical aberrations and the manufacturing deviations of cameras is a challenging task. Due to the limitation
on volume and the demand for mass production, existing mobile terminals cannot rectify optical degradation. In this work, we
systematically construct the perturbed lens system model to illustrate the relationship between the deviated system parameters and
the spatial frequency response (SFR) measured from photographs. To further address this issue, an optimization framework is
proposed based on this model to build proxy cameras from the machining samples’ SFRs. Engaging with the proxy cameras, we
synthetic data pairs, which encode the optical aberrations and the random manufacturing biases, for training the learning-based
algorithms. In correcting aberration, although promising results have been shown recently with convolutional neural networks, they are
hard to generalize to stochastic machining biases. Therefore, we propose a dilated Omni-dimensional dynamic convolution (DOConv)
and implement it in post-processing to account for the manufacturing degradation. Extensive experiments which evaluate multiple
samples of two representative devices demonstrate that the proposed optimization framework accurately constructs the proxy camera.
And the dynamic processing model is well-adapted to manufacturing deviations of different cameras, realizing perfect computational
photography. The evaluation shows that the proposed method bridges the gap between optical design, system machining, and
post-processing pipeline, shedding light on the joint of image signal reception (lens and sensor) and image signal processing (ISP).

Index Terms—Optical tolerancing, imaging simulation, computational photography, dynamic convolution, mobile ISP systems.

✦

1 INTRODUCTION

IN the machining and assembly procedure of imaging
systems, deflection and manufacturing bias affect the

shape and positions of lenses [1]. Even subtle shape or posi-
tion variations will introduce additional aberrations, which
significantly degrade the optical performance of cameras [2].
To be more specific, the deflection will lead to the point
spread function (PSF) difference (Fig. 1a) of the symmetrical
field-of-view (FoV), and the manufacturing deviation will
cause the overall decrease in SFR (Fig. 2c). Hence, analyzing
the biases between the ideal and manufacturing is a critical
issue in the optomechanical design of the imaging system,
and it is essential for improving processing quality and
controlling the cost [3], [4].

We hope to estimate the gap between the ideal design
and the produced devices, aiming for performing a targeted
restoration within ISP systems [5]. This line of research
has promoted significant processes recently [6]. Commer-
cially, existing optical design programs have integrated with
tolerance analysis to assess the performance of perturbed
systems [7] or calculate the bias range of each parameter
according to the measured indicator [8], e.g., modulation
transfer function (MTF). However, these tolerancing proce-
dures still face a few challenges for application in a specific
machining sample [1]. One issue is the tolerance, which is
generally selected empirically or according to the perfor-
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mance requirements without considering the actual machin-
ing procedure [9]. Another challenge is the inherent gap be-
tween the tolerancing indicator and the measurement of SFR
[10]. This theoretical difference leads to severer biases pre-
dicted by tolerancing programs. In academia, representative
works include local optimization [11], which modifies the
system parameters by the pixel-level difference of PSF. As
well as the end-to-end optical system optimization proposed
recently [12], [13], which optimizes the system with image-
to-image rendering or deep learning model. Nevertheless,
the existing methods still suffer from several limitations. For
example, these optimizations are significantly affected by
the noise in actual measurement [14]. And the differentiable
framework requires a large volume of paired data where the
ideal image or the optical parameters and the corresponding
PSFs are tremendously complicated to acquire [15].

This paper is devoted to a fundamental solution to ISP
systems - bridging the gap between optics and postpro-
cessing. We show an illustrative example in Fig. 1b, where
the measurements of manufacturing samples are slightly
different, yet the realized restorations are similar after pro-
cessing. The classical ISP system is a step-by-step process
where each module cascades with each other [16]. This sep-
aration mitigates the processing difficulty of each module
but allows the slight errors accumulated in the subsequent
operations [17]. To this end, recent works implement end-
to-end methods for the mapping from Bayer pattern data
to sRGB images [18]. However, the acquisition of densely-
labeled data specified for each camera is time-consuming,
and the enormous computational overhead is the critical
limitation of deploying it into mobile terminals [19].

In this work, we mainly focus on connecting the optical
design, the system manufacturing, and the ISP systems. A
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Fig. 1. Manufacturing biases adaptation and comparisons. (a) centrosymmetric PSF calculated by the proxy camera of different machining
samples (Best viewed with zoom). (b) magnified comparisons of the photographs taken in the same scene. We show the measured degradation
of each Phone (converted to sRGB for visualization) and our restoration output from the same ISP pipeline. And the results of high-end DSLR
cameras are shown for reference (captured under same aperture for comparisons).

perturbation model is proposed for describing the influ-
ence of the deviated parameters on the geometric image
evaluation, e.g., SFR. Distinct from the indicator calculation
through exit pupil wavefront (used in optical design pro-
grams), we adopt the imaging simulation to obtain realistic
photographs and apply SFR to measure MTF, which follows
the process of image formation and index evaluation. It
also provides an optimization framework to estimate the
perturbed parameters from the measured indicators. In this
way, a proxy camera, whose imaging results are close to
reality, is constructed. It acts as a bridge for the co-design of
the actual camera and the subsequent ISP.

Furthermore, we propose a brand new dynamic postpro-
cessing architecture based on DOConv, expecting to handle
the degradation of various system perturbations with one
model. Engaging with the imaging simulation of the proxy
camera, we encode the accumulated errors of cascaded
modules and the degradation of system perturbations into
the data pairs for the training of the dynamic model. This
model realizes the correction of various machining samples’
optical degradations with less computational overhead. Our
approach can be easily adapted into new camera devices at
a penurious cost on indicator measurement, thus bypassing
the time-consuming paired data collection.

We evaluate the proposed method on two imaging sys-
tems: customized digital single-lens reflex (DSLR) cameras
and Huawei Honor 20 Pro (Phone), with known ideal op-
tical parameters of both cameras. The assessments include
the accuracy of constructing the proxy camera and the
perturbation adaptability of the dynamic postprocessing
model as well as the benefits to downstream vision appli-
cations (i.e., object detection, optical character recognition).
Extensive experiments demonstrate that our method has the
potential to link optical machining with postprocessing for
realizing targeted restorations. The results are on par or
sometimes even outperform the high-end DSLR lenses (the
restoration results of Phones are shown in Fig. 1).

Our main contributions are summarized as follows:

• We construct a perturbed optical system model
based on the image formation process, which il-
lustrates the relationship between the perturbation
of system parameters and the measured SFR. We
demonstrate the advantage of the proposed per-
turbing model over the existing optical tolerancing
procedure.

• We propose an optimization method to infer the
system perturbation from the SFRs measured from
actual manufacturing samples, hoping to construct
proxy cameras whose imaging results are close to
reality. These proxy cameras are to generate the data
pairs that characterize the mapping of optical degra-
dation, thereby fast adapting to the data acquisition
of new devices in mass production.

• We propose a dilated Omni-dimensional dynamic
convolution (DOConv) and implement it into post-
processing to tackle spatially varying aberrations
and stochastic machining deviations. It can be em-
bedded into the existing ISP systems and correct the
errors accumulated by modules cascade.

This paper proceeds as follows. In Section. 2, we review
the related works. Section. 3 presents the optical pertur-
bation model and the optimization to construct the proxy
camera. The dynamic postprocessing pipeline is detailed in
Section. 4. Quantitative and qualitative experimental anal-
yses of our approach are provided in Section. 5. Section. 6
explores the potential applications of the proposed method.
Conclusions and discussions are drawn in Section. 7.

2 RELATED WORK

Optical degradation correction is a comprehensive mis-
sion in computational photography, where algorithms and
optical systems cooperate. The additional machining bias
poses a significant challenge to solving this problem. In
this section, we present an overview of end-to-end optical
system optimization and ISP systems.
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2.1 End-to-End Optical System Optimization
Optical designers generally select the tolerance empirically
or according to the performance requirements where the
system bias is randomly sampled within tolerance to de-
termine statistical degradation in mass production [20].
However, this process does not consider the actual ma-
chining procedure, which is meaningless for a particular
manufacturing sample [1]. Besides the top-down tolerance
analysis, considerable works infer the system parameters by
polynomial (Zernike) fitting or convex optimization [7], [8],
[21]. For polynomial fitting, the predicted range is generally
broader than the actual for the multiple coefficients system
[22]. Some works have taken advantage of the measured
PSFs or images to fine-tune the entire system and perform
targeted restoration [11]. However, the noise introduced in
actual measurement can easily affect them since these meth-
ods are guided by the pixel-by-pixel mean squared errors
(MSE) evaluation [14]. Recently, some works proposed to
jointly optimize the optical parameters and the postprocess-
ing systems in a differentiable manner, where the model of
Fourier Optics [23], the image-to-image rendering [12], the
proxy deep-learning model [13] are used to build the end-to-
end pipeline. However, the end-to-end optimizations have
some limitations when applied to complex systems with
large FoV (in-depth discussions in the supplementary file).

We modify the ideal system to construct a proxy cam-
era, whose system bias may not be precise compared to
the actual device, but their imaging results are close. The
proposed method guides the optimization by the geometric
optical image evaluation, which is less susceptible to noise.
We demonstrate that our physical-based framework can
generate realistic imaging results for various machining
samples and work under different noise levels.

2.2 Mobile ISP Systems
Considerable efforts have been invested in image post-
processing to correct optical degradation [24], [25], [26],
[27], [28], [29]. Traditional deconvolution approaches utilize
multiple image priors for iterative or mutual optimization
to obtain the latent images [30], [31]. Unfortunately, they
are inefficient in dealing with spatially varying degradation
and thus have difficulty applying to real-time imaging [32].
The existing mobile ISP system divides the processing into
multiple steps: white balance [33], [34], [35], denoising [36],
[37], Bayer pattern interpolation [38], [39], [40], color correc-
tion [41], etc. Separating the task into independent modules
facilitates the processing overhead, but the error of one
module will be accumulated and magnified in subsequent
steps, resulting in the wrong outputs [18].

Recent works propose to replace the cascaded ISP sys-
tems with deep learning models to address this issue [19],
[42]. Such models are entirely data-driven and also have
the potential for real-time imaging. [18] proposes to col-
lect the data pairs by shooting the same scene with a
mobile phone and a high-end DSLR. However, this data
construction is time-consuming and has poor portability
for new devices [43]. Recent works exploit to obtain data
pairs by imaging simulation of an ideal system [28], but
they do not consider the machining bias introduced during
manufacturing. Therefore, there is a particular domain gap

between the training data and the real-shot images, resulting
in unsatisfied generalization for any processing samples in
the actual scene [44].

Machining degradations introduced during camera pro-
duction increase the difficulty of postprocessing algorithms.
The deep learning methods mentioned above are fixed in the
inference and cannot adaptively deal with the degradation
of input features [45]. We noticed that many approaches
apply attention or transformer to endow the network with
dynamic processing ability [46], [47], [48], [49]. On a large
scale of data, these models have a better performance than
the static model, yet in the data with a relatively single
distribution, they tend to overfit [50], [51].

In this work, multiple proxy cameras are engaged to
synthesize realistic data for the training of the dynamic
model. The proposed method successfully restores the op-
tical degradation of complex distribution and realizes adap-
tive postprocessing of samples with different deviations.

3 PERTURBED OPTICAL SYSTEM MODEL

With the lens prescriptions and the actual manufacturing
sample, our goal is to construct a proxy camera whose
imaging results are relatively close to the manufactured
device. Different from the ideal designing procedure, geo-
metric optical image evaluation such as the SFR generally
suffers from the deviations introduced in manufacturing
and mounting assembly. Moreover, the discrete sampling
and noise of the sensor are non-negligible in measurement.
Therefore, in the following Section. 3.1, we first analyze
the image formation procedure of the perturbed optical
system, aiming for constructing the relationship between the
perturbation of system parameters and the measured SFR.
Then in the Section. 3.2, the method to build a proxy camera
is presented in a detailed account.

3.1 Geometric Optical Image Evaluation
A general camera is primarily divided into the optical lens
and the photosensor, where the former gathers the scene
information and the latter records the intensity of the signal.
While due to the inevitable manufacturing deviation, the
scene rays collected by the camera will be deflected unex-
pectedly during propagation, resulting in degraded images
and unfavorable indicators. To model the perturbations of
the system as well as their influence on the SFR measure-
ment, we consider the case where an incident ray is traced
in a camera modeled with biased coefficients.

3.1.1 Perturbed System Coefficients
Ray-surface intersection The spatial coordinates (x, y, z) of
an incident ray are as follows:

x = x0 + ks, y = y0 + ls, z = z0 +ms, (1)

here s is the parameter of distance along the ray measured
from the source point (x0, y0, z0), and D = (k, l,m) are
the normalized direction vector. The general surface encoun-
tered in mobile camera may be represented by:

F (x, y, z) = z − c̃ρ2

1 +
√
1− (1 + k̃)c̃2ρ2

−
N∑
j=1

Ã2jρ
2j , (2)
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Fig. 2. Overview of the perturbed optical system model. (a) We simulate the imaging results of the ideal edge by the camera’s parameters (top)
and acquire the measured edge by photographing with real devices (bottom). (b) The procedure from edge profile to SFR goes through projection,
differential, and DFT. In this way, we obtain the SFRA of ideal design and the measured edge (detailed in Sec. 3.1.2). (c) Set the measured SFRAs
as targets to optimize the system parameters and predict the proxy camera by damped least-squares iteration (detailed in Sec. 3.2).

where z is the coordinate along the optical axis. ρ =√
x2 + y2 is the distance from a surface point to the op-

tical axis. c̃ is the perturbed vertex curvature and k̃ is the
perturbed conic constant. Ã2j is the 2jth perturbed power
aspherical coefficient where N is the total order of aspheric.
To determine the ray-surface intersection, we apply the
Newton-Raphson iteration method to find a value s such
that the coordinates value (x, y, z) from Eq. (1) satisfy the
surface Eq. (2). In every iteration i, the distance parameter s
is updated by:

si+1 = si − F (xi, yi, zi)/F
′(xi, yi, zi), (3)

where (xi, yi, zi) = (x, y, z)|si and:

F ′(Xi, Yi, Zi) = (Fx)ik + (Fy)il + (Fz)im, (4)

here (Fx)i denotes ∂F/∂x evaluated at (xi, yi, zi). Similar
calculations are performed with respect to (Fy)i and (Fz)i.
The iteration process is terminated with the value si when

|si − si−1| < ϵ′, (5)

where ϵ′ is a small preassigned value that can be adjusted
according to the required accuracy. After the intersection
is determined, we follow the Snell’s law to carry out the
direction vector after refraction:

ñ′ ·D′ × r = ñ ·D× r, (6)

here ñ and ñ′ are the perturbed refractive indices of the
medium where the ray is incident and refracted, which is
modeled by the material perturbation of d-light (i.e., refrac-
tive index ñd and abbe number ṽd). For the detailed material
perturbation model, please refer to the supplementary file.
D′ = (k′, l′,m′) is the unit vectors denoting the direction of
refracted ray. r = (K,L,M) is a normal vector of the surface
at the intersection. Indicating by Eq. (6), the coplanarity of
vector D, D′, and r allows us to represent D′ by the linear
combination of D and r:

D′ = µD+ Γr, (7)

where µ = n/n′ and Γ is an undetermined multiplier.
Squaring and adding the component of Eq. (7), we obtain
a quadratic in Γ, whose analytical solution is easy to solve:

Γ2 + 2aΓ + b = 0,

a = µ(kK + lL+mM)/(K2 + L2 +M2),

b = (µ2 − 1)/(K2 + L2 +M2),

(8)

Surface-to-surface transfer Apart from the tracing proce-
dure in a rotationally symmetric system, the tilts of optical
elements are significant factors to be reckoned with when
light propagates in a real camera. We model the incline of
a surface in terms of Euler angles, where three successive
rotations t̃zx, t̃yz , t̃xy are to switch the ray data between the
system of the optical axis and element:x k

y l
z m

 = R

x− xξ k
y − yξ l
z − zξ m

 , (9)

here (xξ, yξ, zξ) is the origin of the reference system. And the
letters denoted by (·) are the ray data of the transforming
system. R is expressed as follows:cos γ̃ − sin γ̃ 0
sin γ̃ cos γ̃ 0
0 0 1

1 0 0

0 cos β̃ − sin β̃

0 sin β̃ cos β̃

cos α̃ 0 − sin α̃
0 1 0

sin α̃ 0 cos α̃

 ,

(10)
where α̃ = t̃zx, β̃ = t̃yz , γ̃ = t̃xy are the angles between the
reference system and the transforming system.

After system transformation, the propagation from one
surface to the next surface is first addressed by tracing the
ray following the perturbed thickness vector d̃ (represented
by the norm l̃ and the direction cosine (d̃x, d̃y, d̃z)):

s = (l̃ · d̃z−z)/m, x = x+ks− l̃ · d̃x, y = y+ ls− l̃ · d̃y, (11)

In this way, we model the perturbation of thickness
and decenter in the meanwhile. For the detailed decenter
illustration, please refer to the supplementary file. After the
propagation between two surfaces, the ray data is trans-
formed into the system of the latter surface by Eq. (9).
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And the aforementioned steps are repeated for succeeding
surfaces in sequence until the sensor plane, where the ray
data and the optical path length of each ray are recorded.

In summary, the perturbed optical system as well as its
impact on incident ray are modeled through surface-by-
surface ray tracing. We consider the potential perturbation
of all optical elements to construct an authentic model based
on physical procedure (the specific configurations are listed
in the supplementary file). The recorded ray data is used
to establish the link between perturbed coefficients and the
SFR measurement, which will be illustrated in the following.

3.1.2 SFR Measurement via Imaging Simulation

In the optical design process, the MTF of the imaging system
is obtained by Fourier transforming the continuous wave-
front on the exit pupil plane. However, in the geometric
optical image evaluation, the SFR (equivalent to the system’s
MTF) is generally obtained by the Fourier transform of
the line spread function (LSF) captured by the sensor. As
demonstrated in the Appendix A of the supplementary file,
the discrete sampling of the sensor and the noise will make
differences in SFR. Therefore, we adopt the imaging simula-
tion technique to synthesize a realistic edge image to ensure
the procedure of calculating SFR between simulation and
measurement is similar. In imaging simulation, the diffrac-
tion effect caused by the optical aperture is another content
to be considered in addition to the aberrations calculated by
tracing. So we inverse the tracing ray (calculated in Section.
3.1.1) from the sensor plane to the exit pupil and consider
each ray as a source of the Huygens wavelet. Denoting
the coordinates of ray on pupil plane is (x′, y′, z′) and on
the sensor plane is (x′′, y′′, z′′), the complex amplitude on
the sensor is superpositioned by the complex amplitude of
spherical wavelet:

Ex′′y′′(lx′y′ , rx′′y′′ ,K) =
∑
y′

∑
x′

a0
eiklx′y′

lx′y′

eikrx′y′

rx′y′
K, (12)

where lx′y′ is the optical path length from the source
(x0, y0, z0) to (x′, y′, z′). k = 2π/λ and λ is the wavelength
of the ray. rx′′y′′ = (x′′ − x′, y′′ − y′, z′′ − z′) indicates the
direction of wavelet’s propagation. K is the obliquity factor
of wavelet, which is defined as follows:

K(Dx′y′ , rx′′y′′ ,n) =
1

2
[cos ⟨n, rx′′y′′⟩ − cos ⟨n,Dx′y′⟩],

(13)
where n is the normal unit vector of the exit pupil plane
and cos ⟨·, ·⟩ is the operation of computing the cosine value
of the two vectors. The relationships of n, Dx′y′ , and rx′′y′′

are magnified in Fig. 2. The complex amplitude is multiplied
with its conjugate to obtain the intensity on sensor plane:

Ix′′y′′ = Ex′′y′′ ·E∗
x′′y′′ , (14)

In this way, we obtain the PSF Ifovi(λ) at different
wavelengths of this FoV. The imaging simulation of edge
is:

Je =

∫
Ce(λ) · Ifovi(λ)dλ ∗ Le +Ne. (15)

here Ce(λ) is the sensor wavelength response. Je, Le, and Ne

are the observed edge, the latent ideal edge, and the sythetic

noise image, respectively. We refer readers to [28] for details
on imaging simulation implementation.

After simulating the degraded edge that resembles the
actual observation, we measure the SFR as the procedure
shown in Fig. 2b. First, we project all pixels along with the
inclination to obtain the edge spread function (ESF). Second,
a quarter of the pixel size pi is as the new sampling interval,
and all pixel values that fall within the same sampling
interval are averaged to represent the values of the resam-
pling interval i. This operation is the key to alleviate the
influence of noise. Third, we get LSF by the differentiation
of ESF and calculate the discrete Fourier transformation of
LSF. The normalized amplitude of the Fourier spectrum is
the measured SFR. In this way, we construct a physical-
based procedure to bridge the gap between the perturbed
system parameters and the SFR measurement.

3.2 Proxy Camera Construction

In this section, we present an optimization framework to
construct a proxy camera so that its imaging simulation is
similar to the photograph of the target device. As illustrated
in Section. 3.1, due to the highly nonlinear relationship
between SFR and perturbed system parameters, it is impos-
sible to predict the actual deviation of the camera analyti-
cally. So successive iterations are needed to approximate the
solution. However, directly setting the SFR sequence as the
target is unrealistic, where the computational overhead will
increase exponentially when the sampling density grows.
Therefore, SFR Area (SFRA), which is the area between the
real measured SFR and the axis, is used as the target for
optimization:

SFRA∗
fovi = Area(SFR), (16)

We use the damped least-squares method to obtain the
system solution of proxy camera [52]. Let the perturbed pa-
rameters illustrated in Sec. 3.1.1 denoted by p1, p2, · · · , pN ,
where N is the number of parameters. The simulated SFRA
calculation can be represented by:

SFRAfovi = Area[Ffovi(p1, p2, · · · , pN )], (17)

here Ffovi indicates the operation to calculate SFR by the
method detailed in Sec. 3.1. The damped merit function
ϕ(P⃗ ) in matrix-vector form is constructed as follows:

ϕ(P⃗ ) = f⃗T f⃗ + ϵ∆P⃗T∆P⃗ , (18)

where ϵ is the damped factor. ∆P⃗ and f⃗ are as follows:

P⃗k+1 = (pk+1
1 , · · · , pk+1

N )T, P⃗k = (pk1 , · · · , pkN )T,

∆P⃗k = P⃗k+1 − P⃗k, f⃗ = (f1, f2, · · · , fM )T,
(19)

P⃗k+1 and P⃗k are the system parameters after k, k + 1
iterations. ∆P⃗k is the predicted linearity correction. f⃗ is the
difference vector, where fi = SFRA∗

fovi − SFRAfovi and
M is the number of sampled FoVs. According to the extreme
value theory of multivariate function, the minimum of the
merit function is achieved where its gradient is zero:

grad ϕ(P⃗ ) = ATf⃗ + ϵ∆P⃗ = 0, (20)
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mobile terminal. (b) we propose a dynamic postprocessing model based on dilated Omni-dimensional dynamic convolution, aiming at self-adaptively
tackling the stochastic manufacturing deviation. All the layer configurations are marked with different colored blocks.

Algorithm 1 Proxy Camera Construction

Require: System parameters P⃗0 , Measured SFRA∗
fovi

1: k ← 0, and f⃗k, Ak ←Merit(P⃗k, SFRA∗
fovi)

2: while ||AT
k f⃗k + ϵ∆P⃗k|| ≫ 0 do

3: ∆P⃗k ← −(AT
kAk + ϵI)−1AT

k f⃗k
4: P⃗k+1 ← P⃗k +∆P⃗k

5: k ← k + 1, and f⃗k, Ak ←Merit(P⃗k, SFRA∗
fovi)

6: end while
7: return P⃗k

8: Function: Merit(P⃗k, SFRA∗
fovi)

9: for i=1:M do
10: Edge imaging simulation with Eq. (1) - Eq. (15)
11: Measure SFRA from synthetic edge as Fig. 2b
12: f⃗i ← SFRA∗

fovi − SFRAfovi

13: for j=1:N do
14: Aij = (f⃗(· · · , pkj +∆pj , · · · )− f⃗k)/∆pj
15: end for
16: end for
17: return f⃗k, Ak

here A ∈ RM×N is the partial derivative matrix (Amn =
∂fm/∂pn, where m ∈ [1,M ] and n ∈ [1, N ]), which can be
calculated by divided differences in implementation.

Unfortunately, the f⃗ is a non-linear function where the
variable P⃗ cannot be solved directly. Hence, linear approxi-
mation is made by the Taylor series of f⃗ at P⃗k:

f̂ = f⃗k +A∆P⃗k, (21)

where the f⃗k is the f⃗ of deviated parameters P⃗k. We note
that the approximation only guarantee linear accuracy in a
small range of P⃗k, so damping is set on ∆P⃗k to control the
step. Replacing the f⃗ in Eq. (20) by Eq. (21), we derive the
∆P⃗k after k iteration:

∆P⃗k = −(AT
kAk + ϵI)−1AT

k f⃗k. (22)

here Ak is the A of P⃗k, I is the identity matrix. And the
predicted system parameters are P⃗k+1 = P⃗k + ∆P⃗k after
k + 1 iteration.

We also note that each system parameter contributes
differently to the merit functions. Therefore, we dynamically
adjust the damping factor ϵ of each parameter according

to the non-linearity of the solution ∆P⃗ , which is detailed
in the supplementary file. In this way, the optimization
is performed from Fig. 2a to Fig. 2c until the gradient of
solution (Eq. (20)) is close to zero.

Altogether, we illustrate the perturbed optical system
model and the method to construct a proxy camera based
on the measurement of SFR. There are three significant
advantages between the proposed method and other end-
to-end optimizing approaches in Section 2.1. First, our
optimization framework is insensitive to noise because
of the resampling in SFR measurement. Second, our
imaging simulation considers the diffraction effect caused
by the optical aperture and therefore is more accurate
than bare ray tracing. Third, we consider the potential
perturbation of all elements which is more authentic in
following the physical procedure (in-depth comparisons
are presented in supplementary file). Hence, we engage the
proxy camera with the physical formation pipeline of raw
images to perform authentic imaging simulation, generating
the data pairs for deep-learning-based reconstruction.

4 DYNAMIC-PROCESSING ISP
To eliminate the camera-wise manufacturing deviations
and spatially varying optical aberrations, the ability of
self-adaptive correction is necessary for the postprocessing
pipeline. Moreover, the computational overhead of the mo-
bile terminal puts a significant limit on the complexity of
the model. To this end, we propose a lightweight framework
based on dynamic convolution to meet the needs of adap-
tive processing and the constraints in application. In the
following Section. 4.1, we first illustrate the data preparation
for the training of the framework. Then in the Section. 4.2,
the proposed postprocessing pipeline is detailed.

4.1 Data Preparation

Based on the virtual camera constructed in Sec. 3, we
construct the training data pairs by the imaging simulation
in Sec. 3.1.2. Since the exposure parameters of real pho-
tography are discrete, the dynamic range of the captured
raw image is not ideal. Therefore, we add luminosity com-
pression/decompression in simulation which is different
from the transformation in [28]. After obtaining the raw-like
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image, the formation of the sensor observation with optical
degradation can be formulated as:

Je(x, y) =

∫
Ce(λ) · Ifovi(x, y, λ)dλ ∗ Le(x, y) +Ne, (23)

here (x, y) is the pixel coordinates on the sensor plane. And
the rest denotions are the same as Eq. (15). We note that
the performance of optical degradation on the raw image
is linear and channel-irrelevant. So different from [28], we
abandon the CCM and the gamma compression in the syn-
thetic pipeline after adding the degradation into the image.
Because these operations will introduce non-linearity and
cross-channel information, thus increasing the difficulty of
restoration. Because of the limited number of manufacturing
samples, the proxy cameras could not cover the distribution
of manufacturing deviation. So we regard the max bias
of each system parameter as the tolerance and random
sample them to generate more virtual optical systems for
data generation. This augmentation allows the model to
learn the potential degradation and prevents overfitting. In
this way, we obtain the RAW-to-sRGB data pairs, which
characterize the mapping of optical degradation and encode
the accumulated errors of cascaded modules. The data pairs
not only follow the physical procedure of image formation
but also are friendly to the training of the deep-learning
method.

4.2 Dynamic Postprocessing based on DOConv
The stochastic manufacturing deviations and spatially vary-
ing optical aberrations cause different PSFs on the sen-
sor plane. However, the traditional convolution operation
strictly receives the feature by fixed weight and locations
around its center, which is hard to adapt to the stochastic
degradation and introduce relevant information into the
output. To this end, we propose a dynamic convolution
model for eliminating the optical degradation and embed
it in the traditional ISP pipeline to realize extreme quality
computational imaging. Inspired by the idea in [47], we
design the dilated Omini-dimensional dynamic convolu-
tion (DOConv) and implement it into a variant of UNet
architecture. As shown in Fig. 3, each DOConv has four
weights, and their dilations vary from 1 to 4 in implemen-
tation, aiming at performing targeted feature acquisition.
We reduce the stages of the architecture to mitigate the
computational overhead. And the ResBlocks, whose internal
components are the same as the Block in [49], are applied
in each scale to enhance the expression ability. The model
takes degraded raw-like data as input and outputs restored
images in the same domain. Subsequently, the restorations
are processed by the subsequent modules and supervised
by the sRGB ground-truth. Since the generated data pairs
are pixel-to-pixel aligned and cover all potential degrading
distributions, it is sufficient to train the model only relying
on fidelity losses:

L(θ) =
1

N

N∑
n=1

||Process(Model(Jn
e ))− Ln||22. (24)

where θ denotes the learned parameters in the model. Jn
e

are the degraded raw image and Ln are the corresponding
sRGB ground-truths. Process(·) denotes the subsequent
operations after optical degradation correction.

5 EXPERIMENTS

We first roughly illustrate the experimental setting in Sec-
tion. 5.1. In Section 5.2, comprehensive experiments are
conducted to demonstrate the theoretical advantage of the
proposed proxy camera construction. In Section 5.3, we
evaluate the strength of the proposed dynamic model when
tackling optical degradation. Finally, an in-depth ablation
study is presented in Section 5.4.

5.1 Experimental setting
To substantiate the authenticity of the proposed proxy cam-
era construction, we evaluate two devices, one is a cus-
tomized DSLR camera, and another one is Huawei Honor 20
Pro (Phone). The optical prescriptions of both cameras are
known, and their system parameters are listed in the sup-
plementary file. In edge measurement (Fig. 2a), we rotate
the targets at 9 ∼ 12◦ angles and take photos of them. And
the ideal edge is colored according to the dynamic range of
the measured edge. For SFRA measurement (Fig. 2b), the
sampled FoVs are the regions that evenly divide the image
into 15× 20. In training data construction, we first calculate
the PSFs of the proxy camera following Eq. (14). Then the
PSFs of different FoVs are used to degrade the latent image
as Eq. (15). We acquire the latent image by adopting DIV2K
[53] and rescaling these data to the resolution of the camera
(DSLR is 4000×6000 and Phone is 3000×4000). In terms of
the hyperparameters of training, the channel of each layer
is marked at the block bottom, the model is trained with
ADAM optimizer [54] (β1 = 0.9, β2 = 0.999, ϵ = 10−8),
and the learning rate starts at 10−4 then halved every 10
epochs. The setting of dynamic convolution is the same as
[47]. For more implementation details about the proposed
framework, please refer to the supplementary file.

5.2 Authenticity of Proxy Camera Construction
5.2.1 Competing Methods
To demonstrate the advantages of the proposed approach,
we compare our method with these representative methods

1) The built-in tolerance analysis of optical design soft-
ware, i.e., MTF tolerance of CODEV ® [8].

2) Modify the optical parameters by the calibrated
PSFs, i.e., shih, et. al. [11].

3) Optimize the system by image-to-image rendering
through differentiable ray tracing, i.e., sun, et. al. [12].

Since the tolerancing in commercial software only derives
the deviation range, we choose the prediction’s median as
the bias for each parameter. In the second method, we use
pixel-level MSE between the simulated and measured PSFs
to guide the optimization. Noting that there are alternative
end-to-end system optimization besides the third method,
we present an in-depth comparison in the supplementary
file to illustrate the reason we pick this method.

5.2.2 Quantitative and Qualitative Assessment
To illustrate the authenticity of the proposed optimization,
we evaluate the proximity of the proxy camera (by the
MSE between the simulated and the measured discrete
SFR) and the similarity of imaging (by SSIM [55] between
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TABLE 1
Quantitative proximity between real devices and proxy camera.

Note that the value is the average of all machining samples. The best
and the second-best indicators of each FoV are marked in red and blue.

CAMERA Method MSE (×10−3) ↓ SSIM ↑
FoV 0.1/0.5/0.9 FoV 0.1/0.5/0.9

DSLR

Ideal 0.576/0.804/1.023 0.913/0.906/0.872
CODEV ® 0.521/0.764/1.242 0.899/0.874/0.833
shih, et. al. 0.374/0.714/0.958 0.951/0.932/0.917
sun, et. al. 0.407/0.708/0.924 0.942/0.929/0.920

Ours 0.382/0.698/0.877 0.946/0.938/0.922

Phone

Ideal 0.814/1.621/1.768 0.896/0.854/0.806
CODEV ® 0.852/1.746/1.496 0.878/0.842/0.822
shih, et. al. 0.643/1.386/1.325 0.913/0.858/0.832
sun, et. al. 0.628/1.303/1.157 0.915/0.872/0.847

Ours 0.547/1.251/0.952 0.927/0.887/0.859

images). The indexes of all machining samples are averaged
for comparison, and the ideal simulations are provided for
reference. As shown in Tab. 1, the competing methods gen-
erally perform better on the DSLR than on the Phone. These
phenomena attribute to 1) the aberration of DSLR increases
uniformly with the growth of FoV, yet the degradation of
Phone changes significantly, which increases the difficulty in
prediction; 2) the relative illumination of PHONE decreases
a lot in marginal FoV, resulting in a declining Signal-to-
Noise ratio (SNR). So for the optimizing method that relies
on pixel-level indicators (shih, et. al. and sun, et. al.), it is
challenging to extract undisturbed information from actual
noisy measurements. In terms of evaluation metrics, our
method constructs the proxy systems that are the closest to
the machined devices, especially in difficult situations such

as low SNR and highly non-uniformed degradation.
The visualization of PSF calculation and the imaging

simulation of all competing methods are shown in Fig. 4.
Limited by the space, we only present the resampling PSFs
and imaging simulation of some FoVs. Moreover, the ideal
simulation and the actual measurement are provided for
reference, and the SSIM of each simulated patch is listed
for additional quantitive evaluation. As shown by the PSFs
of the same FoV, all methods roughly predict the eccentricity
of the device. We note that the degradation caused by the
predicted deviations of CODEV ® is more severe than the
actual measurement, which is because it calculates the influ-
ence of each system variable separately without considering
the combined impact of the entire lens. shih, et. al. and sun,
et. al. have poor accuracy when the FoV increases due to the
pixel-level metric disturbance introduced by the magnified
noise level in edge FoV. sun, et. al. obtains more accurate
simulation results than CODEV ® and shih, et. al.. But since
the ray tracing does not consider the diffraction of optical
aperture, its predicted perturbation is often larger than our
estimation, resulting in more significant degradation. By
contrast, our method produces accurate results not only
on visual similarity but also from quantitative assessment.
More discussions are presented in the supplementary file.

5.2.3 Noise Injection Influence

The crucial merit of our approach compared to optimizing
with pixel-level evaluation is that the measuring procedure
of SFRA is insensitive to the noise of actual photographs.
We analyze the statistical results when using pixel-level
MSE and SFRA as optimization objectives under different
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Fig. 5. Non-uniform deblurring on real photographs of Phone. We mark the corresponding regions with white boxes and present the indicators.
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Fig. 6. Performance under different noise level. The left/right part
shows the accuracy of proxy camera construction under single/multiple
frames. The upper/lower part presents the MTF/SSIM evaluation. The
noise level is plotted in the purple line.

noise situations. The left part and the right part of Fig. 6
show the different FoVs’ accuracy on the single-frame image
and the multi-frames image (superposed for denoising),
respectively. The evaluation in the upper part of Fig. 6 is
the SFR at 0.5 Nyquist frequency, and the lower part is the
SSIM between the simulation and the actual photograph. We
note that the variance of noise (indicated by the purple line)
grows as the FoV increases because of the decreasing illumi-
nation by lens shading. Thus the optimization targeted with

MSE is prone to severe fluctuations due to this metric being
easily affected by accidental errors when the noise level
increases. On the contrary, the proposed method maintains
similar-to-real SFR fluctuation and higher SSIM evaluation
under different noise levels. This mainly benefits from the
resampling ESF operation (projecting all pixels along with
the inclination and averaging the values), which makes the
SFRA insensitive to the noise and provides stable guidance
for our optimization.

5.3 Evaluation on Dynamic Postprocessing

5.3.1 Competing Methods
The performance of optical degradation on the image can
be integrated as the influences of spatially varying blur on
different FoVs. Therefore, correcting the optical degradation
can be summarized as a deblurring task. we collect the state-
of-the-art deblurring algorithms for comparisons

1) Global deblurring method, i.e., scale recurrent net-
work (SRN) [56] and Self-Deblur (SD) [57].

2) Kernel-based deblurring method, i.e., kernel predic-
tion network (KPN) [58].

3) Dynamical-adjusted deblurring method, i.e., FoV
deformable network (FDN) [28].

For these algorithms, we apply the same RAW-to-sRGB
data for evaluation. The details of training and inference
procedure are presented in the supplementary file.

5.3.2 Results on non-uniform deblurring
To evaluate the ability of various methods to handle non-
uniform optical degradation, we train all the compared
methods on the data generated by one proxy camera. Fig. 5
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TABLE 2
Quantitative results on sythetic data and real photographs. C denotes the evaluated platform. T is the training datasets, where single sample
means the data pairs are synthetic by one proxy camera and multiple samples means altogether evaluation on multiple virtual cameras. The best

and the second-best indicators of each evaluation are marked in red and blue. We indicate the better metrics with up/down arrows.

C T Method Evaluation on Synthetic Data Real Photographs T Evaluation on Synthetic Data Real Photographs
PSNR ↑ SSIM ↑ VIF ↑ LPIPS ↓ BRISQUE ↓ NIQE ↓ PSNR ↑ SSIM ↑ VIF ↑ LPIPS ↓ BRISQUE ↓ NIQE ↓
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Fig. 7. Adaptation for manufacturing deviation. (a) we show the magnified patch to illustrate the image quality mutation of Phone. The actual
checkers’ restoration of different machining samples are present for comparison. And we evaluate the average SFR (MTF) enhancements on the
machining samples of test set. (b) the natural photograph restoration when applied on different machining samples of Phone.

shows the various methods’ restoration in different FoVs
of real photographs and presents the BRISQUE [59] and
SMD2 [60] for evaluation. The quantitative evaluation of
non-uniform deblurring is provided in Tab. 2, where the
single sample of T is the assessment on one proxy camera.
We apply the reference image quality assessments (IQA),
e.g., PSNR, SSIM [55], VIF [61], and LPIPS [62] to evaluate
synthetic data. And the non-reference IQAs, e.g., BRISQUE
[59], NIQE [63] are assessing real photograph because ob-
taining non-degraded reference of real photo is impossible.

For the globally consistent deblurring method, it can be
seen that the deterioration is suppressed. However, since
the optical aberration is spatially variant, the restoration
is a compromise of each FoV: in the center FoV with less
blurring, ringing, and color artifacts shows up on the bor-

der of objects, while in the case of severe degradation at
the edge of the image, the optical aberration is not fully
corrected. When it comes to the kernel-based method, KPN
can cope with the non-uniform degradation, benefiting from
the ability to predict the spatially varying kernel accord-
ing to the input features. However, since the blurring is
associated with the FoV and these models are not aided
by FoV information, such methods are confused by the
input features and generate incorrect restoration results. For
the approach that adjusts processing according to the FoV,
FDN can better tackle the FoV-related optical aberration and
obtain competitive results when correcting a specific camera
(shown in Tab. 2). Our model realizes competitive results in
both visual quality and metrics. We note that we outperform
the FDN in BRISQUE, which may be because this metric
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Fig. 8. Ablation study on the proxy camera construction (accuracy
evaluation on the SSIM between the simulated images and the natural
photographs). And Ablation study on the whole pipeline (restoration
assesment on the test synthetic data sets).

pays more attention to the details of the image. The dynamic
convolution model generally suffers from overfitting when
the data distribution is relatively singular. But our method
fits the degradation of the actual measurement well when
only depending on the synthetic data of one proxy camera,
which may be due to the dilation manner so that different
weights have different specializations for adaptive process-
ing.

5.3.3 Adaptation for Manufacturing Deviation
In mass production, there is no time to specifically train
each post-processing model for a particular camera. To this
end, the restoration must be able to cope with the stochastic
deviation introduced in manufacturing and assembly. To
evaluate the ability to tackle this task, we simultaneously
train the competing methods with the data generated by
various virtual cameras. Fig. 7a and Fig. 7b show the results
of different models dealing with the camera-wised degra-
dation on the same scene. The measurement deteriorates
more unpredictably due to random manufacturing devia-
tion when the FoV increases, which enlarges the difficulty
of restoration. Comparing the experimental results, we note
that the static model (weights are fixed after completing
training) cannot fit well in the diverse deviation of real
manufacturing. In consequence, the static model fails to
tackle the different machining degradations between real
cameras, especially when FoV increases. Benefiting from
the dynamic convolution, our model adaptively restores the
degraded features and achieves better restoration results on
each camera. The SFR enhancement (shown in the right part
of Fig. 7a) demonstrates that the proposed method realizes
better and more stable restoration. Other methods suffer
from significant fluctuation when FoV increases. Additional
quantitative evaluation of deviation adaptation presents
in Tab. 2. Other competing methods receive unfavorable
results when the data distribution becomes complicated,
while the proposed method maintains a high level.

5.4 Ablation Study
We first evaluate the prediction accuracy when ablating the
crucial modules of virtual camera prediction. Then compre-
hensive ablation studies are conducted on our proposed

Real photo taken by camera Raw to Raw

Raw to sRGB

Color Fringe

Unresolved
Noise

sRGB to sRGB

Fig. 9. Ablation on the dynamic processing ISP. We evaluate the
performance when placing the optical degradation correction model at
different positions of ISP pipeline.

method. Specifically, for the proxy camera construction:
1) we ablate the imaging simulation and calculate MTF
by the continuous wavefront at the pupil plane. 2) we
replace the MTFA with the MTF at 0.5 Nyquist frequency.
3) we substitute the dynamic damping strategy with a fixed
damping factor. For the dynamic restoration: 1) the dynamic
convolution layers are replaced by the ordinary convolution.
2) the dilation of each weight is the same; 3) encoded FoV
information is ablated and only inputting image feature.

As shown in Fig. 8, the accuracy of prediction is sig-
nificantly affected after ablating the imaging simulation
module, which is mainly due to the inherent difference
between the MTF calculation. One way is to compute by the
continuous wavefront at the pupil plane, and another way
is to obtain the SFR of the edge image (as demonstrated
in the supplementary file). Moreover, using SFRA for op-
timization alleviates the influence of the measured SFR’s
singular value in some spatial frequencies. And the dynamic
damping ensures that the solution of perturbed parameters
is linear within the damping range. Both of these modules
facilitate the proposed framework more stable and efficient.
For the evaluation of image restoration, the improvements
in prediction accuracy are positively relevant. In the ablation
of the reconstruction model, dynamic convolution performs
a better fitting than traditional convolution when the dis-
tribution of data is more diverse. Meanwhile, the different
dilations of weights also facilitate the correction of spatially-
variant degradation. Finally, the encoded FoV information
has a positive gain on restoration since the degradation is
strongly associated with the pixel position on the sensor.

In the proposed dynamic-processing ISP, we deploy the
aberration recovery module between the Bayer interpolation
and luminance correction. Its output is manipulated by
the subsequent modules and compared with sRGB ground-
truth in training. To prove the rationality of this deploy-
ment, we conducted the following ablation experiments: 1)
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3

Fig. 10. Comparisons with built-in ISP. Note that the built-in ISP smooths out the cords, yet our method restores it (marked with the red arrow).

Construct raw-to-raw data without considering subsequent
operations for training; 2) Deploy the module at the end
of the pipeline to construct sRGB-to-sRGB pairs for train-
ing. As shown in Fig. 9, the output of the model appears
with colored stripes in raw domain reconstruction, which is
because the network prediction does not take into account
the subsequent operations, resulting in slight errors in the
RAW domain are amplified in the subsequent processing.
Restoration in sRGB also faces challenges, where the color
noise is difficult to eliminate. This situation is because the
color correction overlaps the information of each channel,
which increases the difficulty of restoration. On the contrary,
our method processes the input data in the RAW domain
and supervises the output in sRGB, aiming at correcting the
prediction error accumulated by the cascade pipeline.

6 ANALYSIS

6.1 Comparisons with Built-in ISP

To demonstrate the significance of deploying the optical
degradation correction, we compare our results with the
built-in ISP. As shown in Fig. 10, the same JPEG compression
algorithm is applied for the sake of a fair comparison. Due
to the additional sharpening, the built-in ISP realizes similar
results to ours in the center (Fig. 10-1). Yet this globally
consistent operation fails to infer realistic features under
severe degradation. Therefore, the advantage of our model
is evident when it comes to the edge of photographs. The
proposed pipeline adaptively restore the high-frequency
details of leaves (Fig. 10-2) and cords (marked with the red
arrow in Fig. 10-3) at the edge of FoV, which are smoothed
out by the built-in ISP. Therefore, our dynamic model is
well compatible with the existing ISP system and has the
potential to correct the prediction error accumulated by
the cascade pipeline. Moreover, our method endows post-
processing with the ability to perform adaptive restoration
according to the spatial information and the image feature.

6.2 Comparisons with deeplearning-based ISP

We note that many advanced postprocessing methods at-
tempt to replace the entire ISP system with a deep learning
model, called deep ISP. These methods rely on one com-
plex architecture to perform super-resolution (equivalent to
demosaic), brightness and color adjustment (equivalent to

Incorrect WB 
Prediction

Correct WB 
Prediction

PyNet Our Pipeline

PyNet Our PipelinePhotograph taken by camera

Detail
Unpreserved

Detail
Preserved

(a)

(b)

Fig. 11. Comparisons with the deep-learning ISP. (a) the failure case
of the deep-learning ISP in white balance prediction. (b) evaluation on
the ability of detail preservation.

white balance and color correction), denoising, reconstruc-
tion, etc. on the captured Bayer image, output the pixel-by-
pixel prediction. Due to the need to solve the altogether
problems, such deep learning models are engaged with
enormous parameters and are rough to implement into
mobile terminals. Based on the proposed image formation
simulation, we can also synthesize the data pairs from the
degraded Bayer raw image to the ideal sRGB ground truth.
Therefore, we train the advanced deep ISP model with
the synthetic Bayer-to-sRGB data and evaluate the model
on real-captured images. The comparisons of the deep ISP
model and the proposed method are shown in Fig. 11. One
can see in Fig. 11a, the PyNet cannot always predict the
correct white balance gain when the scene is complicated,
resulting in a bluish color of the white bear (magnified in the
upper-left corner). Therefore, it is difficult for deep learning
models to predict per-channel gain only from input features,
let alone some metameric scenes. In view of this, we use the
auxiliary white balance from the traditional ISP system to
obtain the correct imaging result. We compare the ability
of detail resilience in Fig. 11b when the deep ISP model
predicts accurate gain and color correction. As shown, the
deep ISP cannot reconstruct detailed textures. This situation
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Fig. 12. Object detection with different post-processing. The pro-
posed method frees the SOTA detecting algorithms from fine-tuning for
a specific camera in the implementation.

Num Recongnition
Position

Left Up WidthHeight

1 Y WI ARI 
HIRE TO N

68 39 539 56

2 PROTECT 63 102 537 117

3 Σ 150 278 298 290

4 VARFN 0 588 574 246

Num Recongnition
Position

Left Up WidthHeight

1 X WE ARE 
HERE TO

71 31 549 58

2 PROTECT 71 98 539 113

3 WATER 87 603 445 124

4 IS LIFE 159 723 247 54

OCR with HUAWEI ISP

OCR with Our Pipeline

Fig. 13. OCR with different post-processing. We help the advanced
OCR framework for more accurate recognition and character position.

is mainly due to the deep ISP model integrating multiple
objectives into one model and using the same loss function
to guide the restoration. The brightness and color gap be-
tween input and ground truth has a crucial influence on
the fidelity loss, which will lead the model to eliminate this
mismatch in the first place while ignoring the details of the
image. In contrast, we separate each task and implement a
dynamic model which corrects the postprocessing errors ac-
cumulated by the cascaded pipeline. Therefore, our method
can accurately restore the color and brightness as well as the
detailed information of the scene.

6.3 Application to Downstream Vision Tasks
The advantages of the proposed method, when applied to
photographic postprocessing, have been illustrated before.
We show that our pipeline could also be helpful for down-
stream computer vision applications, e.g., object detection,
and optical character recognition (OCR). For the evalua-
tion of these tasks, we follow the same pipeline as Fig. 3
to process the captured photographs and conduct off-the-
shelf vision algorithms on the processed sRGB images. For
comparison, we also show the results on the built-in ISP.

State-of-the-art methods are applied to the daily photos
for evaluation, including YOLOv5 [64] for object detection
and PaddleOCR [65] for OCR. In Fig. 12 and Fig. 13, we
show the comparisons of visual and numerical results. As
shown in Fig. 12, the detection with our pipeline accurately
locates all people and gives higher confidence. But the
detection with built-in ISP predicts the wrong location to
some extent. When applied to OCR, PaddleOCR precisely
determine the text regions and recognize text on our result,
yet various errors occur in the built-in ISP. In conclusion,
our algorithm can directly improve the performance of
downstream vision applications, eliminating the need to
fine-tune the algorithm for a specific camera.

7 CONCLUSION

We presented a perturbed camera model based on the image
formation process. And an optimization framework was
present to construct a virtual proxy camera from actually
measured indicators, whose imaging results are close to the
actual manufactured samples. With the proxy cameras from
multiple machining samples, we synthesized the data pairs
with complex degenerate distributions, aiming at encoding
the optical aberrations and the random bias introduced
during processing. Drawing from the dynamic convolution,
we applied a dynamic model to self-adaptively cope with
manufactured cameras, where multiple samples of two typ-
ical devices are evaluated to illustrate the benefits of the
proposed pipeline. By training only with synthetic data,
we demonstrated that our method successfully handles the
system of complex machining deviations, achieving perfect
restoration that outperforms the high-end DSLR camera.

Our work bridges the gap between optical design, sys-
tem manufacturing, and postprocessing pipeline. It is conve-
nient to deploy the proposed model in the mass production
of arbitrary imaging devices. This work has been applied
to some mobile terminals to realize significantly improved
imaging. Nevertheless, some challenges remain unsolved to
deploy our technique in production. First, for the specific
system parameters and manufacturing methods (grinding
for DSLR lenses and injection molding for cellphones),
the introduced biases are complicated, rendering manual
adjustment of damping factors in optimization. Not only
that, many existing mobile terminals do not equip with the
optimization for operations other than convolution, e.g., at-
tention, which leads to low efficiency in mobile cameras. In
conclusion, it is imperative to deploy an optical degradation
correction module to the ISP system. As a bridge connecting
the hardware system and the algorithm, it is of great help to
improve the imaging quality and facilitate the downstream
computer vision applications.
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