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ABSTRACT

Autonomous decision-making agents deployed in the real world need to be robust
against possible adversarial attacks on sensory inputs. Existing work on adversarial
attacks focuses on the notion of perceptual invariance popular in computer vision.
We observe that such attacks can often be detected by victim agents, since they
result in action-observation sequences that are not consistent with the dynamics
of the environment. Furthermore, real-world agents, such as physical robots,
commonly operate under human supervisors who are not susceptible to such
attacks. We propose to instead focus on attacks that are statistically undetectable.
Specifically, we propose illusory attacks, a novel class of adversarial attack that is
consistent with the environment dynamics. We introduce a novel algorithm that
can learn illusory attacks end-to-end. We empirically verify that our algorithm
generates attacks that, in contrast to current methods, are undetectable to both AI
agents with an environment dynamics model, as well as to humans. Furthermore,
we show that existing robustification approaches are relatively ineffective against
illusory attacks. Our findings highlight the need to ensure that real-world AI, and
human-AI, systems are designed to make it difficult to corrupt sensory observations
in ways that are consistent with the environment dynamics.

1 INTRODUCTION

Deep reinforcement learning algorithms (Mnih et al., 2015; Schulman et al., 2017; Haarnoja et al.,
2018; Salimans et al., 2017, DQN, PPO, SAC, ES) have found applications across a number of
sequential decision-making problems, ranging from simulated and real-world robotics (Todorov
et al., 2012; Andrychowicz et al., 2020) to arcade games (Mnih et al., 2015). It has recently been
found, however, that deep neural network control policies conditioning on high-dimensional sensory
input are prone to adversarial attacks on the input observations, which poses threats to security and
safety-critical applications (Kos & Song, 2017; Huang et al., 2017) and thus motivates research into
robust learning algorithms (Zhang et al., 2020).

Existing frameworks of attacks on sequential decision-makers are largely inspired by pioneering
work on perceptually invariant attacks in supervised computer vision settings (Ilahi et al., 2021).
Unlike supervised settings, however, sequential decision-making settings involve temporally-extended
environment interactions which give rise to temporally-correlated sequences of observations. In this
paper, we argue that their failure to take temporal consistency considerations into account renders
existing observation-space adversarial attacks ineffective in many settings of practical interest.

AI agents often have access to an approximate or exact world model (Sutton, 2022; Ha & Schmidhuber,
2018). In addition, humans have the ability to perform “intuitive physics” (Hamrick et al., 2016),
using robust but qualitative internal models of the world (Battaglia et al., 2013). This makes it
possible to use one’s understanding of the world to detect a large range of existing adversarial attacks,
by spotting inconsistencies in observation sequences. Existing observation-space adversarial attacks
(Ilahi et al., 2021; Chen et al., 2019; Qiaoben et al., 2021; Sun et al., 2020) ignore these facts. As a
result, these attacks produce observation trajectories that are inconsistent with the dynamics of the
unattacked environment.

The consequences of this are twofold. First, state-of-the-art adversarial attacks can be trivially detected
by victim agents with access to even low-accuracy world models, i.e., models of the environment
dynamics. Second, in cases where AI agents are supervised by humans, humans may also can
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Figure 1: Illustration of different classes of adversarial attacks on a 6-cell Gridworld environment.
Victim agents need to reach the green target as quickly as possible without traversing the orange lava.
The adversary replaces the original victim observation (blue triangle) with an adversarial observation
(red triangle). Note that in all scenarios, the victim ends up in the lava, upon which the episode
terminates. However, the observations under the MNP and SA-MDP attacks (see Section 3) are not
consistent with the forward actions taken by the agent, i.e. the red arrow jumps between cells (top
row), respectively incorrectly stays in the same position (middle row). In contrast, the observations
under the proposed illusory attack (bottom row) are consistent with the environment dynamics.

be able to detect these adversarial attacks. In other security contexts such as computer networks,
real-world adversarial attacks typically attempt to evade detection in an effort to avoid triggering
security escalations, and this must be taken into account by the defender. While this insight has been
exploited in the cybersecurity community (Provos, 2001; Claffy & Dainotti, 2012; Cazorla et al.,
2018), undetectable adversarial attacks on sequential decision-makers and their defences have not yet
been systematically explored in the AI community.

In this paper, we introduce illusory attacks, a novel class of adversarial attacks on sequential decision-
makers that result in observation space attacks that are consistent with environment dynamics.
We show that illusory attacks can succeed where existing attacks do not, and, in particular, can
successfully fool humans. Illusory attacks therefore pose a specific safety and security threat to
human–AI interaction and human-in-the-loop settings (Schirner et al., 2013; Zerilli et al., 2019) as
they may can be undetectable even to attentive human supervisors.

Illusory attacks seek to remain undetected and must hence attack the victim by replacing its perceived
reality by an internally coherent alternative one. We show that perfect (statistically undetectable)
illusory attacks exist in a variety of environments. We then present the W-illusory attack framework
(see Figure 1 for illustration), which introduces a world-model consistency optimisation objective that
encourages the resultant victim’s action-observation histories to be consistent with the environment
dynamics. We show that W-illusory attacks can be efficiently learnt, and are undetectable by humans,
unlike MNP (Kumar et al., 2021) or SA-MDP attacks (Zhang et al., 2021).

We empirically demonstrate that existing victim robustification methods are largely ineffective against
illusory attacks. This leads us to suggest that the existence of reality feedback, i.e., observation
channels that are hardened against adversarial interference, may can play a decisive role in certifying
the safety of real-world AI, and human–AI, systems.

Our work makes the following contributions:

• We formalise perfect illusory attacks, a novel framework for undetectable adversarial attacks (see
Section 4.2). We give examples in common benchmark environments in Section 5.3.

• We introduce W-illusory attacks, a computationally feasible learning algorithm for adversarial
attacks that generate victim action-observation sequences that are consistent with the unperturbed
environment dynamics (see Section 4.5).

• We show that, compared to state-of-the-art adversarial attacks, W-illusory attacks are significantly
less likely to be detected by AI agents (Section 5.2), as well as by humans (Section 5.4).

• We demonstrate that victim robustification against W-illusory attacks is challenging unless the
environment admits reality feedback (see Section 5.5).
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2 RELATED WORK

Adversarial attacks literature originates in non-sequential decision-making applications such as
image classification (Szegedy et al., 2013), where the goal is to find perturbations δ for a given
classifier f such that f yields different predictions for x and x+ δ, despite the difference between x
and x+ δ being imperceptible to humans. To enforce the imperceptibility requirement, such works
use simple minimum-norm perturbations constraints as a proxy (Goodfellow et al., 2014).

This line of work has been extended to adversarial attacks on sequential decision-making
agents (Oikarinen et al., 2021b; Kumar et al., 2021; Cohen et al., 2019; Everett et al., 2021; Moosavi-
Dezfooli et al., 2017; Chaubey et al., 2020; Wu et al., 2021; Ilahi et al., 2021; Chen et al., 2019;
Qiaoben et al., 2021; Sun et al., 2020; Zhang et al., 2020), largely building upon the minimum-norm
perturbation (MNP) framework. In the MNP framework, the adversary can modify the victim’s
observations up to a fixed step- or episode-wise perturbation budget. While many adversarial attack
frameworks require white-box access to the victim’s policy, Zhang et al. (2020) and Sun et al. (2021)
use reinforcement learning to learn adversarial policies, thus require only black-box access to the
victim’s policy. Assuming a different setting, Hussenot et al. (2019) introduce a class of adversaries
for which a unique mask is precomputed and added to the agents’ observation at every time step.
Our framework differs from these previous works both in that it takes into account the temporal
correlation of sequences of observations, and in that it focuses on learning adversarial attacks that are
undetectable.

Work towards robust agents in sequential decision environments uses randomized smoothing (Ku-
mar et al., 2021; Wu et al., 2021), test-time hardening by computing confidence bounds (Everett
et al., 2021), training with adversarial loss functions (Oikarinen et al., 2021a), and co-training with
adversarial agents (Zhang et al., 2021). We compare against, and build upon, this line of work.

Another extensive body of work focuses on detecting adversarial attacks. Lin et al. (2017) develop
an action-conditioned frame module that allows agents to detect adversarial attacks by comparing
both the module’s action distribution with the realised action distribution. Tekgul et al. (2021) detect
adversaries by evaluating the feasibility of past action sequences. Compared to these works, our
proposed methods hinge on detectability based on stronger notions of statistical indistinguishability.
Further, it focuses on learning undetectable attacks, rather than detecting adversarial attacks.

There exists only a limited body of literature on undetectable (or “stealthy”) adversarial attacks (Li
et al., 2019; Sun et al., 2020) on sequential-decision-making agents, none of which achieves statistical
indistinguishability, nor takes into account temporally-extended observation dependencies; Huang &
Zhu (2019) consider stealthy attacks on reward signals used for RL. In cybersecurity, similar ideas
have been explored for sensor attacks on linear control systems (Mo & Sinopoli, 2010; Pasqualetti
et al., 2015).

3 BACKGROUND

MDP and POMDP. A Markov decision process (Bellman, 1958, MDP) is a tuple ⟨S,A, p, r, γ⟩
where S is a discrete or continuous state space, A is a discrete or continuous action space, p : S×A×
S → [0, 1] is the state transition probability, r : S×A×R → [0, 1] is a probabilistic reward function,
and γ ∈ [0, 1] is a scalar discount factor. A Markov decision process proceeds by sampling an initial
state s0 ∼ p(∅) ∈ S, upon which the agent may take takes an action a0 ∼ π(s0) ∈ A triggering a
state transition s1 ∼ p(s0, a1) and returning a reward r0 ∼ r(s1, a0, s0). Here, π : S ×A → [0, 1]
is a stochastic agent policy.

A partially-observable MDP (Åström, 1965, POMDP) is a latent MDP ⟨S,A, p, r, γ⟩, together with
a stochastic observation function Z : S ×O → [0, 1]. In a POMDP, the agent cannot observe states
st directly, but has to act based on observations zt ∼ Z(st).

We further define a state-observation action-observation trajectory of length n as τ = (z0, a0, . . . , zn)
τ = (z0, a0, r0, . . . , zn), and the distribution over trajectories generated by a policy π acting in a
(PO)MDP E as PE,π(τ). We assume that agents do not have access to the reward signal at test-
time. We denote that two distributions PE,π(τ),P′

E,π(τ) are identical up to reward by writing
PE,π(τ) = P′

E,π(τ) PE,π(τ)
¬r
= P′

E,π(τ).
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Observation-space adversarial attacks on sequential decision making agents. Observation-
space adversarial attacks (Kumar et al., 2021) consider the scenario where an adversary can manipu-
late the observation given to a victim agent at test-time, thus introducing partial observability to the
victim’s test-time environment. The victim’s observation at time step t is then given as z̃t = zt + ϵt
instead of zt, where ϵt ∈ R is the perturbation introduced by the adversary. When modeling the
adversarial perturbations as generated by a state-conditioned adversarial agent with policy πadv , we
can write z̃t = πadv(st). In many scenarios, the size of the perturbation is bounded by a budget
B > 0; for simplicity, we consider zero-sum adversarial attacks, where the adversary minimizes the
expected return of the victim. This yields the following definition of an optimal state-conditioned
observation-space adversary:

π∗
adv = argmin

πadv
Eπv

[
T−1∑
t=0

rt

]
s. t.

√√√√T−1∑
t=0

∥ϵt∥22 ≤ B, (1)

where at ∼ πv
(
· |z̃t

)
, z̃t ∼ πadv(st), st+1 ∼ p(·|st, at).

This concept can be formalized as a state-adversary MDP SA-MDP (Zhang et al., 2020), which is
defined as a tuple of the victim MDP ⟨S,A, p, r, γ⟩ together with an adversary ν : S → P(S) and a
mapping B : S → S, limiting supp ν(·|s) ∈ B(s).

Robustifying against adversarial attacks with co-training. The optimal policy π∗
v in an SA-MDP

thereby defines the optimal robust policy of a victim under the presence of an optimal adversary ν∗.
To find such optimally robust victim policies, Zhang et al. (2021, ATLA) introduce a co-training
approach to SA-MDPs, where victim and adversary are trained in turn while keeping the other’s
policy fixed.

4 METHODS

In this paper, we are concerned with finding adversarial attack policies πa that are unde-
tectable. Our setting differs from traditional observation-space attacks (see Section 3) in
three ways. First, we assume that the victim has access to a world model mv. Second,
we assume that perturbation budgets may be unconstrained we consider unconstrained perturbation
budgets. Third, we assume that the victim has a costly contingency option which it can safely execute
once it has detected the presence of a test-time adversary.

While seemingly unusual, we argue that the above three assumptions are realistic in many settings:
Often victims can learn accurate world models from unperturbed train-time samples, or rely on the
experience of a human supervisor for anomaly detection. In addition, in some settings the constraint
on small perturbations seems arbitrary, e.g. when an attacker is replacing the entire video feed of a
surveillance camera. Lastly, contingency options for AI agents are a common feature of real-world
systems, such as e.g. self-driving cars that can hand-over to a human controller, or security level
escalation procedures in cyber-physical systems (Züren, 2021).

4.1 DETECTABILITY OF ADVERSARIAL ATTACKS

An adversarial attack can be detected if the attacked MDP E ′, which includes the adversary with
πadv , can be statistically distinguished from the train-time MDP E .
Definition 4.1 (Statistical indistinguishability). Let E := ⟨S,A, p, r, γ⟩ be a MDP with horizon
T. Let P be a partially-observable discrete-time stochastic control process, with observation space
Z := S, action space A, and horizon T. Let π : S × A × (S ×A)

T−1 → [0, 1] be a sampling
policy that may possibly conditions on the whole action-observation history. Then P is statistically
indistinguishable from E under π if and only if Pπ,E = Pπ,E′ PE,π

¬r
= PP,π .

4.2 UNDETECTABLE ADVERSARIAL ATTACKS

We define perfect illusory attacks, i.e. adversarial attacks that are undetectable, as those where E
and E ′ are statistically indistinguishable. Importantly, since in our setting reward signals cannot be
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observed at test-time, indistinguishability need only hold for observation transitions. For simplicity,
we only consider zero-sum adversarial attacks, i.e. those that try to minimise the expected return of
the victim.

Definition 4.2 (Perfect illusory attack). A perfect illusory attack on an environment E for a given
victim policy πv is an adversarial policy πa, such that E and E ′ are statistically indistinguishable
under πv , where E ′ is the environment included by πa attacking E .

Note that the definition of perfect illusory attacks makes no reference to the adversary’s performance
(victim reward). We prove that non-trivial (i.e. those actually changing the observation) perfect
illusory attacks do exist in some, but not all, victim policy/environment pairs (see Appendix 7.1). We
provide further examples of perfect illusory attacks in Section 5.

Definition 4.3 (Optimal illusory attack). An illusory attack with πadv on (E , πv) is optimal if and
only if it is the perfect illusory attack with the highest expected adversarial return, i.e.

π∗
adv = argmin

πadv

Eτ∼P(E′,πv)

[
T−1∑
t=0

rt

]
,

s.t. PE,πv
= PE′,πv

PE,πv

¬r
= PE′,πv

(2)

, where rt is the victim reward.

As the constraints in Equation 2 are difficult to optimise exactly, we instead consider a relaxed
weighted objective

π∗
adv = argmin

πadv

Eτ∼P(E′,πv)


TT−1∑
t=0

rt

+ λD (PE,πv
,PE′,πv

) , (3)

where λ is a hyper-parameter that determines the weighing of the two objectives, and D is some
distance measure between distributions, such as the KL-divergence.

Adversaries that trade off between remaining undetected and minimizing the victim reward.
In most environments, an adversary will need to trade-off its expected adversarial return with the desire
to avoid detection. In practice, illusory attacks may not have to be perfect in order to be effective
even non-perfect illusory attacks can be effective, for example when victims only have access
to only n test-time samples from E ′. In fact, n can usually be actively upper-bounded by the
adversary’s preferences to engage or not. In addition, the victim’s world model may not be exact can
be imperfect, particularly if learnt, or if relying on human experience. We define illusory attacks
under such relaxations in Appendix 7.2.

4.3 WORLD MODEL-CONSISTENT ADVERSARIAL ATTACKS.

Analytically optimising the distance D (PE,πv
,PE′,πv

) is usually intractable in all but the smallest
environments. To arrive at a tractable optimisation objective, we instead consider a two-step test that
allows to determine whether P̂E,πv

¬r
= P̂E′,πv

.

Theorem 4.4 (Testing MDP equivalence). To determine whether a discrete-time stochastic control
process M is equivalent to a given Markov process E , it is sufficient to test both whether M has the
Markov property, and whether M’s transition probabilities match those of E (Shi et al., 2020).

We further assume from now that the victim has access to an exact, or approximate, world model
mv(z

′|z, a) of E , which estimates the probability of the next observations given the current observa-
tion and action taken in E . We also assume the victim has an estimate P̂(z′|z, a) of the same quantity
but in E ′.

We now define W-illusory attacks, a relaxation of optimal illusory attacks (see Definition 4.3), for
which the victim’s world model estimate matches the estimate of the transition probabilities.
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Definition 4.5 (W-illusory attacks). A W-illusory attack on E is an adversarial attack πa that is
consistent with the victim’s model of the observation-transition probabilities mv . Formally,

π∗
adv = argmin

πadv

Eπv

[
T−1∑
t=0

rt

]
,

s.t. mv(·|zt, at) = P̂(·|zt, at) ∀zt, at ∼ ⟨E ′, π⟩

(4)

We note that world-model consistency alone does not imply the Markov property, as P̂ does not
account for long term correlations. So importantly, W-illusory attacks can in general change the
distribution of trajectories.

4.4 LEARNING WORLD MODEL CONSISTENT ADVERSARIAL ATTACKS.

We now define the Illusory-MDP (I-MDP) used to learn illusory adversarial attacks. This is the MDP
the adversary trains on.
Definition 4.6 (Illusory MDP (I-MDP)). Given a MDP E := ⟨S,A, p, r, γ⟩ with episode horizon T
and a victim policy π, an Illusory MDP (I-MDP) EI := I(E , π) consists of a tuple

〈
S̃, Ã, p̃, r̃, γ

〉
where Ã := S, S̃ := S ×

(
Ã × A

)T−1

,

p̃(s̃t+1|ãt, s̃t) := π(at|ã≤t, a<t)p(st+1|st, at), ∀t, (5)

and
r̃(r̃t+1|s̃t+1, ãt, s̃t) := π(at|ã≤t, a<t)r(rt+1|st+1, at, st), ∀t. (6)

As we assume zero-sum adversarial settings, rt+1 = −r̃t+1. Note that the victim’s policy conditions
on its action-observation history, and not just on its last observation, as it contains a sequence
detector. As a result, the I-MDP differs from the SA-MDP (Zhang et al., 2021) in that the state
s̃t := {st, ã<t, a<t}, on which the adversarial policy πadv is conditioned, is given by the state of the
MDP E , as well as the victim’s action-observation history.
Definition 4.7 (Learning W-illusory attacks). Given a fixed victim policy πv , a W-illusory attack πa
on E can be learnt by optimising

max
πa

EI(E,πv)


TT−1∑
t=0

rt − γλD [ma (at−1, πv(at−1)) , πa(st, at−1, πv(at−1))]

 . (7)

Here, we choose the L2-distance, i.e. ∥ma (at−1, πv(at−1))− at∥22 for deterministic environ-
ments, where ma is the adversary’s world model. For stochastic environments, a possible choice
would be DKL, however, alternatively, one could simply employ the maximum-likelihood objective
logma (at|at−1, πv(at−1). Non-Markovian temporal correlations in the adversarial policy can be
suppressed by restricting the horizon of the adversarial policy’s observation space S̃ , which could be
detected by the victim (Shi et al., 2020).

4.5 REALITY FEEDBACK

So far we have assumed that the adversary can corrupt all parts of the victim’s observation. However,
in practice, the AI agent may be able to could receive a limited amount of unperturbed environment
(“reality”) feedback through robust channels which it may, in principle, can use to act optimally in
the presence of an adversary.
Definition 4.8 (Reality feedback). We define reality feedback ζ as a part of the victim’s observation
in E ′ that cannot be corrupted by the adversary, i.e. we assume that Z := Z0 × Zζ , where the
adversary has access to z0 ∈ Z0 but not zζ ∈ Zζ .
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Figure 2: In CartPole, the agent aims to balance the brown pole
by adjusting the position of the black cart. In the perfect illusory
attack depicted above, the agents observations (left) appear unper-
turbed while the true system fails (right).

Figure 3: In Pendulum,
the agent must apply a
torque to stabilize the
pendulum upright.

5 EXPERIMENTAL EVALUATION

In Section 5.2, we first provide empirical evidence that state-of-the-art attacks on sequential decision-
makers can be detected by AI victims with a learnt world model. In Section 5.3 we then provide
examples of both perfect illusory attacks (see Definition 4.2), as well as learned W-illusory attacks
(see Definition 4.5). In Section 5.4, we give evidence that humans can efficiently detect state-of-the-
art adversarial attacks, but may can be unable to detect W-illusory attacks. Lastly, we investigate
the effectiveness of state-of-the-art adversarial robustification algorithms against W-illusory attacks
(Section 5.5). We find that effective defences against illusory attacks may can require the victim to
have access to unperturbed feedback channels (Section 5.5).

5.1 EXPERIMENTAL SETUP

We compare illusory attacks against two adversarial attack benchmarks, (Kumar et al., 2021, MNP)
and (Zhang et al., 2021, SA-MDP) (see Section 3). Together, we consider these attacks to be repre-
sentative of existing state-of-the-art approaches. Both MNP and SA-MDP attacks require choosing
perturbation budgets, which we here fix at β ∈ {0.05, 0.2} relative to normalised observation vectors.
To allow for fair comparisons, where necessary we also impose these budgets on our generated
illusory attacks. We consider two choices of victim policy: naive policies learnt through train-time
return maximisation in the unattacked environment, and ATLA policies learnt through co-training
(Zhang et al., 2021, ATLA). We evaluate all methods on three simulated environments. Gridworld
(see Figure 1) involves navigating to a “good” grid cell while avoiding a “bad” grid cell. The OpenAI
gym (Brockman et al., 2016) environments CartPole and Pendulum (see Figures 2 and 3) feature
continuous control tasks that require balancing a pole with discrete actions, and swinging up a
pendulum with continuous torques. In accordance with Section 4.4, we assume that the adversary
has access to an exact model of the environment dynamics ma. To ensure reproducibility, all results
are averaged over five runs with independent random seeds, and we report full results with standard
deviations in Table 7.5.1 in the Appendix. We release our code at anonymized.

5.2 DETECTING STATE-OF-THE-ART ADVERSARIAL ATTACKS WITH LEARNED WORLD MODELS

We demonstrate that existing state-of-the-art adversarial attacks can be detected using learned world
models. To this end, we use train-time trajectory rollouts to train a small neural network-based world
model m̂v for each environment (see Appendix 7.3). We then evaluate each m̂v on episodes from a
holdout set of test-time trajectories from both the respective attacked and unattacked environment
and under both naive and ATLA victim policies (see Section 5.1). To account for the neural network
models’ finite precision, we regard transitions to be consistent with mv if they lie within the 5σ
confidence bound, which we computed on a held-out set of train-time transitions.

We find that both MNP and SA-MDP attacks frequently generate world-model inconsistent transitions,
which allows for > 93% of attacked episodes to be detected with high accuracy, given the false-
positive rate of m̂v on unattacked environments of < 1%. Figure 1 gives a graphical illustration of
attacks on Gridworld. We provide videos of all attacks in the supplementary material (see Appendix
7.5.3).
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Detection accuracy Relative adversary score under different defences

Attack Budget β naive ATLA none smoothing ATLA ATLA abl.

Pendulum

SA-MDP (Zhang et al., 2021) 0.2 97% 93% 100 % 87.4 % 97.9 % 100 %
Illusory (ours) 0% 0% 86.2 % 71.7 % 76.7 % 75.3 %

SA-MDP (Zhang et al., 2021) 0.05 96% 95% 100 % 60.6 % 95.9 % 100 %
Illusory (ours) 1% 2% 83.9 % 58.5 % 83.5 % 90.4 %

CartPole

MNP (Kumar et al., 2021)
0.2

100% – 98.1 % 97.6 %
SA-MDP (Zhang et al., 2021) 99% 96% 99.9 % 93.9 % 100 % 99.9 %
Illusory (ours) 2% 3% 100 % 97 % 99.9 % 99.8 %

MNP (Kumar et al., 2021)
0.05

96% – 3.1 % 65.2 %
SA-MDP (Zhang et al., 2021) 94% 100% 100 % 76.9 % 97 % 98.5 %
Illusory (ours) 0% 2% 100 % 68.2 % 97.5 % 92.6 %

HalfCheetah (MuJoCo)

SA-MDP (Zhang et al., 2021) 0.05 100% 100% 85.4% tbd % tbd % tbd %
Illusory (ours) 0% 0% 32.1% tbd % tbd % tbd %

SA-MDP (Zhang et al., 2021) 0.2 100% 100% 100 % tbd % tbd % tbd %
Illusory (ours) 0% 0% 48.1% tbd % tbd % tbd %

Hopper (MuJoCo)

SA-MDP (Zhang et al., 2021) 0.05 100% 100% 100% tbd % tbd % tbd %
Illusory (ours) 0% 0% 48.8% tbd % tbd % tbd %

SA-MDP (Zhang et al., 2021) 0.2 100% 100% 100% tbd % tbd % tbd %
Illusory (ours) 0% 0% 53.4% tbd % tbd % tbd %

Table 1: Empirical detection accuracy and victim scores for different adversarial attacks and possible
defences on Pendulum (top two rows), and CartPole (bottom three rows). Illusory attacks are
able to achieve almost perfect undetectability while only sacrificing a small amount of adversarial
performance.

5.3 LEARNING UNDETECTABLE ADVERSARIAL ATTACKS

We first show concrete examples of non-trivial perfect illusory attacks as defined in Section 4.2. We
then empirically investigate W-illusory attacks according to Definition 4.5.

Perfect illusory attacks. We find that Pendulum and CartPole admit perfect, i.e. entirely unde-
tectable, illusory attacks (see Definition 4.2) that significantly impact the victim’s performance
independently of its policy. For Cartpole, such adversarial policies can be constructed by starting off
with a coordinate transform z0 = −s0, and then using the adversary’s world model to generate all
subsequent observations (see Figure 2). Constructing the adversary’s policy proceeds equivalently for
Pendulum, as both have symmetric initial state distributions.

The existence of strong attacks for two popular benchmark environments may astonish, as effective
perfect illusory attacks do not always exist (see Appendix 7.1). This may suggest that robotic control
environments of practical interest could be particularly susceptible to undetectable adversarial attacks.

W-illusory attacks. We now demonstrate how illusory attacks can be learnt rather than analytically
constructed. We employ Algorithm 1 (see Appendix 7.5), which implements W-illusory adversarial
attacks. W-illusory adversarial attacks trade off between the objectives of detectability and adversarial
performance. In all of our environments, we choose our detectability objective to be proportional to
the L∞-norm of the distance between the correct next observation, i.e. the next observation expected
by the victim, and the adversarial observation generated by the adversary (cf. Definition 4.7). We
find the weighting parameter λ = 10 using a grid search (ablation in Appendix 7.5.2).

Note that while Algorithm 1 could, in principle, discover the exact perfect illusory attacks presented
above for both Cartpole and Pendulum, we do not find this to be the case in practice. We suggest that
this is due the convergence to sub-optimal local equilibria.
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Environment

both Pendulum CartPole
P (false | no attack) 34.2± 11.4 31.5± 10.5 37.0± 12.3
P (false | W − illusory (Ours)) 32.4 ± 10.8 37.0 ± 12.3 27.7 ± 9.3
P (false | SA-MDP) 81.4± 27.2 96.3± 32.1 66.7± 22.2
P (false | MNP) 83.3± 27.8 — 83.3± 27.8

Table 2: Results for the study with human participants. The answer “false” signifies that the
participants did not believe that a given video displayed the ground truth environment. Note that
participants are not more significantly skilled at detecting illusory attacks over non-attacks.

Detection. We now compare and contrast W-illusory attacks, MNP attacks and SA-MDP attacks
for perturbation budgets β = 0.05, 0.2. We observe that illusory attacks are much less likely to
be detected by the learned world model m̂v (see section 5.2) than MNP and SA-MDP attacks (see
Table 1). This finding is independent of the perturbation budget β.

ATLA victims are based on a recurrent neural network policy, enabling them, in principle, to learn
an implicit model of the environment dynamics during train-time. Co-training with such world
model-aware victims, could, in theory, result in world-model consistent adversarial attacks. However,
we empirically find this not to be the case: As shown in Table 1, attacks on ATLA agents are detected
just as likely as those on naive agents. This underlines the need for explicit world model consistency
constraints during adversarial training (see Definition 4.7). We provide videos of all types of attacks
for different seeds in the supplementary material (see Appendix 7.5.3).

Victim performance under different attacks. We find that the average reward achieved by the
victim (Table 1, 4th column) is generally lower for β = 0.2, and also generally lower for SA-MDP
attacks than for W-illusory attacks. This is to be expected, as W-illusory attacks trade off between
minimizing the reward of the victim and generating consistent observation sequences, while an
SA-MDP attack solely minimizes the victim reward. Given that illusory attacks are significantly
more constrained than SA-MDP attacks, we consider it surprising that undetectability can be traded
in for only minor decreases in adversarial performance.

5.4 FOOLING HUMANS WITH ILLUSORY ATTACKS

We perform a controlled experiment with n = 10 human participants in order
to collect evidence for our claim that while humans can efficiently detect state-of-the-art adversarial
attacks, they cannot detect W-illusory attacks to investigate whether humans unfamiliar with adver-
sarial attacks are able to detect W-illusory attacks. Participants were first shown example videos
of both CartPole and Pendulum trajectories, exposing them to environment-specific dynamics.
Participants were then asked to classify a random mixture of videos of test-time trajectories from
both unattacked and attacked CartPole and Pendulum environments; further details in Appendix 7.6.

We found that participants were able to visually classify MNP and SA-MDP attacks from videos
with high accuracy, similarly for unattacked trajectories. However, humans struggled to correctly
classify W-illusory attacks more accurately than non-attacks (see Table 2) as attacked. We establish
the statistical significance of these results using a z-test statistic (see Section 7.6), which suggests
that humans may can be unable to detect such illusory attacks.

5.5 ROBUSTIFYING AGAINST ILLUSORY ATTACKS

Having established the effectiveness of illusory attacks in Sections 5.3 and 5.4, we now investigate
how victims casn be robustified. We first consider two standard defences against adversarial attacks,
randomized smoothing (Kumar et al., 2021) and adversarial pretraining (ATLA, (Zhang et al.,
2021)). We also add an ablation of ATLA that co-trains the victim with a W-illusory adversaries.

1For a given budget β, we define the relative adversary score as the percentage deduction in the expected
return of the unattacked victim, normalized by the deduction achieved by the best-performing adversary. As
indicated by blank spots, MNP attacks cannot be applied to Pendulum (continuous action space), nor ATLA
based agents (LSTM policy).
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As summarised in Table 1, we find that defences are generally more effective at restoring victim
performance at β = 0.05 . For β = 0.2, all defences result in only minor improvements. With only
minor variations, these trends hold across all three robustification methods we deployed. Note that
the victim performance achieved by applying randomized smoothing for β = 0.2 in CartPole is
equivalent to that of a random policy. Overall, our findings suggest that none of the robustification
methods studied are particularly effective against illusory attacks.

Exploiting reality feedback. We conclude our empirical investigations by exploring the importance
of reality feedback in victim robustification (see Section 4.5). We establish two reality feedback
scenarios for CartPole: one where the cart observation is unperturbed and one where the obser-
vation of the pole is unperturbed. We find that robustifying the victim agent through pre-training
may be essential to enable enables victim agents to learn how to effectively use reality feedback. Our
results further suggest that having access to informative reality feedback channels can allow for
significant robustification. See Appendix 7.7 for further details.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce perfect illusory attacks, a novel class of adversarial attacks on sequential
decision-makers that is undetectable. Importantly, we show that W-illusory attacks, unlike state-of-
the-art adversarial attacks, can fool both AI victim agents with access to a model of the environment
dynamics, as well as human supervisors. Our results imply that robustification against illusory
attacks is mostly ineffective unless the victim has access to reality feedback, making the provisioning
of such hardened feedback channels imperative to designers of safe real-world autonomous or
human-in-the-loop decision-making systems.

Future work may investigate illusory attacks in large-scale and partially observable victim envi-
ronments. Similarly, evaluations on real-world settings would be beneficial, e.g. using sim-to-real
methodology. Our work further does not investigate the effect of constraining the number of test-time
interactions between adversary and victim, or the effect of world model imperfections. Future work
must also develop novel approaches and algorithms for victim robustification against illusory attacks.
In particular, such methods should be able to maximise the utility of existing reality feedback channels
through test-time information gathering behaviour. Lastly, we believe that a conceptual framework
unifying both budgeted and illusory attacks could be of value to the community.
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7 APPENDIX

7.1 PROOF ON THE EXISTENCE OF PERFECT ILLUSORY ATTACKS

2

1

4

3

(a)

2

1

4

3

(b)

Figure 4: An environment for which perfect illusory attacks do exist (left), and one for which they do
not exist (right).

Proof that perfect illusory attacks exist. We consider an example MDP (see Figure 4a) where a
victim starts in node 1 or 2 each with probability 1

2 and can go up, down, or right in both states 1 and
2. The episode terminates immediately with a return of 0 should the victim reach state 4. Otherwise,
the agent receives a reward of +1 if it reaches state 3 within a maximum of 2 steps. The optimal
victim policy is therefore to take paths 1 → 3 if starting in state 1, and take one of the two possible
paths 2 → 1 → 3 otherwise. The victim observes the labelled state graph, as well as its current state
label. Clearly, choosing πadv(1) = 2 and πadv(2) = 1 constitutes a perfect illusory attack in this
environment.

Proof that perfect illusory attacks don’t always exist. To show that some environments do not admit
perfect illusory attacks, consider the modified environment in Figure 4b. Here, clearly a timestep-
conditioned victim policy that takes the action sequence ⟨up, right⟩ independently of observations
cannot be perfectly attacked.

7.2 FINITE-SAMPLE ILLUSORY ATTACKS

Definition 7.1 (Finite-Sample Illusory Attacks). A finite-sample illusory attack is an adversarial
attack that is not detectable by the victim within a given test-time interaction budget n. Formally, an
n-sample illusory attack on an environment E with victim policy π is an adversarial policy πadv for
which ∄D,∄δ > 0 such that simultaneously

D
(
P(τ̂n|E)||P̂(τ̂n)

)
< δ, ∀τ̂n ∼ P ⟨E , πv⟩ and D

(
P(τ̂n|E)||P̂(τ̂n)

)
≥ δ, ∀τ̂n ∼ P ⟨E ′, πv, πadv⟩ .

(8)

Note that this definition is symmetric between adversary and victim. In practice, the victim will
choose aD, δ such that its average test-time performance is maximised. As the victim is, however, not
able to exactly infer EE′,πv [R] as it does not have access to the adversary’s policy, the adversary in
turn cannot exactly deduce how exactly the victim chooses D, δ. Therefore, in practice, the adversary
might wish to choose an isotropic D, such as DKL, and construct a policy πadv that minimises this
metric as far as possible given a desired performance-detectability trade-off.

7.3 WORLDMODEL TO DETECT ADVERSARIAL ATTACKS

Setup. We assume that the victim is trained in the unperturbed MDP Munperturbed for k episodes
of length n. During training, the agent records the observed environment transition tuples ti =
(si, ai, si+1) and stores these in a set Dunp = {ti}i=k∗(n−1)

i=0 . At test time, the victim executes the
learned policy and is attacked by an adversary agent, which replaces the true observation zt by the
adversarial observation ẑt.
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Learning a dynamics model. We use the the set of unperturbed transitions Dunp to learn an
approximate dynamics model T̂ (st|st−1, at−1). We implement T̂ as a Multi-Layer-Perceptron with
two hidden layers of size 10, and train the model with an l2 loss for 10 epochs, using a learning rate
of 0.001 and the ADAM (Kingma & Ba, 2014) optimizer. We then evaluate the model on a held-out
set of the training observations and compute the 5σ confidence bound on the l0 distance, which we
refer to as c. We use then use c as a threshold to detect adversarial attacks. The high confidence
ensures that the false positive rate remains low.

Note that an adversary with access to m̂v could attempt to learn universal perturbations (Moosavi-
Dezfooli et al., 2017) that simultaneously attack both πv and m̂v. However, adversaries without
access to m̂v may be unable to exploit its imperfections and instead need to assume it is perfect and
hence justifying our comparison to solely policy-based MNP/SA-MDP attacks.

Using a dynamics model to detect adversarial attacks. We then evaluate the accuracy in detecting
adversarial attacks for all scenarios listed in Table 1. More specifically, at every time step, the victim
uses the learned world model m̂v to predict the next observation given the previous observation
and action taken. If the l0 distance between the predicted observation and the actual (adversarial)
observation is larger than the threshold c, the victim classifies the episode as adversarially attacked.
Results for this detection mechanism are given in Table 1.

In the six-cell gridworld environment depicted in Figure 1, we similarly evaluated detection accuracy,
but only considered naive victim agents. We found that 100% of adversarial attacks could be detected
in this environment, while 0% of illusory attacks were detected. We show the resulting sequences of
observations and true states in Figure 1.

7.4 PERFECT ILLUSORY ATTACKS

We implemented perfect illusory attacks in Pendulum and CartPole by setting the first observation z0
to the negative of the true first state, i.e. z0 = −s0. We compute all subsequent observations z1, ..., zT
with the worldmodel ma. As the distribution over initial states is symmetric in both environments,
this approach of generating illusory attacks satisfies the conditions of a perfect illusory attack (see
Definition 4.2). We provide videos of the generated perfect illusory attacks in the supplementary
material in the respective folder. We found that the average reward achieved by the victim under
a perfect illusory attack in CartPole was 41.2 ± 6.8, while it was −628.32 ± 60.1 in Pendulum.
Figure 2 illustrates a perfect illusory attack in CartPole.

7.5 LEARNING W-ILLUSORY ATTACKS WITH REINFORCEMENT LEARNING

We next describe the algorithm used to learn W-illusory adversarial attacks and the training procedures
used to compute the results in Table 1.

Setup. We use the CartPole and Pendulum gym (Brockman et al., 2016) environments. The world
model is implemented using the given physics computed for a new environment step. We normalise
observations in both environments by the maximum absolute observation. We train the victim with
PPO (Schulman et al., 2017) and use the implementation of PPO given in Raffin et al. (2021), while
not making any changes to the given hyperparameters. In both environments we train the naive
victim for 1 million environment steps. We implement the ATLA (Zhang et al., 2021) victim by
co-training it with an adversary agent, and follow the original implementation of the authors 2. We
implement the ablation of ATLA (Zhang et al., 2021) that trains the victim with an illusory adversary
by merely replacing the ATLA adversary with an illusory adversary, which was implemented as
stated in algorithm 7.5. For co-training, we alternate between training the victim and the adversary
agent every 400 environment steps. This parameter has likewise been found in a small evaluation
study, and was chosen as it yields non-oscillating behaviour. We further investigated different ratios
between training steps of the adversary and training steps of the victim, but found that a ratio of one,
i.e. equal training of both, yields the most stable and results in co-training.

We implement the illusory adversary agent with SAC (Haarnoja et al., 2018), where we likewise use
the implementation given in Raffin et al. (2021). We initially ran a small study and investigated four

2https://github.com/huanzhang12/ATLA_robust_RL
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different algorithms as possible implementations for the adversary agent, where we found that SAC
yields best performance and training stability.

We train all adversarial attacks for three million environment steps. We implemented randomized
smoothing as a standard defence against adversarial attacks on RL agents, as introduced in Kumar
et al. (2021). We use the author’s original implementation 3. In contrast to the authors, we compute
the budget with respect to the normalised observations, but otherwise follow the per-step budget
definition in Kumar et al. (2021).

Algorithm 1 W-illusory adversarial training

Input: environment env, adversary worldmodel ma, illusory reward weighing parameter λ, victim
policy πv , iterations N
Initialize πψadv , parametrised be a neural network with parameters ψ.
while iteration < N do

s0 = env()

z0 = πψadv(s0) ▷ Initial perturbation only depends on initial system state
a0 = πv(clip(z0)) ▷ Adversarial observation is clipped to permissible range
s1, r

v
1 , done = env(a0)

radv1 = −rv1 ▷ No illusory reward at first step
while done=False do

zt = πψadv(st, zt−1, at−1) ▷ Adversary conditions on past information
at = πv(clip(zt))
st+1, r

v
t+1, done = env(at)

radvt+1 = −rvt+1 − λ · ∥zt;ma(zt−1, at−1)∥∞ ▷ Illusory reward added
end while
update πψadv ▷ Adversary policy updated using past experience

end while

7.5.1 FULL RESULTS TABLE FOR CONTRASTING OF DIFFERENT ATTACKS

Table 3: Full results table – top row Pendulum, bottom row CartPole

Attacks detected Victim reward under different defences

attack budget β naive ATLA3 none smoothing ATLA ATLA abl.

SA-MDP (Zhang et al., 2021) 0.2 97% 93% -1387.0 ± 119.0 -1188.3 ± 70.4 -1354.6 ± 107.1 -1428.3 ± 91.5
Illusory (ours) 0% 0% -1170.1 ± 67.5 -940.2 ± 91.6 -1020.4 ± 50.0 -1029.4 ± 106.7

SA-MDP (Zhang et al., 2021) 0.05 96% 95% -797.2 ± 69.9 -408.4 ± 146.6 -757.2 ± 109.3 -722.2 ± 30.8
Illusory (ours) 1% 2% -638.8 ± 204.6 -387.8 ± 115.8 -634.4 ± 340.7 -634.9 ± 103.9

none 0% 0% -189.4 ± 13.4 – -228.2 ± 43.8 -220.9 ± 58.8

MNP (Kumar et al., 2021)
0.2

100% – 18.3 ± 20.8 20.8 ± 8.7 – –
SA-MDP (Zhang et al., 2021) 99% 96% 9.3 ± 0.1 39.01 ± 10.7 9.2 ± 0.1 9.7 ± 0.6
Illusory (ours) 2% 3% 9.0 ± 0.3 23.9 ± 3.3 9.6 ± 0.6 10.02 ± 1.2

MNP (Kumar et al., 2021)
0.05

96% – 485.0 ± 33.5 180.3 ± 33.6 – –
SA-MDP (Zhang et al., 2021) 94% 100% 9.4 ± 0.2 122.5 ± 54.3 24.2 ± 7.3 16.8 ± 8.3
Illusory (ours) 0% 2% 9.3 ± 0.1 165.4 ± 46.3 21.4 ± 6.0 45.4 ± 56.5

none 0% 0% 500.0 ± 0 – 500.0 ± 0 500.0 ± 0

Table 7.5.1 shows all results for all scenarios evaluated; we report mean and standard deviation. Note
that each scenario was evaluated for five random seeds; Table 1 in the main paper is derived from
Table 7.5.1.

7.5.2 ABLATION: INFLUENCE OF LAMBDA ON RESULTS

We investigated the influence of the λ parameter in a small study. Generally, the λ parameter
determines the trade off of the illusory adversary between generating consistent observation sequences,
and minimizing the victim’s reward. We considered λ ∈ {1, 10, 100}, with β = 0.2. Table 4 shows
that smaller weighing parameters λ generally lead to lower victim rewards, which is in line with the
fact that for λ = 0, the objective of the adversary is solely to minimise the victim reward.

3https://openreview.net/forum?id=mwdfai8NBrJ
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Table 4: Reward achieved by the victim across different weighing parameter λ.

Weighing parameter λ

Environment 1 10 100
CartPole 9.0± 0.3 9.0± 0.3 22.2± 3.7
Pendulum −1382.87± 158.3 −1170.1± 67.5 −616.1± 120.0

Table 5: Results from our study with human participants.

Environment

both Pendulum CartPole
P (false | no attack) 34.2 ± 11.4 31.5± 10.5 37.0± 12.3
P (false | SA-MDP) 81.4± 27.2 96.3± 32.1 66.7± 22.2
P (false | W − illusory) 32.4 ± 10.8 37.0± 12.3 27.7± 9.3
P (false | MNP) 83.3± 27.8 83.3± 27.8
P (false) 54.2± 18.1 54.9± 18.3 53.7± 17.9

7.5.3 VIDEOS OF ALL ADVERSARIAL ATTACKS

We provide videos for different seeds for all adversarial attacks in the supplementary material. The
folders are named respectively. Note that the left side shows the environment as observed by the
victim agent, while the right side shows the true environment state. Please further note that the
episode in CartPole terminates once the angle has crossed a specific threshold, which is why the
episodes might appear to be shorter than otherwise expected. All videos were generated for a budget
β = 0.2.

7.6 HUMAN STUDY

We performed a controlled experiment with n = 10 human participants. All participants were
graduate-level university students, while none had prior knowledge about the objective of the study.
Participants participated voluntarily; we estimate the time needed per participant was around 15
minutes. Participants were handed a slide show which contained all relevant information. This slide
show is included in the supplementary material in the respective folder. We further add the sheet with
ground truth labels for all video sequences.

After consenting to participate, participants were provided with the slide show and an online sheet
to indicate their answers. The study was self-paced and done by the participants without further
supervision. We further advised participants not to do the study if they would not feel comfortable at
any point in time.

The first 18 videos in the slide show are 100-frame long sequences of the Pendulum environment,
i.e. six each for either no adversarial attack, a W-illusory attack or an SA-MDP attack (Zhang et al.,
2021). The subsequent 24 10-frame long sequences of the CartPole environment include the same
attacks as for Pendulum, plus an additional six sequences under an MNP attack (Kumar et al., 2021).
Note that MNP attacks cannot be applied to the Pendulum environment, as it has a continuous action
space. For all attacks, the budget β was 0.2. Within both groups, the order of the videos shown
was randomised. Subjects had to choose for each video between correct and false, where false
indicates that subjects find that the system observed in the respective video is not the same as the
one observed in the introductory video. Table 5 includes all empirically estimated probabilities of
classifying a segment from a given class as false, split up also by the different environments CartPole
and Pendulum.

Result analysis. We find that subjects reported an unexpectedly high proportion (one third) of
unattacked sequences as false. Subjects classified sequences which were under an MNP or SA-
MDP (Zhang et al., 2020) attack as not from the same system with a probability higher than 80%, while
categorizing illusory attacks as false with a probability of only 32.4%. We computed the double-sided
z-statistics and were able to reject both the hypothesis that p(false | SA-MDP) = p(false | none)
and the hypothesis that p(false | MNP) = p(false | none) for α = 0.05, while the hypothesis that
p(false | W-illusory) = p(false | none) cannot be rejected. We conclude that subjects were able to
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Table 6: Reward achieved by victim for different reality feedback
scenarios.

Victim agent

reality feedback naive ATLA abl.
pole 9.84± 0.1 182.44 ± 36.9
cart 8.83± 0.3 15.54± 6.6

distinguish SA-MDP and MNP attacks from unattacked sequences, while being unable to distinguish
illusory attacks from unattacked sequences.

7.7 REALITY FEEDBACK

Setup. We evaluate the importance of realism feedback in the CartPole environment by investigating
two possible scenarios. Note that the observation in CartPole is given as a four-dimensional vector of
the pole angle and angular velocity, as well as cart position and velocity. In the first test scenario, the
victim correctly observes the pole, while the adversary can perturb the observation of the cart; the
second scenario is vice versa. We investigate two test cases for each scenario: First, attacking a naive
victim, and second, attacking an agent pretrained with co-training.

Results and discussion. Table 6 shows that the reward achieved by the victim is generally higher
when pretrained with co-training. We hypothesize that this pretraining enables the agent to learn how
to utilize the reality feedback effectively. The achieved victim performance when reality feedback
contains information about the pole is more than 10 times larger than when containing information
on the cart instead. This seems intuitive, as the observation of the pole appears much more useful for
the task of stabilizing the pole, and underlines the importance of equipping agents with strong reality
feedback channels.
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