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ABSTRACT

Generative modeling typically concerns the transport of a single source distribu-
tion to a single target distribution by learning (i.e., regressing onto) simple proba-
bility flows. However, in modern data-driven fields such as computer graphics and
single-cell genomics, samples (say, point-clouds) from datasets can themselves be
viewed as distributions (as, say, discrete measures). In these settings, the stan-
dard generative modeling paradigm of flow matching would ignore the relevant
geometry of the samples. To remedy this, we propose Wasserstein flow matching
(WFM), which appropriately lifts flow matching onto families of distributions by
appealing to the Riemannian nature of the Wasserstein geometry. Our algorithm
leverages theoretical and computational advances in (entropic) optimal transport,
as well as the attention mechanism in our neural network architecture. We present
two novel algorithmic contributions. First, we demonstrate how to perform gen-
erative modeling over Gaussian distributions, where we generate representations
of granular cell states from single-cell genomics data. Secondly, we show that
WFM can learn flows between high-dimensional and variable sized point-clouds
and synthesize cellular microenvironments from spatial transcriptomics datasets.
Code is available at WassersteinFlowMatching.

1 INTRODUCTION

Today’s abundance of data and scalability of training massive neural networks has made it possible
to generate hyper-realistic images on the basis of training examples (OpenAI, 2022), as well as video
and audio clips (Vyas et al., 2023; Xing et al., 2023), and, of course, text (Bubeck et al., 2023). All of
these are instances of generative modeling: given access to finitely many samples from a distribution,
devise a scheme which generates new samples from the same distribution. Generative modeling
has also been revolutionary in the biomedical sciences, for drug design (Jumper et al., 2021) and
single-cell genomics (Lopez et al., 2018). Nearly all frameworks exploit the notion that datasets (of,
say, genomic profiles of cells, images, videos, or corpora of text documents) are instantiations of
probability measures, and the task is to transform a point sampled from random noise to generate a
data point that obeys the distribution of interest.

Among the zoo of available generative models, one approach noted for its flexibility and simplicity
is Flow Matching (FM) (Albergo & Vanden-Eijnden, 2022; Lipman et al., 2022; Liu et al., 2022).
For a fixed target probability measure, FM learns an implicitly defined vector field that can transform
a source measure (e.g., the standard Gaussian) to the target. Unlike discrete time and probabilistic
generative models (such as Denoising Diffusion Models by Song et al. (2020)), FM learns a deter-
ministic, continuous normalizing flow by regressing onto a simple conditional probability flow. This
approach, while originally designed for Euclidean domains, can be readily adopted to Riemannian
geometries (Chen & Lipman, 2023). Riemannian flow matching is widely used for generating sam-
ples over geometries such as spheres, tori, translation/rotation groups, simplices, triangular meshes,
mazes, and molecular positions and structures.

The Wasserstein geometry, a canonical geometry over distributions, does not easily fit into any of
these existing frameworks and has not been successfully adapted for flow matching. This geometry
is useful, for example, in computational graphics where collections of 3D shapes are represented
as empirical distributions (point-clouds). Likewise, recent developments in single-cell genomics
analysis have demonstrated that gene-expression profiles from groups of cells aggregated via their
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Method Data type Source Target
FM over Rd x ∈ Rd x ∼ p0 y ∼ p1
FM overM x ∈M x ∼ p0 y ∼ p1
FM over ∆d µ ∈ P(∆d) µ ∼ p0 ν ∼ p1

Wasserstein FM µ ∈ P(Rd) µ ∼ p0 ν ∼ p1
→ Gaussians N (m,Σ) N (mµ,Σµ) ∼ p0 N (mν ,Σν) ∼ p1
→ Point-Clouds 1

n

∑
i δxi

1
m

∑
i δxi ∼ p0

1
n

∑
j δyj ∼ p1

Wasserstein FM

p0 p1µ ν

N (mµ,Σµ) N (mν ,Σν)

1
m

∑
i δxi

1
n

∑
j δyj

Figure 1: Left: Table contrasting FM methods over Rd, general manifolds M, categorical and
Dirichlet distributions on the d-simplex ∆d, and finally, our approach, FM problems defined over
P(Rd). Right: WFM overview, which learns flows over distributions over distributions.

mean and covariance can capture cellular microenvironments or highlight fine-grain clusters (Haviv
et al., 2024b; Persad et al., 2023). For both point-cloud and Gaussian settings, it is natural to search
for a unified generative model that respects the underlying geometry of the data, namely, treating
each sample as itself a probability distribution.

Contributions. We introduce Wasserstein Flow Matching (WFM), a principled extension of the
FM framework lifted to the space of probability distributions. As illustrated in Figure 1, a single
point in our source and target datasets is itself a distribution (e.g., a single discrete measure or a
single Gaussian), and our aim is to learn vector fields acting on the space of probability distributions
and match the optimal transport map, which is the geodesic in Wasserstein space. WFM is an
instantiation of Riemannian FM (Chen & Lipman, 2023), where we train a neural model to learn
a continuous normalizing flow (CNF) between distributions over distributions.

We demonstrate the effectiveness of our approach for generative modeling between distributions
over Gaussian distributions and distributions over point-clouds. The former task is motivated by
recent directions in single-cell and spatial transcriptomics (Haviv et al., 2024b; Persad et al., 2023),
where we consider matching problems over the Bures–Wasserstein space (BW), the Gaussian sub-
manifold of the Wasserstein space. In this case, we show that WFM can be further modified, re-
sulting in the Bures–Wasserstein FM (BW-FM) algorithm. We validate BW-FM on a variety of
Gaussian-based datasets, where we observe that samples generated by our algorithm are signifi-
cantly more robust than naı̈ve approaches which do not fully exploit the underlying geometry of the
data. In turn, we present a generative model for cell states and niches from single-cell genomics data.

Point-cloud generation is made possible by two distinct, yet crucial, algorithmic primitives: (1) in-
corporating transformers in our neural network architecture (Vaswani, 2017; Lee et al., 2019), and
(2) recent algorithmic advances in entropic optimal transport (Pooladian & Niles-Weed, 2021). In-
deed, our WFM algorithm performs generative modeling in the Wasserstein space, where geodesics
are given by pushforwards of optimal transport (OT) maps; see Section 2.3 for more information.
Both the transformer architecture and entropic optimal transport are crucial to approximating the OT
map between independent point-clouds. Indeed, the permutation equivariance of attention makes
the transformer a natural basis for our model, inherently modeling the equivariance feature of the
Wasserstein geometry while maintaining scalability in high-dimensions.

For datasets of 3D point-clouds with uniform sizes, the performance of WFM is comparable to other
current generative models. However, due to their particular training paradigms (namely the voxeliza-
tion of 3D spaces), contemporary approaches cannot scale to high-dimensional point-clouds and fail
on datasets with variable sized examples. Conversely, WFM succeeds in the high-dimensional and
inhomogeneous settings, unlocking generative modeling to new, previously uncharted domains such
as synthesizing niches from spatial genomics data. The ability to model tissue biology in this gener-
ative manner could enhance our understanding of how environment is associated with cell state. In
the context of many diseases, most notably cancer and its tumor-immune microenvironment, these
insights are critical for developing novel therapeutics (Binnewies et al., 2018).

2 BACKGROUND AND RELATED WORK

We let P2(Rd) denote the set of probability distributions over Rd with finite second moment, and
write P2,ac(Rd) to be those with densities. For a probability measure µ and (vector-valued) function
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f , we interchangeably write
∫
∥f(x)∥2 dµ(x) and ∥f∥2L2(µ). Let M be a Riemannian manifold,

with P(M) defining the space of probability measures over said manifold. For x ∈ M, we write
TxM to mean the tangent space of the manifold at x, and write the metric on the tangent space
(at x) as g(x). For x0 ∈ M with initial velocity v ∈ Tx0M, the terminal location of the resulting
geodesic is expressed as the output of the exponential map v 7→ expx0

(v) ∈ M. Similarly, for an
initial point x0 and terminal location x1, the logarithmic map defines the tangent vector, denoted
x1 7→ logx0

(x1), such that expx0
(logx0

(x1)) = x1. The set of symmetric matrices (resp. positive
definite matrices) over Rd are denoted by Sd (resp. Sd++).

2.1 RIEMANNIAN FLOW MATCHING

We first briefly discuss the Riemannian flow matching (RFM) framework of Chen & Lipman (2023).
Let p0 be the source distribution and p1 be the target distribution over a Riemannian manifoldM,
and let (γt)t∈[0,1] be a curve of probability measures satisfying γ0 = p0 and γ1 = p1. Letting
(wt)t∈[0,1] denote a family of vector fields, we say that the pair (γt, wt)t∈[0,1] satisfy the continuity
equation with respect to the metric g, abbreviated to (γt, wt) ∈ Cg if

∂tγt +∇g ·(γtwt) = 0 , (1)

where∇g· is the Riemannian divergence operator.

The goal of RFM is to regress a parameterized vector field (e.g., a neural network), written fθ(x, t) ∈
TxM for t ∈ [0, 1], onto the family wt by minimizing

min
θ

∫ 1

0

∫
∥fθ(zt, t)− wt(zt)∥2g(zt) dγt(zt) dt ,

assuming access to a pair (γt, wt)t∈[0,1] that satisfies (1), which is not possible in many scenarios.
Borrowing insights from recent work (e.g., Albergo & Vanden-Eijnden (2022); Lipman et al. (2022);
Liu et al. (2022)), the authors construct a simple vector field that satisfies the continuity equation,
resulting in the tractable objective

min
θ

∫ 1

0

∫∫
∥fθ(xt, t)− ẋt∥2g(xt)

dp0(x) dp1(y) dt , (2)

where, for example, xt = expx((1− t) logx(y)) ∈ M, and ẋt ∈ Txt
M. For complete discussions

and proofs, see Chen & Lipman (2023, Section 3.1). Once fθ is appropriately fit using (2), we can
generate new samples from p1: start by sampling X0 ∼ p0, then follow Ẋt = fθ(Xt, t) numerically
by discretizing the dynamics given by the exponential map, resulting in X1 ∼ p1. We emphasize
that the dynamics are only simulated at inference time and not when training fθ, which is commonly
known as a simulation-free training paradigm.

2.2 RELATED WORK

Generative models for point-clouds. Paralleling the progress in generative models for natural
images, the field of point-cloud generation is rapidly expanding. Many different models have been
used from this task, namely generative-adversarial-nets (Achlioptas et al., 2018), variational autoen-
coders (Gadelha et al., 2018), normalizing flows (Yang et al., 2019; Kim et al., 2020; Klokov et al.,
2020), diffusion (Zhou et al., 2021; Cai et al., 2020) and even euclidean FM (Wu et al., 2023).
Thus far, these approaches are limited to uniformly sized point-clouds in 2D & 3D, and fail on
high-dimensional spaces which cannot be voxelized.

Generative models over families of distributions. Our work is not the first to instantiate Rieman-
nian FM with a manifold of probability measures. Two notable works are Fisher FM (Davis et al.,
2024) and Categorical FM (Cheng et al., 2024), which consider the FM algorithm with respect to
the Fisher–Rao geometry Amari (2016); Nielsen (2020) over the d-dimensional simplex ∆d. The
work of Stark et al. (2024) is similar in spirit, where they focus on the Dirichlet distribution for gen-
eration of discrete data. Another related work is that of Atanackovic et al. (2024), called Meta FM.
Their approach requires pairs of distributions which are already coupled, with the goal of solving
FM between a distribution over pairs. In contrast, we emphasize that our proposed Wasserstein FM
applies between two separate uncoupled distributions over distributions.
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Generative models for single-cell genomics. Deep learning based generative models have trans-
formed single-cell genomics through various approaches. Variational auto-encoders (Lopez et al.,
2018; Gayoso et al., 2022) have successfully addressed technical artifacts, integrating multi-moodal
data and imputing missing features in scRNA-seq data. More recently, Transformer-based foun-
dation models have been noted for their ability to integrate large atlases of data (Cui et al., 2024;
Theodoris et al., 2023). Flow Matching has also emerged as a promising direction (Klein et al.,
2024; Eyring et al., 2024) for learning both balanced and unbalanced OT maps between cell pop-
ulations. While these prior FM applications focus on cell-to-cell mappings, our work introduces a
new paradigm: generating entire point-clouds representing cellular populations. This is particularly
relevant for spatial genomics, where cellular microenvironments are naturally represented as point-
clouds. WFM enables synthesis of whole cellular neighborhoods, a novel approach in generative
modeling for the single-cell field.

2.3 WASSERSTEIN GEOMETRY

The (squared) 2-Wasserstein distance between two probability measures µ, ν ∈ P2,ac(Rd) is given
by the non-convex optimization problem over vector-valued maps T : Rd → Rd

W 2
2 (µ, ν) := min

T :T♯µ=ν
∥id− T∥2L2(µ) , (3)

where the pushforward constraint, written T♯µ = ν, means that, for X ∼ µ, the image follows
T (X) ∼ ν. The minimizer to (3) is called the optimal transport (OT) map, denoted Tµ→ν

⋆ (we
abbreviate this to T⋆ when it is clear from context). The existence and uniqueness of the optimal
transport map under the stated regularity conditions is due to Brenier (1991).

The Wasserstein space is the space of probability densities with finite second moment endowed with
the Wasserstein distance; this space is known to be a metric space (Villani, 2009). Following the
celebrated work of Otto (2001), the Wasserstein space can be formally (meaning, non-rigorously)
viewed as a Riemannian manifold, whose properties we now describe in brief; see e.g., Ambrosio
et al. (2008) for a rigorous treatment.

Following the definition by Ambrosio et al. (2008, Theorem 8.5.1), the tangent space at a point
µ ∈ P2,ac(Rd)1 consists of all possible tangent vectors that emanate from µ, written formally as

TµP2,ac(Rd) := {λ(Tµ→ν
⋆ − id) : λ > 0, ν ∈ P2(Rd)}

L2(µ)
,

where the overline denotes the closure of the set (i.e., the set and its limit points) in L2(µ), and the
norm on the tangent space is also L2(µ). The exponential and logarithmic maps read

v 7→ expµ(v) := (id + v)♯µ , ν 7→ logµ(ν) := Tµ→ν
⋆ − id ,

where id is the identity map. Consequently, the (constant-speed) geodesic, or McCann interpolation,
between two measures µ and ν is given by the curve (µt)t∈[0,1] where

µt := (Tµ→ν
t )♯µ := ((1− t)id + tTµ→ν

⋆ )♯µ ≡ expµ((1− t) logµ(ν)) , (4)

where the last expression writes the pushforward in terms of the exponential and logarithmic maps.
Equivalently, at the level of the random variables, one can write Xt = (1 − t)X0 + tTµ→ν

⋆ (X0),
where X0 ∼ µ and Xt ∼ µt for any t ∈ [0, 1]. Combined with (vt)t∈[0,1] a suitable family of vector
fields, the McCann interpolation satisfies the continuity equation (1) over Rd, re-written as

∂tµt +∇ · (µtvt) = 0 , s.t. µ0 = µ , µ1 = ν , (5)

where the divergence operator is the usual Euclidean one over Rd, thus we write (µt, vt) ∈ C. The
link between the constant speed geodesics and the 2-Wasserstein distance can be viewed from the
celebrated Benamou–Brenier formulation of optimal transport (Benamou & Brenier, 2000):

W 2
2 (µ, ν) = inf

(µt,vt)∈C

∫ 1

0

∥vt∥2L2(µt)
dt . (6)

1For Gaussians, µ is naturally absolutely continuous. For point-clouds, we interpret them as empirical
samples drawn from underlying continuous shapes (e.g., a car’s surface).
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The optimal curve of measures is given by the constant-speed geodesics described above, and the
optimal velocity field is given by

vt = (Tµ→ν
⋆ − id) ◦ (Tµ→ν

t )−1 . (7)

The vector field (7) should be interpreted as the time-derivative of the McCann interpolation:

Ẋt = (Tµ→ν
⋆ − id)(X0) = (Tµ→ν

⋆ − id) ◦ (Tµ→ν
t )−1(Xt) , X0 ∼ µ .

2.3.1 BURES–WASSERSTEIN (BW) SPACE

A known special case of the Wasserstein space is the Bures–Wasserstein space, which con-
sists of the submanifold of non-degenerate Gaussians parameterized by means and covariances
{(m,Σ) : m ∈ Rd,Σ ∈ Sd++}, endowed with the Wasserstein metric. We provide a brief exposition
on the geometry of the Bures–Wasserstein space and refer the interested reader to Lambert et al.
(2022) for detailed calculations and explanations, as we follow their notation conventions.

The OT map between µ = N (mµ,Σµ) and ν = N (mν ,Σν) has a closed-form (Gelbrich, 1990):

T⋆(x) := mν + Cµ→ν(x−mµ) := b+Σ
− 1

2
µ (Σ

1
2
µΣνΣ

1
2
µ )

1
2Σ

− 1
2

µ (x−mµ) .

As this map is affine, it is clear that the McCann interpolation between two Gaussians is always
Gaussian (indeed, Gaussians undergoing affine transformations remain Gaussian). More generally,
we have the succinct representation of the tangent space at a point in the Bures–Wasserstein space

TµBW(Rd) := {a+ S(id−mµ) : a ∈ Rd, S ∈ Sd} ,

and the exponential and logarithmic maps between two non-degenerate Gaussians are

(a, S) 7→ expµ((a, S)) := N (mµ + a, (S + I)Σµ(S + I)) ,

ν 7→ logµ(ν) := (mν −mµ,Σ
− 1

2
µ (Σ

1
2
µΣνΣ

1
2
µ )

1
2Σ

− 1
2

µ − I) ,

where the exponential map requires S ≻ −I . We also mention that the norm on the tangent space
at µ in the Bures–Wasserstein space can be written as

∥(a, S)∥2BW(µ) := ∥a−mµ∥2 +Tr(S2Σµ)

With the above, it is easy to compute the closed-form solutions for the mean and covariance of the
McCann interpolation µt = (Tt)♯µ = N (mt,Σt), given by

mt := (1− t)a+ tb , Σt := TtATt := ((1− t)I + tCA→B)A((1− t)I + tCA→B) . (8)

We can relate the Euclidean and Riemannian time-derivatives of Σt through the following
manipulation (the latter of which respects the exponential and logarithmic maps above):

Σ̇E
t = ṪtATt + TtAṪt = Ṫt(Tt)

−1TtATt + TtATt(Tt)
−1Ṫt = Σ̇BW

t Σt +ΣtΣ̇
BW
t .

To this end, we can draw parallels to (7) by writing

ṁt = b− a , Σ̇BW
t = (CA→B − I)((1− t)I + tCA→B)−1 . (9)

3 FLOW MATCHING OVER THE WASSERSTEIN SPACE

3.1 TRAINING

Let p0 and p1 denote probability measures over the Wasserstein space.2 Our goal is to learn a vector
field that transports the family of measures p0 to the family p1. WFM learns to map source to
target by regressing onto Wasserstein geodesics between samples µ ∼ p0 and ν ∼ p1, rather than
learning the OT map between p0 and p1. To accomplish this, we pass in the McCann interpolation

2This implies that µ ∼ p0 is itself a distribution (e.g., a Gaussian or a point-cloud), not a random variable.
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Algorithm 1: Wasserstein FM Training (Rd)

Require: base p0 ∈ P(P(Rd)), target
p1 ∈ P(P(Rd)), geo ∈ {BW,PC}

Init: Parameters θ of fgeoθ
while not converged do

Sample time t ∼ U(0, 1)
Sample source measure µ ∼ p0
Sample target measure ν ∼ p1
if geo is BW then

µt ← (mt,Σt) via (8)
vt ← (ṁt, Σ̇

BW
t ) via (9)

else
µt ← Approximate via (4) using T̂µ→ν

vt ← Approximate via (7)

ℓ(θ)← ∥fgeoθ (µt, t)− vt∥2L2(µt)

θ ← optimizer step(θ, ℓ(θ),∇θℓ(θ))

Algorithm 2: BW(Rd) generation

Data: Trained fBW
θ , step size h = 1/N

Init: N (m0,Σ0) ∼ p0
for k = 0, . . . , N − 1 do

(sk, Sk)← fBW
θ ((mkh,Σkh), kh)

m(k+1)h ← mk + hsk
Uk ← (I + hSk)
Σ(k+1)h ← UkΣkhUk

Return: N (mNh,ΣNh)

Algorithm 3: Point-cloud generation

Data: Trained fPC
θ , step size h = 1/N

Init: X̂0 = {X1, . . . , Xn} ∼ p0
for k = 0, . . . , N − 1 do

X̂(k+1)h ← X̂kh + hfPC
θ (X̂kh, kh)

Return: X̂Nh

µt and optimal velocity field vt in the Riemannian FM objective (2), resulting in our Wasserstein
FM (WFM) objective:

min
θ

∫ 1

0

∫∫
∥fgeoθ (µt, t)− vt∥2L2(µt)

dp0(µ) dp1(ν) dt . (10)

We provide a derivation of this objective function in Appendix B. As mentioned in the introduction,
our two use-cases of interest are flow matching over (1) families of point-clouds, and (2) families
of Gaussian distributions. While the theory outlined in Section 2.3 explicitly requires continuous
distributions to ensure all objects are well-defined, the approximation of measures by point-clouds
is reasonable for our applications and can be made computationally efficient courtesy of existing
open-source packages (Flamary et al., 2021; Cuturi et al., 2022). In the case of Gaussian measures,
the theory as described in Section 2.3.1 holds in full force. Our training algorithm is described in Al-
gorithm 1, and Appendix E contains precise details regarding our neural network parameterization.

Finally, we mention that both frameworks can be modified by training via the multisample FM
algorithm (Pooladian et al., 2023a; Tong et al., 2023). In brief, the idea is to augment the training
regime by pairing the source and target minibatch samples according to some prescribed matching
rule (instead of independent draws from both p0 and p1). We employ this augmentation during
training, which we detail in Appendix C.

3.1.1 WFM OVER THE BURES–WASSERSTEIN SPACE

First suppose p0 and p1 are distributions over Gaussians, meaning that a batch of samples drawn
from p0 and p1 consists of a batch of mean-covariance pairs. Here, the dynamics are straight-
forward: the interpolant is the McCann interpolation (recall (8)), and the velocity field over the
Bures–Wasserstein manifold is also known (see (9)). Since µt is parameterized by (mt,Σt), the
neural network is parameterized as fBW

θ : Rd×Sd++ → Rd×Sd, and the norm on the tangent space
simplifies the computations considerably. Our final training objective becomes

min
θ

∫ 1

0

∫∫
∥fBW

θ ((mt,Σt), t)− (ṁt, Σ̇
BW
t )∥2BW(µt)

dp0(µ) dp1(ν) dt . (11)

3.1.2 WFM OVER DISTRIBUTIONS OF POINT-CLOUDS

In the case of point-clouds, we lose closed-form interpolations. However, we can hope to proceed
so long as we have an approximation of the optimal transport map between the point-clouds, written
T̂ . There are many works on the approximation of these maps on the basis of samples; see Hütter
& Rigollet (2021); Divol et al. (2022); Manole et al. (2021); Pooladian & Niles-Weed (2021). Our
goal is to have a methodology that holds for families of point-clouds of non-uniform size.
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Figure 2: When the number of training examples is too few, all methods collapse on the training
data, though our Riemannian instantiation of BW-FM captures the covariances perfectly. In the
presence of sufficiently many samples, all methods generate Gaussians along the whole spiral, and
our Riemannian BW-FM algorithm produces the most consistent samples. Other methods produce
Gaussians with degenerate covariance, as the do not model geometry of the data.

We consider two approximations of optimal transport maps, both of which are based on entropic
optimal transport Cuturi (2013), and are computationally efficient on GPUs due to Sinkhorn’s algo-
rithm (Sinkhorn, 1964). One approach is to round the optimal coupling to a permutation and perform
the resulting interpolation. Another approach, which allows for inhomogeneous pairs of points, is
to approximate Tµ→ν

⋆ using the entropic map (Pooladian & Niles-Weed, 2021); we provide ex-
tensive background on these objects in Appendix A, with theoretical and statistical discussions in
Appendix A.3. To this end, let X (resp. Y ) represent the locations of the point-cloud µ ∼ p0
(resp. ν ∼ p1), and let T̂µ→ν denote the approximation of the optimal transport map. The objective
(10) can be approximated by

min
θ

∫ 1

0

∫∫ ∑
i

∥[fPC
θ (X̂t, t)]i − [(T̂µ→ν(X)−X)]i∥22 dp0(µ) dp1(ν) dt , (12)

where X̂t = (1 − t)X + tT̂µ→ν(X). Here, we stress that X̂t plays the role of a
discretized McCann interpolation µt. We parameterize fPC

θ with a transformer and Ap-
pendix E provides further details. As both the OT map and self-attention are permutation
equivariant, transformers are an organic backbone for OT based models (Haviv et al., 2024a).
Moreover, unlike other point-cloud neural models such as PVCNN (Liu et al., 2019), trans-
formers do not rely on voxelization and are not hindered by the curse-of-dimensionality.

BW-FM (R) BW-FM (E) Frobenius FM
Spiral - 16 (2D) 2.98 · 10−4 4.00 · 10−4 1.03 · 10−3

Spirals - 128 (2D) 1.28 · 10−3 1.70 · 10−3 2.69 · 10−3

Two Moons (2D) 1.84 · 10−4 8.96 · 10−4 1.30 · 10−3

Sphere (3D) 6.65 · 10−4 2.14 · 10−3 2.25 · 10−3

Cities (2D) 1.88 · 10−4 7.26 · 10−3 1.75 · 10−3

ECG (15D) 9.24 · 10−2 3.26 · 10−1 3.98 · 10−1

MERFISH (16D) 1.90 1.98 2.06
scRNA-seq (32D) 1.31 2.74 3.21

Table 1: Average min. W 2
2 distance between each gen-

erated Gaussian and the reference datasets. Despite
identical training schemes, BW-FM (R) outperforms
other approaches on both synthetic and real data across
several dimensions.

3.2 GENERATION

Once fgeoθ is trained, we can generate
new samples in a simulation-free man-
ner as in Riemannian FM. For the Bures–
Wasserstein space, we appeal to the expo-
nential and logarithmic maps.We empha-
size that the appropriate Riemannian up-
dates are crucial to obtain non-degenerate
final samples. For point-clouds, we per-
form a standard Euler discretization of the
learned flow; see Algorithm 3.
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Car Plane Chair Monitor Vase Toilet

Unconditional Conditional

Figure 3: Left. Synthesized samples from WFM trained on the cars, planes or chairs datasets.
Right. Examples generated conditionally from the same initial noise via a WFM model trained on
the complete 40-class ModelNet dataset.

4 RESULTS

4.1 FLOW MATCHING BETWEEN FAMILIES OF GAUSSIANS

We first demonstrate our flow matching framework between measures of Gaussian distributions on
a synthetic and real datasets. For comparable baselines in each scenario, we construct two simpler
flow matching approaches for Gaussian generation: (1) Frobenius FM, which concatenates the mean
and covariances values, and trains on Σ̇E

t with respect to the squared-Frobenius norm, and (2) BW-
FM (Euclidean), which tries to match Σ̇E

t but still under the BW geometry.

In all cases, we assess the quality of the learned flows by computing the the minimum distance be-
tween each generated Gaussian and the dataset using the (squared) 2-Wasserstein distance. Notably,
the flows generated by Frobenius FM and BW-FM (Euclidean) do not strictly adhere to the geom-
etry of the Bures-Wasserstein manifold, requiring synthesized covariance matrices to be artificially
projected onto the space of positive semi-definite (PSD) matrices via eigenvalue truncation. In con-
trast, the Riemannian BW-FM algorithm consistently produces valid and accurate results across all
dimensions and datasets.

4.1.1 TOY DATASETS

As a first test, we design a dataset of Gaussians centered on a spiral (Figure 2). When there were
only few samples, only Riemannian BW-FM reconstructed the data, despite other benchmark meth-
ods following identical training regimes. On the complete 128-sample dataset, BW-FM not only
reconstructs the training data, but generalizes and synthesizes novel Gaussians whose means lie
on the spiral with the correct covariance profile. BW-FM shares this generalization feature with
standard FM, and is able to learn the structure underlying the measure from the training data.

Figure 4: We apply BW-FM to realize environ-
ments of microglia from MERFISH data (Zhang
et al., 2021), the composition of generated niches
matches the real data along inferred cortical
depth; see also Figure S2.

4.1.2 SINGLE-CELL GENOMICS

Spatial transcriptomics are a set of techniques
which build on single-cell genomics and pre-
serve physical information of cells’ location in
tissues, while assaying their gene expression.
Haviv et al. (2024b) demonstrated that a cell’s
microenvironment can be effectively charac-
terized using the mean and covariance of the
surrounding cells gene expression. This sta-
tistical representation captures key features of
cellular neighborhoods and transforms spatial
transcriptomics datasets into a measure within
the Bures–Wasserstein space, highlighting the
value of generative modeling in this context.

In the motor cortex, excitatory neurons form
phenotypically distinct and highly specialized cortical layer (Zeng & Sanes, 2017). From the 254
gene MERFISH atlas (Zhang et al., 2021), we compute the mean and covariance of the top 16 princi-
pal components of gene expression from all cells within an 80 micron radius around each microglia.

8
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n = 78 n = 110 n = 146 n = 511 n = 388 n = 519 Figure 5: Generated point-
clouds from MNIST and EM-
NIST datasets using WFM,
where n denotes the number
of points in each cloud.

Despite the dimensionality of this data, BW-FM synthesizes Gaussians which are highly congruent
with the real data (Figure 4 and Figure S2).

Another common instance of BW manifolds arising in single-cell genomics is through aggregating
cells into common states. These clusters can be summarized by their mean gene expression and
its covariance. On a scRNA-seq atlas elucidating human immune response to COVID (Stephenson
et al., 2021), we combine cells into MetaCells (Persad et al., 2023), and quantify the gene expression
mean and covariance for each. Here too we apply BW-FM conditioned on cell-state, which encom-
pass the heterogeneity of immune profiles appearing as response to COVID infection. Despite the
plurality of labels, BW-FM can synthesize correct examples for each condition (see Figure S1).

4.2 FLOW MATCHING BETWEEN FAMILIES OF POINT-CLOUDS

When the two measures are point-clouds, we turn to entropic optimal transport to estimate the Mc-
Cann interpolation (Cuturi, 2013). When the dataset consists of source and target point-clouds of the
same size, we use a GPU-efficient rounding scheme to approximate the OT map using the entropic
OT coupling; see Appendix A. When the support size of the source and target point-clouds vary, it
is worth mentioning that an OT map may not even exist. Nevertheless, we approximate these curves
using the entropic transport map of Pooladian & Niles-Weed (2021). Together, these approaches
offer a computationally feasible solution while maintaining accuracy in transport map estimation.

We compare WFM to many other point-cloud generation algorithms. Following in their footsteps,
we measure generation quality based on the 1-Nearest-Neighbour accuracy metric between gen-
erated and test-set point-clouds. On uniform, 3D datasets, WFM is competitive with current ap-
proaches (Table 3), but exemplifies itself with its unique ability to generate point-clouds with varying
sizes and in high-dimensions (Table 2).

4.2.1 2D & 3D POINT-CLOUDS

Derived from 3D CAD designs, ShapeNet & ModelNet (Wu et al., 2015; Chang et al., 2015) are
touchstone point-cloud datasets in computational geometry. Trained individually on samples from
the chair, car and plane classes of ShapeNet, WFM synthesized high quality point-clouds with
diverse profiles and matches the performance of previous 3D generation algorithms; see Figure 3
and Table 3. Our framework’s versatility allows for seamless integration of label information during
training, enabling the synthesis of point-clouds conditioned on specific classes. On the full 40-class
ModelNet dataset, WFM learned condition dependent flows, allowing for the same initial point-
cloud to generate a diverse cohort of shapes based on the desired label; see Figure 3. We stress that
WFM is not restricted to only noisy source measures but can generate transformations between any
two collections of point-clouds. To this end, we demonstrate that WFM can interpolate between two
arbitrary elements in the dataset (e.g., between a lamp and a handbag) and complete the point-clouds
based on partial profiles (e.g., generate the remaining parts of a plane); see Figure S3.

MNIST (4) Letters (A) seqFISH XENIUM
CD ↓ EMD ↓ CD ↓ EMD ↓ CD ↓ EMD ↓ CD ↓ EMD ↓

Current methods NA NA NA NA NA NA NA NA
WFM (ours) 63.34 59.97 62.12 58.68 61.79 64.34 60.69 64.20

Table 2: 1-Nearest-Neighbour Accuracy for high-dimensional or variable size point-clouds. WFM
employs a transformer backbone and relies on the efficient computation of the entropic transport
map, allowing it to scale to arbitrary dimensions and learn flows between point-cloud of variable
sizes, key features all previous point-cloud generation approaches lack.
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Figure 6: The niche of each cell is the
point-cloud from gene-expression profiles
for cells in its environments. Using the
top 16 principal components of gene expres-
sion, WFM generates high-dimensional mi-
croenvironments of gut-tube cells based on
the gastrulating organs.

Another novel facet of WFM is its ability to perform generative modeling from inhomogeneous
datasets, where the number of points varies between independent samples. This happens in the
MNIST or Letters datasets, where data is generated by thresholding grayscale numerical values. In
this setting, we use the entropic transport map to approximate the objective; see (14). WFM sets
itself apart from other methods, which are restricted to uniform datasets, by leveraging the entropic
OT map’s ability to compute feasible transformations between point-clouds of different sizes. Our
experiments in Figure 5 demonstrate that WFM generates high-quality & diverse samples, despite
large variability in the number of points per sample, which is itself a novel contribution.

4.2.2 SPATIAL TRANSCRIPTOMICS (HIGH DIMENSIONAL POINT CLOUDS)

In spatial transcriptomics, the niche of a cell is the point-cloud in high-dimensional gene-expression
space of its immediate nearest neighbours. This approach is complementary to the BW representa-
tion of a niche (recall Section 4.1.2), and serves as a more high fidelity view suited for fine-grain
interactions. Due to their high dimensionality, cellular microenvironments have remained beyond
the reach of point-cloud-based generative models that depend on voxel-based neural networks. In-
stead, WFM uses transformers, which due to their permutation equivariance and indifference to di-
mensionality, are natural architectures for spatial transcriptomics point-clouds (Haviv et al., 2024b).

Airplane Chair Car
CD ↓ EMD ↓ CD ↓ EMD ↓ CD ↓ EMD ↓

PointFlow 75.68 70.74 62.84 60.57 58.10 56.25
SoftFlow 76.05 65.80 59.21 60.05 64.77 60.09
DPF-Net 75.18 65.55 62.00 58.53 62.35 54.48
Shape-GF 80.00 76.17 68.96 65.48 63.20 56.53
PVD 73.82 64.81 56.26 53.32 54.55 53.83
PSF 71.11 61.09 58.92 54.45 57.19 56.07
WFM (ours) 73.45 71.72 58.98 57.77 56.53 57.95

Table 3: Using 1-Nearest-Neighbour Accuracy based on Earth
Mover’s Distance (EMD) and Chamfer’s Distance (CD). Wasserstein
Flow Matching (WFM) is competitive with existing approaches (data
from Wu et al. (2023)), while producing diverse samples, see Figure 3.

During embryogenesis,
specific regions within the
primitive gut tube differ-
entiate into organs such
as the liver or lungs based
on interactions between
the gut and surrounding
mesenchyme (Nowotschin
et al., 2019). Applied on
environments of gut-tube
cells from a seqFISH
dataset of mouse embryo-
genesis (Lohoff et al.,
2022), WFM synthesized
cellular niches conditioned
on organ labels, thus de-
manding an understanding of the interplay between spatial context and phenotype. Despite the
intricate nature of the gastrulation process, compunded by the dataset’s dimensionality, WFM can
accurately generate organ-specific niches; see Figure 6 and Table 2.

5 CONCLUSION AND OUTLOOK

This work shows how to appropriately lift the Riemannian flow matching paradigm of Chen & Lip-
man (2023) to the Wasserstein space, resulting in Wasserstein flow matching. Our motivations stem
from modern datasets, where each sample of data can itself be viewed as a probability distribution,
necessitating this extension for generative modeling purposes. Our contributions are algorithmic in
nature, which incorporate various elements, such as estimating optimal transport maps via entropic
optimal transport, closed-form expressions over the Bures–Wasserstein space, and attention mech-
anisms in neural network architectures. Our algorithm is capable of generating realistic data from
Gaussian and variable-size or high-dimensional point-clouds. Both contexts are highly relevant in
single-cell and spatial transcriptomics for synthesizing of microenvironments and cellular states.
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A ENTROPIC ESTIMATION OF OT MAPS

We briefly discuss how to estimate optimal transport maps between point-clouds using entropic opti-
mal transport. We refer the interested reader to Pooladian & Niles-Weed (2021) for more information
on this approach.

We first outline the numerical aspects of the approach; we follow Peyré & Cuturi (2019). Let
µ =

∑
i m

−1δxi
and ν =

∑
j n

−1δyj
, where X = {x1, . . . , xm}, Y = {y1, . . . , yn}. We first

define the following polyhedral constraint set

Um,n :=
{
P ∈ Rm×n

+ : P1m = m−11m , P⊤1n = n−11n

}
,

which represents the possible couplings between the two discrete measures. The entropic optimal
transport coupling between the two discrete measures µ and ν is defined as the minimizer to the
following strictly convex optimization problem

P ⋆ := argmin
P∈Um,n

⟨C,P ⟩+ εH(P ) , (13)

where ε > 0, H(P ) :=
∑

i,j Pi,j(log(Pi,j) − 1), and Ci,j := ∥xi − yj∥22. Sinkhorn’s matrix
scaling algorithm (Sinkhorn, 1964) makes it possible to solve for P ⋆ with a runtime of O(mn/ε)
(Altschuler et al., 2017). We briefly stress three points:

1. The coupling P ⋆ is not a permutation matrix. The coupling lies inside the polytope Um,n

and not at the vertices, and therefore is not a permutation matrix.

2. When ε = 0, the objective becomes a standard linear program with a runtime of
Õ(mn(m + n)) (up to log factors) (Peyré & Cuturi, 2019, Chapter 3). While we include
a CPU implementation (Flamary et al., 2021) in the WFM codebase, this approach lacks
GPU efficiency and substantially increases training time, making it impractical for most
use cases.

3. Instead, the regularization parameter ε serves as a tunable training hyperparameter. Lower
ε values better approximate true the optimal transport map but require more Sinkhorn it-
erations for convergence, creating a direct trade-off between accuracy and computational
efficiency.

In all our experiments, we used the open-source package OTT-JAX3 to compute the entropic cou-
pling and the out-of-sample mapping (Cuturi et al., 2022).

A.1 ROUNDED MATCHINGS

Our first approach holds when m = n. In this case, we can greedily round the noisy matching matrix
P ⋆ to become a permutation. This is achieved through an iterative process of selecting the maximum
value (argmax) and zeroing out corresponding rows and columns. This method repeatedly identifies
the largest remaining probability, sets it to 1, and eliminates other entries in its row and column,
ultimately resulting in a permutation matrix that preserves the probabilistic assignment implied by
the original doubly stochastic matrix. This is merely a GPU-friendly heuristic approximation to the
true optimal permutation matrix between the two point-clouds.

A.2 ENTROPIC TRANSPORT MAP: AN OUT-OF-SAMPLE ESTIMATOR

A primal-dual relationship of the strictly convex program (13) shows that there exist vectors
(f⋆, g⋆) ∈ Rm × Rn such that

P ⋆
i,j = ef

⋆
i /εe−Ci,j/εeg

⋆
j /ε

These two vectors are called the Kantorovich potentials, which are initially defined on the support
of µ and ν, respectively. However, they can be readily extended to all of Rd (Mena & Niles-Weed,

3See https://ott-jax.readthedocs.io/en/latest/.
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2019), resulting in two functions

f̂(x) = −ε log
( n∑
j=1

n−1 exp((g⋆
j − ∥x− yj∥2)/ε)

)
,

ĝ(y) = −ε log
( m∑
i=1

m−1 exp((f⋆
i − ∥y − xi∥2)/ε)

)
.

Following Pooladian & Niles-Weed (2021), we can define the entropic transport map, where the last
equality is a simple calculation:

T̂ε(x) := x−∇f̂(x) =
∑n

j=1 yj exp((g
⋆
j − ∥x− yj∥2)/ε)∑n

j=1 exp((g
⋆
j − ∥x− yj∥2)/ε)

. (14)

This estimator was initially to provide statistical approximations to the optimal transport map Tµ→ν
⋆

on the basis of samples; see Pooladian & Niles-Weed (2021); Pooladian et al. (2023b; 2022). Note
that T̂ε(x) can be interpreted as the conditional expectation of the plan P ⋆ conditioned on out-of-
sample inputs x ∈ Rd, which is well-defined due to the relations above. Finally, we stress that this
estimator can be adapted to settings where the point-clouds µ and ν not only have different num-
bers of points, but also non-uniform weights. As this estimator is also a by-product of Sinkhorn’s
algorithm, it is also scalable and GPU-friendly.

A.3 ON THE (STATISTICAL) APPROXIMATIONS OF GEODESICS

We briefly collect a basic results pertaining to the (statistical) approximation of optimal transport
paths. This bound shows that the error grows along the trajectory, but is limited by the overall
distance of the maps.

Proposition A.1. Let µ, ν be two probability measures and suppose µ has a density, and let T ⋆ be
the optimal transport map from µ to ν. Let T̂ be an estimator to the optimal transport map, defined
with respect to data X1, . . . , Xn ∼ µ and Y1, . . . , Yn ∼ ν. Then for t ∈ [0, 1]

E[W 2
2 (ρt, ρ̂t)] ≤ t2E∥T̂ − T ⋆∥2L2(µ) ,

where the outer expectation is taken with respect to the data, and we define

ρt := ((1− t)id + tT ⋆)♯µ , ρ̂t := ((1− t)id + tT̂ )♯µ

Proof. The result follows immediately from a standard coupling argument to obtain the linearized
Wasserstein distance (Wang et al., 2010; Panaretos & Zemel, 2020)

W 2
2 (ρt, ρ̂t) ≤ ∥((1− t)id + tT ⋆)− ((1− t)id + tT̂ )∥2L2(µ) = t2∥T̂ − T ⋆∥2L2(µ) .

The entropic Brenier map is one particular estimator. We note two key properties of this map; see
Pooladian & Niles-Weed (2021) for in-depth discussions.

Theorem A.2. Suppose µ, ν have density bounded above and below, and that the optimal transport
map between them, denoted T ⋆, is such that (T ⋆)−1 is at least twice differentiable and there exists
λ,Λ > 0 such that

λI ⪯ DT ⋆ ⪯ ΛI .

Then, when estimated from n samples from µ and n samples from µ, the entropic Brenier map has
the following error

E∥T̂ε − T ⋆∥2L2(µ) ≲ n−1/2 log(n)ε−d/2−1 + ε2 , (15)

where we suppress constants that depend on our assumptions. Performing a bias-variance trade-off
in the regularization parameter, one obtains ε = ε(n) ≍ n−1/(d+4) and the total error becomes

E∥T̂ε − T ⋆∥2L2(µ) ≲log(n) n
−2/(d+4) .
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We emphasize that the assumptions in Theorem A.2 are standard in the literature (Hütter & Rigollet,
2021; Deb et al., 2021; Muzellec et al., 2021; Divol et al., 2022). While the rate scales exponentially
poorly with the dimension, we stress that existing lower bounds of estimation (see Hütter & Rigollet
(2021)) also suffer from the curse of dimensionality, which is unavoidable for this task. Combining
these two results, we can compare the geodesic given by the OT map, and the one induced by using
the entropic map, where we write

ρ̂εt := ((1− t)id + tT̂ε)♯µ .

Corollary A.3. Consider the same setting as Theorem A.2. Then the geodesic given by the estimated
entropic Brenier map, denoted by ρ̂εt , on the basis of n samples and ε ≍ n−1/(d+4), is close to the
true geodesic with the following error

E[W 2
2 (ρt, ρ̂

ε
t )] ≲ t2n−2/(d+4) .

B DERIVATION OF THE WFM OBJECTIVE

In this section, we give validity to the WFM for optimization purposes, and our choice of curves.
For instance, recall the original Flow Matching objective (Lipman et al., 2022)

LFM(θ) :=

∫ 1

0

EXt∼pt
∥fθ(Xt, t)− ut(Xt)∥2 dt , (16)

where fθ : Rd × [0, 1] → Rd is a neural network, and (pt, ut)t∈[0,1] are a density-vector field pair
that satisfy the continuity equation between two distribution µ and ν.

∂pt +∇ · (ptut) = 0 , p0 = µ , p1 = ν .

Note that, implicit in LFM(θ) is the endpoint constraints µ and ν. Now, we average over possibly
choices of µ ∼ p0 and ν ∼ p1, resulting in∫ 1

0

∫∫
EXt∼pt

∥fθ(Xt, t)− ut(Xt)∥2 dp0(µ) dp1(ν) dt . (17)

As a particular case, take (pt, ut) ← (µt, vt), where the first argument is the McCann interpolation
between µ and ν, and vt is the optimal velocity field, which is a function of the optimal transport
map from µ to ν (recall Section 2.3). This yields our final objective (10), which we recall here for
convenience

LWFM(θ) :=

∫ 1

0

∫∫
EXt∼µt∥fθ(Xt, t)− vt(Xt)∥2 dp0(µ) dp1(ν) dt . (18)

When p0, p1 are distributions over Gaussians, we have closed-form expressions for all objects of
interest. When p0, p1 are distributions over point-clouds, we approximate the geodesics between
the points using entropic Brenier maps and their respective interpolations. We emphasize that the
rounded-matching which we employ (Appendix A.1) is also a valid curve.

C MULTISAMPLE WASSERSTEIN FLOW MATCHING

Since optimal transport can be applied on the Wasserstein manifold itself, both WFM and BW-FM
can be seamlessly integrated with the multisample FM (MS-FM) framework (Pooladian et al., 2023a;
Tong et al., 2023). The core technique behind MS-FM is to use OT to match minibatches from
source and target measures during training, rather than relying on random pairings. This has shown
to improve learned flows while requiring fewer function evaluations to synthesize new samples.
Applying MS-FM requires computing the pairwise distance matrix between source and target batch
samples, denoted from i ∈ {1, . . . ,Bsz}. In the BW-FM setting, given two sets of Gaussians
{(ai, Ai)}Bszi=1 and {(bi, Bi)}Bszi=1, their Frechét (W 2

2 ) distance matrix is:

Ci,j = ∥ai − bj∥22 + Tr(Ai +Bj − 2(A
1/2
i BjA

1/2
i )1/2) (19)
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We then use entropic OT to approximately solve the assignment problem on C and compute a
transport matrix. This is the converted into a one-to-one assignment matrix via rounded matching
(Appendix A.1), ensuring the entire batch is used in training.

For WFM point-clouds, applying MS requires computing pairwise OT distance between all source
and target samples within a minibatch. For large point-clouds, this is exorbitantly expensive, even
with Sinkhorn iterations. For an efficient approximate, here too we rely on the Frechét distance, com-
puted between empirical means and covariances of each point-cloud. Computation of the Frechét
distance is markedly less resource-intensive than entropic OT, yet is notably correlated with EMD
values (see Table 1 in (Haviv et al., 2024b)).

D SAMPLING FROM SOURCE MEASURE

In both WFM and BW-FM, learning flows requires a source measure which is straightforward to
sample from. For a source distribution on the space of {(m,Σ) : m ∈ Rd,Σ ∈ Sd++}, we sim-
ply sample means and covariance matrices using independent Gaussian and Wishart distributions,
respectively. By default, the parameters for the Gaussian component of the source matches the av-
erage and standard deviation of the means in the target, while the scale parameter in the Wishart is
the barycenter of the data covariance.

To achieve high-quality generation of point-clouds, it is essential that the initial (source) distribution
be diverse, rather than collapsed and degenerate. Indeed, while it is alluring to produce noisy point-
clouds by sampling points from a single base distribution, i.e. X = {xi}ni=1, xi ∼ N (0, Id), as n
grows, the Wasserstein distance between instances goes to 0. To alleviate this, we draw point-clouds
from multivariate Gaussians with a stochastic covariance:

L ∼ N (µL,σL · I)
X = {xi}ni=1, xi ∼ N (0, LLT )

where µL & σL are the average and standard deviation of the Cholesky factors from the empirical
covariances of the target measure point-clouds. This ensures a wider source measure, producing a
diverse range of noise point-clouds.

Figure S1: Conditional BW-FM applied to single-cell RNA sequencing data of immune response
to COVID-19. Large scale single-cell atlases are commonly grouped into highly dedicated clusters
called MetaCells (Persad et al., 2023). In this application, BW-FM is conditioned on cell state and
trained to generate means and covariances of gene expression, focusing on the top 32 principal
components, derived from aggregated cells. The model achieves high-quality sample generation, as
evidenced by a label accuracy of 93.13%.
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E NEURAL ARCHITECTURE & TRAINING

E.1 BW-FM ON GAUSSIANS

The goal of BW-FM is to train a neural network to match the (Riemannian) time-derivative along the
BW geodesics between Gaussians. The model employs a standard, fully connected neural network
which takes as input concatenated values of (mt,Σt, t) based on the McCann interpolation formula
from Section 2.3.1. Since the covariance matrix is symmetric, only its lower-diagonal values are
used, flattened into a vector of length d(d+ 1)/2. Time values are converted to Fourier features, an
approach inspired by positional encodings in transformer literature (Vaswani, 2017). To streamline
training, two separate networks are employed: one to match the time derivative of the mean ṁt and
another for the time derivative of the covariance matrix Σ̇BW

t . The BW tangent norm is used as the
loss function for training these networks.

By default, all models use a 6-layer neural network using relu non-linearity, with 1024 neurons
per layer, applying skip connections and layer-norm Ba (2016). Training is performed for 100, 000
gradient descent steps using the Adam optimizer (Kingma, 2014) with an exponential learning rate
decay of 0.97 every 1000 steps and batch size of 128.

Figure S2: Spatial arrangement of microglia in the motor cortex. Bures-Wasserstein distance based
2D UMAP visualization of real microglia and BW-FM synthesized niches, colored by their first
diffusion component (DC). This DC corresponds to the cortical depth of the microglia across the
MERFISH slices.

E.2 WFM ON POINT-CLOUDS

WFM is designed to estimate the optimal transport (OT) map for a given pair of interpolate
point-cloud and time (Xt, t). Here too the time component t is first converted into Fourier features.
The model’s architecture begins with an embedding layer, followed by a series of alternating
multi-head attention and fully-connected layers. Skip connections and layer-norm are applied after
each operation. The final layer projects the embeddings back to X’s original space using a dense
layer with zero initialization. The model is trained by minimizing the squared distance between the
predicted and true OT maps.

By default, the entropic OT map is constructed with regularization weight of ε = 0.002 and 200
Sinkhorn iterations, which we found to be sufficient for convergence. Whenever the dataset consists
of uniformly sized point-clouds, we use rounded matching (Appendix A.1), otherwise we apply
the out-of-sample estimator (Appendix A.2) which can calculate maps between point-clouds with
different sizes. The transformer network is composed to 6 multi-head attention blocks, with an
embedding dimension of 512 and 4 heads. Our model is optimizer with Adam (Kingma, 2014)
using an exponential learning rate decay and batch size of 64.

WFM relies on JAX and OTT-JAX (Bradbury et al., 2021; Cuturi et al., 2022) and enjoys seam-
less optimization via end-to-end just-in-time compilation. For the ShapeNet experiments (Table 3),
the model is trained for 500,000 training steps, totaling to about 3 days of trainings of a single
A100 GPU. All other experiments (Table 2) trained for 100,000 steps, requiring around 3-4 hours of
GPU use. We note the Transformer’s forward and backwards pass was the most significant source
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of computational overhead, as opposed to the Sinkhorn based approximation of OT maps. The
computational complexity of both components is quadratic with point-cloud size, which limits the
scalability of WFM. Making Transformers simpler to optimize and accelerating OT computations
are both active areas within ML research (Amos et al., 2022; Scetbon et al., 2021; Zhang et al.,
2022), and future iterations of WFM can incorporate solution from those spaces.

F EXPERIMENT DETAILS

F.1 SPATIAL TRANSCRIPTOMICS

In our manuscript, we applied WFM and BW-FM on several spatial transcriptomics datasets, en-
compassing a variety of technologies and tissue contexts. From a 254-gene MERFISH atlas of
the motor cortex (Zhang et al., 2021), we focus on niches of microglia cells. We compress gene-
expression profiles down to their 16 principal components (PC) and aggregate all the cells around
each microglia within an 80 micron radius, yielding on average 26.6 cells per niche. We then calcu-
lated the gene-expression PC mean and covariance within each environment to produce Gaussians
for BW-FM. Generated Gaussians align with real data and span for the full cortical depth of the
microglia niches (Figure S2). In Figure 4, we predict the environment composition by cell type for
generated Gaussians via nearest-neighbour regression in BW space using real data as supervision,
demonstrating congruence between the two across cortical depth.

Figure S3: Interpolation and shape completion with WFM. Top. Using the lamps and handbags as
the source and target measures, WFM learns to transform a given (unseen test-set) lamp point-cloud
into a valid handbag. Bottom. Trained to generate full planes, WFM can reconstruct complete point-
clouds from partial views of test-set samples.

In a complementary approach, WFM is applied directly on gene-expression based point-clouds of
niches, and does not require the Gaussian representation. Uniquely suited for high-dimensional
data, we apply WFM on seqFISH assay of embryogenesis (Lohoff et al., 2022) and a XENIUM
experiment of melanoma metastasis to the brain (Haviv et al., 2024b). In both dataset, we select
the k = 8 physical nearest neighbours of every cell, and aggregate their first 16 PCs to produce
environment point-clouds.

From the seqFISH dataset, we concentrated on the gut-tube region, which is divided into spatially
segregated, gastrulating organs. Applied unconditionally, WFM generated niches match the distri-
bution of the real data based on EMD and CD 1-nearest-neighbour accuracy (Table 2). We then
assessed WFM’s capability to comprehend the relationship between cell state and environment and
tasked it with conditional generation based on organ label. Based on OT distances estimated via
Wormhole embeddings (Haviv et al., 2024a), point-clouds from WFM recapitulated true organ en-
vironment.The label accuracy for WFM-generated data was 78.86%, which was nearly identical to
the test-set real data accuracy of 79.59%.
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G 2D & 3D POINT-CLOUDS

Figure S4: Cities Dataset. Gaussians representing the 100 most populous cities in the continental
US. The data was obtained from Bennett (2010) via OSMnx (Boeing, 2017). The mean parameter
is the longitude and latitude coordinate of each city and the covariance is the 2nd moment approxi-
mation of their metro area.

The ShapeNet dataset consists of 3D point-clouds of 55 different classes, each one comprised of
15, 000 points. Emulating the benchmarking effort in (Wu et al., 2023), we apply WFM to generate
n = 1000 sized examples from the plane, car and chair classes. At each gradient descent step, we
sample 64 point-clouds from the training set for each class, and randomly select n = 1000 points
from each. To evaluate generation quality, we synthesize point-clouds to much the size of the test
set, and calculate the real or generated 1−NN accuracy based on EMD and CD metrics.

ModelNet has 40 classes of point-clouds, with 2048 points in each. Conditioned on class label,
WFM is trained to generate n = 1000 sized point-clouds here too. In this setting, the noise measure
is the standard normal and we did not use multi-sample matching. According to nearest-neighbour
classification from OT preserving Wormhole embeddings, generated samples match their class with
an accuracy of 77.66%, approaching the 79.98% purity of test set samples from real-data.

The MNIST dataset is a widely used collection of handwritten digits, consisting of 28x28 pixel
grayscale images of the numbers 0 through 9. EMNIST (Extended MNIST) is an expansion of
MNIST that includes handwritten letters as well as digits. To convert samples from these datasets
into point-clouds, we threshold each image and extract the coordinates of the above-threshold pixels.
This produces a cohort of point-clouds of variables sizes, as each image contains a different number
of relevant pixel. We apply the entropic OT map (see Appendix A) based WFM to synthesize point-
clouds of the digit 4 and letter a. Despite the data heterogeneity, WFM produces realistic examples
(Figure 5), while capturing the data distribution (Table 2). We again stress that this is a unique
feature of WFM, lacking from any previous point-cloud generation algorithm
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