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Abstract

Expert-designed close-ended benchmarks are indispensable in assessing the knowl-
edge capacity of large language models (LLMs). Despite their widespread use,
concerns have mounted regarding their reliability due to limited test scenarios
and an unavoidable risk of data contamination. To rectify this, we present PertE-
val, a toolkit devised for in-depth probing of LLMs’ knowledge capacity through
knowledge-invariant perturbations. These perturbations employ human-like
restatement techniques to generate on-the-fly test samples from static benchmarks,
meticulously retaining knowledge-critical content while altering irrelevant de-
tails. Our toolkit further includes a suite of response consistency analyses
that compare performance on raw vs. perturbed test sets to precisely assess
LLMs’ genuine knowledge capacity. Six representative LLMs are re-evaluated
using PertEval. Results reveal significantly inflated performance of the LLMs
on raw benchmarks, including an absolute 25.8% overestimation for GPT-4. Ad-
ditionally, through a nuanced response pattern analysis, we discover that PertE-
val retains LLMs’ uncertainty to specious knowledge, and reveals their poten-
tial rote memorization to correct options which leads to overestimated perfor-
mance. We also find that the detailed response consistency analyses by PertEval
could illuminate various weaknesses in existing LLMs’ knowledge mastery and
guide the development of refinement. Our findings provide insights for advanc-
ing more robust and genuinely knowledgeable LLMs. Our code is available at
https://github.com/aigc-apps/PertEval.

1 Introduction

Large language models (LLMs) are developing rapidly, and have shown excellent basic capabilities,
such as reasoning [1, 2], planning [3] and world knowledge [4], in real-world tasks. Given the
widespread deployment of LLMs across an increasing number of scenarios, including those that are
safety-critical [5], evaluating the real capability of LLMs becomes a necessary and significant task.
Knowledge capacity, i.e., the ability to retrieve and utilize acquired knowledge to solve professional
problems, is one of the core capabilities of LLMs [4]. Existing knowledge capacity evaluation
largely rely on standardized tests using close-ended benchmarks [6–11]. These benchmarks consist of
multiple-choice questions that include question descriptions, goals, options, and correct answers. They
encapsulate valuable domain-specific knowledge that LLMs need to comprehend. The knowledge
capacity of LLMs can then be directly gauged by the performance on these test datasets.

†Work done during Li’s internship at Alibaba Cloud Computing, under the guidance of Hu.
∗Qi Liu is the corresponding author.
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Figure 1: An overview of the PertEval evaluation toolkit. PertEval uses content-level and format-level
perturbations to generate perturbed dataset D′ from existing close-ended benchmark dataset D.
Next, it evaluates the knowledge capacity of LLMs via response consistency analysis. PertEval also
demonstrates in-depth the performance feature of LLMs via response pattern analysis.

To date, static benchmarks have been essential in assessing the relative knowledge capacity of
LLMs [12] because of their high quality and cost effectiveness. However, due to limited test scenarios
[13] and the unavoidable risk of data contamination [14], these benchmarks still encounter significant
challenges in accurately measuring the true knowledge capacity of LLMs. First, static benchmarks
rely exclusively on close-ended questions in fixed formats for evaluation, which differs a lot from
real-world scenarios [15]. For instance, instead of merely selecting an option, some users prefer
asking LLMs to judge the correctness of options, while others may directly request the LLMs to
generate an answer without providing an option list [16]. These varying prompting styles have an
innegligible effect on performance [17]. Furthermore, previous work [18] has demonstrated that
nonlinear or discontinuous evaluation metrics could lead to inaccurate implications about LLM
capacity. Therefore, to genuinely evaluate the knowledge capacity of LLMs, it is necessary to
test their performance across a variety of scenarios that mirror real-world conditions. Second, in
terms of data contamination [14], knowledge capacity benchmarks usually publish their test data
online to ensure transparency and reproducibility (e.g., [6, 7]). However, this practice enables LLMs
to memorize the test data during pre-training and alignment, which can lead to an overestimation
of knowledge capacity, thus undermining the trustworthiness of evaluation results [19]. Efforts to
mitigate data contamination have primarily focused on detecting such contamination [14, 20] and
generating new test data [21]. Nonetheless, high-quality benchmark data contain rich knowledge
that is valuable for evaluation. We suppose that it is feasible to utilize this knowledge effectively to
assess the true knowledge capacity of LLMs while reducing the risk of data contamination.

To achieve this goal, we introduce PertEval, an evaluation toolkit that utilizes knowledge-invariant
perturbations on static benchmarks to unveil the real knowledge capacity of LLMs, as illustrated in
Figure 1. This idea stems from an analogy with human educational assessment. Like LLM evaluation,
close-ended questions are prevalent in human assessments due to their versatility, cost-effectiveness
and precision of measurement [22]. However, they also face challenges such as cheating [23] and a
lack of variety [22]. Solutions to these issues include item personalization [24] and the creation of
distractive options [25, 26]. Inspired by this, PertEval incorporates human-like knowledge-invariant
perturbations to restate static test data to various forms and employs response consistency analyses
to evaluate and trace the change of LLMs’ performance in different test scenarios. Specifically,
knowledge-invariant perturbations consist of both the content-level perturbation that extensively
writes questions to minimize data contamination and a series of format-level perturbations that
comprehensively cover potential real-world test scenarios. Response consistency analyses encompass
basic evaluation metrics to measure the real knowledge capacity of LLMs and response pattern
analysis to investigate the causes behind changes in LLM performance. Consequently, PertEval could
deeply probe the LLMs’ weaknesses in knowledge mastery and offer insights for their refinement.

In experiments, we re-evaluate six representative LLMs using PertEval. Capacity metric results first
reveal a significant overestimation of the knowledge capacity of LLMs by static benchmarks, with
an absolute 25.8% overestimation for GPT-4 and 38.8% for Gemini-1.0-Pro on MMLU [6] (results
of Gemini-1.0-Pro are available at Appendix D.2). Response pattern analyses further unveil that
the performance decline with PertEval is mainly caused by an increase of selecting extra incorrect
choices, with an increase of up to 9.7% and 27.7% for GPT-4 and Gemini-1.0-Pro, respectively.
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These findings highlight the potential for rote memorization of correct options by LLMs on static
benchmarks. Detailed response consistency analyses in terms of overall performance stability and
correct response consistency indicate various weaknesses in the knowledge capacity of existing
LLMs, such as the vulnerability to content-level perturbation and the change of global text order.

Overall, our contributions are as follows:

• We propose an evaluation toolkit that utilizes knowledge-invariant perturbations on close-ended
evaluation benchmarks to unveil the real knowledge capacity of LLMs, a significant step towards
more trustworthy LLM evaluation.

• We re-evaluate the knowledge capacity of six representative LLMs using PertEval. Evaluation
results not only demonstrate significantly inflated performance of LLMs by static benchmarks, but
also reveal LLMs’ uncertainty to specious knowledge and rote memorization to correct options.

• We demonstrate the vulnerability of various LLMs to different perturbation strategies in PertEval
and provide insights for the refinement in terms of promoting LLMs’ knowledge capacity.

2 Related Work

Knowledge Capacity Evaluation of LLMs Research works of the knowledge capacity evaluation
LLMs consist of two lines, i.e., evaluation benchmarks and evaluation methodologies. The first
line aim to design comprehensive and accurate benchmarks to quantize the knowledge capacity of
LLMs. Evaluation benchmarks could be further classified into general or professional knowledge
benchmarks [12]. The first category aims to evaluate the general knowledge capacity of LLMs across
a wide range of domains, such as MMLU [6], C-Eval [27] and ARC [8]. The second category aims
to deeply evaluate the professional capacity of LLMs in specific domains, such as MedMCQA [9] in
medicine and ScienceQA [28] in science. These benchmarks depend on professional multiple-choice
questions to quantitatively measure the capacity of LLMs. The other research line, i.e., evaluation
methodologies, aim to improve the accuracy and truthfulness of evaluation via data-driven or model-
driven techniques. Along this line, recent studies have emphasized data-contamination detection
techniques [14, 20] and contamination-free test data generation [21, 29]. In addition, psychometric-
based techniques [30], dynamic evaluation techniques [31, 32], and perturbation-based evaluation
techniques such as CheckList [33] and PolyJuice [34] have been proposed to comprehensively evaluate
the capability of language models (LMs) from different aspects. However, these methodologies
are unsuitable for knowledge capacity evaluation, and are hard to utilize valuable information in
expert-designed datasets for trustworthy evaluation.

Consistency of LMs The consistency of an LM denotes its behavior invariance under meaning-
preserving alternations in its input [35], which is significant in natural language understanding. Since
the emergence of pretrained language models (PLMs), massive efforts have been made to evaluate the
consistency of LMs on various fields. Elazar et al. [35] revealed the poor consistency performance of
PLMs on factual knowledge. Fierro and Søgaard [36] extended the study to multilingual PLMs and
obtained similar findings. Jang et al. [37] proposed a taxonomy for various concepts of consistency
and established a benchmark, BECEL, to evaluate the consistency of PLMs. As LLMs develop
swiftly, Wang et al. [38] proposed to use self-consistency decoding to empower the Chain-of-Thought
reasoning ability of LLMs. Recently, Rajan et al. [39] proposed KonTest, an autonomous evaluation
framework that utilizes knowledge graphs to generate test samples, to probe the inconsistency in
LLMs’ knowledge of the world. In summary, these research works view consistency as a research
subject that needs to be measured or intervened. Differently, in our study, the consistency of LLMs is
viewed as a technical method, i.e., a measurement for probing LLMs’ real knowledge capacity.

Adversarial Text Attacks on LMs These techniques aim to mislead language models to yield wrong
or toxic outputs with small text perturbations, which play an indispensable role in the research of
robustness and safety of language models. Such efforts include but not limited to jailbreaking [40]
and text classification attack [41]. Text attacks could also be classified into character-level [42, 43],
word-level [44] and sentence-level [45]. Recently, LLM-based perturbations like PromptAttack [41]
have also been introduced. However, considering their cost and the comprehensiveness, existing text
attack methods are insufficient for the purpose of this work. Moreover, our PertEval is built upon a
new concept of knowledge-invariant perturbation, which is an important supplement to this topic.
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3 Methodology

3.1 Knowledge-invariant Perturbations

We first present the two types of knowledge-invariant perturbations to restate static test questions.
The knowledge-invariant property of these perturbations will be discussed in the next subsection.

Content-level perturbation: knowledge-invariant paraphrasing. The goal of content-level per-
turbation is to substantially alter the phrasing of questions while retaining the original knowledge,
thereby mitigating data contamination in the test data. The key challenge of such knowledge-invariant
paraphrasing is to preserve the original knowledge while changing the statement as much as possible.
A test question is a composite of sentences, with each provide either backgrounds, conditions or goals
of the question. Therefore, to preserve knowledge of the original question, we propose a sentence-by-
sentence paraphrasing algorithm using an LLM rewriter. Formally, let q = (s1, s2, . . . , sT ) represent
the question text, where st denotes the t-th sentence (for t = 1, 2, . . . , T ). The semantic of st
(for t ≥ 2) depends on its prerequisite sequence (s1, . . . , st−1). To rewrite the entire question, an
LLM rewriter is instructed to paraphrase sentence by sentence given each sentence and its original
prerequisite sequences. Detailed descriptions of the paraphrasing algorithm, the prompt template for
the rewriter LLM, and an example of the perturbation can be found in Appendix B.1.

Format-level perturbation: question format refactoring. The objective of question format
refactoring is to assess the robustness of LLMs’ knowledge capacity under complicated test conditions.
To achieve this, we have developed a variety of format-level perturbation strategies to comprehensively
evaluate the resilience of LLMs’ knowledge capacity in various test scenarios.

• Option permutation (OptionPerm). OptionPerm reorders the contents of options while maintaining
the original order of option IDs. Its goal is to evaluate option ordering bias in the knowledge
acquisition of LLMs. By default, OptionPerm reverses the order of option contents to completely
disrupt their local sequence.

• Option format refactoring (OptionForm). OptionForm modifies the format of option IDs, such as
by appending a right parenthesis to the end. This perturbation aims to assess the option format bias
in the knowledge acquisition of LLMs. OptionForm may influence LLM performance by altering
the dependency between different tokens within the options.

• Option ID shifting (OptionCaesar). OptionCaesar shifts the ASCII value of option IDs to change
their character, which is similar to Caesar encryption. This technique aims to investigate the
selection bias in the knowledge acquirement of LLMs, a phenomenon empirically observed in some
models. By replacing common option IDs with less common ones (e.g., A/B/C/D→ U/V/W/X),
OptionCaesar allows us to observe whether the values of the IDs impact the LLMs’ performance.

• Question type changing (ChangeType). ChangeType converts a multi-choice question into a multi-
judgment question. This perturbation aims to examine the question type bias in LLMs. Since the
feasible solution space of a multi-choice question and the corresponding multi-judgement question
is identical (given N options, the size of the feasible solution space is 2N − 1), an LLM that
robustly acquire knowledge/skills in a question should be insensitive to ChangeType.

• Question position swapping (SwapPos). SwapPos switches the position of the question text and
the options. It aims to evaluate the global ordering bias of LLMs. For rational human test-
takers, SwapPos does not affect performance, as it does not alter the question content. However,
SwapPos can significantly change the output distribution of self-regressive text generation models
by disrupting the global ordering of input prompts.

Examples of format-level perturbations are available at Appendix B.2.

3.2 Knowledge Invariance Verification

We next investigate the knowledge-invariance property of the proposed perturbations.

Knowledge invariance scoring. This approach checks the knowledge invariance of perturbations
from the perspective of humans’ and LLMs’ perception. Specifically, based on previous works in
the measurement of semantic similarity [46] and characteristics of close-ended benchmarks, we
first propose standards of knowledge-invariance scoring, as shown in Table 1. Next, we recruit
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Table 1: Standards of knowledge-invariance scoring.
Standard Name Standard Description
Semantic Information
Invariance

The perturbed question must have the same semantic information as the
original question, which cannot change the name of entities, logic of
statements and meaning of equations.

Reasoning Invariance A human test-taker’s reasoning process to obtain his/her response in the
perturbed question should be consistent with that in the original question.

Answer Invariance The answer of a perturbed question should be semantically equivalent to
the answer of the original question.

Statement Clarity The perturbed question should clearly present contexts, conditions and
the target of the question.

professional human volunteers and utilize superior LLMs, such as claude-3-sonnet, respectively,
to serve as the referee to rate knowledge invariance scores. Given a set of original and perturbed
question pairs Ddual = {(qi, q′i) | i = 1, 2, . . . , |D|}, we construct scoring prompts based on a
predefined template, knowledge invariant standards, and the scoring criteria for knowledge invariance
judgement (see Table 9 in Appendix B.1). After collecting the output scores from the referee LLM
using these scoring prompts, we calculate the average score as the final result.

Testing on mastered questions for LLMs. This approach evaluates knowledge invariance based on
the output performance of LLMs. The rationale here is that if a perturbation is knowledge-invariant,
an LLM’s performance on questions that it has truly mastered should remain consistent between
the original and perturbed versions. Identifying mastered questions for LLMs, however, poses a
challenge. To this end, we propose using questions that most LLMs can correctly answer as a proxy
for mastered questions. An LLM, such as gpt-4-turbo, is then required to answer both the original
and perturbed versions of these questions to validate the knowledge invariance of the perturbation. In
summary, the test-based knowledge invariance checking procedure involves the following steps:

1. Given a set of LLM test-takers and the evaluation dataset D, construct the mastered question set
Dsimple ⊂ D consisting of questions that all LLMs could answer correctly.

2. Apply a perturbation to each sample in Dsimple to create the perturbed dataset D′
simple.

3. Assess the performance of a knowledgeable LLM on both Dsimple and D′
simple. If the test results

show no significant difference in performance, the perturbation can be considered knowledge-
invariant.

This method emphasizes the impact of perturbations on the question-answer process of LLMs. In
comparison to the scoring test, this approach is more appropriate for evaluating the knowledge
invariance of content-level perturbations. We present detailed results of both tests in Experiments.

3.3 Response Consistency Analyses for Measuring Real Knowledge Capacity

We further devise a suite of response consistency analyses that, by comparing performance on raw
vs. perturbed test sets, unveils the real knowledge capacity of LLMs. These include a metric for
quantifying calibrated knowledge capacity and the more fine-grained ones helpful for revealing the
vulnerability of LLMs to different perturbation strategies.

Metric of real knowledge capacity. To measure real knowledge capacity of LLMs, we propose the
Consistent Accuracy (ACC@Consist) as the evaluation metric. The rationale is that if an LLM has
truly mastered a question and its underlying knowledge, its performance should remain consistent
across all versions of the question, including both the original and the most complex perturbed
versions. Formally, let M(·) denotes the response function of an LLM. Let x = (qx, yx) ∈ X
represent a test question, where qx and yx denote the question text and the correct answer(s) of x.
Further let σ∗ : X → X be the most complicated composite knowledge-invariant perturbation and
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Table 2: Knowledge invariance scores↑ rated by human scorers. Four independent scores from
different human scorer groups are presented in ascending order for each cell.

Method C-Math W-History P-Psychology P-Medicine
PromptAttack 2.3/2.4/3.0/3.9 2.2/2.2/2.3/2.8 1.3/2.4/2.8/2.8 1.6/2.5/3.5/3.6
PertEval (ours) 3.6/3.8/3.9/3.9 3.7/4.1/4.1/4.3 4.3/4.4/4.5/4.7 4.2/4.3/4.4/4.6

Table 3: Knowledge invariance scores↑ rated by superior LLMs. Values (a/b/c) in each cell
denotes the average knowledge invariance score rated by gpt-4-turbo, claude-3.5-sonnet, and llama-
3.1-405b, respectively.

Method C-Math W-History P-Psychology P-Medicine
PromptAttack 3.2/3.6/3.6 3.2/3.3/3.7 3.9/3.9/3.7 4.1/4.3/4.2
PertEval (ours) 3.8/3.9/4.0 4.0/4.2/4.0 4.0/4.4/4.0 4.1/4.4/4.0

D = {x1, x2, . . . , x|D|} the raw test set. Then ACC@Consist is defined as:

ACC@Consist(M,D) =
1

|D|
∑
x∈D

I[M(qx) = yx ∧M
(
qσ∗(x)

)
= yσ∗(x)]. (1)

Here I(·) is the binary indicator function. Taking a step further, we implement a response pattern
analysis that uncovers the causes of the discrepancy between ACC@Consist and the original ACC.

Overall performance stability. In terms of performance stability, we expect that LLMs which
have robustly acquired the knowledge and skills required by benchmarks should exhibit stable
performance when faced with knowledge-invariant perturbations. To evaluate this, we propose
Performance Drop Rate (PDR) as a metric to measure the overall performance stability of LLMs
under knowledge-invariant perturbations.:

PDR(M,D, σ) =
1

|D|
∑
x∈D

(
I[M(qσ(x)) = yσ(x)]− I[M(qx) = yx]

)
. (2)

Here D denotes the original test dataset and σ is a perturbation strategy. Essentially, PDR measures
the discrepancy between the LLM’s accuracy on D and the perturbed dataset. When PDR < 0, the
perturbation decreases the overall performance of an LLM, indicating that it does not robustly acquire
knowledge and skills. To obtain more reliable conclusions, we further conduct Wilcoxon signed-rank
test for original and perturbed question sample pairs.

Correct response consistency. We also adopt the Recall of Performance (ROP) metric to measure
correct response consistency. The term “ROP” draws an analogy to the classical recall score. Let
CC denote the number of responses consistently correct before and after perturbation, and IC the
number of responses initially correct and later incorrect after perturbation (see Appendix B.3 for
detailed demonstration). Similar to the recall score, ROP is defined as the ratio of consistent correct
responses to the total number of correct responses before perturbation, i.e.,

ROP(M,D, σ) = CC/(CC + IC) (3)

The value of ROP is within [0, 1], with higher ROP indicating better correct response consistency
under perturbation σ. It should be noticed that, unlike PDR, there does not exist an absolute threshold
for ROP to evaluate goodness. Rather, ROP serves as an index of correct response consistency, which
can be utilized to compare the performance of different LLMs under perturbations.

4 Experiments

Datasets. We choose the test data in College Mathematics (C-Math), World History (W-History),
Professional Psychology (P-Psychology) and Professional Medicine (P-Medicine) from the Massive
Multitask Language Understanding (MMLU) [6] for evaluation. This is a trade-off between com-
prehensively covering evaluation domains/subjects and keeping the evaluation cost affordable. Note
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Figure 2: (left) Perturbation-wise knowledge invariance scores↑ by gpt-4-turbo (systematic
sampling, interval = 10); (right) edit distances between original question and perturbed questions.

Table 4: Results of testing on mastered questions - Performance Drop Rate (PDR) of overall
performance stability testing on mastered questions using gpt-4-turbo.

Strategy C-Math W-History P-Psychology P-Medicine AVGmacro

KnInvPara 0.0000 -0.0115 0.0091 -0.0244 -0.0067
OptionPerm 0.0000 0.0000 0.0000 -0.0244 -0.0061
OptionForm 0.0000 0.0000 0.0000 0.0000 0.0000
OptionCaesar 0.0000 0.0000 0.0091 0.0000 0.0023
ChangeType 0.0000 0.0000 0.0000 0.0000 0.0000
SwapPos 0.0000 -0.1149 -0.0636 -0.0488 -0.0568

that each dataset represents a supercategory in STEM, Humanities, Social Sciences, and Other fields,
respectively. The statistics of the selected datasets are detailed in Table 11 in Appendix C.1.

Large Language Models. Based on leaderboards like OpenCompass [47] and considering both the
popularity and timeliness of LLMs, we select six representative LLMs for evaluation. These LLMs
include close-sourced (gpt-4-turbo [48], gpt-3.5-turbo [49], gemini-1.0-pro [50] and glm-3-turbo [51])
and open-sourced (mistral-7b-instruct-v0.2 [52] and llama-3-8b-instruct [53]) models.

4.1 Knowledge Invariance Verification for Perturbations

We first investigate the knowledge invariance property of our perturbations using the two methods
developed in Section 3.2. Employing the LLM-based knowledge invariance scoring method, we
compare the scores of the proposed perturbations with those by PromptAttack [41] as a baseline.

Experiment Setup. For knowledge invariance scoring, 10 samples at equal intervals for each subject
are used for scoring. Since there are four subjects and two perturbation strategies (1 baseline + 1
PertEval) for each question, we have 10*4*2 = 80 question pairs in total. To ensure that each question
pair have four independent scores, eight human scorers are engaged in human-based scoring. Human
scorers are equally divided into four groups. Each group independently scores for all 80 question
pairs. Therefore, each human scorer within a group scores for 40 shuffled samples. For LLM-based
scoring, we choose gpt-4-turbo, claude-3.5-sonnet, and llama-3.1-405b as scorers. For fine-grained
perturbation-wise scoring, we choose gpt-4-turbo as the scorer.

Result Analysis. Overall knowledge invariance scores are presented in Table 2 and 3. PertEval
outperforms the baseline, and the score mostly exceeds 4.0, the borderline of knowledge-invariance.
Scores of both PromptAttack and PertEval on C-Math do not exceed 4.0. This is because many
samples in College Mathematics of MMLU are short mathematical reasoning questions that have
many mathematical symbols and statements. Indeed, in many STEM subjects, requirements for
knowledge capacity and reasoning ability often mix together in a test question. This points out
considerable potential for future development in robust LLM evaluation in STEM subjects.

Next, the results presented in Figure 2 show that the average scores of our perturbations approach 5.0
(perfectly knowledge-invariant) in most cases, consistently outperforming those from PromptAttack.
We also present the Levenshtein distance (i.e., edit distance) between the perturbed and original

7



0 . 8 1 3

0 . 5 9 2 0 . 5 5 5 0 . 5 5 2

0 . 2 5 8
0 . 1 8 8

0 . 4 0 1
0 . 3 0 1

0 . 1 7 4

0 . 6 1 5

0 . 2 9 5
0 . 2 2 7

0 . 5 6 3

0 . 2 3 8
0 . 1 6 8

0 . 3 6 0

0 . 1 6 7
0 . 0 8 5

g p t - 4 - t u r b o g p t - 3 . 5 - t u r b o g l m - 3 - t u r b o g e m i n i - 1 . 0 - p r o l l a m a - 3 - 8 b m i s t r a l - 7 b - v 0 . 20 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Ac
cur

acy

 A C C @ O r i g i n a l
 A C C @ P e r t u r b
 A C C @ C o n s i s t

Figure 3: Real knowledge capacities measured by ACC@Consist↑ with composite knowledge-
invariant perturbation. ACC@Original and ACC@Perturb denote accuracy on the original and
perturbed data, respectively. We report the macro-averaged results on all tested datasets.

questions under each perturbation. It turns out that the traditional edit distance is not suitable for
measuring knowledge invariance due to its lack of correlation with knowledge invariance.

Within mastered question testing (results depicted in Table 4), we observe that most perturbations
achieve an average PDR closed to zero, indicating consistent performance on the perturbed and the
original data. The PDR of SwapPos on World History and Professional Psychology is less than -0.05
despite that it does not alter any knowledge-relevant information by design. A possible explanation is
that SwapPos changes the global ordering of question prompts, thus affecting the token generation of
these self-regressive LLMs. More detailed analyses of results could be found in Appendix D.

4.2 Real Knowledge Capacity Evaluation

Each knowledge-invariant perturbation in PertEval targets a specific question restatement strategy. To
construct the most challenging test scenario and obtain reliable and comprehensive evaluation results,
we compose all perturbations to create a composite perturbation. The real knowledge capacity of
LLMs is then quantified by ACC@Consist before and after the composite perturbation. The results,
shown in Figure 3, yield several insights regarding the evaluation of LLMs’ knowledge capacity.

1. Overvaluation on static benchmarks. The knowledge capacity of LLMs is significantly overval-
ued on static benchmarks. By comparing ACC@Original with ACC@Perturb and ACC@Consist for
each LLM, we observe a notable performance drop when using the perturbed dataset. For instance,
the performance of gpt-4-turbo, gpt-3.5-turbo, and gemini-1.0-pro decreases by more than 25%.
Even the most capable LLM in our selection, gpt-4-turbo, achieves an ACC@Consist of only 0.555.
These findings reveal a substantial gap between the evaluated knowledge capacity of LLMs on static
datasets and their real knowledge capacity in complex scenarios.

2. Robustly mastered knowledge. Each LLM does have robustly mastered certain knowledge. This
conclusion is drawn by comparing the LLMs’ performance to pure guessing. With k options and
a single correst answer, the expected ACC@Consist for random guessing is 1/k2, which equals to
0.0625 for k = 4 in our experiments (see Appendix D.1 for detailed demonstration). We observe
from Figure 3 that the ACC@Consist values of all tested LLMs are significantly higher than 0.0625,
indicating that each LLM has indeed mastered some knowledge consistently. However, most LLMs
have mastered less than half of the total knowledge, as indicated by ACC@Consist values below 0.5.

4.3 Response Pattern Analysis

We further conduct a response pattern analysis to examine how perturbations affect the performance
of LLMs. We find that knowledge-invariant perturbations affect LLMs by increasing the ratio
of selecting extra incorrect options. As shown in Figure 4, the main reason for the significant
performance drop in gpt-4-turbo is their increased frequency of selecting additional incorrect options
on the perturbed data (i.e., 12% → 21.7%). These LLMs tend to select extra incorrect options
alongside the correct ones. One possible explanation for this phenomenon is that the LLMs indeed
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Figure 4: Response patterns of gpt-4-turbo. Left: original data; Right: perturbed data.

Table 5: Macro PDR ↑ and hypothesis test results of Micro PDR of LLMs w.r.t. perturbation.
Model\Strategy KnInvPara OptionPerm OptionForm OptionCaesar ChangeType SwapPos AVG
gpt-4-turbo -0.0660∗∗ -0.0208∗∗ -0.0136 -0.0294∗∗ -0.0210 -0.1117∗∗ -0.0438
gpt-3.5-turbo -0.0275∗∗ -0.0042 -0.1767∗∗ -0.0396∗∗ -0.1736∗∗ -0.1943∗∗ -0.1027
gemini-1.0-pro -0.0558∗∗ +0.0121 +0.0125 +0.0030 -0.1310∗∗ -0.1532∗∗ -0.0521
glm-3-turbo -0.0370∗∗ -0.0190 -0.1397∗∗ -0.0118 +0.0522 -0.2142∗∗ -0.0616
mistral-7b-v0.2 -0.0264 -0.0200 -0.2789∗∗ +0.0793 -0.0844∗∗ -0.1275∗∗ -0.0763
llama-3-8b -0.0336∗∗ -0.0091 -0.0939∗∗ -0.0368∗∗ -0.2920∗∗ -0.1814∗∗ -0.1078

AVG -0.0411 -0.0102 -0.1151 -0.0059 -0.1083 -0.1637
∗∗: The Micro PDR is significantly negative in the Wilcoxon signed-rank test (α = 0.01).

lack the ability to distinguish uncertain knowledge and filter out distracting options, while they
correctly answer these questions in the original dataset via rote memorization. In other words,
these LLMs do not truly master the knowledge behind the questions. Therefore, it is crucial
to not only enhance LLMs’ ability to identify correct answers but also bolster their capability to
recognize and eliminate incorrect answers when confronted with distracting choices in real-world
scenarios. More detailed response pattern analysis results can be found in Appendix D.2.

4.4 Overall Performance Stability

Table 5 presents the overall performance stability results, in which each number is the macro-PDR, i.e.,
the average of PDRs separately calculated on each dataset. We also apply the Wicoxon signed-rank
test to the micro-PDR, which is the PDR calculated across all datasets combined. Specifically, let
s = I(M(qx) = yx) ∈ {0, 1} and s′ = I(M(qσ(x)) = yσ(x)) ∈ {0, 1} denote model M ’s score
on the original and perturbed questions, respectively. The alternative hypothesis of the Wilcoxon
signed-rank test is Ha : s > s′, or equivalently, Ha : s′ − s < 0. We can analyze the results of
Table 5 from both a column-wise and row-wise perspective. From the column-wise perspective, we
first observe that all selected LLMs have negative macro-PDRs given the content-level perturbation,
i.e., knowledge-invariant paraphrasing (KnInvPara). Additionally, the micro-PDR of close-sourced
LLMs is significantly negative, meaning that these LLMs lack robustness in content-level knowledge
acquisition for these datasets. Another prominent observation is that all LLMs are highly sensitive to
the SwapPos perturbation. We hypothesize that this sensitivity is due to the global format change
introduced by SwapPos, which disrupts the text generation process of self-regressive LLMs, even
though the perturbation is entirely knowledge-invariant. From the row-wise perspective, we find that
our perturbations cause performance drop in most cases, e.g., at least 0.04 and up to 0.1 on average,
indicating the universal vulnerability of current generation LLMs.

4.5 Correct Response Consistency

The results of correct response consistency using ROP are presented in Table 6. There is significant
variation in ROP across different LLMs. Among them, gpt-4-turbo performs the best, with an average
macro-ROP of 0.9, which is a substantial advantage over other LLMs. Gemini-1.0-pro also performs
well, particularly with the OptionForm and OptionCaesar strategies (both having a Macro-ROP >
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Table 6: Macro Recall of Performance (ROP) ↑ of LLMs w.r.t. perturbation strategies.
Model\Strategy KnInvPara OptionPerm OptionForm OptionCaesar ChangeType SwapPos AVG
gpt-4-turbo 0.8798 0.9063 0.9601 0.9349 0.9221 0.7995 0.9005
gpt-3.5-turbo 0.8230 0.7728 0.5602 0.7801 0.5194 0.5610 0.6694
gemini-1.0-pro 0.7968 0.7995 0.9553 0.9226 0.6788 0.6362 0.7982
glm-3-turbo 0.7164 0.6756 0.5943 0.7884 0.6816 0.4026 0.6432
mistral-7b-v0.2 0.6543 0.6202 0.1339 0.7679 0.5128 0.4060 0.5159
llama-3-8b 0.8055 0.7433 0.7541 0.8102 0.3971 0.5209 0.6719

AVG 0.7793 0.7530 0.6597 0.8340 0.6186 0.5544

0.9). Other LLMs, however, are vulnerable to almost all knowledge-invariant perturbations, which
means that their performance on the original datasets are less reliable. On the other hand, the effect
of different strategies on correct response consistency varies considerably. Similar to the results for
performance stability, SwapPos is the most influential strategy affecting LLMs’ correct response
consistency, which exposes the inherent flaw of LLMs in defending global order perturbation.

5 Discussion

Conclusion. The trustworthiness of capacity evaluation is, and will always be one of the most signifi-
cant issues in the development of LLMs. In pursuit of this goal, we proposed an evaluation toolkit,
PertEval, for unveiling LLMs’ real knowledge capacity on close-ended benchmarks. We discovered
not only a substantial overestimation of the knowledge capacity of LLMs by static benchmarks, but
also LLMs’ uncertainty to distinguish specious knowledge without rote memorization. Detailed
response consistency analyses revealed the vulnerability of LLMs to various knowledge-invariant
perturbations, especially the content-level KnInvPara and the format-level SwapPos, which could
inspire further refinement for LLMs’ knowledge mastery. Indeed, the ultimate goal of this study is
not only trustworthy evaluation, but to propel the development of LLMs’ knowledge capacity. Our
primary experiments have verified the feasibility of using PertEval-generated data to improve LLM
robustness to various test conditions via supervised fine-tuning (see Appendix D.3). We believe that
PertEval marks a significant step toward more trustworthy LLM evaluation.

Limitations & Future Work. The first limitation of this work is its scope regarding suitable
benchmarks. PertEval is suitable for close-ended benchmarks and cannot be directly applied to
open-ended ones. The challenges stem from the variety of open-ended questions and the difficulty of
their objective evaluation. Future research could explore how the concept of knowledge-invariant
perturbation can be adapted to improve the trustworthiness of open-ended evaluations. The second
limitation of PertEval is the lack of controllability, a common issue in LLM-based text generation.
Due to the complexity of LLMs, it is challenging to precisely control specific characteristics in
paraphrased texts while keeping knowledge-invariance. In the future, we aim to achieve more fine-
grained controllability in PertEval, such as quantitatively adjusting paraphrasing tone and length, to
obtain more continuous and nuanced evaluation results of LLMs. Besides, all conclusions of this
study are based on experiments conducted on a subset of MMLU due to budget constraints. We are
seeking economic methods to expand our experiments and further substantiate our findings. Finally,
the risk of adaptive optimization against PertEval exists as it is an open-sourced toolkit. However, the
diversity of perturbations and the cost of adaptive optimization could effectively reduce the influence
of adaptive optimization. By constructing a PertEval open evaluation platform, we can regularly
develop and change perturbation strategies to prevent this procedure.
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Appendix

A Related Work

This section complements related works especially in LLM evaluation for Section 2.

A.1 Benchmarks for Knowledge Capacity Evaluation

LLMs’ knowledge capacity evaluation plays a fundamental yet significant role in LLM evaluation
tasks. The knowledge capacity evaluation aims to quantify LLMs’ ability to master and utilize
professional knowledge and skills to solve real-world problems. Therefore, existing benchmarks
usually depend on expert-designed test datasets, especially multiple choice questions, to evaluate
LLMs’ knowledge capacity.

In terms of general knowledge benchmarks, MMLU [6] proposed to comprehensively evaluate
LLMs’ professional knowledge on 57 subjects using the classical multiple choice question-based test.
Similarly, C-Eval [27] focuses on evaluating LLMs’ advanced knowledge and reasoning abilities in
Chinese context. AGIEval [7] collects human-centric datasets from real-world examinations such as
SAT, GRE and GMAT to evaluate LLMs’ knowledge capacity in human-centric tests. Differently,
ARC [8] measures LLMs’ knowledge capacity from knowledge styles rather than knowledge do-
mains, including but not limited to “Definition”, “Basic Facts & Properties”, “Algebratic”, etc. In
a word, general knowledge benchmarks usually consist of a knowledge taxonomy and a series of
corresponding labelled datasets, each of which focusing on evaluating a specific aspect or domain of
knowledge capacity for LLMs.

In terms of specific and professional knowledge benchmarks, expert-designed datasets are also the top
priority. For clinical knowledge, MedMCQA [9], and PubMedQA [54] utilize professional multiple
choice questions to assess LLMs’ clinical knowledge capacity and disease diagnosis ability. For social
science, Ziems et al. [55] explored evaluating LLMs’ knowledge capacity in computational social
science using real-world classification tasks. Nay et al. [10] explored LLMs’ knowledge capacity
in tax law with a case study using automatically generated multiple choice questions. For science
and engineering subjects, Arora et al. [56] proposed JEEBench, a challenging scientific problem
solving benchmark consisting of mathematics, physics and chemistry problems. Other representative
benchmarks such as GSM-8K [11] and ScienceQA [28], also utilize expert-designed professional test
data to assess LLMs knowledge capacity from various perspectives.

A.2 Trustworthiness of Knowledge Capacity Evaluation

Large language models are self-regressive text generation models trained on large-scale online-
accessible textual data. Therefore, from both the test data acquisition perspective and the response
generation perspective, there exist various risks in the trustworthiness of LLMs’ knowledge capacity
evaluation. These risks highly threaten the correctness and reliability of the knowledge capacity
evaluation results.

From the test data acquisition perspective, the test data contamination problem has been proved
widely exist in evaluation benchmarks [57–60]. Test data contamination can lead to overvalued
knowledge capacity, and should be avoided at all costs. To this end, much effort have been devoted
into distinguishing contaminated data or preventing data contamination with new test data. Magar
and Schwartz [61] studied the problem for BERT models, and proposed a principled method to
analyze the exploitation and memorization of contaminated data. Jacovi et al. [60] suggested using
pre-evaluation intervention such as encrypting test data and avoiding uploading textual data to the
internet to prevent data contamination. On the other hand, Bai et al. [29] proposed to utilize an
examiner LLM to generate test questions and evaluate LLMs’ knowledge capacity to avoid data
contamination. Recently, Golchin and Surdeanu [20] and Oren et al. [14] respectively proposed
multi-level and example order-inspired methods for identifying test data contamination. In a word,
existing works usually prevent data contamination by avoiding testing on contaminated data or
generating brand-new test data. However, how to avoid data contamination while sufficiently utilize
valuable knowledge information of existing test data for evaluation is still underexplored.

From the response generation perspective, LLMs’ biases towards specific prompt features in knowl-
edge capacity evaluation have been widely observed [62–67] which can highly influence their
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performance. Pezeshkpour and Hruschka [62] discovered that LLMs’ output sensitivity to specific
ordering of options. For instance, some LLMs prefer selecting the first option in the option list,
which proved the ordering bias in multiple choice question-based evaluation. Li et al. [64] further
proposed methods to quantify consistence and confidence of LLMs’ accuracy on test datasets. Khatun
and Brown [67] explored the usefulness of multiple choice question-based dataset for evaluating
open-source LLMs, and found that many small-scale open-source LLMs fail to properly understand
and select an answer from given choices. Recently, Zheng et al. [63] detected the selection bias
towards options in multiple choice question answering for LLMs, and proposed PriDe, a label-free
and inference time-free debiasing method. However, as an external plug-in for LLMs, this method
is inappropriate for application to measuring the knowledge capacity of large language models
themselves. In summary, existing research usually emphasize empirically detecting biases in the
response generation procedure and proposing debiasing methods. Howver, how to avoid such bias to
evaluate LLMs’ real knowledge capacity remains a research question.

B Details of Methodology

B.1 Content-level Perturbation: Knowledge-invariant Paraphrasing

The algorithm of knowledge-invariant paraphrasing using LLM rewriter is presented in Algorithm 1.
The prompt template for the LLM rewriter is presented in Figure 5. In implementation, an expected
similarity score is provided to the LLM rewriter to control the degree of the change of question text.
In experiments, the expected similarity score is fixed to 0.6. An example of knowledge-invariant
paraphrasing in MMLU college mathematics is shown in Table 7.

Algorithm 1 Knowledge-invariant Paraphrasing Using LLM Rewriter

Input: q = (s1, s2, . . . , sT ), the question text; M , the LLM rewriter
Output: q′ = (s′1, s

′
2, . . . , s

′
T ), the perturbation output

1: procedure KNOWLEDGEINVARIANTPARAPHRASE(q,M )
2: Initialize rewriting prompt template ptemplate(·)
3: q′ ← ∅
4: for t ∈ 1, 2, . . . , T do
5: pcurrent ← ptemplate(st, (s1, . . . , st−1)) ▷ Generate the rewriting prompt
6: rcurrent ←M.request(pcurrent) ▷ Obtain the LLM rewriter’s output
7: s′t ← sentenceF ilter(rcurrent)
8: q′ ← q′ ⊕ s′t ▷ Append the perturbed sentence to the end of the question
9: end for

10: return q′

11: end procedure

Table 7: An example of knowledge-invariant paraphrasing of a test question. Texts surrounded by
angular brackets are invisible in question prompts input to the LLM test-taker.

Original Knowledge-invariant Paraphrasing

<# Context & Condition> Let T : R2 → R2

be the linear transformation that maps the point
(1, 2) to (2, 3) and the point (-1, 2) to (2, -3).
<# Goal> Then T maps the point (2, 1) to

<# Context & Condition> Let T be the linear
transformation from R2 to R2 such that T maps
(1, 2) to (2, 3) and (-1, 2) to (2, -3).
<# Goal> Then, the linear transformation T will
map the point (2, 1) to

B.2 Format-level Perturbation: Question Format Refactoring

Examples of question format refactoring are shown in Table 8.
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Here is a sentence in a multiple choice question. Please rewrite the
sentence given its context and the expected similarity score. Here
are necessary requirements:
[Requirements Start]
1. Be consistent with its context.
2. The rewrited sentence should keep the semantic of the original
sentence.
3. If the sentence contains blanks/underlines to be filled, these
blanks/underlines should be kept after paraphrasing.
4. You can utilize various rewriting skills (e.g.,
add/replace/delete words, paraphrase) to make it looks different from
the original.
[Requirements End]

[Meaning of Expected Similarity Score Start]
For the expected similarity score (0.0 - 1.0), 1.0 denotes that the
rewrited is exactly the same as the original; 0.8 denotes that the
the there exist word-level differences between the rewrited and the
original; 0.6 denotes that there exist not only word-level, but lots
of sentence structure-level differences between the rewrited and the
original; 0.4 denotes that you are allowed to entirely paraphrase
the sentence by your own; 0.2 denotes that you are allowed to add
misleading statements to the current sentence.
[Meaning of Expected Similarity Score End]

You should only output the rewrited sentence without any extra
content.
Expected similarity score: {similarity_score}
Context: {context}
Sentence: {sentence}
Your output:

Figure 5: Prompt template for the rewriter LLM. The expected similarity score is used to control
parphrasing of the rewriter LLM, which is set to 0.6 in all experiments.

Table 8: Examples of format-level knowledge-invariant perturbations. Texts surrounded by angular
brackets are invisible in question prompts input to the LLM test-taker.

Perturbation Original case Perturbed case
OptionPerm <# Options>

A x = 1; B x = 2; C x = 3; D x = 4
<# Options>
A x = 4; B x = 3; C x = 2; D x = 1

OptionForm <# Options>
A x = 1; B x = 2; C x = 3; D x = 4

<# Options>
A) x = 1; B) x = 2; C) x = 3; D)
x = 4

OptionCaesar <# Options>
A x = 1; B x = 2; C x = 3; D x = 4

<# Options>
U x = 1; V x = 2; W x = 3; X x = 4

ChangeType <# Prompt> Please select correct op-
tion(s) given the following question:

<# Prompt> Please judge whether
each of the options is correct given the
following question:

SwapPos <# Prompt> Please select correct op-
tion(s) given the following question:
<# Question> The solution of the equa-
tion 2x+ 1 = 3 is
<# Options> A x = 1; B x = 2; C
x = 3; D x = 4

<# Prompt> Please select correct op-
tion(s) given the following question:
<# Options> A x = 1; B x = 2; C
x = 3; D x = 4
<# Question> The solution of the equa-
tion 2x+ 1 = 3 is
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Table 9: The criteria of scores for knowledge invariance judgement.
Score Criteria
5.0 The perturbation perfectly satisfies all the standards and is entirely acceptable.

4.0 There are only minor flaws in the perturbed question. As a whole, the perturbed question
is acceptable.

3.0 Only some parts of the perturbation is acceptable. As a whole, the perturbed question is
less acceptable.

2.0 There are major flaws in the perturbed question that makes it unacceptable.

1.0 There are fatal flaws in the perturbed question that makes it entirely unacceptable.

Your task is to grade the knowledge invariance degree of a perturbed
multiple choice question against the original question.
You clearly know that if a perturbed question is knowledge-invariant,
the question has to satisfy the following requirements:
[Perturbation Requirements Start]
1. Semantic Information Invariance. The perturbed question must
have the same semantic information as the original question, which
cannot change the name of entities, logic of statements and meaning
of equations.
2. Reasoning Invariance. A human test-taker’s reasoning process
to obtain his/her response in the perturbed question should be
consistent with that in the original question.
3. Answer Invariance. The answer of a perturbed question should be
semantically equivalent to the answer of the original question.
4. Statement Clarity. The perturbed question should clearly present
contexts, conditions and the target of the question without ambiguous
statement.
[Perturbation Requirements End]

The grading score is from 1 to 5. Grading criteria are given in the
following:
[Grading Criteria Start]
1.0 - There are fatal flaws in the perturbed question that makes it
entirely unacceptable.
2.0 - There are major flaws in the perturbed question that makes it
unacceptable.
3.0 - Only some parts of the perturbation is acceptable. As a whole,
the perturbed question is less acceptable.
4.0 - There are only minor flaws in the perturbed question. As a
whole, the perturbed question is acceptable.
5.0 - The perturbation perfectly satisfies all the requirements and
is entirely acceptable.
[Grading Criteria End]

[Original Question Start]:
{original_question}
[Original Question End]

[Perturbed Question Start]:
{perturbed_question}
[Perturbed Question End]

Figure 6: Prompt template for the LLM-based knowledge invariance scoring (Part 1/2).
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You should grade the perturbation following these steps:
1. Recall the perturbation requirements and grading criteria, and
read the original and the perturbed questions in detail.
2. For each of perturbation requirements, carefully judge its
satisfaction degree of the perturbed question.
3. Based on step 1 and step 2, give a total grading score for the
perturbed question.
4. Analyze strengths and weakness of the perturbed question from the
view of perturbation requirements based on step 1,2,3.
Think carefully for a while, then propose your conclusion. Your
output template is given as follows:

[Template Start]
{
"score": <numeric score from 1 to 5>,
"strength": <"xxx", strengths of the perturbation>,
"weakness": <"xxx", weaknesses of the perturbation>
}
[Template End]

Your conclusion:

Figure 7: Prompt template for the LLM-based knowledge invariance scoring (Part 2/2).

B.3 Correct Response Consistency

Similar to the confusion matrix, terms in ROP can be written in a response consistency matrix,
as shown in Table 10. Here “C”/“I” in the first position denotes “consistently”/“inconsistently”.
“C”/“W ” in the second position denotes “correct”/“wrong”. For instance, CC denotes consistently
correct.

Table 10: Response transition matrix.
Number Correct after perturbation σ Wrong after perturbation σ

Correct before perturbation σ CC IC
Wrong before perturbation σ IW CW

C Experiment Setup

C.1 Details of Dataset

Statistics of datasets are presented in Table 11.

Table 11: Dataset Statistics
Name College Mathematics High School World History Professional Psychology Professional Medicine
Supercategory STEM Humanities Social Science Others

Concepts
Differential equations, Ottoman empire, Diagnosis, Diagnosis,

real analysis, economic imperialism, biology and behavior, pharmacotherapy,
combinatorics... World War I... lifespan development, ... disease prevention...

# Questions 100 237 612 272
# Tokens per Q 46.00±25.37 290.25±124.13 28.02±19.53 144.66±65.41
# Tokens per P 129.52±29.19 392.27±127.62 125.11±31.63 233.58±66.60
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C.2 Evaluation Setting

Model Setting. For close-sourced LLMs (gpt-4-turbo, gpt-3.5-turbo, glm-3-turbo, gemini-1.0-pro),
we use their APIs for evaluation. The temperature parameter of each model is set to 0.2 to reduce
output uncertainty. For open-sourced LLMs (llama-3-8b-instruct, mistral-7b-instruct-v0.2), we locally
deploy their huggingface version to our own server and utilize default settings for evaluation.

Environment Setting. All experiments are completed on a Linux server with Intel(R) Xeon(R)
Platinum 8269CY CPUs @ 2.50GHz and one NVIDIA A100 GPU (40G). GPUs are used for
deploying and fine-tuning open-sourced models. The version of Python is 3.9. The version of the
torch package is 2.2.0. The version of the transformers package is 4.39.3.

Prompt Setting. In our experiments, we use prompt templates to generate prompts of questions
for evaluation. Examples using prompt templates are shown in Figure 8 and 9. After getting model
outputs, we transform them to json data for further analyses and utilize regular expressions to enhance
the robustness of transformation. Details are available at our code.

Supervised Fine-tuning Setting. In Appendix D.3, we fine-tune llama-3-8b-instruct using PertEval-
generated data to explore the utility of PertEval in enhancing the knowledge capacity of LLMs. The
fine-tuning process is done using LoRA [68] on single GPU implemented in LLaMA-Factory [69].
The batch size is 1, since the number of training data is 237 (High School World History) + 272
(Professional Medicine) = 479. The learning rate is 5e-5. The number of training epoch is 3.

Please select the correct option(s) from the following options given
the question:
Question: Let k be the number of real solutions of the equation
ex + x − 2 = 0 in the interval [0, 1], and let n be the number of real
solutions that are not in [0, 1]. Which of the following is true?
Options:
A k = 0 and n = 1
B k = 1 and n = 0
C k = n = 1
D k > 1
Your output must strictly follow this format:
{"answer": <the list of selected options, e.g., ["A", "B", "C",
"D"]>}
Your output:

Figure 8: Prompt template for multiple-choice question answering.

Please judge whether each of the options is correct or incorrect
given the question:
Question: Let k be the number of real solutions of the equation
ex + x − 2 = 0 in the interval [0, 1], and let n be the number of real
solutions that are not in [0, 1]. Which of the following is true?
Options:
A k = 0 and n = 1
B k = 1 and n = 0
C k = n = 1
D k > 1
Your output must strictly follow this format:
{"A": <"True" or "False">, "B": <"True" or "False">, "C": <"True"
or "False">, "D": <"True" or "False">}
Your output:

Figure 9: Prompt template for multiple-judgement question answering (ChangeType).
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Figure 10: Accuracy score of LLMs in original datasets. The gpt-4-turbo@Mastered denotes the
accuracy of gpt-4-turbo on the mastered question set for checking knowledge invariance, which is
defined in Section 3.2.

C.3 Experiment Cost

Costs in # Tokens. Overall, we conduct the following experiment steps that require token costs:

E0. Generating PertEval benchmark.

E1. Knowledge-invariance validation - obtain knowledge invariance score.

E2. Main experiment - obtain ACC@Consist.

E3. Fine-grained perturbation analysis - obtain ROP and PDR.

Exact costs w.r.t. experiments are presented as follows:

Table 12: Exact token costs w.r.t. experiments.
Index # Input tokens # Output tokens
E0 3,542,896 374,967
E1 776,353 101,675
E2 3,248,124 190,476
E3 9,343,200 336,996

Costs in USD. For proprietary LLMs, the cost is from the pricing strategy of LLM APIs (proportional
to # input/output tokens). For open-sourced LLMs, the cost originates from the pricing strategy of
servers for LLM deployment (proportional to the running time of servers). We count overall costs in
USD per experiment, as shown in Table 13.

Table 13: Costs in USD per experiment.
Exp Index Price (USD)
E0 41.79
E1 10.81
E2 13.09
E3 51.47

Total 117.16

D Verifying the Knowledge Invariance of Perturbation Strategies

In this part, we utilize the proposed knowledge invariance verification methods to measure the
validity of perturbations in terms of knowledge invariance. The prompt template for the LLM-based
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knowledge invariance scoring is presented in Figure 6 and 7. Results of LLM-based knowledge
invariance scoring are shown in Figure 2. Results of overall performance stability testing on
mastered questions are presented in Figure 4. We obtain several conclusions from these experimental
results, as given in the following:

C1. Proposed perturbations are knowledge-invariant in most cases. From the right part of
Figure 2, we observe that knowledge invariance scores of our proposed perturbations exceeds 4.5 and
exceeds the baseline in most cases. For the content-level KnInvPara, since paraphrasing question
confronts inevitable semantic changing, its knowledge invariance score is not as high as that of
format-level perturbations. Indeed, we can observe from Table 4 that PDRs of KnInvPara are always
closed to zero, which demonstrates its potential knowledge invariance.

C2. Traditional string-based text distance metric is insufficient for measuring knowledge
invariance. In the left part of Figure 2, we show the average logarithm of Leveinshtein distance (edit
distance) for each perturbation. Comparing the Levenshtein distances of PromptAttack, global text
ordering-level format perturbation (ChangeType, SwapPos) and KnInvPara, we find that although
PromptAttack has the lowest Leveinshtein distance in most datasets, its knowledge invariance scores
are also relatively low. On the other hand, PromptAttack have the highest Leveinshtein distance in W-
History, but also has the lowest knowledge invariance score in the four datasets. Therefore, As a result,
there lacks an obvious correlation between Leveinshtein distance and knowledge invariance score.
Essentially, this result indicates that knowledge relevant features of texts could be be disentangled
from string-level features to some extent. How to efficiently and effectively measure knowledge
invariance or quantify knowledge relevant features of texts remains a research problem.

C3. LLMs are vulnerable to global text order-level knowledge-invariant perturbations even
in mastered questions. We observe from Table 4 that SwapPos can decrease the performance of
gpt-4-turbo even in mastered questions although we have demonstrated the knowledge invariance of
the perturbation in Figure 2, Comparing PDRs on different datasets and statistics of different datasets,
we observe that it is highly correlated with the number of tokens per question.

D.1 Probing LLMs’ Consistent Knowledge Capacity

Proposition D.1. In multiple choice questions, given k options and one single correct answer for
each question, the expected value of ACC@Consist is 1/k2 for pure guessing.

Proof. Let n be the number of multiple choice questions. To calculate ACC@Consist for pure
guessing, we need to randomly select an option respectively for the original version and the perturbed
version of each question. Since each selection procedure is mutually independent, the probability
of selecting correct options for both the original and the perturbed versions is 1/k × 1/k = 1/k2.
Let random variable Z denote the number of such cases, then Z follows the binominal distribution
B(n, 1/k2), and ACC@Consist = Z/n. Then the expected value of ACC@Consist is calculated by:

E[ACC@Consist] = E[Z/n] =
1

n
E[Z] = 1/k2 (4)

Then the proof is completed.

D.2 Response Pattern Analysis for LLMs in PertEval

In this part, we analyze response pattern for LLMs in the original and perturbed data, which can
provide us a deep insight into the influence of knowledge-invariant perturbations on LLMs’ question
answering procedure. The definition of response patterns are listed in the following:

• Single Correct Selection: The LLM selects and only selects the correct option. The ratio of correct
choices is equvalent to micro accuracy.

• Single Wrong Selection: The LLM selects only a single option, and the option is wrong. This
means that the LLM fails to recognize the correct option in the option list.

• Invalid Selection: The LLM selects none of options. This could be caused by the LLM’s wrong
reasoning process or invalid output format.

• Multiple Selection Including the Correct One: The LLM selects not only the correct option, but
also extra incorrect options. This means that the LLM fails to filter out incorrect options from the
option list.
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• Multiple Selection w/o the Correct One: The LLM selects multiple options which do not cover
the correct option.

Given the response pattern taxonomy, we counted the ratio of response patterns in original and
perturbed data for all selected LLMs, as shown in Figure 4, 11, 12, 13, 14 and 15.
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Figure 11: Response patterns of gpt-3.5-turbo in all datasets. Left: original data. Right: perturbed
data.
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Figure 12: Response patterns of glm-3-turbo in all datasets. Left: original data. Right: perturbed
data.
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Figure 13: Response patterns of gemini-1.0-pro in all datasets. Left: original data. Right: perturbed
data.
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Figure 14: Response patterns of llama-3-8b-instruct in all datasets. Left: original data. Right:
perturbed data.
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Figure 15: Response patterns of mistral-7b-instruct-v0.2 in all datasets. Left: original data. Right:
perturbed data.

D.3 How to Enhance LLMs’ Knowledge Capacity Using PertEval?

The goal of PertEval is not only to evaluate large language models’ consistent knowledge capacity,
but to help LLMs enhance their knowledge capacity in real-world applications. To this end, we
explore utilizing perturbed data generated by PertEval to fine-tune the open-sourced LLM, LLaMA-
8B-Instruct, as presented in Table 14. We obtain several insights from the experimental results.

For format-level perturbations, we recommend fine-tune LLMs on a small set of perturbed data to
enhance their consistent knowledge capacity in all knowledge domains. This conclusion originates
from the observed stimulation phenomenon in fine-tuning. That is, only fine-tuning the model with
a subset of perturbed data can significantly improve its overall performance stability in all perturbed
data. This result indicates the ability of LLMs to “acquire” format-level perturbations and perform
consistently on perturbed data in all kinds of knowledge domains.

For content-level perturbations, we recommend training knowledge expert models using both the
original and the perturbed data for specific knowledge domains. This conclusion orignates from the
lack of transferability of content-level fine-tuning for datasets. This observation is reasonable
because the knowledge and statement styles of different domain vary a lot. Considering the numerous
number of knowledge domains and the issue of cost and efficiency, we suppose training knowledge
expert models for specific knowledge domains is a good choice for striking a balance between
knowledge capacity and training efficiency.
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Table 14: PDR of LLaMA-8B-Instruct before and after fine-tuning on perturbed datasets. Underlined
datasets are used for fine-tuning. CT denotes ChangeType. KP denotes KnInvPara. SP denotes Swap-
Pos. For example, F(CT) means fine-tuning LLaMA-8B-Instruct on world history and professional
medicine datasets perturbed by ChangeType.
Strategy fine-tune C-Math W-History P-Psychology P-Medicine AVGmacro AVGmicro

ChangeType
None -0.2300 -0.3418 -0.2467 -0.3493 -0.2920 -0.1998
F(CT) -0.0700 +0.0759 +0.0196 +0.0257 +0.0128 -0.0868
F(CT+KP) -0.0500 +0.0422 +0.0082 +0.0074 +0.0020 +0.0019

SwapPos
None -0.0700 -0.2110 -0.1944 -0.2500 -0.1814 -0.2867
F(SP) +0.0100 -0.0675 -0.1095 -0.0882 -0.0638 +0.0246
F(SP+KP) -0.0300 -0.1350 -0.1029 -0.1176 -0.0964 -0.1065

KnInvPara

None +0.0200 -0.0802 -0.0163 -0.0478 -0.0311 -0.0328
F(KP) -0.0400 -0.0253 -0.0212 0.0000 -0.0216 -0.0188
F(CT+KP) -0.0400 -0.0549 -0.0343 -0.0368 -0.0415 -0.0393
F(SP+KP) -0.0300 -0.0675 -0.0212 -0.0184 -0.0343 -0.0303
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