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ABSTRACT
3D Gaussian Splatting (3DGS), a 3D representation method with photorealistic
real-time rendering capabilities, is regarded as an effective tool for narrowing
the sim-to-real gap. However, it lacks fine-grained semantics and physical exe-
cutability for Visual-Language Navigation (VLN). To address this, we propose
SAGE-3D (Semantically and Physically Aligned Gaussian Environments for 3D
Navigation), a new paradigm that upgrades 3DGS into an executable, semantically
and physically aligned environment. It comprises two components: (1) Object-
Centric Semantic Grounding, which adds object-level fine-grained annotations
to 3DGS; and (2) Physics-Aware Execution Jointing, which embeds collision
objects into 3DGS and constructs rich physical interfaces. We release Interi-
orGS, containing 1K object-annotated 3DGS indoor scene data, and introduce
SAGE-Bench, the first 3DGS-based VLN benchmark with 2M VLN data. Exper-
iments show that 3DGS scene data is more difficult to converge, while exhibiting
strong generalizability, improving baseline performance by 31% on the VLN-CE
Unseen task. The code is available in https://anonymous/r/SAGE-3D.
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Figure 1: Traditional 3DGS vs. Our work. Compared with traditional 3DGS, our InteriorGS pro-
vides object-level 3DGS annotations, while SAGE-Bench contains semantically VLN data and de-
tailed physical interfaces, representing an semantically and physically aligned 3DGS paradigm.

1 INTRODUCTION
Vision-and-Language Navigation (VLN) is a core capability for Vision-Language Action (VLA)
models, enabling them to follow natural language instructions and navigate complex indoor
spaces (Wei et al., 2025; Zhang et al., 2024). Direct real-world training is costly and risky, mo-
tivating the widely adopted sim-to-real paradigm (Qi et al., 2025; Zun Wang, 2023). Reducing the
resulting sim-to-real gap has driven the evolution of scene representations, from early scanned mesh
reconstructions such as Matterport3D (Chang et al., 2017) and HM3D (Ramakrishnan et al., 2021),
to most recently 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023).

Compared with prior VLN work (Krantz et al., 2020; Song et al., 2025) using scanned mesh re-
constructions from RGB-D scans, 3DGS offers two key advantages: 1) Easier and more reliable
object-level semantics. Scanned mesh reconstructed from noisy depth scans forms a single contin-
uous surface that merges objects into surrounding structures, making later separation costly (Cheng
et al., 2025). In contrast, 3DGS represents scenes with discrete Gaussians that can be directly la-
beled. 2) View-consistent and photorealistic appearance. Scanned mesh textures, stitched from
sparse RGB viewpoints, often break under novel views, where incomplete coverage yields seams,
stretching, or blur (Dalal et al., 2024). 3DGS instead optimizes a continuous radiance field, yielding
consistent, photorealistic views from any navigable position—crucial for free-moving navigation.
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Table 1: Comparisons with benchmarks for continuous navigation tasks. Here, “Instruction with
Causality”: tasks have causal dependencies rather than being mere “A-to-B” navigation; “Scene
Geometry”: whether the scene mesh is an imperfect estimate or accurate ground truth.

Benchmarks Num. of Task Num. of Scenes Scene Source Instruction with Casuality Scene Geometry 3D Representation

VLN-CE (Krantz et al., 2020) 4.5k 90 MP3D ✗ Estimated Scanned Mesh
OVON (Yokoyama et al., 2024) 53k 181 HM3D ✗ Estimated Scanned Mesh

GOAT-Bench (Khanna* et al., 2024) 725k 181 HM3D ✗ Estimated Scanned Mesh
IR2R-CE (Krantz et al., 2022) 414 71 MP3D ✗ Estimated Scanned Mesh

LHPR-VLN (Song et al., 2025) 3.3k 216 HM3D ✗ Estimated Scanned Mesh
OctoNav-Bench (Gao et al., 2025) 45k 438 MP3D, HM3D ✗ Estimated Scanned Mesh

SAGE-Bench 2M 1000 InteriorGS ✓
Ground
Truth

3DGS-Mesh Hybrid
Representation

Despite these advantages, the current 3DGS is solely used for high-fidelity rendering (Wang, 2024),
as shown in the upper left corner of Fig. 1. It is unsuitable for effective application in VLN tasks
due to its two significant limitations: (1) 3DGS is deficient in fine-grained object-level semantics.
Existing 3DGS scenes contain only color and density information, with no instance IDs or object
attributes (Li et al., 2024). This makes it impossible to uniquely ground VLN instructions such
as “go to the red chair next to the white bookshelf”, and any attempt to recover object boundaries
requires complex and error-prone post-processing. (2) Lack of a physically executable structure.
Gaussian Splatting is, by nature, a volumetric rendering technique; although recent efforts (e.g.,
SuGaR (Guédon & Lepetit, 2024)) attempt to infer surface information from Gaussians, obtaining
smooth surfaces remains challenging. Consequently, deriving reliable collision geometries from
3DGS is difficult, and aligning semantics with appearance is non-trivial.
In this work, we present SAGE-3D (Semantically and Physically Aligned Gaussian Environments
for 3D Navigation), a paradigm that upgrades 3DGS from a purely perceptual scene representa-
tion to an executable, semantically and physically aligned environment foundation for embod-
ied navigation. This transformation is enabled by two core components: (1) Object-Level Semantic
Grounding. We sample 3DGS data from artist-created mesh scenes and create an object-level an-
notated indoor dataset through careful manual labeling and double verification, thereby endowing
3DGS with fine-grained semantics. Additionally, we design a 2D semantic top-down map derived
from 3DGS to support instruction generation and path planning. (2) Physics-Aware Execution
Jointing. We introduce a 3DGS-Mesh Hybrid Representation: starting from our mesh scene
data, we extract collision bodies for each object as the physics layer, while using 3DGS to provide
photorealistic appearance. This decoupled design preserves high-fidelity rendering through 3DGS
and enables accurate physical simulation based on mesh-based collision bodies, with connectivity
to rich robotics APIs. Together, these two components transform 3DGS into a practical embodied
navigation environment substrate and open new avenues for future embodied intelligence research.
Building on this, we release InteriorGS—a dataset of 1,000 manually object-annotated 3DGS
scenes. It covers mostly furnished indoor environments plus venues like concert halls and amuse-
ment parks, totaling over 554k object instances across 755 categories. We also introduce SAGE-
Bench (Tab. 1), the first fully 3DGS-based VLN benchmark with 2M new trajectory-instruction
pairs and 554k detailed collision bodies. For data, we provide a hierarchical instruction scheme
that combines high-level semantic goals (especially task-causal ones like “I’m thirsty, get water
from the table”) with low-level actions (e.g., “move from stool to sofa”). For evaluation, we de-
sign three metrics for navigation natural continuity: Continuous Success Ratio, Integrated Collision
Penalty, and Path Smoothness, to assess VLN models from the perspective of continuous motion.
Extensive experiments on SAGE-Bench yield several key insights: (1) 3DGS scene data renders
faster but is harder to converge than scanned mesh data. 3DGS has a per-frame rendering time
of 6.2ms, outperforming scaned mesh’s 16.7ms. Yet reaching 40% Success Rate (SR) needs 160 it-
erations (6.2h) for 3DGS vs. 120 iterations (4.8h) for scaned mesh—this slower convergence stems
from our 3DGS data’s higher demands, as its richness and photorealism better mirror real-world
complexity. (2) Our scene-rich, photorealistic 3DGS VLN data exhibits strong generalizabil-
ity. Models trained entirely on this data achieve a significant performance improvement (31% SR
increase) over baselines in unseen VLN-CE environments (Krantz et al., 2020), a result driven by
the data’s alignment with real-world scenarios. (3) Our newly proposed three continuity metrics
enable studying navigation’s natural continuity, addressing gaps in conventional metrics. Our
newly designed navigation natural continuity metrics reveal that conventional metrics fail to capture
model issues like continuous collisions and unsmooth motion, for example, in one experiment case,
our ICP (indicating continuous collisions) reaches 0.87, while the traditional collision rate is only 1.
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Figure 2: Overview of SAGE-3D, which consists of two key components: (1) Object-Level Semantic
Grounding, 3DGS data is annotated by expect at the object level, then be transformed into 2D
semantic maps for path planning and instruction generation; (2) Physics-Aware Execution Jointing,
where scene and object collision bodies are generated via convex hull decomposition, integrated into
3DGS to form a 3DGS-Mesh Hybrid Representation, with extensive physics simulation interfaces.
In summary, our contributions are as follows:

• We construct the first large-scale dataset of 1k fully furnished indoor 3DGS reconstructions
with dense object-level annotations, released as InteriorGS.

• We propose SAGE-3D, a new paradigm that augments 3DGS with semantic granularity
and physical validity, transforming it into an executable environment foundation.

• We build SAGE-Bench, a VLN benchmark based on 3DGS with fine-grained semantics,
accurate per-object physical simulation, and rich interfaces for robot embodiments.

• We conduct extensive experiments based on our new paradigm and derive several novel
insights in the VLN domain and validate the superiority of our newly introduced data.

2 SAGE-3D
In this section, we systematically introduce SAGE-3D, a novel embodied learning paradigm based
on 3DGS, as illustrated in Fig. 2. We first provide a formal definition of this paradigm (Section 2.1),
followed by an introduction add fine-grained semantic labels to 3DGS through manual annotation
and the generation of 2D top-down semantic maps (Section 2.2). We then utilize convex hull decom-
position to extract collision bodies and construct a rich physical simulation interface (Section 2.3).

2.1 SAGE-3D PARADIGM

We propose SAGE-3D (Semantically and Physically Aligned Gaussian Environments for 3D Navi-
gation), a new paradigm that uses 3DGS as the environment foundation for training and evaluating
embodied agent. This paradigm upgrades 3DGS, originally used solely for photorealistic ren-
dering, into an executable, semantically and physically aligned environment foundation that
supports continuous Vision-and-Language navigation and related tasks.

Formally, we define SAGE-3D as the process of transforming a Gaussian primitive set G from a
3DGS scene, with added semantics M and physics Φ, into an executable environment:

G + M + Φ −→ Eexec

where G = {gi}Ni=1 is the set of Gaussian primitives, M is the semantic layer (e.g., instance/cate-
gory maps, attributes), and Φ is the physics layer (e.g., collision bodies, dynamics). The resulting
environment can be formalized as a semantics- and physics-augmented POMDP (Partially Observ-
able Markov Decision Process):

E = (U ,S,A,O, T, Z;M,Φ),

where U is the instruction space, S the continuous state space, A the action space, O the multimodal
observation space, and T,Z are physics-driven state transition and rendering functions.

The core goal of this paradigm is to preserve the photorealistic rendering quality of 3DGS while
introducing object-level semantics and physical executability, making 3DGS a viable environment
foundation for training and evaluating embodied agents.

3
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2.2 OBJECT-LEVEL SEMANTIC GROUNDING

Conventional 3DGS encodes appearance (e.g., color, density) but lacks instance IDs or object at-
tributes, limiting precise object-level VLN instructions (Chen & Wang, 2025; Li et al., 2024). To
overcome this, we release InteriorGS, a manually annotated 3DGS dataset with object-level seman-
tics, and introduce a 2D top-down semantic map generator to support instruction generation.

InteriorGS. We construct InteriorGS: a dataset of 1k high-fidelity indoor 3DGS scenes (752 residen-
tial interior scenes and 248 public spaces such as concert halls, amusement parks, and gyms) with
double-verified object-level annotations, including object categories, instance IDs, and bounding
box information. The dataset contains over 554k object instances across 755 categories, providing a
dense, semantically consistent, and broadly diverse foundation for training and evaluation.

InteriorGS’s 3DGS data is sampled from our artist-created mesh scenes. To achieve reliable 3DGS
reconstruction in occlusion-rich indoor environments, we render an average of 3,000 camera views
per scene and use the open-source GSplat pipeline (Ye et al., 2025) to estimate the 3DGS parameters.
The detailed sampling process is provided in Appendix B.

2D Semantic Top-Down Map Generation. Unlike scanned mesh workflows that build NavMesh
(e.g., by exhaustive scene traversal in Habitat) (Song et al., 2025; Krantz et al., 2022), 3DGS lacks
inherent semantics and discrete entities, making such representations infeasible. We therefore design
a 2D semantic top-down map by projecting annotated 3D objects from InteriorGS onto the ground
plane, with doors tagged by state (open / closed / half-open) and walls marked as non-traversable.
Although annotations are stored as axis-aligned 3D boxes, we refine each footprint into an irregular
mask by sampling object surface points, projecting them, and taking a 2D convex hull to optimize:

Mk = Fuse (Hull {Πtop(p) | p ∈ Surf(ok)})

where Mk is the 2D mask for object ok, Surf(ok) is the set of sampled surface points of object
ok, Πtop is the projection onto the ground plane, Hull(·) denotes the 2D convex-hull operator, and
Fuse(·) merges multi-view masks into a consistent footprint.

2.3 PHYSICS-AWARE EXECUTION JOINTING

3DGS with semantics still cannot serve directly as a VLN environment, as it allows issues such as
mesh penetration that hinder embodied learning (Yue et al., 2024). To overcome this, we extract
object-level collision geometry, derive navigable space, and provide a physics simulation interface.

Physics Simulation with 3DGS–Mesh Hybrid Representation. Starting with version 5.0, Isaac
Sim supports rendering 3DGS assets from USDZ files exported by 3DGUT (Wu et al., 2025a).
However, the imported 3DGS are appearance-only and do not carry physics. To enable physically
executable scenes, we take the artist-created triangle meshes of each object and apply CoACD (Wei
et al., 2022) for convex decomposition, yielding per-object collision bodies. We then assemble
a USDA scene where the collision bodies are authored as invisible rigid shapes (driving contact
and dynamics), while the 3DGS file remain visible and provide photorealistic appearance. Con-
cretely, each object is instantiated as a USD prim and augmented with Φk (rigid-body and contact
parameters), where static-scene objects default to static bodies, and a curated subset is configured
as movable or articulated to support extended interactions. This 3DGS–Mesh Hybrid Representa-
tion authoring removes the need to ray trace the artist meshes at runtime, preserves high-fidelity
rendering through 3DGS, and supplies accurate collision geometry for physics.

Agents, Control, and Observations in a Continuous Environment. The simulator exposes robot
APIs for legged and wheeled ground platforms (e.g., Unitree G1 / Go2 / H1) and aerial robots (e.g.,
quadrotor UAVs). Action interfaces support both discrete commands (e.g., turn/forward/stop)
and continuous control—velocity commands (v, ω) for ground robots and 6-DoF velocity/attitude
commands for UAVs—executed in a continuous environment (metric 3D space, no teleportation
between panoramic nodes). The environment provides synchronized RGB, depth, semantic seg-
mentation, poses, and contact events, along with built-in collision detection, stuck/interpenetration
monitoring, and recovery. Offline-generated collision bodies are cached to accelerate loading and
ensure stable, repeatable evaluation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1) Add Object 

Move the book from the table to the bookshelf.

2) Scenario Driven

3) Relative_Relationship

4) Attribute-based

5) Area-based

I'm thirsty, please bring me a drink from the fridge.

Move to the chair next to that table.

Find an empty table in the dining hall.

Walk from here to the kitchen area.

High-level Instruction

Turn left at the end of the bar turn left again and go 
in the room to the right stand.

Low-level Instruction

Task Types

Visual ExplorationVLN

Episode Complexity

1) Scene Complexity

tidy

2) Path Complexity

number of assets

184 376

middle complex

short

legnth of path

8.4 29.0

middle long

Navigation Natural Continuity Metric

1) Continuous Success Ratio

2) Integrated Collision Penalty

3) Path Smoothness

time on 

permissible corridor 

distinguish

occasional contact persistent scraping

the smoother the better

Figure 3: Overview of SAGE-Bench. SAGE-Bench includes a hierarchical instruction generation
scheme, two major task types, two episode complexity categories, and three newly designed natural
continuity metrics for navigation.

3 SAGE-BENCH
In this section, we introduce SAGE-Bench, the first 3DGS-based VLN benchmark, as shown in
Fig. 3. It includes a hierarchical instruction generation scheme (Section 3.1), a three-axis evaluation
framework (Section 3.2), and three navigation natural continuity metrics (Section 3.3).
3.1 DATA GENERATION

Hierarchical Instruction Generation. To address the limitations of current bench-
marks (Zun Wang, 2023), particularly the lack of tasks with causal dependencies such as
“I’m thirsty, get water from the table”, we introduce a hierarchical scheme that combines high-level
semantics with low-level action primitives for more realistic navigation.

We define two levels of instructions: High-level instructions emphasize task semantics and human-
oriented intent, and comprise 5 categories: Add Object (introducing causal objects or actions that
make a trajectory contextually meaningful); Scenario Driven (embedding specific situational mo-
tives that make the destination a reasonable place for execution); Relative Relationship (distinguish-
ing similar nearby targets via spatial relations such as “next to” or “opposite”); Attribute-based
(identifying a unique target using perceivable attributes like color, state, or contents); Area-based
(directing the agent toward a general functional area rather than a specific object). Low-level in-
structions focus on control and kinematic evaluation, including primitive actions such as forward
moves. Detailed design and explanation can be found in Appendix C.

Low-level instructions are created by templating the start and end waypoints. High-level instructions
are generated by feeding an MLLM with a prompt (detailed in Appendix C) constructed from object
categories, attributes, and spatial relations in the 2D semantic map.

Trajectory Generation. Using the collision bodies from Section 2.1, we construct the final navi-
gation map by combining a 1.2 m-height occupancy map with the 2D semantic map. Then we run
A*-based shortest-path search to generate trajectories, more details can be found in Appendix A.

In total, we produce 2M new instruction–trajectory pairs for VLN. We balance the data distribution
and select 1,148 samples to form the SAGE-Bench test split, including 944 high-level and 204
low-level samples across 35 distinct scenes, with the remainder used for training and validation.
3.2 THREE-AXIS EVALUATION FRAMEWORK

SAGE-Bench introduces a three-axis evaluation framework that orthogonally combines task types,
instruction level, and episode complexity into discrete evaluation slices.

Task Types. This axis specifies the task paradigm and input form, considering two fundamental
navigation tasks: VLN and Visual Exploration. Visual Exploration aims to drive the model to ex-
plore the environment as much as possible in order to test policy understanding of the environment
and the safety of exploration. We select 100 scenes as the test set for Visual Exploration.

Instruction Level. This axis measures how semantic and structural complexity affects the model,
and it is aligned with the hierarchical instruction generation scheme described in Section 3.1.

5
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Episode Complexity. This axis quantifies task complexity, covering both scene complexity and
path complexity. Scene complexity primarily refers to asset density: we define scenes with more
than 376 assets as “many” and those with fewer than 184 assets as “few”. Path complexity considers
path length: we define paths longer than 29.0 m as “long” and those shorter than 8.4 m as “short”.
3.3 NAVIGATION NATURAL CONTINUITY METRIC

As a new continuous navigation benchmark, to assess VLN model performance from the perspective
of continuous motion, SAGE-Bench introduces three natural continuity metrics for navigation.

Continuous Success Ratio (CSR). It indicates the fraction of time the agent stays within a permis-
sible corridor around the reference path. SR makes a 0/1 judgment only at the endpoint, whereas
CSR measures the proportion of time the agent stays within a permissible corridor around the refer-
ence path while satisfying task conditions, thus reflecting “goal-consistent” behavior throughout the

episode. Given a trajectory of length T , let s(t) =

{
1, pos(t) ∈ C and task conditions satisfied
0, otherwise

where C is defined by buffering the reference path with radius rtol, then

CSR =
1

T

T∑
t=1

s(t).

Integrated Collision Penalty (ICP). It measures the time-averaged collision intensity along the
trajectory, capturing both the frequency and duration of contacts. Traditional collision rate (CR)
does not distinguish between occasional contact and persistent scraping. ICP integrates the collision
intensity sequence c(t) ∈ [0, 1] over time as a penalty:

ICP =
1

T

T∑
t=1

c(t),

Path Smoothness (PS). It evaluates a normalized smoothness score derived from consecutive
heading-change (or curvature) magnitudes, where higher values indicate smoother paths. Smoother
paths reduce abrupt turns and acceleration changes, benefiting real robot feasibility and stable plan-
ning. PS is computed from the variance of consecutive heading changes:

PS = 1− 1

T − 1

T∑
t=2

min

(
|∆θt|
π

, 1

)
, ∆θt = θt − θt−1,

Here θt denotes the agent’s heading angle at trajectory time step t, and ∆θt is the change in heading
between two consecutive time steps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baseline. Considering the current generalization capability of MLLM models, we conducted eval-
uations on a wide range of models. (1) Closed-source MLLMs as Agent: Includes Qwen-VL-
MAX (Bai et al., 2023), GPT-4.1, GPT-5. (2) Open-source MLLMs as Agent: Qwen2.5-VL-
7B (Bai et al., 2023), InternVL-2.5-8B (Zhu et al., 2025a), InternVL-3-8B (Chen et al., 2024),
Llama-3.2-11B. (3) Vision-Language Models: We selected VLN models that have been widely
used in recent years, including NaviLLM (Zheng et al., 2024), NavGPT-2 (Zhou et al., 2024),
CMA (Krantz et al., 2020), NaVid (Zhang et al., 2024), and NaVILA (Cheng et al., 2025).

Evaluation Metric. (1) For the VLN task. In addition to the three novel metrics we proposed
in Section 3.3 for evaluating the natural continuity of model navigation — CSR, ICP, and PS —
we also adopt common metrics used in VLN tasks, including success rate (SR), oracle success rate
(OSR), and success weighted by path length (SPL) and Collision Rate (CR). (2) For the Visual Ex-
ploration task. There are two metrics: Episode Time and Explored Areas. An episode is terminated
immediately if a collision occurs, and the maximum episode time is set to 120 seconds.

Implementation Details. We selected 500k “trajectory–instruction” pairs from SAGE-Bench,
with no overlap with the test set. We trained two models on this subset: one based on NaV-
ILA’s pre-trained model navila-siglip-llama3-8b-v1.5-pretrain (denoted as NaVILA-base), produc-
ing NaVILA-SAGE; and the other based on Navid’s pre-trained model navid-7b-full-224 (denoted
as NaVid-base), producing NaVid-SAGE. Training details are shown in Appendix A.

6
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Table 2: Comparison of different models on VLN and Visual Exploration tasks on SAGE-Bench.
Bold values represent the best performance across all methods. Gray values indicate that these
metrics lack comparative significance due to the low navigation performance of the models.

Methods VLN (High-level Instruction) Visual Exploration
SR ↑ OSR ↑ SPL ↑ CR ↓ CSR ↑ ICP ↓ PS ↑ Episode Time ↑ Explored Areas ↑

Closed-source MLLMs as Agent
Qwen-VL-MAX 0.14 0.25 0.12 0.85 0.21 0.41 0.79 64.74 6.40
GPT-4.1 0.13 0.21 0.12 0.72 0.19 0.35 0.81 67.70 3.00
GPT-5 0.12 0.18 0.11 0.63 0.18 0.24 0.86 64.60 2.16

Open-source MLLMs as Agent
Qwen2.5-VL-7B 0.13 0.14 0.13 0.71 0.21 0.27 0.87 42.19 6.88
InternVL-2.5-8B 0.10 0.13 0.10 0.52 0.14 0.33 0.88 28.82 4.28
InternVL-3-8B 0.12 0.20 0.11 0.64 0.17 0.32 0.82 34.70 6.34
Llama-3.2-11B 0.13 0.18 0.14 0.74 0.16 0.29 0.83 38.45 6.68

Vision-Language Model
NaviLLM 0.05 0.06 0.05 0.21 0.09 0.24 0.90 18.73 5.74
NavGPT-2 0.10 0.12 0.11 0.33 0.14 0.29 0.83 24.51 3.36
CMA 0.13 0.15 0.14 0.54 0.26 0.28 0.86 44.26 3.22
NaVid 0.15 0.17 0.15 1.24 0.29 0.33 0.89 56.13 4.28
NaVILA 0.39 0.47 0.34 3.28 0.48 0.61 0.68 77.82 8.40

NaVid-base 0.10 0.13 0.10 0.33 0.15 0.28 0.84 20.37 3.42
NaVid-SAGE (Ours) 0.36 0.46 0.32 2.12 0.48 0.66 0.54 60.35 5.66
NaVILA-base 0.21 0.26 0.22 3.53 0.33 0.72 0.41 58.26 6.52
NaVILA-SAGE (Ours) 0.46 0.55 0.48 2.67 0.57 0.54 0.74 82.48 8.74

Table 3: Rendering speed and training convergence comparison.
Environment Type Avg. Render Time / Frame (ms) ↓ Avg. Memory (MB) ↓ Iters to SR=40% (k) ↓ Time-to-SR=40% (hrs) ↓

Scanned Mesh (MP3D/HM3D) 16.7 850 120 4.8

3DGS–Mesh Hybrid Representation (Ours) 6.2 220 160 6.2

Case 1 Case 2 Case 3
CR = 1  ICP = 0.87 PS = 0.42 CR = 1  ICP = 0.65 PS = 0.53 CR = 2  ICP = 0.74 PS = 0.71

Figure 4: Visualization case study of navigation natural continuity. The red trajectory is the ground
truth, and the blue Trajectory is the trajectory of NaVILA.

4.2 RESULTS AND INSIGHTS

Overall Comparison on SAGE-Bench. Tab. 2 presents the experimental results of MLLMs and
VLN models on SAGE-Bench. (1) SAGE-Bench poses a novel and challenging VLN task for
current VLN models and MLLMs. Except for the recent SOTA VLN model NaVILA, other mod-
els achieve SR values no higher than 0.15. For instance, NaVid, which achieves 0.37 SR and 0.49
OSR on VLN-CE R2R Val-Unseen, only obtains 0.15 SR and 0.17 OSR on SAGE-Bench. Simi-
larly, NaVILA, which achieves 0.54 SR and 0.63 OSR on VLN-CE R2R Val-Unseen, records only
0.39 SR and 0.47 OSR on SAGE-Bench. (2) MLLMs’ multimodal understanding inherently
gives them some VLN capability. Both the latest open-source and closed-source MLLMs achieve
VLN SRs ranging from 0.10 to 0.14 on SAGE-Bench, comparable to dedicated VLN models such as
CMA (0.13 SR) and NaVid (0.15 SR), and even surpass VLN models in OSR. For example, the 0.20
OSR achieved by InternVL-3 exceeds that of NaVid (0.17 OSR). Notably, several baseline models
with weak VLN performance (SR < 0.20) fail to understand navigation instructions or environmen-
tal information in our challenging tasks, behaving like “random or single-action prediction” (e.g.,
continuous straight movement), rendering their CR, ICP, and PS metrics non-comparable.
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Table 4: Results on VLN-CE.

Methods R2R Val-Unseen
SR ↑ OSR ↑ SPL ↑

Seq2Seq 0.25 0.37 0.22
Navid-base 0.22 0.32 0.17
Navid-SAGE (Ours) 0.31 0.42 0.29
CMA 0.32 0.40 0.30
NaVid 0.37 0.49 0.36
NaVILA-base 0.29 0.38 0.27
NaVILA-SAGE (Ours) 0.38 0.51 0.36
NaVILA 0.50 0.58 0.45

Table 5: Results on different instruction levels.

Methods Instruction Level SAGE-Bench VLN
SR ↑ OSR ↑ SPL ↑ CSR ↑ ICP ↓ PS ↑

GPT-4.1 Low-level 0.22 0.37 0.19 0.27 0.60 0.70
High-level 0.13 0.21 0.12 0.19 0.35 0.81

InternVL-3-8B Low-level 0.20 0.35 0.18 0.26 0.61 0.69
High-level 0.12 0.20 0.11 0.17 0.32 0.82

NaVid Low-level 0.24 0.42 0.21 0.34 0.63 0.64
High-level 0.15 0.17 0.15 0.29 0.33 0.89

NaVILA Low-level 0.56 0.66 0.50 0.58 0.48 0.75
High-level 0.39 0.47 0.34 0.48 0.61 0.68

Table 6: Impact of the number of scenes and samples
on model performance.

Data in # Train SAGE-Bench VLN
#Scenes #Samples SR ↑ OSR ↑ SPL ↑ CSR ↑ ICP ↓ PS ↑

800 240k 0.42 0.47 0.42 0.50 0.61 0.63
800 120k 0.40 0.43 0.40 0.48 0.62 0.62
800 60k 0.36 0.42 0.38 0.46 0.64 0.58
400 120k 0.34 0.39 0.35 0.44 0.67 0.54
400 60k 0.31 0.37 0.33 0.43 0.67 0.52
400 30k 0.28 0.35 0.31 0.43 0.69 0.49
400 15k 0.25 0.31 0.27 0.39 0.70 0.46
200 60k 0.27 0.33 0.29 0.41 0.70 0.47
100 60k 0.23 0.29 0.26 0.38 0.71 0.44

NaVILA-base 0.21 0.26 0.22 0.36 0.72 0.41
Figure 5: Model performance change
curve (number of scenes vs. sample size).

Insight 1: 3DGS scene data renders faster than scanned mesh data but is harder to converge.
We randomly selected 10k training samples and 1k validation samples from both traditional scanned
mesh data and our 3DGS data, and conducted experiments with the NaVILA-base model on an
NVIDIA H20 GPU. Tab. 3 compares the rendering speed and model convergence between scanned
mesh VLN data and our 3DGS VLN data. The results show that 3DGS scene data achieves a per-
frame rendering time of 6.2 ms and an average memory usage of 220 MB, outperforming the 16.7
ms and 850 MB of scanned mesh data. However, in training, to reach the same 40% SR, the 3DGS-
based model required about 160 iterations and 6.2 hours, while the scanned mesh-based model
needed only about 120 iterations and 4.8 hours. This indicates that although 3DGS scene data offers
faster rendering, it presents greater training difficulty and is relatively harder to converge.

Insight 2: 3DGS scene data exhibits strong generalizability. To evaluate the effectiveness of our
novel 3DGS-based scene data, we tested the NaVILA-SAGE and NaVid-SAGE models, which were
trained solely on our SAGE-Bench dataset, on the VLN-CE benchmark. As shown in Tab. 4, models
trained entirely on SAGE-Bench data (without any VLN-CE data) achieved clear performance im-
provements over their respective baselines. For example, NaVILA-SAGE achieved a 31% relative
SR improvement on R2R Val-Unseen (from 0.29 to 0.38) and a 34% relative OSR improvement
(from 0.38 to 0.51), with similar gains observed for the NaVid model.

Insight 3: Our newly proposed three continuity metrics enable effective study of navigation’s
natural continuity, filling key gaps left by conventional metrics. In Tab. 2, we report results for
our three navigation natural continuity metrics. We observe that CSR is generally higher than SR,
indicating a more inclusive and robust metric that does not require the model to fit the ground-truth
trajectory exactly. For ICP and PS, although NaVILA attains relatively high task completion (0.39
SR, 0.47 OSR), it lacks natural motion continuity: an ICP of 0.61 indicates sustained collisions
during navigation, and a PS of 0.68 reflects large, mechanical turning angles rather than smooth,
natural motion. Additional visual examples in Fig. 4 corroborate this finding: the NaVILA model
(blue trajectory) exhibits unsmooth movement and persistent collisions that conventional metrics
fail to reveal. For instance, in Case 1, the model hugs the wall for a long period, yet the collision
rate CR is only 1, while our ICP reaches 0.87.

4.3 MORE FINDINGS

High-level Instructions vs. Low-level Instructions. Tab. 5 compares the performance of dif-
ferent models on high-level and low-level instructions in the VLN task.Compared with low-level
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Figure 6: Results under Different Evaluation Slice.

instruction data, which are composed of basic step-by-step actions that guide the model gradually
through the task, VLN models perform worse when executing high-level instructions. Even the re-
cent SOTA model NaVILA achieves only a 0.39 success rate on high-level instructions, significantly
lower than its 0.56 success rate on low-level instructions. Notably, high-level instructions, with their
more natural semantics, are closer to real-life scenarios, presenting greater challenges for the future
development of VLN models.
Number of training Scenes vs. Training Sample Size. Tab. 6 and Fig. 5 illustrate the influence of
varying the number of scenes and the number of samples. We observe that increasing the number of
scenes in the training data, while keeping the sample size constant, yields greater performance gains
than merely increasing the number of samples. Specifically, with the same number of augmented
scenes (800), increasing the sampling density progressively improves the VLN model’s performance
on the val-unseen split. Conversely, generating the same number of samples (700k) from a larger
number of environments produces better results. These findings indicate that the number of scenes
(Scenes) has a greater impact than the number of samples (Samples), suggesting that diversity of
environments is more critical for learning VLN.
Results under Different Evaluation Slice. Based on our three-axis evaluation framework, we
further present experimental results in Fig. 6 for different high-level instruction types, trajectory
lengths, and scene complexities. The results show that VLN models perform worse on the “Relative
Relationship” and “Attribute-based” instruction types, with SR scores for both NaVILA and NaVid
more than 2% lower than those for other types. In addition, as trajectory length increases and scene
complexity grows, model performance drops significantly.

5 RELATED WORK

Vision-and-Language Navigation (VLN) was first introduced by (Anderson et al., 2018) on early
Matterport3D-based discrete panoramic graphs, later extended to multilingual / longer-horizon set-
tings by Ku et al. (2020) and remote object grounding by Qi et al. (2020); research shifted to
continuous control with (Krantz et al., 2020) (VLN-CE) on Habitat (Savva et al., 2019), though
mainstream benchmarks still rely on scan-mesh reconstructions (with texture/semantic limitations).
3D Gaussian Splatting (3DGS)—representing scenes efficiently via anisotropic Gaussian primitives
for photorealistic real-time rendering—has been integrated into embodied learning, such as cou-
pling with MuJoCo/Isaac Sim (Jia et al., 2025; Zhu et al., 2025b), adopting dual-representation
(Gaussians for rendering, meshes for collision) (Lou et al., 2025; Wu et al., 2025b), and enhancing
with lighting estimation (Phongthawee et al., 2024); however, native 3DGS lacks object-level se-
mantics, needs cumbersome manual appearance/physics alignment, and struggles with precise VLN
language grounding (Krantz et al., 2020; Savva et al., 2019).

6 CONCLUSION

We presented SAGE-3D, a paradigm that upgrades 3D Gaussian Splatting from a purely perceptual
scene representation to an executable, semantically and physically aligned environment foundation
for embodied navigation. We release InteriorGS, the first large-scale dataset of 1K fully furnished
indoor 3DGS reconstructions with dense object-level annotations, which enables robust semantic
grounding in photorealistic environments. By unifying InteriorGS with a physics-aware execution
layer and a hierarchical instruction-evaluation benchmark, SAGE-Bench, our framework provides
a coherent pipeline from high-fidelity data generation to physically valid evaluation. We expect
SAGE-3D to serve as a foundation for future research in richer multi-step and semantic-aware navi-
gation tasks, interactive manipulation, and broader sim-to-real studies.
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APPENDIX

OVERVIEW

This is the Appendix for the paper “Towards Physically Executable 3D Gaussian for Embodied
Navigation”. In this supplementary material we present:

• The implementation details of trajectory generation and training are provided in Section A.

• The detailed InteriorGS data sampling and construction is described in Section B.

• The more specific explanation of the hierarchical instruction system and prompts are pre-
sented in Section C.

• The comparison of our 3DGS-Mesh Hybrid Representation data with traditional Matterport
3D data is illustrated in Section D.

• The more visualizations of InteriorGS scenes are shown in Section E.

• The visualization of the data distribution of our InteriorGS is presented in Section F.

A IMPLEMENTATION DETAILS

Trajectory Generation. We run A*-based shortest-path search to generate trajectories with a cost
function that integrates free-space distance, narrow-passage penalties, and area preferences to ensure
both obstacle avoidance and task feasibility. To diversify the dataset, start–end pairs are sampled
across different rooms, functional areas, and object instances, and a minimum safety distance is
enforced to avoid overly close viewpoints that would reduce the richness of the visual signal.

Training. We selected 500k “trajectory–instruction” pairs from SAGE-Bench, with no overlap with
the test set. We trained two models on this subset: one based on NaVILA’s pre-trained model
navila-siglip-llama3-8b-v1.5-pretrain (denoted as NaVILA-base), producing NaVILA-SAGE; and
the other based on Navid’s pre-trained model navid-7b-full-224 (denoted as NaVid-base), producing
NaVid-SAGE. Training was carried out on 8 NVIDIA Tesla H20 GPUs with a batch size of 256 and
a learning rate of 2× 10−5. The training data did not include any VLN-CE R2R or RxR samples.

B DETAILED SAMPLING METHOD OF INTERIORGS

To obtain reliable 3D Gaussian Splatting (3DGS) reconstructions in occlusion-rich indoor settings,
we render on average ∼ 3,000 camera views per scene with a ray tracing renderer and estimate
3DGS parameters using the renderer-provided poses via the open-source gsplat pipeline. To
mitigate undersampling, we employ two complementary camera placement policies:

(1) Perimeter-aware floorplan sweeps (“surround”). For each room polygon P , we generate
m inwardly offset polygons {P (j)}mj=1 according to a prescribed distance schedule, and allocate
a global camera budget n across polygons proportionally to their perimeters. Along each P (j),
cameras are uniformly spaced with optical axes aligned to the inward edge normals. At every place-
ment, we instantiate three tangential baselines (left / center / right) and three vertical tiers: outer
tiers—lower at 150mm above the floor pitched +30◦ (up), middle at mid-height with 0◦ pitch, and
upper at 500mm below the ceiling pitched −30◦ (down); interior tiers (j > 1)—heights are inter-
polated between the corresponding outer tiers, with upper tiers pitched −15◦, lower tiers +15◦, and
the middle tier matching the outer middle.

(2) Volume-uniform sampling. We distribute the global camera budget across rooms in proportion
to room volume to favor coverage in smaller compartments, then draw 3D positions via Poisson-
disk sampling for space-filling uniformity. At each sampled position, six cameras with canonical
yaw–pitch templates are instantiated, and a shared small random perturbation is applied to their ori-
entations. Together, these policies emphasize inward-facing, depth-aware viewpoints that broaden
coverage and reduce undersampling-induced 3DGS underfitting.
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To select viewpoints at appropriate distances from mesh surfaces, Figure 7 presents the camera-
sampling outcomes: viewpoints shown in green are retained as the final selections, whereas those in
red are discarded for being too close to the nearest mesh surface (below a safety threshold).

Figure 7: Camera pose sampling across four distinct floorplans. Green markers denote the final
selected camera poses; red markers indicate poses discarded for being too close to the nearest
mesh surface. Red outlines highlight ceiling–wall intersection regions, while white outlines indi-
cate floor–wall intersections.

C HIERARCHICAL INSTRUCTION GENERATION SCHEME

Grounded in 3DGS reconstructions and automatically generated 2D semantic top-down maps, we
design a benchmarking-oriented hierarchical instruction generation scheme to close the gap left by
prior VLN benchmarks that largely focus on low-semantic-granularity directives (e.g., “go from A
to B” or atomic action sequences).

C.1 HIGH-LEVEL INSTRUCTIONS: TASK-SEMANTIC ORIENTED

The most representative subset of High-Level Instructions is Single-Goal Semantic Instructions,
which enriches basic “From A to B“ navigation trajectories with semantic meaning. This subset
addresses the limitation of traditional VLN benchmarks by linking navigation goals to human daily
scenarios, object properties, or spatial relationships. Detailed categories and examples are provided
below:

(1) Add Object This category supplements a logical causal relationship between the start point and
destination by introducing contextually relevant objects, making the navigation trajectory conform
to human daily behavior. Without such causality, a directive like “from the sofa to the bookshelf“
lacks practical meaning; adding a causal object (e.g., “books“) transforms it into a goal-driven task.

• Case1: “Please move the book from the coffee table to the bookshelf in the study.“
• Case2: “Please move the teacup from the coffee table to the bookshelf in the study.“

(2) Scenario Driven This category embeds a specific human-centric scenario or motive, framing
the destination as a reasonable location to fulfill a practical need. The instruction directly reflects
human intentions (e.g., thirst, hunger, rest), enabling the agent to associate navigation with task
utility.

• Case1: “I’m thirsty, please bring me a drink from the fridge.“
• Case2: “I want to rest, please take me to the sofa in the living room.“

(3) Relative Relationship This category defines the target using relative spatial terms to distin-
guish similar or adjacent objects—an essential capability for navigating cluttered environments (e.g.,
multiple chairs, tables). Common spatial terms include “next to,“ “behind,“ “the one on the left,“
“across from,“ and “in front of.“

• Case1: “Move to the chair next to that table.“
• Case2: “Walk to the cabinet across from the fridge in the kitchen.”

(4) Attribute-Based This category describes the target using perceivable, unique attributes to
guide the agent in identifying a specific object among similar candidates. Attributes include color
(e.g., “red”), state (e.g., “open,” “on”), content (e.g., “empty,” “full”), size (e.g., “large”), or decora-
tion (e.g., “with a flower pattern”).
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• Case1: “Find an empty table in the dining hall.”

• Case2: “Turn off the lit table lamp in the bedroom.”

(5) Area-Based This category directs the agent to a general functional area rather than a specific
object, focusing on spatial zones with practical purposes (e.g., cooking, resting, working). This
is particularly useful for scenarios where the exact target object is unspecified but the functional
context is clear.

• Case1: “Walk from here to the kitchen area.”

• Case2: “Navigate to the lounge area in the living room.”

C.2 LOW-LEVEL INSTRUCTIONS: BASIC NAVIGATION & ACTION ORIENTED

Complementing the task-semantic focus of High-Level Instructions, Low-Level Instructions priori-
tize fundamental kinematic control and goal-directed point-to-point navigation without embedding
complex contextual or functional semantics. These instructions serve two core purposes in our
VLN framework: (1) evaluating an agent’s basic motion execution capability (e.g., precise rota-
tion, step control) and (2) providing a foundational navigation substrate for higher-level semantic
tasks—acting as the “execution layer” that translates abstract High-Level goals into concrete move-
ments. Unlike High-Level Instructions that answer “why to navigate,” Low-Level Instructions focus
solely on “how to move” or “where to go (without context).”

Below are the two primary categories of Low-Level Instructions, each tailored to assess distinct
aspects of an agent’s low-level navigation competence:

C.2.1 1. BASE-ACTION: FUNDAMENTAL CONTROL BEHAVIORS

This category consists of goal-free primitive motions that test an agent’s ability to execute basic
locomotor or rotational commands with precision. These actions lack any spatial target (e.g., no
specific object or area to reach) and instead focus on refining motion accuracy— a critical prereq-
uisite for smooth, collision-free navigation in continuous environments. Common Base-Actions
include step-based forward/backward movement and fixed-angle rotation.

• Case1:“Move forward two steps.”

• Case2:“Turn 90 degrees to the right in place.”

• Case3:“Turn 180 degrees to the left in place.”

• Case4:“Move backward one step.”

C.2.2 2. SINGLE-GOAL: POINT-TO-POINT NAVIGATION

This category defines targeted point-to-point navigation tasks without additional semantic con-
text—focusing solely on guiding the agent from a start location to a predefined end location. The
end location can be a room, object, or functional zone, and the instruction is structured as a direct
“go from X to Y” directive (or simplified to “go to Y” when the start location is implicit). This
category is further subdivided based on the type of start and end targets, covering common indoor
navigation scenarios:

• Room-to-Room: Navigate between two functional rooms. Case1:“Walk to the bedroom.”
Case2:“Go from the kitchen to the living room.”

• Room-to-Object: Navigate from a room to a specific object within (or outside) the room.
Case1:“Walk to the sofa in the living room.” Case2:“Go from the study to the chair on the
balcony.”

• Object-to-Object: Navigate between two distinct objects. Case1:“Walk from the table to
the door.” Case2:“Go from the fridge to the dining table.”

• Object-to-Room: Navigate from a specific object to a target room. Case1:“Go from the air
conditioner to the kitchen.” Case2:“Walk from the desk to the bedroom.”
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• Zone-to-Zone: Navigate between two functional sub-zones within a larger space.
Case1:“Walk from the center of the kitchen to the sink area.” Case2:“Go from the TV
area in the living room to the window.”

These Single-Goal Low-Level Instructions are critical for benchmarking an agent’s spatial ground-
ing ability (e.g., recognizing “bedroom” or “sofa” as navigation targets) without the confounding
effects of semantic context, making them ideal for initial model training or control-focused evalua-
tions.

C.3 PROMPT FOR TRAJORIES TO INSTRUCTIONS

Prompt for Instruction Generation

You are a specialized data annotator for robotics.

Your mission is to act as a human providing natural language
instructions for a home or service robot. You will generate a diverse
set of human-centric navigation instructions (of INSTRUCTION TYPE
‘‘High-Level-Deliver’’) based on a symbolic TEXT MAP, STARTING POINT,
and END POINT.
You need to generate at least 2--4 instructions for each of the seven
INSTRUCTION TYPES defined below, ensuring variety and diversity.

⟨Input⟩
1. TEXT MAP: A textual description of an environment, including

named areas, objects, and their unique IDs (e.g., Bar counter 0,
chair 5). This map is the single source of truth.

2. STARTING POINT: The starting point of the trajectory,
represented by an Object ID (e.g., chair 5).
Example: ‘‘starting point’’: ‘‘chair 5’’

3. END POINT: The endpoint of the trajectory, represented by an
Object ID (e.g., sofa 0).
Example: ‘‘end point’’: ‘‘sofa 0’’

<Task>
Generate multiple natural language instructions for a trajectory from
the STARTING POINT to the END POINT (an optimal short path obtained
via A*). Use the TEXT MAP to understand the environment.
Generate at least 2--4 instructions for each of the INSTRUCTION TYPES
below, ensuring diversity.

<Principles>

1. Don’t Embellish or Exaggerate: You do not know the intermediate
path points or turns. Do not invent waypoints (e.g., \pass
through desk 2") or directional commands (e.g., \turn left")
unless explicitly stated in the map.

2. NEVER Use Internal IDs: Never include object IDs like chair 5.
Instructions must be understandable to someone without the map.

3. Stay Grounded in the Map: Do not invent objects, properties, or
spatial relationships not described or reasonably inferable from
the TEXT MAP.

4. Be Natural and Concise: Use everyday language. Keep
instructions between 5{20 words. Avoid robotic or overly formal
phrasing.

5. Be Creative and Diverse: Vary sentence structure, vocabulary,
and perspective. Small wording changes should yield
meaningfully different instructions.

6. Avoid Repetition: Within each type, ensure instructions are
semantically distinct|not just synonyms or minor rewordings.
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7. Ensure Executability: Every instruction must be actionable
using only the provided map.

8. Strictly Adhere to Types: Each instruction must clearly match
its assigned type definition.

<Instruction Types>

1. Add Object
Description: Adds a reasonable causality object (e.g., an
object to carry) to justify the movement.
Examples:

2. ‘‘Please move the book from the coffee table to the bookshelf in
the study.’’

3. ‘‘Please move the teacup from the coffee table to the bookshelf
in the study.’’

4. Scenario Driven
Description: Embeds the instruction in a human-centered
scenario or goal.
Example: ’’I’m thirsty, please bring me a drink from the
fridge.’’

5. Relative Relationship
Description: Uses relative spatial terms (e.g., ‘‘next to’’,
’’behind’’, ‘‘the one on the left’’) to identify the target.
Example: ’’Move to the chair next to that table.’’

6. Attribute-based
Description: Describes the target using perceivable attributes
(e.g., empty, with a vase, near a window).
Example: ‘‘Find an empty table in the dining hall.’’

7. Area-based
Description: Directs the robot to a functional area rather than
a specific object.
Example: ’’Walk from here to the kitchen area.’’

<Output Format>
For each instruction type, generate 2--4 diverse instructions. Output
as a JSON array:

[
{
‘‘instruction_type’’: ‘‘Add_Object’’,
‘‘start’’: ‘‘[provided_starting_object_id]’’,
‘‘end’’: ‘‘[provided_end_object_id]’’,
‘‘generated_instruction’’: ‘‘[instruction_text]’’

},
{

‘‘instruction_type’’: ‘‘Area-based’’,
‘‘trajectory_id’’: ‘‘[provided_id]’’,
‘‘start’’: ‘‘[provided_starting_object_id]’’,
‘‘end’’: ‘‘[provided_end_object_id]’’,
‘‘generated_instruction’’: ‘‘[instruction_text]’’

},
...

]

D COMPARISON OF OUR DATA WITH MATTERPORT3D

In this section, we compare our 3DGS-Mesh Hybrid Representation with traditional Matterport3D
data. As shown in Fig. 8, Matterport3D’s mesh, derived from scanning, exhibits clear boundary
ambiguity and object interpenetration, whereas our data uses collision bodies from the original mesh
via convex decomposition, representing the ground truth. Rendered RGB images also show that our
data is more photorealistic.
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Matterport 3D Estimated Mesh

Matterport 3D Rendering Scene

Our Ground Truth Mesh

Ours High-quality Rendering Scene

Figure 8: Comparison of Our data with Matterport3D.

E MORE VISUALIZATION OF INTERIORGS

This section presents additional InteriorGS scenes. As shown in Fig. 9, these scenes are highly
detailed and photorealistic, demonstrating the high quality of our indoor data. We anticipate that
InteriorGS will become a foundation for future embodied learning research.

Figure 9: More Visualization of InteriorGS.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 10: Distribution of non-home scenes of
InteriorGS.

Figure 11: Distribution of assets of InteriorGS.

F DISTRIBUTION OF DATA FROM OUR INTERIORGS

In this section, we further detail InteriorGS’s data distribution. Fig. 10 presents the distribution
of 244 non-home scenes, categorized by function into Services, Office, Retail, Entertainment, and
Fitness; Fitness has the fewest scenes, while the others are similarly distributed. Fig. 11 shows
the asset distribution, including Furniture, Lighting, Food & Drinks, Daily Items, Decorations, and
Others; books within Others are the most numerous assets.
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