
Published at the Workshop on Understanding Foundation Models at ICLR 2023

EMPIRICAL ANALYSIS OF THE STRENGTHS AND
WEAKNESSES OF PEFT TECHNIQUES FOR LLMS

George Pu, Anirudh Jain, Jihan Yin & Russell Kaplan
Scale AI
{george.pu,anirudh.jain,jihan.yin,russell.kaplan}@scale.com

ABSTRACT

As foundation models continue to exponentially scale in size, efficient methods of
adaptation become increasingly critical. Parameter-efficient fine-tuning (PEFT),
a recent class of techniques that require only modifying a small percentage of the
model parameters, is currently the most popular method for adapting large lan-
guage models (LLMs). Several PEFT techniques have recently been proposed
with varying tradeoffs. We provide a comprehensive and uniform benchmark of
various PEFT techniques across a representative LLM, the FLAN-T5 model, and
evaluate model performance across different data scales of classification and gen-
eration datasets. Based on this, we provide a framework for choosing the optimal
fine-tuning techniques given the task type and data availability. Contrary to pop-
ular belief, we also empirically prove that PEFT techniques converge slower than
full tuning in low data scenarios, and posit the amount of data required for PEFT
methods to both perform well and converge efficiently. Lastly, we further optimize
these PEFT techniques by selectively choosing which parts of the model to train,
and find that these techniques can be applied with significantly fewer parameters
while maintaining and even improving performance.

1 INTRODUCTION

As large language models become widely adopted, efficient training and deployment become critical
requirements for enabling widespread usage. Each task that an LLM is fine-tuned on requires an
entirely different set of weights. When models scale to hundreds of billions of parameters, hosting
a different set of weights for each model becomes widely inefficient and cost prohibitive while
reloading all the weights for different tasks is too slow. Parameter-efficient fine-tuning techniques
aim to solve this problem by modifying a very small portion of weights relative to the full model
size while keeping the rest of the model frozen (Mao et al., 2021).

At inference time, many adaptations of the same model can be served together by quickly swapping
tiny submodules rather than all the weights. The current landscape of PEFT techniques is rapidly
evolving and several PEFT techniques have recently been proposed – each claiming to have advan-
tages over the others in varying capacities. However, given that these techniques have each been
evaluated in a silo on different models and datasets, it is unclear when to appropriately utilize one
technique over another. This work seeks to provide a framework for evaluating how to effectively
utilize PEFT by empirically evaluating which technique works well in what task types and how these
techniques scale with data. Further, through an ablation study, our work seeks to understand which
parts of the model are most important to train for a given task type and technique, leading to even
more efficient adaptation and reduced parameter count. Our key contributions are:

1. Conducting a thorough comparison and analysis of the current state-of-the-art PEFT
methods on the FLAN-T5 model across different data sizes and task types (genera-
tion/classification), evaluating a variety of dimensions including accuracy, convergence
speeds and other relevant metrics.

2. Performing ablation studies to better understand the relative importance of updating var-
ious parts of the model when adapting LLMs, considering layer ordering and submodule
granularities, and further optimizing PEFT techniques to reduce the number of trained pa-
rameters and ultimately improve efficiency.

1



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Figure 1: Total run time of experiments normalized (PEFT time / full tune time) with different PEFT
techniques across both low-resource (left) and medium-resource (right) scenarios. We limit high-
resource experiments to one epoch, thus exclude these results. Also, we perform early stopping in
all experiments where the stop criteria is defined by validation loss no longer decreasing.

2 BACKGROUND AND METHODOLOGY

We provide background on large language models and parameter-efficient fine-tuning in appendix
A.1 and detail the principles guiding our selection of methods and models in appendix A.2. Our
experimentation centers on the FLAN-T5-XL model, and we explore the efficacy of four different
fine-tuning techniques - LoRA, (IA)3, prompt tuning, and BitFit - and compare their performance
against a fully fine-tuned model trained on identical train/val/test splits. We conduct a comprehen-
sive evaluation of the parameter-efficient fine-tuning (PEFT) methods and establish a framework to
facilitate selection of the most appropriate technique in any given scenario.

To further optimize and improve upon existing PEFT techniques, we investigate which parts of the
model are most important during fine-tuning. Compared to BitFit and prompt tuning, we conduct
an ablation study with LoRA and (IA)3 due to their configuration flexibility (e.g. attention blocks,
dense layers, modified transformer layers). We analyze the effects of LoRA and (IA)3 across which
layers to apply the PEFT technique (e.g. early vs later vs random) and the impact of dropping out
specific submodules, such as attention vectors and layer activations.

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Emulating current industry scenarios, we decided to evaluate the models against a variety of clas-
sification and generation datasets and a variety of data scales. For classification, we select AG
news (Zhang et al., 2015), which has four classes and over 100,000 samples, and CoLA (Warstadt
et al., 2019), which has two classes and around 10,000 samples. For generation, we select the E2E
dataset (Novikova et al., 2017), which is in the restaurant domain with 50,000 samples, and SAM-
Sum (Gliwa et al., 2019) for abstractive dialogue summarization with around 15,000 samples. To
unify these experiments across datasets, we select three data scales: low-resource (at most 100
data points), medium-resource (at most 1,000 data points), and high-resource (at most 10,000 data
points). Hyperparameters and implementation specifics are listed in appendix A.3.

3.2 ANALYSIS OF PEFT TECHNIQUES

PEFT techniques are slower to converge than full tuning in low/medium-resource scenarios. In
Figure 1, we surprisingly observe that full tuning consistently converges faster than PEFT techniques
and results in higher model performance, except for with BitFit on CoLA in the medium-resource
split. In low-resource, we observe that full tuning has a speedup of 73% on AG News, 87% on
CoLA, 66% on E2E NLG, and 60% on SAMSum. In medium-resource, we observe that full tuning
has a speedup of 46% on AG News, 16% on CoLA, 37% on E2E NLG, and 64% on SAMSum.
Specific values are listed in Table 4. These results suggest that for lower-resource datasets, if we
prioritize training speed and less on hardware constraints, full tuning is a better option. However,

2



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 1: Benchmarking FLAN-T5 across data splits, measuring accuracy (exact string-match) for
AG News/CoLA and ROUGE-L (longest common subsequence) for E2E NLG/SAMSum, where
higher values are better.

PEFT/Dataset AG News CoLA E2E NLG SAMSum

Full Tuning (low) 0.8588 0.699 0.46464 0.3876
(IA)3 (low) 0.67 0.6973 0.29508 0.32924
LoRA (low) 0.8612 0.76436 0.48257 0.41197
BitFit (low) 0.8808 0.7203 0.48825 0.41914
Prompt Tune (low) 0.60684 0.68199 0.0258 0.00472

Full Tuning (med.) 0.9212 0.79119 0.46523 0.40908
(IA)3 (med.) 0.9208 0.78161 0.48483 0.43183
LoRA (med.) 0.9148 0.81418 0.48364 0.43283
BitFit (med.) 0.9156 0.78736 0.48539 0.42822
Prompt Tune (med.) 0.7312 0.76245 0.44173 0.3792

Full Tuning (high) 0.934 0.81417 0.48051 0.43356
(IA)3 (high) 0.9252 0.80842 0.4789 0.43998
LoRA (high) 0.9264 0.83333 0.4756 0.43485
BitFit (high) 0.9192 0.8295 0.47973 0.43098
Prompt Tune (high) 0.872 0.80567 0.45942 0.3914

it is interesting that most PEFT methods actually converge faster when there is more data available.
We hypothesize that this is because, at lower data quantities, full tuning quickly learns and overfits to
the smaller dataset while PEFT methods learn unstably, whereas, at higher data sizes, PEFT methods
are more stable and better learn the underlying data structure.

We benchmark a mixed bag of results where no obvious PEFT method performs best, but given
data volume, there is a clear decision framework between full tuning and PEFT. From Table 1,
no optimal fine-tuning method exists based on the task, but there are specific scenarios where one
method is much better. For example, BitFit and LoRA perform the best in low/medium-resource
scenarios, and full tuning increases in relative performance as we increase the amount of data to
higher samples. There exists a clear distinction between speed and performance, where PEFT has
worse speed but better performance in low-resource and the inverse holds as data scales.

Given the mixed results, we provide additional analysis on LoRA, (IA)3 and BitFit across time
and space dimensions to provide a holistic framework for choosing the optimal fine-tuning method.
In addition, we benchmark these results against the full tuning baselines. Table 5 gives a sense of
what is the most memory-efficient method during training and for downstream applications. Table 6
gives a sense of what is the most cost-efficient method with respect to hardware consumption. We
calculate the values by dividing the performance results in Table 1 by either the number of tunable
parameters or total run time in seconds.

To summarize our findings for different resource-constrained scenarios, we recommend full tuning
across low/medium data splits and PEFT techniques in high-resource for time-constrained scenar-
ios. For memory-constrained scenarios, we observe that BitFit and (IA)3 perform best in low-
resource scenarios, and (IA)3 performs best in medium/high-resource scenarios. For performance-
constrained scenarios, we recommend (IA)3, LoRA or BitFit for low/medium-resource and full
tuning in high-resource. In addition, (IA)3 uses element-wise matrix multiplication and has the
least memory overhead of the other methods because we can multiply the model weights with (IA)3

vectors so there is no need to add or store additional parameters. Lower-resource scenarios are most
common in production use cases, and if the amount of data samples is very small, prompt engineer-
ing or in-context learning are viable alternatives.

3



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 2: Ablations across specific subcomponents for discovering important factors towards per-
formance on downstream tasks. Accuracy for classification and ROUGE-L for generation, where
higher values are better.

PEFT/Dataset AG News CoLA E2E NLG SAMSum

(IA)3 (all layers) 0.9208 0.78161 0.48483 0.43183
LoRA (all layers) 0.9148 0.814176 0.48364 0.43283
(IA)3 (select early layers) 0.60 0.6877 0.462 0.4154
LoRA (select early layers) 0.9104 0.70306 0.4823 0.43462
(IA)3 (select later layers) 0.9212 0.7796 0.48550 0.4128
LoRA (select later layers) 0.8892 0.82183 0.48553 0.43028
(IA)3 (select 50% random layers) 0.918 0.74712 0.40 0.416
LoRA (select 50% random layers) 0.9096 0.78735 0.4834 0.43109
LoRA (drop self-attention) 0.8928 0.7107 0.48055 0.415
LoRA (drop enc/dec-attention) 0.9164 0.8007 0.47966 0.43218
LoRA (drop query/output attention) 0.9152 0.8084 0.4815 0.43459
(IA)3 (drop attention) 0.6972 0.7413 0.40 0.2359
(IA)3 (drop dense activation) 0.918 0.7643 0.481544 0.4292

3.3 ABLATION RESULTS

Performance degradation with selective module adaptation affects (IA)3 more, whereas LoRA
is more robust. We are able to show that parameter count can be reduced by 50% while maintaining
performance, leading to a more efficient and adaptable model. Interestingly enough, our ablation
results have higher downstream performance than the LoRA or (IA)3 applied to all layers. Perfor-
mance degradation is quite negligible with reduced parameters, showing that we can further reduce
the number of parameters to less than the original techniques suggested (e.g. PEFT random or later
layers).

Attention is critical in classification and generation tasks and is especially true for (IA)3 com-
pared to LoRA. Dropping self-attention hurts LoRA in classification tasks more compared to re-
moving query/output vectors and encoder-decoder attention. For models that performed equivalent
to the full technique, we were able to reduce parameters by at least half and include the parameter
counts per variation in Table 3.

Adapting earlier layers does poorly compared to later or random layers in (IA)3. In the later
or random layer selection, performance is much better in (IA)3 compared to modifying early layers.
The ablation that performs best with the minimum number of parameters is selecting and PEFT-ing
the later layers. These findings align with the importance of modifying later representations, similar
to transfer learning paradigms.

4 CONCLUSION

In this paper, we benchmark LLMs across several dimensions, develop an understanding of where
LLM PEFT techniques should be adapted, and provide a framework on choosing the optimal tech-
nique. On our baselines, we find that PEFT methods generally perform better on low/medium-
resource levels compared to fully supervised fine-tuning, but are slower to converge. On our ab-
lations, we discover the importance of attention-level modifications and selecting later layers in
downstream performance. We can further prune and optimize LoRA to even smaller degrees with
module/layer-specific granularities, increasing its adaptability without sacrificing performance.

No method is strictly better, but we aim to establish empirical guidelines for which fine-tuning
methods to use for downstream tasks based on recommendations in 3.2 and 3.3. The efficiency-
performance tradeoff depends on each use case, but we empirically prove that there are significant
parameter reductions that can be made on top of the original PEFT techniques without impacting
model performance. This study provides a comprehensive analysis of PEFT methods and further
optimization opportunities to make applying these techniques more systematic and approachable.

4



Published at the Workshop on Understanding Foundation Models at ICLR 2023

REFERENCES

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autore-
gressive language model. arXiv preprint arXiv:2204.06745, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and Shangsong Liang. Revisiting parameter-efficient
tuning: Are we really there yet? arXiv preprint arXiv:2202.07962, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng Ding, Liying Cheng, Jia-Wei Low, Lidong
Bing, and Luo Si. On the effectiveness of adapter-based tuning for pretrained language model
adaptation. arXiv preprint arXiv:2106.03164, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
ing. arXiv preprint arXiv:2205.05638, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Almahairi, Hao Ma, Jiawei Han, Wen-tau Yih, and
Madian Khabsa. Unipelt: A unified framework for parameter-efficient language model tuning.
arXiv preprint arXiv:2110.07577, 2021.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The e2e dataset: New challenges for end-
to-end generation. arXiv preprint arXiv:1706.09254, 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

5



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3505–3506, 2020.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100, 2022.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

6



Published at the Workshop on Understanding Foundation Models at ICLR 2023

A APPENDIX

A.1 BACKGROUND AND RELATED WORK

Large language models (LLMs) have exploded in popularity recently, across many different Trans-
former architectures and optimization techniques. Within the LLM landscape, models are either
discriminative or generative, where the former learns the decision boundaries and the latter models
the distribution of classes. Devlin et al. (2018) introduced BERT, a discriminative model, comprised
of encoder networks optimized on masked language modeling and next sentence prediction. Other
variants are RoBERTA and ALBERT (Liu et al., 2019; Lan et al., 2019). Generative models also
exist for decoder-only variants like GPT (Brown et al., 2020), GPT-neo (Black et al., 2022), and
BLOOM (Scao et al., 2022), and encoder-decoder variants such as T5 and T0 (Raffel et al., 2020;
Sanh et al., 2021). Instruction fine-tuning has also garnered recent interest, being applied in FLAN-
T5 and FLAN-PaLM (Wei et al., 2021; Chung et al., 2022). However, these models are comprised
of billions of parameters, making them costly to train and serve.

Parameter-Efficient Fine-Tuning (PEFT) For more efficient training and serving, PEFT tech-
niques are growing in popularity due to their ability to be rapidly adapted and trained. Within the
PEFT landscape, there are several architectural design choices on where the additional (sub)modules
should be attached to the pre-trained language model, which varies on modifying either the under-
lying model, features and parameters. Some recent work includes adapter layers, which modify
the transformer layer by adding new feedforward layers that comprise of a down-projection, non-
linearity and up-projection (Houlsby et al., 2019). On the feature level, Lester et al. (2021) introduce
prompt tuning, which prepends soft prompts to the input text. On the parameter level, Hu et al.
(2021) introduce LoRA, which adapts the attention weights (query, key, value, and output vector).
Similarly, (IA)3 modifies the key and value attention weights along with feedforward activation
with element-wise multiplication (Liu et al., 2022).

These methods generally involve freezing the underlying model, but other techniques arise in which
only a portion of the LLM is changed. For example, Zaken et al. (2021) hypothesize that fine-tuning
exposes knowledge induced by LM training and introduce BitFit, which fine-tunes the bias terms
of the model. Prior work also demonstrates the importance and robustness of adapter-based tuning
during fewer data scenarios, while being less sensitive to learning rate (He et al., 2021). In addition,
Chen et al. (2022) performed a PEFT evaluation with RoBERTa and found better performance of
these techniques on fewer data tasks, the importance of fine-tuning and pitfalls of prefix tuning. We
aim to extend these findings with larger models (from hundreds of millions to billions of parameters)
and incorporate (IA)3 within our benchmark.

A.2 DESIGN CHOICES

Design choices were based on industry-needs and common practices for deploying parameter-
efficient fine-tuning strategies with DeepSpeed inference. We wanted to explore PEFT methods
while exploring breadth of architectural changes and maintaining depth in evaluating to understand
the respective method/effects across our downstream use cases. During our model exploration pe-
riod, we ran initial experiments across various model sizes along with autoregressive models, such
as GPT-Neo, BLOOM and T5 variants. We found noticeably worse performance with other models
compared to FLAN-T5 across all datasets and metrics, so we choose FLAN-T5 as a representative
LLM.

Due to compute and cost constraints, we were unable to perform our experiments across the entire
set of model architectures and sample variance across multiple trials. However, we were able to
validate the small impact of variance attributable across our initial experiments and encoder-decoder
and decoder architectures, such as GPT-Neo and T5 variants. Empirically, when we ran these ex-
periments twice on different random seeds, the convergence and performance trends were similar.
Also, we ensure the same val/test sets with a random seed value and cap the size to 2500 samples
across both splits. To maintain similar step updates, we limit low-resource to 10 epochs, medium-
resource to 5 epochs and high-resource to one epoch while also incorporating early-stopping with
model loss on the validation set. Given the randomized data splits, some dataset benchmarks may
include mixed results due to randomness, but we ensure all methods are evaluated on the same splits.

7



Published at the Workshop on Understanding Foundation Models at ICLR 2023

We implement LoRA, (IA)3, prompt tuning and BitFit and benchmark against a fully fine-tuned
model on the same train/val/test splits. All these PEFT techniques modify less than 1% of the
model’s parameters, and due to memory constraints, we use a fixed set of configurations for each
PEFT method and model hyperparameters based on best practices. We choose these PEFT tech-
niques because they focus on different levels of architecture adaptation, such as at the parameter
level with LoRA and (IA)3, feature level with prompt tuning, and model level with BitFit. Im-
plementation specifics are in the next section. On the practical side, (IA)3 is easier to implement
than BitFit for most models due to optimization libraries like DeepSpeed fusing inter-transformation
operations together (Rasley et al., 2020), making it harder to decouple the bias term.

A.3 HYPERPARAMETERS AND IMPLEMENTATION SPECIFICS

We use the HuggingFace Transformer’s package to implement our FLAN-T5-XL model, along with
initially evaluating model sizes and decoder architectures with the GPT-Neo and GPT-J models. For
optimization, we use the LambdaLR learning rate scheduler with AdamW optimizer, which requires
specifying an initial, warmup and linear annealing learning rate. In addition, we use 16 batch size
with a gradient accumulation size of 4. We run all of our experiments with 4 A10s using model
parallelism.

For the PEFT hyperparameters, we follow prior art in configuring the default hyperparameters across
model architectures and PEFT techniques. Due to time and memory constraints, we use one fixed
set of hyperparameters for all our low/medium/high-resource experiments across dataset types. For
prompt tuning, the authors found 20-100 prompt tokens worked best, and we opted for 100 during
adaptation. For LoRA, we follow the original paper with a dimension rank of 2, and (IA)3 initializes
the scaling term to one. BitFit is dependent on the specific layer’s output features and is initialized as
a tensor of zeros. In prompt tuning, we modify the input embeddings to support continuous/soft em-
beddings prepended to the input text. In LoRA and (IA)3, we follow Liu et al. (2022) in morphing
the LoRA matrix-multiplication adaptation in attention blocks to also support element-wise scaling
for (IA)3 to rescale the key and values in attention mechanisms. We differentiate the submodules,
such as T5’s ”EncDecAttention”, ”SelfAttention” and ”DenseReluDense” blocks. For BitFit, we
adapt all bias terms in the linear layers to require gradients.

Given our compute and cost constraints, we use hyperparameters from prior work, which have all
performed hyperparameter search for optimal and general values. More information can be found in
the FLAN-T5, prompt-tuning, (IA), LoRA and BitFit papers in the references. For full fine-tuning,
we set the initial LR to 3e−5, warmup LR to 3e−4, and annealing LR to 3e−5. For LoRA, (IA)3

and BitFit, we set the initial LR to 3e− 4, warmup LR to 3e− 3, and annealing LR to 3e− 4. For
prompt tuning, we set the initial LR to 3e− 3, warmup LR to 3e− 1, and annealing LR to 3e− 2.

A.4 PARAMETER COUNTS OF PEFT TECHNIQUES AND ABLATION STUDY

For the parameter count of baselines, we use the FLAN-T5-XL model, which has 2,849,757,184
model parameters. Given our implementation specifics, the (IA)3 method has 933,888 parameters.
The LoRA method has 3,538,944 parameters. Prompt tuning has 204,800 parameters and scales
in n * h, where h is the hidden state size and n is the length of the prefix. Lastly, BitFit modifies
1,179,648 parameters. As a result, all these methods use a small fraction of the total parameter
weights. Also, we include information on specific parameter counts on our ablation experiments in
Table 3, which vary based on the particular subcomponent modified (e.g. layers).

8



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 3: Parameter count across ablation variants, including (IA)3 and LoRA applied on the full
layers/modules.

Ablation Technique Parameter Count

Total Parameters (no PEFT) 2849757184
(IA)3 (full layers/modules) 933888
LoRA (full layers/modules) 3538944
(IA)3 (select early layers) 466944
LoRA (select early layers) 1769472
(IA)3 (select later layers) 466944
LoRA (select later layers) 1769472
(IA)3 (select random layers) 466944
LoRA (select random layers) 1769472
LoRA (drop self-attention) 1179648
LoRA (drop enc/dec-attention) 2359296
LoRA (drop query/output attention) 1769472
(IA)3 (drop attention) 344064
(IA)3 (drop dense activation) 589824

A.5 ADDITIONAL RESULTS

In our benchmark, we analyze different results that are mentioned in Section 3.2. Table 4 refers to
the exact numbers used in calculating exact convergence times from Figure 1. In addition, we supply
the tables used in determining the fine-tuning framework dependent on the number of parameters
used and total convergence time based on early stopping with validation loss. Given that prompt
tuning performs noticeably worse than the other PEFT techniques, we exclude these results from
comparisons.

Table 4: FLAN-T5 convergence table across epochs and total run time (in seconds), where lower
values are better. Low refers to low-resource, whereas medium refers to medium-resource data
splits. We limit high-resource experiments to one epoch, thus exclude these results.

PEFT/Dataset AG News CoLA E2E NLG SAMSum

Full Tuning (low) Ep. 4; 1249 Ep. 2; 89 Ep. 3; 2845 Ep. 3; 1951
(IA)3 (low) Ep. 9; 6130 Ep. 9; 725 Ep. 9; 6307 Ep. 9; 4096
LoRA (low) Ep. 5; 3146 Ep. 6; 687 Ep. 9; 9897 Ep. 9; 6758
BitFit (low) Ep. 8; 2738 Ep. 7; 349 Ep. 9; 9426 Ep. 9; 5385
Prompt Tune (low) Ep. 7; 6797 Ep. 9; 1124 Ep. 4; 8609 Ep. 3; 3340

Full Tuning (med.) Ep. 2; 1782 Ep. 2; 608 Ep. 3; 3877 Ep. 1; 2089
(IA)3 (med.) Ep. 4; 2565 Ep. 3; 537 Ep. 4; 5731 Ep. 3; 4234
LoRA (med.) Ep. 3; 3303 Ep. 3; 1231 Ep. 3; 7185 Ep. 4; 5627
BitFit (med.) Ep. 3; 2027 Ep. 3; 507 Ep. 4; 5712 Ep. 4; 4101
Prompt Tune (med.) Ep. 2; 5338 Ep. 2; 652 Ep. 3; 6152 Ep. 2; 2681

9



Published at the Workshop on Understanding Foundation Models at ICLR 2023

Table 5: Measuring the relation of accuracy and parameters tuned with each PEFT technique against
our full tuning baselines. Performance (accuracy or ROUGE-L) is divided by the number of tunable
parameters of each experiment, normalized to each hundred thousand parameters used.

PEFT/Dataset AG News CoLA E2E NLG SAMSum

Full Tuning (low) 3.01E-05 2.45E-05 1.63E-05 1.36E-05
(IA)3 (low) 0.0717 0.0746 0.03159 0.03525
LoRA (low) 0.0243 0.0216 0.0136 0.01164
BitFit (low) 0.0746 0.06106 0.04139 0.03553

Full Tuning (med.) 3.23E-05 2.77E-05 1.63E-05 1.44E-05
(IA)3 (med.) 0.0985 0.0836 0.05191 0.04624
LoRA (med.) 0.0258 0.023 0.01366 0.01223
BitFit (med.) 0.07761 0.06674 0.04118 0.0363

Full Tuning (high) 3.28E-05 2.86E-05 1.69E-05 1.52E-05
(IA)3 (high) 0.0991 0.0865 0.05128 0.04711
LoRA (high) 0.0262 0.0235 0.01343 0.01228
BitFit (high) 0.0779 0.0703 0.04066 0.03643

Table 6: Measuring the relation of accuracy and total run time with each PEFT technique against
our full tuning baselines. Performance (accuracy or ROUGE-L) is divided by the the total run time
of each experiment (in minutes).

PEFT/Dataset AG News CoLA E2E NLG SAMSum

Full Tuning (low) 0.04125 0.47124 0.0098 0.0119
(IA)3 (low) 0.00597 0.05771 0.0028 0.00482
LoRA (low) 0.01592 0.0583 0.0029 0.00365
BitFit (low) 0.0193 0.12383 0.0031 0.00467

Full Tuning (med.) 0.03205 0.07807 0.00719 0.01174
(IA)3 (med.) 0.02139 0.08733 0.00507 0.00612
LoRA (med.) 0.01662 0.03968 0.00403 0.00461
BitFit (med.) 0.0271 0.09317 0.00509 0.00626

10


	Introduction
	Background and Methodology
	Experiments
	Experiment Setup
	Analysis of PEFT Techniques
	Ablation Results

	Conclusion
	Appendix
	Background and Related Work
	Design Choices
	Hyperparameters and Implementation Specifics
	Parameter Counts Of PEFT Techniques and Ablation Study
	Additional Results


