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ABSTRACT

We propose a trainable module termed Unitention, an abbreviation for universal-
individual cross-attention, to improve deep features of a given neural network by
attending the feature of a data sample to those of the entire dataset. This innova-
tion is motivated by two key observations: (i) traditional visual encoding methods,
such as Bag of visual Words, encode an image by using a universal dataset-wide
codebook, while (ii) deep models typically process every individual data sample
in isolation, without explicitly using any universal information. Our Unitention
can bridge this gap by attentively merging universal and individual features, thus
complementing and enhancing the given deep model. We evaluate its efficacy on
various classification benchmarks and model architectures. On ImageNet, Uniten-
tion improves the accuracy of different ConvNets and Transformers. In particular,
some k-NN classifiers with Unitention can even outperform baseline classifiers.
Improvements in fine-grained tasks are more substantial (up to 2.3%). Further
validations on other modalities also confirm Unitention’s versatility. In summary,
Unitention reveals the potential of using dataset-level information to enhance deep
features. It opens up a new backbone-independent direction for improving neural
networks, orthogonal to the mainstream research on backbone architecture design.

1 INTRODUCTION

The remarkable capabilities of contemporary deep learning methods have been prominently demon-
strate in different domains, ranging from image (Chen et al., 2020; Bao et al., 2021; He et al., 2021;
Tian et al., 2022), language (Devlin et al., 2018; Brown et al., 2020; Dong et al., 2019), signal
processing (Cheng et al., 2023a; Dong et al., 2018; Cheng et al., 2023b;c) to machine intelligence
(Silver et al., 2016; 2017; Vinyals et al., 2019). The explosion in deep model architecture is consid-
ered to be one of the most driving forces and lies in the center of deep learning research (He et al.,
2016; Vaswani et al., 2017). Since the advent of AlexNet (Krizhevsky et al., 2012), which rekin-
dled widespread interest in neural networks, efforts have been made to explore more powerful and
efficient neural architectures, either by hand design (Hu et al., 2018; Howard et al., 2017; Sandler
et al., 2018) or automated search (Guo et al., 2020b; Yu et al., 2020; Guo et al., 2020a; Cai et al.,
2019). Many landmark network families have been proposed, such as ResNets (He et al., 2016) and
Transformers (Vaswani et al., 2017), dominating different application areas (vision or language).
For more advanced architectures, some have focused on merging the advantages between these two
families and have made significant progress (Dosovitskiy et al., 2020; Wang et al., 2021; Yuan et al.,
2021; Wu et al., 2021; Liu et al., 2021; Yu et al., 2022; Liu et al., 2022a).

Beyond the vast amount of mainstream research on backbone architectures, one might ask: could
there exist an architecture-independent approach capable of enhancing deep model performance?
To explore this, we looked back to the classics of visual representation prior to deep learning. The
landscape of visual representation was once dominated by techniques such as Bag of visual Words
(BoW, Csurka et al. (2004); Perronnin et al. (2006); Van Gemert et al. (2009)) and Vector of Locally
Aggregated Descriptors (VLAD, Jégou et al. (2010); Sánchez et al. (2013)). A pivotal component in
these methodologies was a universal codebook that characterizes the distribution of entire dataset.
Its construction involved the normalization and clustering of diverse visual descriptors extracted
from training images within the dataset. During inference, a test image was represented as cluster
assignments (Csurka et al., 2004; Perronnin et al., 2006; Van Gemert et al., 2009) or accumulated
“distances” to the nearest codewords in the universal codebook (Jégou et al., 2010; Sánchez et al.,
2013). We illustrate this process as Universal Encoding in figure 1 (a).
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Figure 1: Schematic diagrams of how to encode a data sample. “⊙” in (c) denotes an arbitrary fusion operator.

A key difference between deep models (He et al., 2016; Vaswani et al., 2017) and traditional BoW-
based approaches (Csurka et al., 2004; Jégou et al., 2010) is that the former extract features solely
from an input sample alone, without any explicit interaction with dataset-wide features like a uni-
versal codebook. We term this paradigm as Individual Encoding, and visualize it in figure 1 (b).

Given such a disparity between universal and individual encoding, a conjecture naturally emerges:
an integration of these two different ways could complement and enhance each other, yielding a more
robust and refined feature. This conceptual model manifests itself as a new Universal-Individual
Encoding paradigm in figure 1 (c). We find this idea exactly satisfies the aforementioned need for
an architecture-independent way to improve the capability of deep model: it could be applied to any
neural network backbone (e.g., ResNets and Transformers) without modifying their architectures.

However, this universal-individual fusion mechanism remains largely unexplored. As an initial ex-
ploration, we conduct an inference-only study to test whether the mechanism can make deep features
more discriminative. The results, detailed in figure 2 and further discussed in section 2.1, show that
a training-free module after the backbone can improve test performance by simply merging “univer-
sal” and “individual” features. This reveals the potential of universal-individual feature fusion.

Our goal now boils down to designing an end-to-end trainable module to facilitate this fusion. We
explored several designs and came up with three key principles for the module: 1) maintaining a
universal feature bank to represent the entire dataset; 2) applying cross-attention between the bank
and the deep feature of current data sample (individual); 3) merging the cross-attended result as
output. The resulting module, called universal-individual cross-attention or Unitention, serves as a
general plug-and-play module that can be used on top of various backbone models.

We tested Unitention on several classification benchmarks across different data modalities involving
2D images and 1D signals, and observed consistent performance gains (up to 2.3%) over a vari-
ety of state-of-the-art models. Some k-NN classifiers based on Unitention-enhanced deep features
even outperform those baseline classifiers, further demonstrating its effectiveness. All of these re-
sults demonstrate Unitention can enhance various powerful deep models. This universal-individual
mechanism opens up a new backbone-independent direction for improving neural networks, orthog-
onal to the mainstream research on backbone architecture design and refinement. We hope that
Unitention can serve as a generic plug-in for modern deep models, and would inspire more future
work towards better exploitation of dataset-level information.

To summarize, the contributions are three-fold:

• We propose and explore the universal-individual fusion mechanism, providing a new backbone-
independent direction to improve deep model’s capability. This trajectory stands in contrast to
existing research paradigms that mainly focus on the architecture design of backbones.

• We conduct a training-free case study to test this mechanism and demonstrate its potential. We
further exploit its potential by developing an end-to-end trainable module (Unitention).

• We have done comprehensive experiments and observed Unitention can deliver consistent per-
formance gains across a wide range of both 1) data modalities and 2) model architectures.

2 METHOD

We present an training-free case study in section 2.1 as a test of the validity of universal-individual
feature fusion mechanism. The results directly motivate us to design an end-to-end trainable module
called Unitention to facilitate such a mechanism, detailed next in section 2.2.
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2.1 A TRAINING-FREE CASE STUDY
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Figure 2: A training-free study to test the proposed universal-individual fusion mechanism. Two models
are trained on ImageNet and then tested, each of which consists of a backbone and a linear layer (classification
head). logits1: prediction of the trained linear classification head; logits2: prediction of a k-NN classifier after
the backbone; logits3: prediction of a training-free universal-individual fusion (logits3 = logits1 + logits2).
ImageNet validation accuracy is shown in the right. Higher is better. Improvements in accuracy are noted.

Setting. We take classification models that have already been supervised trained on ImageNet
(Deng et al., 2009) for investigation. Each classification model consists of a neural network back-
bone and a linear classification head. Here, we use two representative backbones: ResNet-50 (He
et al., 2016) and Swin-Tiny (Liu et al., 2021). The basic idea of this study is to design a training-free
module to implement a universal-individual feature fusion, and to check if it could improve deep
model’s test accuracy. We are going to assess the module by comparing the performance in three
different evaluation settings: individual-only, universal-only, and universal-individual.

Evaluation. We start by specifying what the “individual-only” evaluation is. Consider the plain
model evaluation that directly uses its own internal linear classifier. It is actually the individual-only
way, as the classifier make predictions based only on a single data point’s feature. This individual-
only accuracies of original ResNet-50 and Swin-Tiny are illustrated in figure 2 as “I. Acc.”.

Recall the universal feature is usually obtained by some dataset-level structure like the codebook
in BoW/VLAD. We find the simple k-nearest neighbors (k-NN) algorithm is a special case of
“universal-only” approach, since k-NN similarities between a sample and all its neighbors could
be regarded as the dataset-level (universal) information. We thus calculate the k-NN accuracies
based on the representations after backbones (omitting the trained linear classifiers), and show them
as “U. Acc.” in figure 2.

Now we need to design a module for universal-individual feature fusion. A natural idea is to mix the
k-NN similarities with the individual prediction. To achieve this, we normalize k-NN similarities to
log-probabilities (logits2) and then add them with linear classifier’s logits (logits1) to get the fused
ones (logits3 = logits2 + logits1). More details (source codes) can be found in Appendix A. By
applying probability function (e.g., softmax) on logits3, we get the so-called “universal-individual”
predictions. The resulted accuracies are reported in figure 2 as “U-I Acc.”

Observation and motivation. From figure 2, one can observe both ResNet-50 and Swin-Tiny en-
joy this universal-individual feature fusion and achieve higher accuracies without any further train-
ing. It verifies k-NN similarities here would complement and enhance the linear classifier, thus
improves the whole model’s representation. In this case, considering universal information and in-
dividual information simultaneously could give a better representation than considering any of them
alone, even if no extra training is conducted. This motivates us to develop a trainable module to
better explot its potential.

2.2 AN END-TO-END TRAINABLE MODULE: UNITENTION

Overall designs. Recall the k-NN experiments in section 2.1, where a k-NN classifier is put on
top of a trained backbone and predicts image labels. To some extent the k-NN evaluation is like a
retrieval process on the whole dataset, seeking for some similar samples and then making the pre-
diction. Likewise, we plan to design a module act as a role that “retrieves” dataset, finds represen-
tative samples, and then fuses their features with the current to achieve universal-individual fusion.
Thanks to the powerful attention mechanism (Vaswani et al., 2017), we find cross-attention operator
(Vaswani et al., 2017) could be a natural choice to achieve the retrieval and fusion. Specifically, we
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Figure 3: An overview of Unitention module, which is inserted between the backbone model and its clas-
sification head, taking deep feature h as input, applying universal-individual fusion, and finally yielding a
fused feature. The universal feature bank U stores historical features h as the dataset-level information. The
backbone, Unitention module, and linear classification layer will be trained together in an end-to-end manner.

are designing this Unitention module following the rules:

• Unitention takes the backbone’s output feature vector as its input.
• A universal feature bank needs to be maintained to offer dataset-level feature during training.
• The cross-attention is applied for universal-individual feature fusion. The only query is from

the individual feature, and multiple keys and values are derived from that universal bank.
• The attention result should finally be merged with the individual feature to enhance it.

An overview of Unitention is illustrated in figure 3. We would detail it as follows.

Module input and universal feature bank. Let x denote a data point fed into the backbone. Its
deep feature vector h is the input of Unitention module, which would be used to update a universal
feature bank. As a feature set representing the whole dataset, this bank contains N feature vectors
{u1, u2, · · · , uN}, packed together into a matrix U. One can use a first-in-first-out (FIFO) queue,
momentum-updated class centers, or any other datastructures to maintain U. We leave the practical
implementation in section 3.1. In summary, this feature bank will provide universal information,
and is updated by every single feature vector h during the training.

Cross-attention between bank and individual. Without loss of generality, we consider the sin-
gle-head attention mechanism here. We draw on the standard formulation of cross-attention from
Vaswani et al. (2017). However, the query q here is not a sequence of vectors, but a unique vector,
as q is based on the only feature vector h. The query is calculated by:

q = W(q)h , (1)

where W(q) is the query transform matrix. A key set {k1, k2, · · · , kN} and a value set
{v1, v2, · · · , vN} are obtained based on the universal bank and formed into matrices K and V:

K = W(k)UT, (2)

V = W(v)UT. (3)
The “universal-individual” cross-attention is calculated between the unique query and N key-values:

A = softmax(qKT) , (4)

o = W(o)(AVT), (5)

where W(o) is projection weight and o the result. A is a row-vector attention map shaped in 1×N
rather than a two-dimensional matrix, as it shows the affinity between the only query and N keys.

We highlight a key difference between the attention here and standard cross-attention: In the stan-
dard, queries and key-value pairs are from two difference feature sequences of the one same input
data point. While in Unitention, the query is from one data point x but keys and values are based
on the universal feature bank that contains rich information from many other data points. There-
fore, Unitention supports such an inter-sample feature interaction, which otherwise is not possible
in standard cross-attention.
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Feature fusion and module output. Given the hypothesis that the universal-individual attention
result o could enhance the deep representation h, we would merge them in some way. This could
be achieved by simple element-wise addition, multiplication, or even more sophisticated operations.
We would discuss the choice further in section 3.1 and section 3.6.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Overall Implementation. A classification neural network model typically consists of a backbone
(e.g., ResNet) and a classifier head (usually a linear layer). We insert the Unitention module between
backbone and classifier, and then train these three part in an end-to-end manner. Details about
Unitention are introduced as follows.

Universal bank. The universal bank is a set of feature vectors {u1, u2, · · · , uN} which represents
the whole dataset. We use online class centers as the bank in all experiments unless otherwise
specified. In this way, bank size N is the number of classes in dataset. To update the bank, we use
every deep feature h and its label y ∈ {1, 2, · · · , N} to update the y-th class center representation:

u′
y ← αuy + (1− α)h , (6)

where α is a moving average ratio. We found a relative small α (e.g., 0.9) ensures timely updates,
thus providing fresh universal features and achieving better results than larger ones like 0.95. We
use 0.9 for all experiments below and provide an ablation in section 3.6.

Cross-attention. We use the standard cross-attention architecture in Vaswani et al. (2017). This
block contains a standard multi-head attention module, a two-layer perceptron, and two layer nor-
malizations before them. The hyperparameters of multi-head attention are detailed in Appendix A.
Following Bao et al. (2021), we use the layer scale (Touvron et al., 2021) as we found it can stabilize
the training. We also reported the efficiency evaluation in Appendix A.

Feature fusion. As mentioned in section 2.2, there are several choices to fuse attention output o
with the individual feature h. Compared to element-wise multiplication like in Hu et al. (2018), we
found adding the features up is good enough. See section 3.6 for more details.

3.2 RESULTS ON IMAGENET CLASSIFICATION

Setting. We first evaluate Unitention on the general image classification benchmark ImageNet
Deng et al. (2009), a challenging large-scale dataset with 1,000 classes. Its training split and test
split contain about 1.28 millions and 50 thousands images respectively. We use two mainstream
backbones in computer vision, namely convolutional netowrks (convnets) and vision transformers
(ViTs), to test Unitention. We thoroughly use a wide range of models in this study, including con-
vention backbones (ResNet He et al. (2016), ResNeXt Xie et al. (2017), SE-Net Hu et al. (2018),
ViT Dosovitskiy et al. (2020)) and advanced architectures (ECA-ResNet Wang et al. (2020a), Reg-
Net Radosavovic et al. (2020), VAN Guo et al. (2022), Swin Transformer Liu et al. (2021)). See
Appendix C for more details on ImageNet experiments. The full model that contains Unitention
module, backbone and linear classifier head, is trained from scratch in an end-to-end manner and
then tested on test data split. Here we consider two evaluation metrics: standard accuracy and k-NN
accuracy. The standard accuracy is based on the predictions made by the full model. While in k-NN
evaluation, the trained classification head is omitted, and the intermediate features are used. This
k-NN metric is intended as a complement by directly measuring the linear separability of features.

Standard Performance (with model’s heads). The standard accuracy of models with and with-
out Unitention are listed in table 1. “BL” represents the baseline performance directly quoted from
the original papers. For a fair comparison, we re-implement all baseline models and report their
updated baseline accuracy as “BL∗”. “Ours” denotes model performance with Unitention. The ab-
solute accuracy improvements from Unitention are also reported. Comparing BL∗ results with Ours,
one can observe steady accuracy gains brought by Unitention. It verifies Unitention can consistently
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Table 1: Main results on ImageNet. “BL”: BaseLines quoted directly from original papers; “BL∗”: our
re-implementations; “Ours”: performance with Unitention. Absolute improvements over re-implemented base-
lines are noted after our performance. The last column shows whether a k-NN classifier with Unitention
outperforms the baseline model, i.e., “our k-NN Acc.” is higher than “BL∗ Standard Acc.”.

Standard Acc. k-NN Acc.

Backbone BL BL∗ Ours BL∗ Ours k-NN
better

ConvNets.
ResNet-50 75.30 78.92 79.90 (+0.98) 76.71 79.21 (+2.50) ✓
ResNet-101 76.40 80.25 80.97 (+0.72) 78.81 80.19 (+1.38) ✗
ResNet-152 77.00 81.03 81.64 (+0.61) 79.68 80.60 (+0.92) ✗
ResNeXt-50-32x4d 77.80 79.23 80.01 (+0.78) 78.66 79.32 (+0.66) ✓
SE-ResNet-50 76.71 79.45 80.14 (+0.69) 78.07 79.25 (+1.18) ✗
ECA-ResNet-50-T 77.48 80.11 80.62 (+0.51) 78.98 79.75 (+0.77) ✗
RegNetY-16GF 80.40 82.16 82.87 (+0.71) 81.30 81.87 (+0.57) ✗
VAN-Tiny 75.40 75.84 76.94 (+1.10) 75.44 76.56 (+1.12) ✓
VAN-Small 81.10 81.11 81.63 (+0.52) 80.52 81.26 (+0.74) ✓

Transformers.
ViT-Small 79.9 81.27 81.85 (+0.58) 80.34 80.78 (+0.44) ✗
ViT-Base 81.8 81.84 82.20 (+0.36) 80.91 81.21 (+0.30) ✗
Swin-Tiny 81.3 81.28 81.95 (+0.67) 80.34 80.62 (+0.28) ✗

boost the performance across both convention and advanced backbones. Notably, significant im-
provements over strong baselines (VAN and Swin) indicate even the most powerful architectures
to date can still benefit from Unitention. Besides, we find Unitention improves the accuracy of
SE-ResNet (a channel-wise attention network). This shows that the “dataset-wise attention” could
further complement the channel-attended features.

K-NN Performance (omitting model’s heads). In this evaluation, all trained classification heads
are removed. We directly use the intermediate features after backbone (BL∗ in table 1) or Unitention
(Ours) to perfom k-NN -based classification. Comparing in the right panel of table 1, one can
observe Unitention surpasses baselines by large margins (up to 2.5%). This verifies that Unitention
does reinforce the deep features of baseline models by making them more linear separable. Note that
some k-NN classifiers with Unitention can outperform the learned linear classifier within baseline
models, i.e., “our k-NN Acc.” is higher than “BL∗ Standard Acc.” (as shown in the last column in
table 1). This further demonstrate the superiority of features learned by Unitention.

Table 2: iNaturalists accuracy. ∆: difference between baseline (w/o Unitention) and ours (w/ Unitention).

Dataset iNaturalist 18. iNaturalist 19.

Backbone Swin-T Swin-S Swin-T Swin-S

Baseline 72.5 76.4 76.8 80.8
Ours 74.8 78.0 78.7 82.3
∆ +2.3 +1.6 +1.9 +1.5

3.3 RESULTS ON FINE-GRAINED CLASSIFICATION

Next we assess Unitention’s efficacy on two challenge fine-grained datasets. The iNaturalist 2018
dataset (iNat18) Van Horn et al. (2018) contains around 450,000 training and validation images from
8,000 natural fine-grained categories. On the other hand, the iNaturalist Challenge 2019 Van Horn
et al. (2018) contains 1,010 species with a combined training and validation set of 268,243 images.
These two long-tail and fine-grained datasets pose a high challenge to the recognition ability of the
deep model. See Appendix D for more details on iNaturalist experiments. From table 2 we can see
that Unitention significantly helps the deep model to overcome such challenges, as it brings more
significant improvements compared to those on ImageNet. We attribute this success primarily to the
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fact that dataset-level information is more useful for fine-grained tasks. This bodes well for the high
potential application value of Unitention, as many real tasks are long-tailed and fine-grained.

Table 3: Accuracy on signal classification benchmarks. Improvements of Unitention are denoted as ∆.

Classification Acc.

Setting BL Ours ∆

Device signals
MLP 66.4 67.5 +1.1
FCN-LSTM (Karim et al., 2017) 76.7 77.6 +0.9
Transformer (Vaswani et al., 2017) 80.1 81.4 +1.3

Sensor signals
MLP 57.1 57.8 +0.7
FCN-LSTM (Karim et al., 2017) 66.0 67.5 +1.5
Transformer (Vaswani et al., 2017) 69.9 71.0 +1.1

Medical signals
MLP 62.8 64.5 +1.7
FCN-LSTM (Karim et al., 2017) 72.0 73.3 +1.3
Transformer (Vaswani et al., 2017) 75.2 76.2 +1.0

3.4 RESULTS ON OTHER MODALITIES

This section aims at exploring whether Unitention can be generalized to other data modalities. Since
Unitention is model-independent, we expect it to achieve this. Specifically, we choose several pop-
ular benchmarks for one-dimensional signal classification to test Unitention. Following the con-
vention of signal processing, we use three of mainstream backbones: multi-layer perceptron model
(MLP), LSTM-FCN Karim et al. (2017), and transformer Vaswani et al. (2017). See Appendix E
for more details on these tasks.

For a more comprehensive assessment of Unitention, we consider using three datasets that contains
different 1D signals: (i) Device signals. The ElectricDevices Bagnall et al. (2017) dataset contains
8,926 training sampels and 7,711 test samples of 7 signal classes. These data were collected as part
of government sponsored study called Powering the Nation. , containing electricity readings from
251 households. Each 1D signal is length 720. (ii) Sensor signals. We use UWaveGestureLibrary
Liu et al. (2009) that contains 896 and 3,582 samples in training and test split of 8 classes. A set of
eight simple gestures generated from accelerometers. The data consists of the X,Y,Z coordinates of
gestures motion that is collected by sensor. The data length is 315. (iii) Medical signals. EOGHor-
izontalSignal Fang & Shinozaki (2018) is also used, which has the same number of samples (362)
in its training and test subset. It is a 12-classification task. The data are electrooculography signal
(EOG), which is the measurements of the potential between electrodes placed at points.

The results are listed in table 3. Observations that are consistent with those in section 3.2 and
table 1 can be found: Unitention has consistent and non-marginal performance improvements over
different signal modalities and models. This indicates that Unitention can serve more general signal
processing areas beyond the image processing.

3.5 RESULTS ON MORE CHALLENGING DOWNSTREAM TASKS

The above implementation of Unitention uses feature vectors after the global average pooling op-
eration (GAP), and is applicable to global-feature-based classification tasks. We also investigated
whether Unitention can be generalized to other dense prediction tasks, including object detection,
instance segmentation, and semantic segmentation. For the sake of diversity, we have tested two dif-
ferent families of models (CNNs and Transformers). Specifically, the Mask R-CNN ResNet50-FPN
(He et al., 2017; 2016) on MS-COCO Lin et al. (2014), and the UperNet Swin-T Xiao et al. (2018);
Liu et al. (2021) on ADE20k Zhou et al. (2017). The performance improvements are promising (up
to +1.5AP ), even better than those on ImageNet. We attribute this to the fact that in more challeng-
ing tasks, the model requires a more informative and rich dataset-level understandings, which can
be provided by our Unitention. See Appendix F for the detailed performance and analysis.
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Table 4: Ablation study on the influence on each key component in our method. † is the learned value of τ .

Description Universal Bank Fusion Mom. τ Acc. ∆

1 w/o Unitention 78.9 -1.0
2 Unitention (default) class centers (1000) add 0.9 1.0 79.9 0.0

3 self-attention individual feature (1000) add 0.9 1.0 78.6 -1.3

4 fewer class centers class centers (100) add 0.9 1.0 79.2 -0.7

5 FIFO queue FIFO queue (1000) add − 1.0 79.3 -0.6

6 learnable centers parameters (1000) add − 1.0 79.4 -0.5

7 SE-style fusion class centers (1000) mul 0.9 1.0 79.6 -0.3

8 −Momentum class centers (1000) add 0.8 1.0 79.4 -0.5
9 +Momentum class centers (1000) add 0.95 1.0 79.6 -0.3
10 −τ class centers (1000) add 1.0 0.2 79.3 -0.6
11 +τ class centers (1000) add 1.0 5.0 79.5 -0.4

12 learnable τ class centers (1000) add 1.0 1.37† 79.9 0.0

3.6 ABLATION STUDY

In this series of experiments, we try to understand Unitention better by studying the performance
of its variants. All experiments are performed with a ResNet-50 on ImageNet (a 1000-classification
dataset). Results are listed in table 4.

Overall effectiveness of Unitention. Comparing the performance of row 2 with row 3, it can also
be concluded that the performance improvement of Unitention is not simply due to the increase in
parameters, since row 2 and row 3 have exactly the same number of parameters and computations.
This is another solid proof of Unitention’s overall effectiveness.

The importance of universal bank. We find it is important to use all class centers. Using only
100 categories random selected from 1000 (row 4) hurt the performance. We also notice a simple
FIFO queue does not work so well (row 5). The main reason could be that a queue of size 1000
is not sufficient for representing the entire dataset. And using larger sizes would be too inefficient.
In addition, we also test Unitention with a learnable ”class center” whose feature bank is replaced
by trainable parameters updated by back-propagation (row 6). It also performs slightly worse than
ordinary class centers. Taken together, the class centers (row 2) become our best choice.

Fusion operation. We observe simply adding up individual and universal features is good enough,
since an SE-module style fusion in row 7 (element-wise multiplication) won’t show any gains.

Hyperparameters. We then adjust the two most important hyperparameters in Unitention: the
momentum of class centers, and the temperature τ of softmax in cross-attention. The best choices
are 0.9 and 1.0, respectively. We also observe that a learnable τ is not necessary (as in row 12).

4 RELATED WORK

4.1 CLASSIC CODEBOOK-BASED VISUAL REPRESENTATION

Visual-word encoding, popularized by BoW (Bag of visual Words, Csurka et al. (2004)), had its
heyday before the explosion of deep learning. A feature codebook for building dataset-level (uni-
versal) understanding is largely credited with its success. Typically, this codebook consists a large
number of local descriptors like SIFT (Lowe, 1999; Bay et al., 2006; Rublee et al., 2011) descriptors,
and is constructed in a fully unsupervised manner. It can also be regarded as a “visual vocabulary”.
An image can be encoded as frequencies of codewords, say, a histogram of codeword occurrences.
This corresponds to a hard assignment. There have been many variants (Van Gemert et al., 2009;
Farquhar et al., 2005; Perronnin et al., 2006; Boureau et al., 2010) to enhance the canonical BoW
method, including VLAD (Vector of Locally Aggregated Descriptors, Jégou et al. (2010)) and FV
(Fisher Vector, Sánchez et al. (2013)). Some focuses on soft assignments (Van Gemert et al., 2009;
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Farquhar et al., 2005; Perronnin et al., 2006) or advanced patch aggregation mechanism (Sánchez
et al., 2013; Jégou et al., 2010). FV (Sánchez et al., 2013) uses Fisher Kernel (FK) principle to
reduce the codebook size as well as obtain stronger representations than BoW. VLAD (Jégou et al.,
2010) considers distances between a given sample and its nearest neighbors, which is proved to be
a simplified version of FV under some approximations (Jégou et al., 2011).

4.2 DEEP MODELS AND IMPROVED HEAD DESIGNS

Contrary to classic codebook-based algorithms, typical deep models extract features based only on
the current single sample point without any explicit use of dataset-level information. For example,
a classifier model can be viewed as a univariate vector function fθ(·) : RD 7→ RC parameterized
by θ, whose input is a single data point (D-dim) and whose output is a vector of probabilities
for each category (C categories) to which it belongs. In computer vision, convolutional networks
(Krizhevsky et al., 2012; He et al., 2016; Liu et al., 2022b) and vision transformers (Dosovitskiy
et al., 2020; Liu et al., 2021) are two representative model families.

Besides these neural backbones, there have been many studies focusing on boosting the heads.
To the best of our knowledge, these works are also based on a single data input. Model fusion like
bilinear pooling Gao et al. (2016) merges features from different models on one single data. Xie et al.
(2021); Zhu & Wu (2021); Wang et al. (2020b) enhance the classifier by replacing standard global
average or max pooling with advanced global pooling methods. There are also some work (Zhu
et al., 2017; Li et al., 2022) utilizes self-attention-like mechanism on one single data’s deep feature
along the spatial or channel axis. In sum, these single-data-based methods have been demonstrated
helpful for classification heads.

4.3 DIFFERENCE BETWEEN CLASSIC REPRESENTATION AND DEEP MODELS

A huge difference between the classic visual models (Csurka et al., 2004; Jégou et al., 2010) and
deep-learning based methods (He et al., 2016; Vaswani et al., 2017) of today is they are using
radically different ways to encode images. BoW and its variants are originally training-free, and
use a dataset-level codebook for encoding. The encoding process needs to consider the relationship
between the current image and all historical ones in dataset. On the contrary, deep models forward
every image independently to get a deep feature. They seem to understand the entire dataset in an
implicit way. In this paper, we summarize this difference and hope to explore whether these two
encoding approaches can complement and enhance each other.

5 LIMITATIONS

More generalized universal bank. The universal bank used currently has to be updated via clas-
sification labels. In the future, we will try to design universal banks that do not depend on labels,
for example, by trying a FIFO queue with more prior knowledges. We believe a universal bank that
can still be updated during the inference phase (on unlabeled test data) will make Unitention more
comfortable with real-world challenges like out-of-distribution tasks, low-shot or few-shot settings.

6 CONCLUSION

Visual-word encoding like Bag of Visual Words had its heyday before the explosion of deep learning,
thanks largely to a feature codebook for building dataset-level (universal) understanding. In con-
trast, modern deep neural networks forward each data sample (individual) independently, without
any explicit universal modeling. Would deep models be enhanced by perhaps a universal-individual
fusion mechanism? We conduct an inference-only case study to verify this, and develop universal-
individual cross-attention (Unitention), an end-to-end trainable module explicitly facilitating that
sort of fusion. Thorough experiments verify Unitention’s validity on both basic and advanced back-
bones, e.g., improving Swin and VAN by 0.5 − 1.0% in ImageNet validation accuracy without
modifying the backbone. More surprisingly, k-NN classifiers with Unitention can even surpass the
trained linear classifiers, and further demonstrating the superiority of learned representations. More
results show that Unitention can generalize to other modalities and fine-grained tasks. We hope
Unitention will serve as a generic module which can improve even the most powerful deep models
to date, and could inspire more future works towards better utilization of dataset-level information.
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A MORE DETAILS ON THE CROSS-ATTENTION MODULE IN UNITENTION

Table 5: Hyperparameters of cross-attention block in our Unitention architecture.

Size
Hidden

Dim # Heads
MLP
Ratio

Drop
Path

Layer
Scale

Small 384 8 3.0 0.08 1.0
Base 768 12 4.0 0.1 1.0
Large 1024 16 4.0 0.2 0.1

We propose three levels of Unitention, from small to large, as in table 5. In practice, RegNetY-
16GF uses the Large block, and ResNet-152 and ViT-Base use a Base one. All other models use the
Small block. The extra parameters and computations introduced by Unitention are detailed below in
table 6.

Table 6: Extra parameters and computations introduced by Unitention.

Model ResNet-50 ResNet-101 ResNet-152 ViT-S Swin-T

Para (M) 25.6 44.5 60.2 22 29
∆Para (M) +1.4 +1.4 +6.9 +1.4 +1.4

FLOPS (G) 4.1 7.9 11.6 4.6 4.5
∆FLOPS (G) +0.3 +0.3 +1.2 +0.3 +0.3

We also measure the wall-clock time and memory footprint of ResNet-50 training (300 epochs
with 2048 batch size) on 8 Tesla V100s. The results are reported in table 7. Where Unitention
introduces about 5% additional cost. Note this can easily be further reduced by operators such as
FlashAttention, as Unitention uses a naive single-query cross-attention.

Table 7: Wall-clock time and memory footprint measured.

Model GPU hours Peak GPU Mem

ResNet-50 242.0 13.2
ResNet-50 w/ Unitention 255.1 13.8

B MORE DETAILS ON THE INFERENCE-ONLY CASE STUDY

We provide a PyTorch implementation of the case study in section 2.1. Suppose a supervised-trained
model has processed all training and validation data samples to get all intermediate features (after
the global average pooling of the backbone) and logits1 (after the fully-connected classifiers).

In this implementation, top-1 accuracies of “U. Acc.”, “I. Acc.”, and “U-I. Acc.” (defined in sec-
tion 2.1) are calculated and returned. The results are visualized in figure 2.

@torch.no_grad()
def evaluate(t_fea, t_tar, v_fea, v_lg1, v_tar, K=20):

"""
Args:

t_fea (Nt x D): features of training data
t_tar (Nt x 1): targets of training data
v_fea (Nv x D): features of validation data
v_lg1 (Nv x #CLS): logits1 of validation data
v_tar (Nv x 1): targets of validation data

Returns:
three accuracies
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"""
t_fea, v_fea = F.normalize(t_fea, dim=1, p=2), F.normalize(v_fea,

dim=1, p=2)

num_classes = 1000
i_correct = u_correct = 0
ui_correct = total_preds = 0

t_fea = t_fea.t()
retrieval_one_hot = torch.zeros(K, num_classes).to(t_fea.device)

for fea, logits1, tar in zip(
v_fea.chunk(100),
v_lg1.chunk(100),
v_tar.chunk(100),

):
bs = tar.shape[0]
total_preds += bs

# calculate the dot product and compute k-nearest neighbors
sim = torch.mm(fea, t_fea)
distance, choice = sim.topk(K, largest=True, sorted=True)
candidates = t_tar.view(1, -1).expand(bs, -1)
retrieved_neighbors = torch.gather(candidates, 1, choice)

# accumulate the k-nearest neighbors’ similarities
retrieval_one_hot.resize_(bs * K, num_classes).zero_()
retrieval_one_hot.scatter_(1, retrieved_neighbors.view(-1, 1), 1)
distances_transform = distance.clone().div_(5).exp_()
sims = torch.sum(

torch.mul(
retrieval_one_hot.view(bs, -1, num_classes),
distances_transform.view(bs, -1, 1),

),
1,

)

# predict
tar_t = tar.data.view(-1)
u_correct += sims.argmax(1, False).eq(tar_t).int().sum().item()
i_correct += logits1.argmax(1, False).eq(tar_t).int().sum().item()
ui_correct += (logits1+get_knn_logits(sims)).argmax(1,

False).eq(tar_t).int().sum().item()

return (u_correct/total_preds, i_correct/total_preds,
ui_correct/total_preds)

def get_knn_logits(p):
p = (p+1).log()
p = (p-p.mean(1, keepdims=True)) / p.std(1, keepdims=True) / 20
return p

C IMAGENET TRAINING CONFIGURATIONS

We refer to the hyperparameters in “ResNet Strikes Back” (Wightman et al., 2021) to conduct Ima-
geNet experiment. These hyperparameters are listed in table 8.

D INATURELISTS TRAINING CONFIGURATIONS

Following the convention in Liu et al. (2021), we first load the checkpoints of Swin-Transformers
pre-trained on ImageNet, and then fine-tune them on iNaturelist datasets. The hyperparameters are
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Table 8: ImageNet training configurations taken from Wightman et al. (2021).

Configuration Value Configuration Value

Image resolution 224 Epochs 300
Test image crop 0.95 Batch size 2048
Optimizer LAMB Learning rate 5e-3
Scheduler consine Weight decay 0.02

Repeated aug. ✗ Dropout ✗
Rand aug. 7 / 0.5 Stoch. depth ✓
Gradient clip. ✗ BCE loss ✗
Mixup alpha 0.1 Label smoothing 0.0
Cutmix alpha 1.0 EMA ✗

basically the same as those in table 8, but a smaller number of training epochs (100), a smaller
learning rate (2e-4), and a larger weight decay (0.05) is used.

E 1D-SIGNAL CLASSIFICATION TRAINING CONFIGURATIONS

We refer to the code implementations of Wightman et al. (2021) and Karim et al. (2017) for our
experiments. Details are in table 9. The learning rate scheduler (LR scheduler in the table) is
“ReducedOnPlateau” referring to Karim et al. (2017).

Table 9: Signal classification training hyperparameters.

Configuration Value Configuration Value

Epochs 2000 Warm-up 100
Batch size 128 Weight decay 1e-5
Optimizer Adam LR Scheduler Plateau
Max LR 1e-3 Min LR 1e-5

Gradient clip. ✗ BCE loss ✗
Label smoothing 0.05 EMA 0.99

F DETECTION AND SEGMENTATION RESULTS

We tested Unitention on object detection (MS-COCO 2017 Lin et al. (2014)), instance segmentation
(MS-COCO 2017 Lin et al. (2014)), and semantic segmentation (ADE20k Zhou et al. (2017)) tasks.
The results are as follows:

Table 10: COCO object detection and instance segmentation.

Object Detection Image Resize Schedule APbox APbox
50 APbox

75

ResNet-50 (384, 600) 1× 38.9 59.6 42.7
ResNet-50 w/ Unitention (384, 600) 1× 40.1 (+1.2) 59.9 (+0.3) 44.2 (+1.5)

Instance Segmentation Image Resize Schedule APmask APmask
50 APmask

75

ResNet-50 (384, 600) 1× 35.4 56.5 38.1
ResNet-50 w/ Unitention (384, 600) 1× 36.3 (+0.9) 57.1 (+0.6) 39.0 (+0.9)
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Table 11: ADE20k semantic segmentation.

Semantic Segmentation Crop Size Schedule mIoU

Swin-T (512, 512) 160k 44.5
Swin-T w/ Unitention (512, 512) 160k 45.2 (+0.7)

The improvements of Unitention are non-trivial among all these dense prediction tasks. These cross-
task improvements shown in table 10 and table 11, along with the cross-modal results in the paper
table 1 and table 3, have provided a comprehensive and robust validation of Unitention.

G VISUALIZATION ON LEARNED REPRESENTATIONS

To examine the linear separability of deep features, we consider using the linear principal com-
ponent analysis (PCA) to project all high-dimensional feature vectors to 2D, instead of the t-
distributed stochastic neighbor embedding (t-SNE). We randomly choose ImageNet class indices
of [331, 117, 153, 362, 471, 333, 275, 112, 457, 349] for this visualization. From figure 4 one can
see that the deep features of Unitention are more separable than baseline features. This is consistent
with our observation of Unitention’s excellent k-NN performance (in table 1) and again demon-
strates the superiority of its deep features.

Figure 4: PCA visualization of classes as represented after backbone model (left) or the model with Uniten-
tion (right). 10 classes on ImageNet test set are randomly selected for visualization. For each class, all of the
50 test images are used. X-axis and y-axis correspond to the first two principal components. It can be seen that
the deep features of Unitention are more separable.
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