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Abstract

This is the first attempt at considering human influence in the reinforcement learn-
ing control of a robotic lower limb prosthesis toward symmetrical walking in real
world situations. We propose a collaborative multi-agent reinforcement learning
(cMARL) solution framework for this highly complex and challenging human-
prosthesis collaboration (HPC) problem. The design of an automatic controller of
the robot within the HPC context is based on accessible physical features or mea-
surements that are known to affect walking performance. Comparisons are made
with the current state-of-the-art robot control designs, which are single-agent based,
as well as existing MARL solution approaches tailored to the problem, including
multi-agent deep deterministic policy gradient (MADDPG) and counterfactual
multi-agent policy gradient (COMA). Results show that, when compared to these
approaches, treating the human and robot as coupled agents and using an estimated
human adaption in robot control design can achieve lower stage cost, peak error,
and improved symmetry to ensure better human walking performance. Addition-
ally, our approach accelerates learning of walking tasks and increases learning
success rate. The proposed framework can potentially be further developed to
examine how human and robotic lower limb prosthesis interact, an area that little
is known about. Advancing cMARL toward real world applications such as HPC
for normative walking sets a good example of how AI can positively impact on
people’s lives.

1 Introduction

The concept, design, and applications of human-robot cooperation have advanced rapidly due to new
demands in AI-enabled applications fueled by powerful deep learning and reinforcement learning
algorithms [1, 2, 3]. Human-robot collaboration can take on a variety of forms depending on tasks to
be solved, how information is shared [1, 2], and the nature of interaction [3]. Examples of complex
collaborative tasks may include picking up or carrying objects together [4, 5], cooperating on a
production line, in which cases a robot can learn to imitate human demonstrations [6, 7, 8]. Other
application scenarios may include intermittent robotic correction of human driving, or vice versa [9].
In essence, most of these recent studies involve interactions between a human and a robot in a way
such that there is either space between the agents, or there is time for predictive counter measures
to interfere. By contrast, in the HPC problem the human and robot agents are physically coupled
together, and there is often little time for the human agent to react to prevent from falling or injury.
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As a result, innovative solution frameworks are needed to first address the design, analysis, and testing
of complex control systems to restore locomotion for amputees. Based on these platforms, human-
robot interactions can be studied, and fundamental issues such as user preference and prosthesis
embodiment can be examined. The knowledge in turn, will further help design seamless automatic
robot control systems. As such, challenges arising from controlling a wearable robotic lower limb
prosthesis to meet the human user’s needs are unique, and in some aspects, these challenges are
greater than what have been studied [10, 11, 12, 13].

State-of-the-art automatic control of robotic prosthesis has been reported recently with successful
human subject testing [14, 15, 16, 17]. These approaches are single agent-based reinforcement
learning controls, specific tasks such as level ground and ramp walking were accomplished via
designer prescribed or specified robotic joint movement profiles [14, 15]. A most recent progress in
single-agent based reinforcement learning solution demonstrated that human amputee subject can
perform level ground and ramp walking with the robot controller aimed at mimicking the intact joint
movement [17]. Note, however, that all previous results have not directly considered human influence
on the human-robot system performance in tuning the robotic prosthesis controller, a phenomena that
has direct impact not only on restoring walking but also on human health [18].

Achieving normative walking is fundamentally a real time control problem that involves continuous
states and continuous controls of the human-robot system. Continuous state and control problem has
received great attention. Approaches based on (deep) reinforcement learning have shown promise
to substantively address real world applications. Several algorithms, such as Deep Deterministic
Policy Gradient (DDPG) [19], Proximal Policy Optimization (PPO) [20], Soft Actor-Critic (SAC)
[21], and Twin Delayed DDPG (TD3) [22], have demonstrated success with solving complex control
problems. For example, in simulated human locomotion control [23, 24], deep reinforcement learning
solved over 20 independent control signals to facilitate a humanoid robot to achieve different walking
tasks. Additional single agent-based continuous control has also demonstrated promise in engineering
applications such as stabilization, tracking, and reconfiguring control of Apache helicopters [25, 26,
27], stabilization and control of large power grids [28, 29, 30], robotic manipulation and locomotion
via MuJoCo and OpenAI Gym [31, 32], and wearable robots with human in the loop [14, 15, 16, 17].

While these works are encouraging toward solving realistic single-agent continuous control problems,
it is not obvious how they can directly address the multi-agent human-robot normative walking
problem as needed when we consider human influence in the robot control design. From a physical
human-robot interaction (pHRI) perspective, robotic upper-limb control has undergone intense
development, especially in the realms of patient rehabilitation [33] and industrial applications [34].
However, this type of pHRI problems differ fundamentally from the human-robot walking problem,
as their control target usually consists of well-defined end points generated by a decoupled trajectory
generation exosystem [35]. On the other hand, human-robot walking tasks are difficult to associate
with an end point task goal due to tight dynamic coupling between the human and the robotic lower
limb, and many factors can affect the human’s performance goal. As such, even though multi-agent
reinforcement learning (MARL) control is a natural candidate to address our HPC challenge, a
feasible solution is yet to be developed.

2 Related Work and Challenges

Single agent RL for automatic control of a robotic limb. Simulation. Most state-of-the-art
RL control design approaches to enable continuous human-robot walking are single-agent based.
Important milestones have been achieved by two major classes of RL algorithms: actor-critic
algorithms including direct heuristic dynamic programming (dHDP) [36, 37, 38, 39], and variants
of policy iteration algorithms such as flexible policy iteration (FPI) [40]. Both types of single-
agent based control algorithms were developed and demonstrated in simulated environments first.
Human Tests. Then these algorithms were tested on human subjects walking with a robotic knee
prosthesis [15, 16, 41]. Note that all of the above methodologies and tests used designer-prescribed
robot joint movement profiles generated a priori for the specific subjects and walking tasks. In
real-world use scenarios, joint movement profiles evolve dynamically in real-time to accommodate
internal human walking objectives [14, 42]. A more recent single-agent RL control work [17] replaced
designer-prescribed joint movement profiles with the intact joint motion. Note also that, none of
the above results have directly taken into account human influence on human-robot walking in the
control design, a novel contribution of this work. Multi-agent reinforcement learning (MARL).
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A general cMARL problem usually cannot be transformed to an equivalent single-agent problem,
as additional agent(s) and their control policies introduce uncertainties and/or non-stationarity to
the environment [43]. Partial observability is common in cMARL problems, which are usually
addressed by the decentralized POMDP framework. Centralized training decentralized execution
(CTDE) is a popular paradigm to address multi-agent coordination problems. A central feature
of most CTDE approaches is factorization of the joint state-action value function into individual
utility functions. MADDPG [44] is a popular CTDE-based method to solve both cooperative and
competitive MARL problems. COMA [45] is another popular MARL algorithm which utilizes a
single centralized critic by using global state information and actions of all agents. We therefore use
them in benchmark evaluations. Shared Autonomy (SA). The human-prosthesis problem under our
consideration falls into the area of physical human-robot interaction (pHRI) as the human and the
robotic prosthesis are physically coupled at all times. It is not, however, the extensively studied pHRI
problem archetype (e.g., cooperative object manipulation, human operating in a remote environment),
wherein interactions are usually mediated by a third object. For similar reasons, our pHRI problem is
different in several important aspects from the approaches to the existing shared autonomy, such as
cross-training [46], bounded memory adaptation [47], predict and blend [48], and model-free RL [49].
The wearable exoskeleton control problem seems relevant to our HPC problem. Yet, there are still
fundamental differences. Recent exoskeleton approach also takes into account human-exoskeleton
interacting effects [50, 51]. However, these exoskeletons mainly focus on end point performance
of a foot or lower limb joints where user intent is quantified by estimating human joint torque or
interactive torque. Thus, human-exoskeleton system performance goal is for the robot to produce
a well-defined joint or endpoint trajectory [52, 53, 54]. For HPC problem we consider, there is no
clear end point goal as there is in most existing current pHRI problems, including robotic upper limb
that has been intensively addressed in literature. Therefore, how to define a performance goal for
our HPC problem is a challenge. We address this study from existing limited yet proved knowledge
[14, 42, 55]. Modeling Challenges. The HPC walking problem involves two strongly coupled
agents, the interacting dynamics of which are difficult or nearly impossible to describe by ordinary
difference or differential equations in large part because there is no clear performance goal in HPC as
in studied cases of shared autonomy. HPC may be affected by several factors, such as lower limb
mechanics, inter-limb neuromechemical coupling, and physical structure of the human body including
the lower limb [56, 57]. Physical and physiological differences in individual human subjects further
complicates modeling and control design. Even though our knowledge of human motor control and
motor learning in cases such as post-stroke or general loss of normative locomotion capabilities
have expanded greatly [58], little is known about how an active robotic prosthesis, not a traditional
stick-type passive prosthesis, affects human and vice versa in walking tasks. This is because that the
human-robotic prosthesis interacts continuously, the intricate human neurocontrol circuits including
sensing, perception and feedback control, which are necessary to facilitate normative walking, is
disrupted after amputation. Human Utility Challenges. Because of the reasons above, also because
of no clear end point target as performance goals as in most studied shared autonomy cases, seamless
collaboration between a robotic lower limb prosthesis serially attached to its human user poses new
issues that requires to be answered [10, 11]. In this study, we based on latest understanding on the
HPC problem, to provide an innovative solution approach to account for human influence in HPC.

Contributions. Human-robot collaborative tasks will continue to play an increasingly vital role
in modern life, and existing single- and multi-agent control frameworks have only covered a small
subset of the problems. The contributions of this work are as follows. 1) We introduce an innovative
approach to automatically control a robotic lower limb prosthesis by treating the human user as a
collaborating agent. We thus address a new challenge in the domain of shared autonomy problems.
2) To solve the control problem, we introduce a new cMARL approach to solve our HPC problem, a
problem that cannot be readily solved to satisfaction by existing MARL approaches such as COMA
or MADDPG. 3) This is the very first attempt in the field of wearable lower limb robots that human
influence is explicitly considered in the robot control design.

3 Fundamental control problem statement

In powered lower limb prosthesis, the finite state impedance control (FS-IC) framework most
frequently serves to provide intrinsic control of a robotic joint, i.e., it is the built-in controller from
robotic prosthesis manufacturers. While position control is common in industrial robots, when a
human is affixed to a robotic joint, robot trajectory tracking using position control may preclude any
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Figure 1: Left: human gait and prosthesis FS-IC characteristics. Right: cMARL solution approach
to the HPC problem.

dynamic interaction of the robot with its human user and the environment [59]. This may cause an
amputee to react to the awkwardness of the prosthesis rather than to interact constructively with it
[60]. As FS-IC impedance control framework is considered to provide compliant control for human
use of the robot, it is expected to generate stable and predictable human-robot walking behavior, and
thus, it is adopted in this study which aims for its controller designs at real world applications.

The FS-IC treats a gait cycle, or a step, as four consecutive gait phases (Figure 1, Left): stance
flexion (STF) as Phase 1, stance extension (STE) as Phase 2, swing flexion (SWF) as Phase 3,
and swing extension (SWE) as Phase 4. In what follows, we design four individual controllers for
each of the four phases. Since the four controllers are conceptualized similarly and designed using
the same approach, for the sake of clarity we carry out subsequent discussion without explicitly
referring to the specific phase numbers (but we emphasize that each of the four phases requires its
own independently-trained controller). Additional details on FS-IC such as phase detection and
transition are provided in Appendix A.3,

At the k-th gait cycle, a robot controller (solved by cMARL in this paper) is to determine three
impedance parameters, Ik = [Kk, Bk, (θe)k]

T ∈ R3 under the FS-IC framework, representing
stiffness Kk, damping coefficient Bk, and equilibrium position (θe)k, respectively. The prosthetic
joint motor torque Tk ∈ R is then generated based on joint kinematics (knee joint angle θ and angular
velocity ω) according to the following impedance control law,

Tk = Kk(θ − (θek)) +Bkω. (1)

The control problem formulation requires automatically determining 12 control inputs or impedance
control parameters (3 for each of the 4 gait phases) for individual users aiming at walk in real world
situations. The initial set of feasible baseline impedance control parameters I0 can be obtained from
manufacturers or rehabilitation clinics. Impedance updates take place according to

Ik+1 = Ik + uk, (2)

where uk ∈ R3 is to be determined from our proposed cMARL approach.

4 Method

The human user and the robotic limb are considered collaborating agents. Our cMARL solution
approach toward human-robot symmetrical walking problem is formulated based on physical features
and measurements that have been shown affecting human-robot walking performance, and they are
respectively available to the human and the robot, but not necessarily to each other.

State and control variables. Refer to Figure 1. At the k-th gait cycle, let τ ik and λi
k, respectively,

represent the stance time (time of foot on the ground) and step length (length between two consecutive
steps when toe touching the ground) of the human intact leg. Similarly, τpk and λp

k, respectively, for
the prosthetic leg. Let ∆τk, ∆λk denote respectively the difference of stance time and step length,

∆τk = τpk − τ ik, ∆λk = λp
k − λi

k. (3)
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We thus define human state variable zk ∈ R2 as zk = [∆τk,∆λk]
T .

Robot states include kinematic features determined from the knee movement profiles as well as step
length and stance time (or zk). For robot kinematic state variables, we extract gait kinematic features
from knee motion profiles of both limbs (Figure 1). Let P i

k and Di
k represent the knee angle and

time duration of the intact limb, and similarly, P p
k and Dp

k for the prosthetic limb. Let ∆Pk and ∆Dk

denote the error of peak knee angles and the error of duration time between the intact and the robotic
knees, respectively,

∆Pk = P p
k − P i

k, ∆Dk = Dp
k −Di

k. (4)

We then define robot state xk ∈ R4 to include the following four variables, the first two of which are
shared between the human and the robot, xk = [∆τk,∆λk,∆Pk,∆Dk]

T .

As such, human states are available to the robot, but a subset of the robot state (the kinematic features)
is not available to the human. This reasonably reflects practical situations in real life applications.

The robot control policy is a state feedback law from robot state to robot impedance control parameters,
namely, control uk consists of increments to the impedance control parameters (Eq. 2),

uk = [∆Kk,∆Bk, (∆θe)k]
T
. (5)

Determining human control policy which originates from human neurocontrol circuit is a daunting
task, especially now that sensing, perception and feedback control circuits are interrupted after a
lower limb amputation. While agents’ policy solutions are solved from Bellman optimality-like
equations, a human cannot interpret and implement an MARL solution via their complicated neural
circuits. But this is not our intention. We instead use the human control variable as an estimated input
to the robot controller design, i.e., the robot is informed by an estimated human influence when they
share the same goal of symmetrical walking.

As the very first step to demonstrate this idea, we consider the human user of the wearable robot
intentionally or voluntarily walk at a reference step length, which may also be from an instructional
feedback. For real life scenarios, such behavioral cues can change over time, task, or environment.
But it is important to validate such formulation of considering human influence in the robot control
design. Toward this end, we consider a practical reference cue denoted as a desired step length
λo. We let vk represent an endogenous control signal of the human which is a function of human
physical and mental states that involve activities ranging from neural level to muscular and joint level.
Accordingly, we represent the endogenous human influence solved from the MARL design as a step
length λd

k. We therefore define human control as,

vk = λd
k − λo. (6)

Including this estimated human control into the problem of robot control design, we take into account
human influence on human-robot walking performance while they share the same symmetrical
walking goal.

Symmetrical walking as shared task goal.

We consider the stage cost to be shared between the human and the robot.

U(xk, vk, uk) = xT
kRxxk +Rvv

2
k + uT

kRuuk + µh2
k, (7)

where Rx ∈ R4×4 and Ru ∈ R3×3 are positive semi-definite weighting matrices, Rv and µ are
positive weighting constants, and hk = vk − v̄k. In the above, the difference between actual human
step length λi

k and reference λo, denoted as v̄k = λi
k − λo, is considered practical and available.

In this formulation, the shared control objective is represented in two ways. First, the robot kinematic
state variables in xk are to match the intact knee, i.e., the robotic joint angle profile is to match
that of the intact joint. Additionally, a walking symmetry measure is directly considered by the
differences in step length and stance time between human and robot, commonly used gait symmetry
measures [61, 62, 63]. The human is assumed to perceive the gait symmetry but do not have access
to or understand robot kinematic data (peak knee deflection error ∆Pk and peak knee time error
∆Dk). The works [14, 64] show from test subject data that human control and adaptation has a
direct influence on robot kinematics through dynamic interactions [59]. To account for this dynamic
learning phenomenon, this framework penalizes the estimation error hk = vk − v̄k = λd

k − λi
k
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between human perceived difference in step length. An unexpected or undesired human action will
increase the cost represented by hk, while a diminishing hk indicates that human input that originated
from the neuromuscular system matches actual human performance. Minimal controller energy
expenditures are also included in the cost structure.

The human-robot control objective to be solve by MARL as a function of the state variables
and the the controls is formulated as an infinite horizon, discounted cost Q(xk, vk, uk) =∑∞

j=k γ
j−kU(xj , vj , uj) where γ (0 < γ < 1) is the discount factor for the infinite-horizon problem.

Solutions to control actions. Let vk = πv(zk) and uk = πu(xk), where πv and πu are the human
and the robot control policies solved from cMARL, respectively. Solving optimal control policies π∗

v
and π∗

u requires solving the optimal Q function that satisfies Bellman optimality equation:

Q∗(xk, vk, uk) = U(xk, vk, uk) + γQ∗(xk+1, π
∗
v(zk+1), π

∗
u(xk+1)). (8)

When using a neural network-based actor-critic solution framework, we approximately solve the
optimal control problem using the following iterative procedure (i is the iteration index),

Qi+1(xk, vk, uk) = U(xk, vk, uk) + γQi(xk+1, πvi(zk+1), πui(xk+1)). (9)

where πvi(zk) = argminvk Qi(xk, vk, uk), and πui
(xk) = argminuk

Qi(xk, vk, uk), and
Qi(xk, vk, uk) are iterative actor policies and iterative Q value function.

During training, the actor and critic back-propagate their respective squared error to update their
weights. The prediction error of actor eav,k, eau,k ∈ R is,

eav,k = eau,k =
1

2
(Qi (xk, vk, uk))

2. (10)

The prediction error for the critic ec,k is formulated based on the Bellman error,

ϵc,k = U + γQi(xk+1, πvi(zk+1), πui
(xk+1))−Qi+1 (xk, vk, uk) , (11)

and the critic neural network is trained to minimize ec,k = 1
2ϵ

2
c,k.

The optimal state-action cost-to-go function Q∗(xk, vk, uk) is approximated by a critic neural network
which learns the Q function by minimizing the Bellman error on the shared cost signal, not on a
local cost signal for either the human or the robot as the human and the robot are physically coupled.
We use our established direct heuristic dynamic programming (dHDP) algorithm [36] to solve this
approximation dynamic programming problem. The critic neural network is a three-layer MLP
with 6 hidden units and uses linear activation function in the output layer. Therefore, we have the
approximated cost to go value represented by:

Q̂i(xk, uk) = Wc2,iφ
(
Wc1,i

[
xT
k , u

T
k

]T)
, (12)

where Wc1,i ∈ R6×8 denotes the weight matrix between the input layer and the hidden layer, and
Wc2,i ∈ R1×6 the weight matrix between the hidden layer and the output layer during the ith learning
update. The weight updates of the hidden layer matrix Wc2 are according to

∆Wc2,i = lc

[
− ∂ec,k
∂Wc2

]
, (13)

and the weight updates of the input layer matrix Wc1 are according to

∆Wc1,i = lc

[
− ∂ec,k
∂Wc1

]
, (14)

where lc > 0 is the learning rate of the critic network.

Similar to the critic network, the actor networks for the human and the robot, respectively are three-
layer MLP with 6 hidden units with hyperbolic activation function in the output layer to bound the
action output. The same SGD optimizer [36] can be applied to the actor networks as well.

The two actors, u and v, respectively are

uk = φ (Wau2,i ∗ φ (Wau1,ixk)) ,

vk = φ (Wav2,i ∗ φ (Wav1,izk)) ,
(15)
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where Wau1 ∈ R6×4, Wav1 ∈ R6×2, Wau2 ∈ R3×6 and Wav2 ∈ R1×6 are the weight matrices, and
φ(·) is the hyperbolic tangent activation function used in the hidden layer and the output layer. The
weight updates of the hidden layer matrix Wa2,i are according to

∆Wau2,i = la

[
− ∂eau,k

∂Wau2,i

]
,

∆Wav2,i = la

[
− ∂eav,k

∂Wav2,i

]
.

(16)

The weight updates of the input layer matrix Wa1,i are according to

∆Wau1,i = la

[
− ∂eau,k

∂Wau1,i

]
,

∆Wav1,i = la

[
− ∂eav,k

∂Wav1,i

]
,

(17)

where la > 0 is the learning rate of the actor.

Further details on the cMARL automatic control solution are provided in Appendix D.

5 Experiment

We conduct design evaluations of the proposed cMARL for symmetrical walking using OpenSim, a
well-established open source biomechanical modeling tool for conducting biomechanics research and
motor control science [65]. The robot knee control is realized within an FS-IC framework. In real life,
initial impedance parameters can be selected based on manufacturer and/or rehabilitation clinician’s
recommendations. Similar care is given to OpenSim simulated walking yet in all evaluations, the
initial impedance values vary from a large range of settings for fair examination. As in [37], we
enforce realistic safety constraints to prevent the human from stumbling or falling. Impedance
parameters are reset to initial impedance values if any of the state variables exceed the safety bounds.
The safety protocols followed in this work are fully described in Appendix A.4.

To make the simulations reflective of real world conditions, sensor and actuator noise data extracted
from real human experimental testing sessions is applied to all the simulations in this study. Appendix
A.2 provides the complete procedure followed of extracting noise data from experiments involving
human subjects and injecting it into all the simulations.

In this section, we provide results of a large set of simulation studies aiming at answering the following
questions: 1) Does our cMARL solution framework provide better performance than state-of-the-art
baselines, including MADDPG and COMA? 2) Does including human influence in robot control
design accelerate learning and improve success rate of policy in comparison to single-agent based
approach (wout/human)? 3) Is our cMARL applicable to different and realistic walking tasks? To
provide answers, we show three sets of evaluations: benchmark, ablation and reliability. Benchmark
and ablation evaluations are based on a level ground walking task with a pace of 1m/s. Reliability
evaluations are based two new walking tasks: slope walking on a 11.5 degree ramp and level ground
walking at an increased pace of 1.12m/s.

Performance Criteria. In order to ensure that amputee subjects walk safely and continuously,
we consider several performance metrics: 1) As an optimal control problem, the objective is to
minimize state regulation cost (smaller is better). 2) Peak knee error can directly reflect amputee
safety, preventing falling and stumbling (smaller is better). 3) Symmetry in walking can prevent
secondary injury (closer to 0 is better). 4) Fast learning in terms of fewer tuning steps is practically
important to amputees (fewer steps is better). 5) High success rate boosts amputees’ confidence and
hence walking performance (higher is better). Details of how the data was obtained can be found in
Appendix E.2. The main evaluation results are presented in Table 1. The second value in each entry
(i.e., after the ± symbol) represents the standard deviation of the performance metrics.

Benchmark study. MADDPG and COMA differ from our proposed cMARL approach toward
symmetry walking. MARL problems can vary greatly, same are expected of their solutions [66, 67].

To perform benchmark studies, we tailor MADDPG and COMA, respectively to our HPC problem.
Details are provided in Appendix D.
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Table 1: Performance of the implemented algorithms in terms of the five performance criteria. The
results of the best-performing algorithm for each criterion are boldfaced

Performance w/human wout/human COMA MADDPG
Stage Cost 0.002 ± 0.001 0.008± 0.003 0.004± 0.002 0.38± 0.306
Peak Error 0.003 ± 0.001 0.007± 0.002 0.003± 0.001 0.025± 0.014
Symmetry 0.001 ± 0.001 0.006± 0.003 0.003± 0.002 0.022± 0.012
Converge Steps 97 ± 88.3 187.5± 105.2 136± 121.8 −
Success Rate 0.7 0.58 0.5 −

Figure 2: The total number of steps needed to reach convergence in training (left). The success rate
during evaluation (right).

Figure 2 shows that our cMARL solution has the best convergence profile and success rate over the
baselines. Further results on training and evaluation are shown in Figures 3 and 4 which compare
the environment sample efficiency as well as algorithm performances. To answer the first question
based on benchmarking, our cMARL solution outperforms the baselines both in terms of kinematic
and symmetry measurements as shown in Figures 3 and 4, center and right panels for training and
evaluation, respectively. Additionally, the left panels of Figures 2, 3 and 4 show that our cMARL
solution outperforms benchmarks with at least 30% less environment samples.

Tr
ai
ni
ng
 S
ta
ge
 C
os
t

300

Figure 3: Learning curves of stage cost during training (left), peak angle error (middle) and sym-
metry of step length (right) for benchmark (w/human, COMA, MADDPG) and ablation (w/human,
wout/human) studies. Each learning curve is averaged over 16 different random seeds and shaded by
their respective 95% confidence interval.

Ablation study. To gain insights on how human control influences human-robot walking performance,
an ablation study is carried out with direct human influenced terms removed, including hk and vk,
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Figure 4: Learning curves of averaged total cost (terms associated with human influence removed)
during evaluation (left), peak angle error (middle) and symmetry of step length (right) for benchmark
(w/human, COMA) and ablation (w/human, wout/human) studies. Each (smoothed) learning curve is
averaged over 5 different random seeds and shaded by their respective 95% confidence interval.

from the problem formulation. This only leaves the kinematics and symmetry measurements in the
stage cost. Similar to the benchmark study, the ablation study has a training session and evaluation
session. For comparable results, the total cost in evaluation is obtained as U = (x)T (Rx)x+uTRuu.
Figures 3 and 4 show that with an estimated human control influence accounted for in the robot
control design, our cMARL solution (the green curves) outperforms the one without it (orange curves).
Treating human and robot as collaborating agents toward a shared performance goal, our cMARL
solution approach achieves increased success rate and accelerated learning speed (Figure 2). This
result makes sense as an estimated human control provides a predictive signal to the robot control
which aims at duplicating the intact human joint movement. Additional information on the quality of
estimated human control is given in Appendix B.2.

Reliability study. To make the proposed cMARL method practical and useful in real life, we setup
two new walking tasks: (1) slope walking (11.5 degree ramp) and (2) walking at an increased pace
(1.12m/s). They will result in different walking patterns from those used in the baseline study, and
thus different knee joint profiles. For slope walking, knee flexion will be more pronounced during the
stance phase since it walks inclined. In the case of faster pace, stance time will be compressed. To
carry out the tests, the same training procedure is used as in benchmark and ablation studies.

Figure. 5 shows the performance of cMARL during slope walking and increased pace walking tasks.
Performance of the two new tasks follow the same trend as that of the level ground walking at a
nominal pace. These results again validate our design approach of using the intact knee movement
trajectory as the target for the robotic knee to copy. By doing so, we have removed a major control
design barrier in the way of performing different walking tasks by automatic control.

Figure 5: Learning curves of stage cost during training (Left), peak angle error (Middle) and symmetry
of step length (Right) for different walking tasks (level ground walking at increased pace and ramp
walking). Each learning curve is averaged over 16 different random seeds and shaded by their
respective 95% confidence interval.
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Limitations of This Study. Here we conduct an in-depth simulation-based analyses as an important
first step to evaluate this novel cMARL solution to the HPC problem. Simulations are critically
important as exploration of problem formulation, control algorithm design, and systematic evaluation
are necessary to be performed prior to human experiment due to factors such as human fatigue,
human safety, human loss of interest/confidence caused by repeated trial-and-error, time spent, and
significant cost associated with testing amputee subjects. However, our framework is still to be
tested in human experiment. Based on several important works in the literature [37, 40, 68, 69],
extensive simulation studies followed by real life human test studies [41, 17, 70] have proven a highly
successful development procedure for human/robot control. This will be the next step of this study.

For scenarios in which the terrain or task has changed significantly, a task planner will become
necessary, making the problem a planning and control problem (as opposed to automatic control,
the focus of this work). This expanded automatic control algorithm must be extensively verified in
simulation and then in human tests before it can be integrated into a real-world planning framework
for daily use cases. Such planning frameworks constitute intended future works.

6 Conclusion and discussion

1) In the US, approximately 1.7 million people live with limb loss. The amputee population is
expected to double by 2050 as the population ages and incidence of dysvascular disease increases. As
most lower limb amputees use prosthetic legs to restore basic bipedal locomotion, our solution to the
prosthesis control problem can potentially help improve the function and quality of life of lower limb
amputees. 2) In this work, we develop a novel cMARL framework towards systematically integrating
the human and robot as collaborative agents to achieve normative walking toward solving real world
problems. With reaching symmetric locomotion as shared control performance goal, we demonstrate
improved walking performance. 3) Symmetry is selected as the shared goal for the collaborating
agents because asymmetric walking has been linked to secondary health complications including
back pain and osteoarthiritis [71, 72, 73]. Although human-robot walking performance goals are
difficult to systematically catalogue, additional considerations such as embodiment of the robot into
the human will be considered in future works. 4) By breaking apart the shared cost for the human and
the robot (cf. Section 5.1), the symmetrical walking task is treated and evaluated by MADDPG and
COMA, respectively. Simulation results show that the factorization-based CTDE paradigm struggles
to address the human-robot problem. The observed performance issues with factorization likely stem
from the intrinsic coupling between the human and robot agents. 5) While ensuring human user safety
has been carefully considered during control design, additional analysis of important properties such
as convergence of learning, (sub)optimality of control policy, and human-robot closed-loop stability
is still needed for this framework. Encouragingly, previous related works [74, 75, 76, 77] indicate
that these theoretical results are very likely to be provable.
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