
Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

DON’T FREEZE YOUR EMBEDDING: LESSONS FROM
POLICY FINETUNING IN ENVIRONMENT TRANSFER

Victoria Dean
Robotics Institute
Carnegie Mellon University
Pittsburgh, PA
vdean@cmu.edu

Daniel Toyama
DeepMind
Montreal, Canada

Doina Precup
DeepMind
Montreal, Canada

ABSTRACT

A common occurrence in reinforcement learning (RL) research is making use of
a pretrained vision stack that converts image observations to latent vectors. Using
a visual embedding in this way leaves open questions, though: should the vision
stack be updated with the policy? In this work, we evaluate the effectiveness of
such decisions in RL transfer settings. We introduce policy update formulations
for use after pretraining in a different environment and analyze the performance
of such formulations. Through this evaluation, we also detail emergent metrics of
benchmark suites and present results on Atari and AndroidEnv.

1 INTRODUCTION

Imagine an agent completing a task when the background changes color. The underlying task is
identical; only the observation space has changed. One might wonder: in this setting, might we
want to update the embedding network while keeping the policy the same? This is counter to a
common strategy of freezing the embedding while finetuning the policy head.

Much work in RL uses a pretrained visual embedding network, which may or may not be finetuned
during policy learning. In this work, we aim to evaluate the effectiveness of these paths. To this end,
we present a transfer framework that allows for evaluation of zero-shot generalization, embedding
finetuning (frozen policy head), head finetuning (frozen embedding), and full policy finetuning.
Comparing these approaches gives us a better understanding of how an agent makes use of the
different parts of its policy network.

The effectiveness of these paths depends on environment similarity at transfer time. Exploiting this
reasoning, we introduce environment metrics that evaluate an environment along multiple dimen-
sions based on finetuning success. We present such metrics for Atari flavors in the Arcade Learning
Environment (Machado et al., 2018) and task variants in AndroidEnv (Toyama et al., 2021).

2 RELATED WORK

2.1 MULTITASK TESTBEDS IN RL

In recent years, researchers have identified a growing need for better evaluation in RL (Machado
et al., 2018; Henderson et al., 2018). One such dimension is a generalization component of RL
testbeds. Machado et al. (2018) examined determinism in Atari environments and proposed the ad-
dition of sticky actions and variants on Atari games they call flavors. Others have created RL testbeds
with generalization in mind using procedural generation of environments (Chevalier-Boisvert et al.,
2018; Cobbe et al., 2020). Multitask benchmarks have also cropped up in robot learning (Yu et al.,
2020b). In our work, we make use of the Arcade Learning Environment as formulated by Machado
et al. (2018). We also introduce task variants for transfer in AndroidEnv (Toyama et al., 2021).

1



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

2.2 MULTITASK METHODS

An entire body of research is dedicated to multitask learning, which approaches ranging from met-
alearning (Finn et al., 2017) to gradient surgery (Yu et al., 2020a). Many such approaches are not
necessarily specific to RL and can be applied to a range of supervised tasks like vision. Hierarchical
approaches that can exploit common structures across tasks are also well-suited to multitask learning
(Sutton et al., 1999). Our work, in contrast, does not optimize for multiple tasks at the same time;
tasks are seen sequentially, and there is a clear target task in mind at any given point in training.

2.3 TASK TRANSFER AS AN EVALUATION PROTOCOL

Some recent work has created evaluation protocols for task transfer. Farebrother et al. (2018) looks
at DQN generalization with experiments on pretraining and transfer between Atari game flavors. For
consistency, we use the same set of flavors in our Atari experiments, though our focus is on types of
policy updates rather than generalization techniques like dropout and regularization.

Parisi et al. (2021) also crafts a transfer evaluation framework in RL. The framework involves pre-
training a self-supervised exploration policy which is used to bias actions of a task policy trained
from scratch at transfer time. The framework is implemented in 2D navigation settings (MiniGrid
and AI Habitat). Our work, in contrast, trains a single policy using extrinsic rewards across pretrain-
ing and transfer, and we present results in more dynamic settings (Atari and AndroidEnv).

3 METHOD

Our approach has two primary components: first, a transfer framework for training a policy (Section
3.1), and second, a policy update formulation used after transfer (Section 3.2).

3.1 TRAINING

Training consists of 2 phases. First, pretrain an RL agent in the default version of an environment.
Second, put the agent in a different flavor of the environment while training with modified policy up-
dates (described in Section 3.2). This sequence of events yields a number of evaluation points, from
random to zero-shot generalization to finetuning. Such evaluation is beneficial for understanding the
performance not only of the agent but also of the environment itself. We use IMPALA (Espeholt
et al., 2018) for our RL agent, which enables the decoupling of action and evaluation.

3.2 POLICY UPDATES

FC 64
Head

Embedding

Figure 1: IMPALA policy network com-
ponents (Espeholt et al., 2018). At
transfer time, we independently update or
freeze these components.

We apply a set of modified policy updates during trans-
fer time. As depicted in Figure 1, we split the IMPALA
policy network into 2 parts: an embedding and a policy
head. The embedding is a deep stack of convolutional
layers which takes in an image observation and out-
puts a 256-dimensional vector. The head represents the
temporal and action aspects of the agent, consisting of
an LSTM (Hochreiter & Schmidhuber, 1997) and fully
connected layer before producing a policy and value
function. The architecture is based on the large net-
work from Espeholt et al. (2018), which contains 15
convolutional layers and 1.6 million parameters. Our
only change is the addition of a fully-connected layer
to the head after the LSTM.

At transfer, we activate our modified policy updates,
which independently learn or freeze each model com-
ponent. This yields 4 formulations (freeze or not freeze
head, freeze or not freeze embedding), one of which is
trivial (freeze entire policy, zero-shot evaluation).

2



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

4 EXPERIMENTS

In our experiments, we set out to answer 2 overarching
questions:

• How does freezing the policy embedding affect performance, on both the current environ-
ment flavor and the pretrained one?

• What kind of generalization are Atari game flavors and AndroidEnv variants testing?

The first question is agent-centric, while the second is environment-centric. In this section, we
present experiments tackling these areas on Atari (Section 4.1) and AndroidEnv (Section 4.2). All
experiments are run with 5 random seeds, and plots show mean and confidence across these seeds.

4.1 ATARI EXPERIMENTS

In our Atari experiments, we use the set of games and flavors from Farebrother et al. (2018), com-
prised of 9 transfer tasks across 4 games (Figure 2). Experiments on the game Freeway, in line with
prior work, did not yield significant learning due to the sparsity of the reward, so we focus our anal-
ysis on the 3 remaining games. We pretrain the agent on the default game flavor (mode 0 difficulty 0,
abbreviated m0d0) for 50M steps, followed by an additional 50M steps of training in another flavor.

Figure 2: Example Atari game flavors. Visualizations borrowed from Farebrother et al. (2018).
The top row shows default flavors used for pretraining and the bottom row shows variants seen
during transfer: Freeway’s mode 1 adds buses, more vehicles, and increases velocity; Hero’s mode
1 starts the agent at level 5; Breakout’s mode 12 hides all bricks unless the ball has recently collided
with a brick; Space Invader’s difficulty 1 widens the agent’s spaceship and oscillates the red shields.

4.1.1 ATARI TRANSFER RESULTS

Figure 3 shows reward curves after transfer to a new Atari flavor. Updating the entire policy per-
forms best while freezing the entire policy shows the fixed performance after pretraining. The most
interesting finding from these results is that across the 3 Space Invaders flavor transfers, freezing
the policy head performs better than freezing the embedding. Freezing the embedding is commonly
seen in RL, especially in settings where we expect the observation space to be similar. From Figure
2 right, Space Invaders difficulties 0 and 1 appear to have similar observations (only the size of the
agent differs). This makes it even more surprising that updating the embedding is so crucial to per-
formance (especially in difficulty 1 transfer, Figure 3 bottom left). From this result, we hypothesize
that the embedding is learning task-centric representations and conclude that RL researchers should
be more wary of freezing an embedding network.

3



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Update all
Freeze embedding
Freeze head
Freeze all

Actor steps (millions)

Breakout m12d0 Hero m1d0

Space Invaders m1d1 Space Invaders m1d0 Space Invaders m9d0

M
ea

n 
Re

w
ar

d 
Pe

r E
pi

so
de

Figure 3: Atari transfer reward curves. Mean episode reward in flavor 2 after 50M actor steps of
pretraining in flavor 1. Unsurprisingly, updating the entire policy (red) performs best. Surprisingly,
freezing the embedding (green) yields lower performance than freezing the policy head (blue) across
the 3 Space Invaders flavors. Freezing the entire policy (purple), by definition, does not improve.

4.1.2 ATARI ENVIRONMENT FLAVOR METRICS

Comparing the policy update approaches yields a general framework for environment difficulty and
similarity scores. We compare episode rewards from 5 points: 1) trained from scratch on target
flavor for 50M actor steps, 2) random policy, 3) pretrain then freeze the embedding, 4) pretrain then
freeze the head, and 5) pretrain then update everything. In Table 1, we display 2-5), all normalized
by 1). Freeway agents rarely yield nonzero rewards, so the Freeway metrics do not shed much light.

The normalized random policy reward is a metric for environment difficulty. Random policies on
the Breakout and Hero flavors receive 2% of the rewards of the policy trained on the target; random
policies on Space Invaders receive 10-30% (suggesting that Space Invaders is an easier game).

The normalized pretrain then update everything (‘update all’) is a metric for flavor similarity – if the
flavors are more similar, then pretraining should provide a boost in target performance. Pretraining
provides a 2-4x boost in performance over training from scratch, with the exception of Hero Mode
2 – here pretraining actually hurts performance.

The normalized metrics for pretraining and freezing either the embedding or head tell us how two
environments are similar or different. There are 2 distinct findings here. First, as seen on Hero mode
1, freezing the embedding is twice as effective as freezing the head. Second, on Space Invaders
difficulty 1, freezing the head is three times as effective as freezing the embedding.

We present these metrics not only to illustrate our particular results but also as a general framework
for evaluating multitask and transfer benchmarks. These metrics could simply be computed once
upon release of a benchmark to show what kinds of challenges it presents.

Table 1: Atari environment metrics

Breakout Freeway Hero Space Invaders
m12d0 m1d1 m1d0 m4d0 m1d0 m2d0 m1d1 m1d0 m9d0

Random policy 0.026 0.0 0.0 0.0 0.020 0.024 0.119 0.141 0.282
Freeze embed 2.974 0.0 0.0 0.0 3.017 0.892 0.524 1.508 1.111
Freeze head 2.846 0.0 0.0 NaN 1.631 0.654 1.845 2.641 1.404
Update all 4.418 0.0 0.0 0.0 4.188 0.814 2.923 3.967 1.644

4



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

4.2 ANDROIDENV EXPERIMENTS

DODGE CATCH

Figure 4: AndroidEnv Catch. We in-
troduce 4 variants: large and small ball,
small paddle, and red background.

We also evaluate our policy learning strategies and evalua-
tion framework on AndroidEnv, a new testbed that is chal-
lenging for RL due to its lack of determinism and complex
action space. We present results on the Catch task as de-
picted in Figure 4. We introduce 4 variants of this task
as flavors. We use an action wrapper that discretizes the
pointer location into a 9x6 grid, as done in prior work. The
image observations are downsampled by 4x in x and y for
a resolution of 120x80. We run IMPALA with 5 actors.

4.2.1 ANDROIDENV TRANSFER RESULTS

Figure 5 shows the reward curves during transfer to Catch
variants after 5M steps of pretraining in the default flavor.
Reinforcing a finding from the Atari experiments, on the
large ball variant (Figure 5 left), freezing the embedding
performs significantly worse than freezing the policy head
or updating the policy altogether. In fact, freezing the pol-
icy head does not seem to degrade performance at all.

Other variants do not show as much distinction between policy update strategies. We hypothesize
that this is due to the simplicity of the Catch task and the binary nature of its reward. In future work,
we hope to expand these experiments to more nuanced tasks in AndroidEnv.

Large ball Small ball

Small paddle Red background

Actor steps (millions)

M
ea

n 
Re

w
ar

d 
Pe

r E
pi

so
de

Freeze head
Freeze all

Update all
Freeze embedding

Figure 5: AndroidEnv transfer reward curves. Mean episode reward in during training in a Catch
variant after 5M actor steps of pretraining in the default environment. The large ball results mirror
Atari experiments: freezing the embedding yields lower performance than freezing the policy head.

5



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

4.2.2 ANDROIDENV ENVIRONMENT FLAVOR METRICS

Table 2 shows the metrics for AndroidEnv across the 4 Catch flavors. Note that since the catch
rewards can be positive and negative, we do not normalize the metrics as we did for Atari flavors.
Each number is the mean episode reward for that strategy, averaged over 100 episodes from that point
in training. ‘Freeze all’ shows the initial performance of the pretrained policy right after transfer,
which gives us a similarity metric: ‘small paddle’ does almost as all initially as after finetuning (the
other flavors yield lower initial performance). Updating all policy parameters performs well except
in the large ball flavor, where freezing the head surprisingly performs the best.

Table 2: AndroidEnv environment metrics
Large ball Small ball Small paddle Red background

Freeze embed 0.348 0.768 0.664 0.432
Freeze head 0.524 0.832 0.436 0.436
Update all 0.328 0.784 0.636 0.688
Freeze all -0.444 0.064 0.444 0.100

5 DISCUSSION

Our approach has two goals: first, to analyze agent effectiveness in cases where part of the policy is
frozen, and second, to analyze the underlying environment testbeds. Notably, our results show that
freezing a policy embedding sometimes performs worse than freezing the policy head, opening doors
for future work to explore the role of a policy embedding. A clear takeaway from this result is that
researchers should think twice before using a pretrained embedding without updating it in concert
with the rest of the policy. Next, on the environment-centric side of our analysis, we presented a
collection of metrics to analyze environment flavors, their difficulties, and their similarities to one
another. Such metrics hold promise for designers of future benchmarks or anyone hoping to gain
a better understanding of existing environments. In a field struggling with sample efficiency as we
move towards more complex applications, RL researchers must increase focus on generalization and
finetuning to make these problems tractable; our work makes simple steps towards these goals.

REFERENCES

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with im-
portance weighted actor-learner architectures. In International Conference on Machine Learning,
pp. 1407–1416. PMLR, 2018.

Jesse Farebrother, Marlos C Machado, and Michael Bowling. Generalization and regularization in
dqn. arXiv preprint arXiv:1810.00123, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

6

https://github.com/maximecb/gym-minigrid


Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Simone Parisi, Victoria Dean, Deepak Pathak, and Abhinav Gupta. Interesting object, curious agent:
Learning task-agnostic exploration. Advances in Neural Information Processing Systems, 34,
2021.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020b.

7


	Introduction
	Related Work
	Multitask Testbeds in RL
	Multitask Methods
	Task Transfer as an Evaluation Protocol

	Method
	Training
	Policy Updates

	Experiments
	Atari Experiments
	Atari Transfer Results
	Atari Environment Flavor Metrics

	AndroidEnv Experiments
	AndroidEnv Transfer Results
	AndroidEnv Environment Flavor Metrics


	Discussion

