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ABSTRACT

Visual prompting has gained popularity as a method for adapting pre-trained
models to specific tasks, particularly in the realm of parameter-efficient tuning.
However, existing visual prompting techniques often pad the prompt parame-
ters around the image, limiting the interaction between the visual prompts and
the original image to a small set of patches while neglecting the inductive bias
present in shared information across different patches. In this study, we conduct
a thorough preliminary investigation to identify and address these limitations. We
propose a novel visual prompt design, introducing Low-Rank matrix multiplica-
tion for Visual Prompting (LOR-VP ), which enables shared and patch-specific
information across rows and columns of image pixels. Extensive experiments
across seven network architectures and four datasets demonstrate significant im-
provements in both performance and efficiency compared to state-of-the-art visual
prompting methods, achieving up to 6× faster training times, utilizing 18× fewer
visual prompt parameters, and delivering a 3.1% improvement in performance.

1 INTRODUCTION

Many applications in computer vision (CV) and natural language processing (NLP) rely on adapting
large-scale, pre-trained models to multiple downstream tasks (Liu et al., 2021; Dosovitskiy et al.,
2020; Ridnik et al.; Brown et al., 2020). Recent advances in large language models (LLMs) have
highlighted data-centric techniques such as in-context learning (Brown et al., 2020; Shin et al., 2020;
Liu et al., 2022) and prompting (Li & Liang, 2021; Liu et al., 2023). These techniques well-designed
prompts or input templates to significantly enhance the performance of LLMs across a wide range
of tasks. Inspired by these methods, visual prompting has gained substantial attention as a means
of adapting pre-trained vision models by modifying input pixels or output transformations (Bahng
et al., 2022; Chen et al., 2023; Tsao et al., 2024).

Existing visual prompting methods, such as those proposed by CLIP-VP (Bahng et al., 2022), ILM-
VP (Chen et al., 2023), and AutoVP (Tsao et al., 2024), have demonstrated the capability to enhance
the performance of pre-trained vision models across various downstream tasks. A natural question
arises: why does the addition or padding of tunable parameters to the original image pixels improves
adaptation performance? A plausible explanation is that the introduced visual prompts (VPs) pro-
vide task-specific information that not only alters the representation of the original images but also
influences the attention distribution across image patches. This is particularly significant in pre-
trained models such as Vision Transformers (ViTs) (Dosovitskiy et al., 2020), where VPs interact
with patch tokens and guide the model’s attention to different parts of the image.

However, current VP designs primarily focus on adding or padding tunable parameters at the pe-
riphery of the image (see Part 1 of Figure 1 for existing VP designs), thus only allowing boundary
patches to be modified, while the central patches remain unchanged. These designs present two
notable limitations: (1) The VP parameters are restricted to interacting with the original image in
a limited set of patches, leaving a substantial portion of the image unmodified. As a result, VPs
can only influence the model’s interpretation of specific regions of the image, while other regions-
potentially containing critical information-remain unaffected. (2) The VPs applied to each patch
operate independently, disregarding the inductive biases present in the shared information and po-
sitional encoding across different patches. For instance, one patch may represent part of an object,
while an adjacent patch represents another part of the same object. By ignoring these inter-patch
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relationships, visual prompting may limit the model’s ability to capture the global context of the
image effectively.

To address these limitations, we first conduct a thorough investigation to understand the shortcom-
ings of existing methods. Building on this analysis, we propose a novel visual prompting method,
termed LOR-VP , aimed at more efficient and effective adaptation of vision models. Our approach
not only influences every patch of the image but also introduces inductive biases between the rows
and columns of image patches. By leveraging LOR-VP , we achieve superior performance com-
pared to state-of-the-art (SOTA) methods while significantly reducing the number of parameters
required. In summary, our contributions are organized around the following three thrusts:

⋆ (Preliminary Study) We conduct an in-depth preliminary study to identify and illustrate the lim-
itations present in current visual prompting methods and explore potential solutions to overcome
these challenges.

⋆ (Novel Approach) To mitigate these limitations, we propose a novel visual prompting technique,
named LOR-VP , which optimizes the visual prompts uniformly across all patches and introduces
inductive biases between the rows and columns of the image patches.

⋆ (Experiments) We perform extensive experiments across a wide range of large-scale models and
datasets. The empirical results consistently demonstrate the significant improvements in both per-
formance and efficiency achieved by LOR-VP , validating its practical effectiveness. For instance,
LOR-VP surpasses the previous SOTA method, AutoVP (Tsao et al., 2024), by an average of 3.1%
on seven network architectures and four datasets using 6× less training time.

2 RELATED WORKS

2.1 VISUAL PROMPTING

The concept of prompting originated in the field of NLP as a technique for adapting pre-trained
models to downstream tasks (Shin et al., 2020; Liu et al., 2022; Li & Liang, 2021; Liu et al., 2023).
This design philosophy was later extended to CV by Bahng et al. (2022), who introduced tunable
parameters directly into input images to create what is known as a Visual Prompt (VP). A typical
VP framework consists of two primary modules: input design and output transformation (Bahng
et al., 2022; Tsai et al., 2020; Tsao et al., 2024; Cai et al.). Various strategies have been proposed for
constructing VPs. For instance, Bahng et al. (2022) modify input images by adding a frame of vi-
sual prompting parameters, whereas Chen et al. (2023) incorporate the visual prompting parameters
around resized images. Wu et al. (2022) explore efficient methods for generating visual prompts that
enhance performance across different tasks, and Oh et al. (2023) develop visual prompts designed
for adapting models to black-box, inaccessible models. Since the output logits of pre-trained models
remain in the source domain, an additional output transformation (e.g., label mapping) is required
to accurately predict the targets. A simple approach is to randomly map source labels (RLM) onto
target labels. Tsai et al. (2020) propose a frequency-based label mapping (FLM) technique, which
derives the mapping based on frequency statistics. Chen et al. (2023) further introduces iterative
label mapping (ILM), which improves the performance of visual prompting. Yang et al. (2023)
proposes a semantics-based label mapping approach that aligns source and target classes based on
semantic similarity. Additionally, Tsao et al. (2024) introduces full mapping (FM), utilizing an au-
tomated system to select the most appropriate label mapping (LM) method to optimize performance
across diverse downstream tasks.

2.2 LOW-RANK STRUCTURES IN DEEP LEARNING

Low-rank structures are widely observed in machine learning, as many problems inherently ex-
hibit low-rank properties (Li et al., 2016; Cai et al., 2010; Li et al., 2018; Grasedyck et al., 2013).
It has been found that for numerous deep learning tasks, especially those involving heavily over-
parameterized neural networks, the resulting models tend to exhibit low-rank characteristics after
training (Oymak et al., 2019; Khodak et al., 2021). Some prior work has explicitly integrated low-
rank constraints during the training process of neural networks (Sainath et al., 2013; Zhang et al.,
2014; Zhao et al., 2016). From a theoretical perspective, neural networks have been shown to outper-
form classical learning methods, including finite-width neural tangent kernels, when the underlying
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concept class has a low-rank structure (Allen-Zhu et al., 2019; Li & Liang, 2018; Ghorbani et al.,
2020; Allen-Zhu & Li, 2019; 2020). Additionally, Allen-Zhu et al. (2020) highlight that low-rank
adaptations can be beneficial in adversarial training scenarios. The LoRA method, introduced by
Hu et al. (2021), along with its variants (Zhang, 2023; Yeh, 2023), is particularly noteworthy for
not introducing additional inference burdens, thus improving the parameter efficiency of adapting
large pre-trained models. These methods employ low-rank matrices to approximate weight updates
during fine-tuning, enabling a seamless integration with pre-trained weights prior to inference.

3 PRELIMINARY STUDY

3.1 ANALYSIS OF PAD PROMPTING

Visual prompting is proposed to address the problem of adapting a pre-trained source model to
downstream tasks without fine-tuning the network weights. Consider a downstream target image
dataset D = {(x1, y1), ..., (xn, yn)} with typical color channels c (usually 3) and a pre-trained
vision model f with a resolution of L × L (the default value of L is 224 for simplicity). Visual
prompting modifies the images by adding tunable parameters to the image pixels. Among various
methods, Pad Prompting(Tsao et al., 2024; Chen et al., 2023; Bahng et al., 2022) is the most preva-
lent, which involves resizing the initial images to a specific size s (typically smaller than L, such
as 128), and then surrounding the resized image with a tunable parameter border of size p such that
s+2p = L, resulting in a prompted image of dimensions L×L. An illustration of Pad Prompting is
depicted in Part 1 of Figure 1. The optimal values for s and p generally vary across different models
and tasks. AutoVP, currently the SOTA in visual prompting, automates the selection of s and p to
enhance performance across various models and tasks (Tsao et al., 2024).

Figure 1: Illustration of various visual prompting methods applied to target domain data: ❶ Au-
toVP(Pad): Focuses on optimizing the balance between image scaling and tunable parameter in-
tegration to enhance model responsiveness. ❷ Patch-Pad: Aims to enhance localized learning by
surrounding each image patch with tunable visual prompts. ❸ Patch-Free: Provides maximum
adaptability by allowing independent tuning of visual prompts for each patch, catering to diverse
feature requirements across the image. ❹ Patch-Same: Promotes consistency in model training by
applying uniform visual prompts across all patches, ensuring coherent feature learning across the
input.

Despite AutoVP’s automated process for optimizing prompt size, Pad Prompting inherently only ad-
justs the prompts in the peripheral patches of the resized images, leaving the central part unchanged.
Furthermore, the parameters in different patches are optimized independently, disregarding the in-
ductive biases that arise from shared information and positional encoding across patches. We hy-
pothesize that a more effective visual prompting strategy would allow interaction with each patch
while also considering the inductive biases among them. This hypothesis has led us to explore new
VP designs:
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• Patch-Pad: As shown in Part 2 of Figure 1, after resizing the image, we evenly split it
into different patches and then pad the tunable parameters around each patch to form a
resolution L × L image. For instance, when using an ImageNet-21K (Deng et al., 2009)
pre-trained ViT-B/32 (Dosovitskiy et al., 2020) and fine-tuned on ImageNet-1K model, the
resize image is split into 7× 7 patches, and each patch is padded to a size of 32× 32 using
tunable parameters. The Patch-Pad method can influence each patch of the image but split
the image into discontiguous parts and potentially devastate the information in the images.

• Patch-Free: As shown in Part 3 of Figure 1, to avoid dropping information in the images,
we directly resize the image to resolution L × L, then evenly add independent tunable
parameters (initialized as 0) to each patch of the resized image. The Patch-Free design can
influence each patch of the image without splitting the resized image thus maintaining the
information of the image, but this design updates the patch VPs independently and doesn’t
consider shared information on different patches.

• Patch-Same: As shown in Part 4 of Figure 1, to enable shared prompting among each
patch, we initialize a patch of tunable parameters and repeatedly add it to all patches of the
image. Patch-Same enables shared visual prompting among different patches but constrains
the shared information as the same for all patches.

3.2 PERFORMANCE INVESTIGATION OF DIFFERENT VP DESIGNS

To investigate the performance of the aforementioned four VP designs, we conducted experiments
using ImageNet-21K pre-trained ViT-B/32 and ViT-B/16 (both fine-tuned on ImageNet-1K) on CI-
FAR10/100 (Krizhevsky et al., 2009). The performance of AutoVP (Pad Prompting) was used as
a benchmark, with all methods employing a fully connected label (FM) (Tsao et al., 2024) for fair
comparison. The results, depicted in Figure 2, indicate that ❶ Patch-Pad underperforms across all
models and datasets, the most likely reason is it split the image patches thus might damage the image
information. ❷ Patch-Free outperforms Patch-Pad, confirming that maintaining image continuity is
beneficial. However, Patch-Free is less effective than Patch-Same, which suggests that shared visual
prompting can enhance performance. ❸ Patch-Same outperforms AutoVP, underscoring the impor-
tance of shared prompting information across patches. ❹ The performance gap between Patch-Same
and Pad Prompting shrinks in models that have smaller patch sizes, suggesting that when using the
ViT-B/16 model, Patch-Same constrains more patches to learn a smaller visual prompt, which may
bring too strong constraints to the visual prompts, and a better way is utilizing visual prompts that not
only introduce inductive bias in different patches but also allow for patch-specific visual prompting.
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Figure 2: Preliminary Investigation Results. Performance comparison of various VP designs. Our
VP method demonstrates competitive or superior performance in several configurations. The final
performance of each method is marked by ⋆ or •, with all results averaged over three runs.

4 METHODOLOGY

Inspired by the observations in Section 3, we propose a novel visual prompt design that facilitates
prompting across all patches while enabling both shared and patch-specific information. This ap-
proach leverages low-rank matrix multiplication to efficiently manage visual prompts.
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Figure 3: Our VP Design. We resize the image to a resolution of L×L and initialize two low-rank
matrices B and A as tunable parameters. B · A serves as the visual prompt and is directly added
to the resized images. This design allows shared information in rows and columns and also allows
patch-specific information in different patches.

4.1 LOW-RANK VISUAL PROMPTING

In order to facilitate comprehensive pixel information and interaction across all patches, we resize
the image to a uniform size of L × L. This resizing strategy is designed to minimize information
loss, which is a common issue with the traditional Pad Prompting method that often resizes images
to dimensions smaller than L. To enable the sharing of visual prompt information across different
patches, we introduce two low-rank matrix parameters, B ∈ Rc×L×r and A ∈ Rc×r×L, where
r ≪ L. The product of these matrices, B ·A, serves as the visual prompt.

This configuration allows the visual prompt to act as a linear combination of the row vectors in A
and the column vectors in B, facilitating shared information across the rows and columns of the
image. Additionally, this design supports patch-specific information, as the coefficients of each row
and column are independently adjustable. Based on our observations in Section 3, this approach to
visual prompting is likely to yield superior performance. The visual prompt is directly added to the
resized image, resulting in the prompted image being expressed as:

P(x) = ResizeL(x) +B ·A, x ∈ D, (1)

where ResizeL(·) resizes the image x into a size of L×L, and matrices B and A are the initialized
visual prompt parameters, we utilize zero initialization of B and a random Gaussian initialization of
A so B ·A is zero at the beginning of training.

Utilizing a rank r = 4 in B and A, we conduct experiments using the same configurations as
Section 3. From the experimental results shown in Figure 2, we can observe that our Low-Rank ma-
trices multiplication Visual Prompting (LOR-VP ) achieve the best performance among all designs,
further validate our hypothesis in Section 3.

This method simplifies the visual prompting process compared to Pad Prompting, which involves
complex resizing, padding, and mask manipulations. By employing low-rank matrices, we reduce
the number of tunable parameters from cL2 to crL, enhancing parameter efficiency significantly.

4.2 OUTPUT TRANSFORMATION

The output of the pre-trained model f on the prompted image P(x) remains in the source domain.
To align these predictions with target labels in downstream tasks, we apply an output transformation,
denoted as M:
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minimize
δ,M

E(x,y)∈DL(M(f(P(x)), y), (2)

We utilize Linear Probing (LP) as our output transformation method, which adjusts the output fea-
tures of the classifier head to suit downstream classes. This method proves more efficient than ex-
isting methods such as iterative label mapping (ILM) (Chen et al., 2023) and fully connected layer
mapping (FM) (Tsao et al., 2024) on large models and datasets. For instance, when using ImageNet-
21K pre-trained Swin-B (Liu et al., 2021) and tuning on ImageNet-1K, ILM costs too much time
and GPU storage to calculate and store the mapping sequences (a 21, 841× 1, 000 matrix) and Au-
toVP also achieves inferior performance due to the ineffectiveness to learn a 21, 841 × 1, 000 full
connected layer (see Figure 5 for performance details).

5 EXPERIMENTS

To assess the effectiveness and efficiency of our novel visual prompting method, we adopt the most
widely used evaluation protocol for VPs, i.e., evaluating models pre-trained on large datasets across
various visual domains. Unlike previous works such as ILM-VP (Chen et al., 2023) and AutoVP
(Tsao et al., 2024), which primarily utilize ImageNet-1K (Deng et al., 2009) pre-trained models
and fine-tune on smaller downstream datasets, we extend our exploration to larger pre-training
datasets, such as ImageNet-21K (Deng et al., 2009), as well as larger downstream datasets, in-
cluding ImageNet-1K, to examine the scalability of existing VP methods. Furthermore, we conduct
extensive empirical evaluations, focusing on the following aspects: (1) Demonstrating the supe-
rior performance and faster convergence of LOR-VP across different datasets and architectures; (2)
Investigating the out-of-distribution robustness of LOR-VP ; (3) Showcasing the efficiency of LOR-
VP in terms of training epochs, runtime, and parameter usage, etc; (4) Performing ablation studies
to evaluate the effectiveness of our VP approach under various label mapping methods, the optimal
rank configuration in LOR-VP , and the contribution of different components within LOR-VP .

5.1 IMPLEMENTATION DETAILS

Datasets. For pre-training, we utilize the ImageNet-1K dataset (Deng et al., 2009), which contains
1K classes and 1.3M images, the ImageNet-21K-P dataset (Ridnik et al.), comprising 11K classes
and 12M images, and the ImageNet-21K dataset (Deng et al., 2009), which includes 21K classes
and 14M images. We evaluate the effectiveness and efficiency of LOR-VP across four downstream
datasets: ImageNet-1K, Tiny-ImageNet (Le & Yang), and CIFAR-10/100 (Krizhevsky et al., 2009).
To assess the out-of-distribution robustness of LOR-VP , we conduct experiments on ImageNet-R
(Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al., 2019), ImageNet-A (Hendrycks et al.,
2021b), and ImageNet-V2 (Recht et al., 2019). Additional details about the datasets are in Table 6.

Networks. We employ six architectures for our experiments, all of which operate at a resolution
of 224×224. (1) ResNet-18 and ResNet-50 (He et al., 2016) pre-trained on ImageNet-1K, and ViT-
B/32 (Dosovitskiy et al., 2020) pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K, each
with a classifier head of 1000 classes; (2) ResNet-50-P and ViT-B/16-P (Dosovitskiy et al., 2020),
pre-trained on ImageNet-21K-P, with classifier heads for 11,221 classes; (3) Swin-B (Liu et al.,
2021), pre-trained on ImageNet-21K, with a classifier head for 21,841 classes; (4) CLIP (Radford
et al., 2021), a vision-language model that uses a ViT-B/32 architecture as its vision encoder. The
weights for these models are all publicly available through the official PyTorch Model Zoo1 or the
Hugging Face Timm Library2. Further details of the network architectures can be found in Table 7.

Baselines. We select four representative SOTA methods as our baselines: (1) CLIP-VP (Bahng
et al., 2022), which extends prompt tuning to the computer vision domain by incorporating prompt
parameters directly into input images using CLIP models; (2) ILM-VP (Chen et al., 2023), which
explores the impact of frequency-based label mapping (FLM) in visual prompting and introduces
iterative label mapping (ILM) for improved performance; (3) AutoVP (Tsao et al., 2024), a SOTA
method in visual prompting that automates the selection of VP configurations, including prompt

1https://pytorch.org/vision/stable/models.html
2https://huggingface.co/models?library=timm
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sizes and label mapping (LM) strategies—our experiments use the optimal configuration provided by
AutoVP; (4) LP, which modifies the classifier head of the pre-trained model to adapt to downstream
tasks, a commonly used technique in transfer learning, serving as a baseline akin to LOR-VP without
the novel VPs introduced in our approach.

Training and Evaluation. The results for the baseline methods, including CLIP-VP, ILM-VP,
and AutoVP, are reproduced using the same configurations as described in their respective original
papers. For LOR-VP , we resize all input images to 224× 224 and use a rank of 4 in our VP design.
As a result, the two sets of parameters in LOR-VP have dimensions of 3× 224× 4 and 3× 4× 224,
respectively, meaning that the total number of parameters in the visual prompts is only 5K. The
optimal hyperparameters for LOR-VP are determined through grid search. All experiments are
conducted on NVIDIA Quadro RTX8000 GPUs with 48GB of memory. Additional implementation
details for LOR-VP are provided in Table 8.

5.2 MAIN RESULTS

Performance of ImageNet-1K and CLIP Pre-trained Models. To demonstrate the effectiveness
of LOR-VP on widely used ImageNet-1K pre-trained models, we evaluate its performance across
several downstream datasets using ImageNet-21K pre-trained ViT-B/32 (fine-tuned on ImageNet-
1K), ImageNet-1K pre-trained ResNet-18 and ResNet-50, as well as CLIP models. As shown in
Figure 4, we can observe that: ❶ LOR-VP consistently outperforms all baselines across all network
and dataset combinations, achieving an average improvement of 3.2% and 2.1% over AutoVP and
LP, respectively. ❷ LOR-VP converges significantly faster than the baselines, reaching optimal
performance with 5× fewer training epochs than AutoVP and 10× fewer than ILM-VP.
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Figure 4: Performance of ImageNet-1K and CLIP Pre-trained Models on Downstream
Datasets. Overview of the performance of LOR-VP compared to four baseline methods. The fi-
nal performance of each method is indicated by ⋆ or •, and all results are averaged over three runs.
LOR-VP consistently outperforms all baselines across various models and datasets.

Performance of ImageNet-21K Pre-trained Models. To further evaluate the effectiveness of
LOR-VP and existing visual prompting methods on larger models and datasets with a greater num-
ber of classifier classes, we conduct experiments using ImageNet-21K-P pre-trained ResNet-50-P
and ViT-B/16-P, as well as ImageNet-21K pre-trained Swin-B models, tuning them on ImageNet-
1K and Tiny-ImageNet. These models have significantly more classifier output features compared
to ImageNet-1K pre-trained models, providing additional evidence of the effectiveness of LOR-
VP and other VP methods on large-scale models and datasets. For the ImageNet-1K experiments,
we focus on the strongest baselines, such as AutoVP and LP, running them for 30 epochs in line
with the implementation in Liu et al. (2021), due to resource constraints. We found it challenging
to run ILM-VP on our GPUs, as the ILM process is computationally expensive in terms of both
training time and GPU memory. The results of the experiments are presented in Figure 5, where we
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observe the following: ❶ LOR-VP consistently achieves the best performance across large models
and datasets, outperforming all baselines. ❷ The performance gap between LOR-VP and AutoVP
increases to 5.06 on ImageNet-1K. A likely explanation is that the full mapping (FM) method used
in AutoVP is less effective in this scenario, as it struggles to efficiently train a fully connected layer
with 21, 841 input features and 1, 000 output features.
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Figure 5: Performance of ImageNet-21K Pre-trained Models on ImageNet-1K and Tiny-
ImageNet. Performance comparison of LOR-VP and four baseline methods. The models are pre-
trained on either ImageNet-21K-P or ImageNet-21K and then tuned on the respective downstream
datasets. The final performance results are denoted by ⋆ or •. All results are averaged over three
runs. LOR-VP consistently outperforms all baselines across different models and datasets.

5.3 ROBUSTNESS OF LOR-VP

To investigate the out-of-distribution robustness of LOR-VP and explore its potential for enhancing
real-world applications, we conduct experiments using ImageNet-21K pre-trained Swin-B. We apply
LOR-VP on ImageNet-1K and then evaluate the performance of the resulting model and visual
prompts on four out-of-distribution datasets. The performance of LOR-VP and the two strongest
baselines are presented in Table 1. We find that LOR-VP consistently demonstrates the best out-
of-distribution robustness and generalization performance across all baselines, achieving an average
improvement of 10.6 over AutoVP across the four datasets. These results further highlight the
superior out-of-distribution robustness of LOR-VP , confirming its advantage over SOTA prompting
methods in terms of generalization.

Table 1: Out-of-Distribution Generalization Performance. Evaluation of the out-of-distribution
generalization performance using the ImageNet-21K pre-trained Swin-B, with visual prompting ap-
plied on ImageNet-1K, and tested across four out-of-distribution datasets.

Method Source Target

ImageNet-1K ImageNet-R ImageNet-Sketch ImageNet-A ImageNet-V2

AutoVP [ICLR24] 78.98 38.14 28.89 17.91 67.38
LP 83.52 51.48 40.07 27.54 71.86

LOR-VP 84.04 52.27 41.13 27.89 72.38

5.4 EFFIEIENCY OF LOR-VP

As shown in Figures 4 and 5, LOR-VP achieves superior performance compared to SOTA meth-
ods with fewer training epochs. To further examine the efficiency of LOR-VP in contrast to the
baselines, we assess its performance using several criteria: training epochs, training time, tunable
parameters (including visual prompt parameters), GPU memory usage during training, and infer-
ence latency. Evaluations are conducted using an ImageNet-21K-P pre-trained ViT-B/16-P with vi-
sual prompting applied on Tiny-ImageNet, and an ImageNet-1K pre-trained ResNet-18 with visual
prompting applied on CIFAR-10. The results are presented in Table 2, we can observe that: ❶ LOR-
VP converges the fastest among all methods, requiring 5× fewer epochs and 6× less training time
compared to AutoVP, and 10× fewer epochs and 15× less training time compared to ILM-VP. ILM-
VP, in particular, converges the slowest and incurs the highest time cost, as it requires an additional
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epoch for every training epoch to compute the LM sequences. ❷ LOR-VP is highly parameter-
efficient. For small models and datasets, such as ResNet-18 and CIFAR-10, LOR-VP only requires
10K parameters to achieve optimal performance, which is 15× and 11× fewer than ILM-VP and
AutoVP, respectively. Notably, LOR-VP requires just 5K visual prompt parameters, which is 18×
and 30× fewer than AutoVP and ILM-VP, on average. ❸ GPU usage and inference speed for LOR-
VP are comparable to AutoVP, whereas ILM-VP consumes the most GPU memory on larger models
due to the additional computation and storage required for LM sequences. ❹ LOR-VP achieves the
best performance with the fewest visual prompt parameters and the shortest training time, mak-
ing it an ideal choice for adapting pre-trained vision models to downstream tasks, particularly for
resource-constrained environments such as mobile devices.

Table 2: Training and Inference Efficiency. Comparison of the training and inference efficiency
of LOR-VP , AutoVP, and ILM-VP, evaluated using ImageNet-21K-P pre-trained ViT-B/16-P on
Tiny-ImageNet and ImageNet-1K pre-trained ResNet-18 on CIFAR-10.

Network Dataset Method Epochs Time # VP Params # Tunable Params GPU Usage Latency Accuracy

ResNet-18 CIFAR10
ILM-VP[CVPR23] 200 5.76h 147K 147K 4.51GB 4.61ms 66.39
AutoVP[ICLR24] 100 2.61h 101K 111K 4.51GB 4.59ms 87.55

LOR-VP 20 0.50h 5K 10K 4.49GB 4.53ms 88.64

ViT-B/16-P Tiny-ImageNet
ILM-VP[CVPR23] 200 25.55h 147K 147K 17.24GB 14.55ms 26.17
AutoVP[ICLR24] 100 8.08h 74K 2,318K 13.59GB 14.40ms 81.42

LOR-VP 20 1.32h 5K 159K 13.34GB 14.29ms 84.40

5.5 ALBATION STUDIES

How does Output Transformation Impact LOR-VP ’s Performance? To further explore how
different output transformations affect the performance of LOR-VP , we conduct experiments by
combining LOR-VP with FLM, ILM, and FM, referred to as LOR-VP w. FLM, LOR-VP w.
ILM, and LOR-VP w. FM, respectively. These experiments are performed using ImageNet-21K
pre-trained Swin-B, ImageNet-21K-P pre-trained ViT-B/16-P, ImageNet-21K pre-trained ViT-B/32
(fine-tuned on ImageNet-1K), and ImageNet-1K pre-trained ResNet-18 on CIFAR-100 and Tiny-
ImageNet. The results are presented in Table 3, where we observe the following: ❶ LOR-VP with
LP as the output transformation achieves the overall best performance across all methods, net-
works, and datasets. ❷ Even when using the same output transformations as ILM-VP and AutoVP,
LOR-VP consistently outperforms these methods, further demonstrating the superiority of our vi-
sual prompt design.

Table 3: The Impact of Output Transformation. The performance comparison of utilizing FLM,
ILM, and FM as the output transformation of LOR-VP and the baselines. LOR-VP achieves the
overall best performance among all output transformation methods, networks, and datasets.

Dataset Method Output Transformation Network

Swin-B ViT-B/16-P ViT-B/32 ResNet-18

Tiny-ImageNet

ILM-VP[CVPR23] ILM 56.28 26.17 32.58 14.13
AutoVP[ICLR24] FM 84.81 81.42 82.43 59.68

LP LP 86.54 82.75 83.95 65.17

LOR-VP w. FLM FLM 82.15 41.76 82.89 57.45
LOR-VP w. ILM ILM 84.85 43.50 84.86 62.20
LOR-VP w. FM FM 85.59 83.15 86.03 65.63

LOR-VP LP 88.28 84.40 85.85 68.28

CIFAR100

ILM-VP[CVPR23] ILM 65.78 41.49 40.10 25.36
AutoVP[ICLR24] FM 86.83 88.58 85.96 63.77

LP LP 87.37 88.90 86.21 67.06

LOR-VP w. FLM FLM 74.08 46.35 72.81 34.58
LOR-VP w. ILM ILM 77.22 48.53 78.23 39.07
LOR-VP w. FM FM 86.25 89.10 88.48 68.64

LOR-VP LP 90.42 89.69 88.65 69.88

What is the optimal rank in LOR-VP ? To provide deeper insights into the optimal rank
selection in LOR-VP , we conduct experiments with various configurations: LOR-VP , LOR-
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VP combined with ILM as the output transformation named as LOR-VP w. ILM, and LOR-
VP combined with FM as the output transformation named as LOR-VP w. FM. These experi-
ments are performed using the ImageNet-21K-P pre-trained ViT-B/16-P on Tiny-ImageNet and the
ImageNet-21K pre-trained ViT-B/32 (fine-tuned on ImageNet-1K) on CIFAR-100. The results are
presented in Figure 6, from which we can derive the following observations: ❶ For output transfor-
mations such as LP and FM, the optimal rank is 4; increasing the rank beyond 4 does not yield any
further performance improvements. ❷ When LOR-VP is combined with ILM, the optimal rank is
around 16. A plausible explanation is that ILM lacks tunable parameters, so a higher rank is needed
to enhance the expressive power of the visual prompts and achieve optimal performance.

Ablation of Components in LOR-VP . We perform ablation studies on the two key components
of LOR-VP : the low-rank VP design and the linear probing output transformation. For experi-
ments without label mapping, we apply FLM prior to training and keep this mapping sequence
fixed during visual prompt training to ensure valid results. We conduct these experiments using
the ImageNet-21K-P pre-trained ViT-B/16-P, ImageNet-21K pre-trained Swin-B, and ImageNet-1K
pre-trained ResNet-18 on Tiny-ImageNet. The results, shown in Table 5, reveal the following: ❶
LOR-VP achieves the highest performance when both the low-rank VP and the output transfor-
mation are employed, demonstrating the effectiveness of these components in LOR-VP . ❷ Our
VP design improves model performance, regardless of whether a fixed mapping sequence or linear
probing is used.
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Figure 6: The Impact of Rank in LOR-VP .

Table 5: Ablation of Components in LOR-
VP . The results of using ImageNet-21K-P pre-
trained ViT-B/16-P, ImageNet-21K pre-trained
Swin-B, and ImageNet-1K pre-train ResNet-
18 on Tiny-ImageNet.

Components Network

VP Output Trans. ViT-B/16-P Swin-B ResNet-18

✗ ✗ 36.09 80.61 40.79
✓ ✗ 41.76 82.15 57.45
✗ ✓ 82.75 86.54 65.17
✓ ✓ 84.40 88.28 68.28

6 CONCLUSION

Visual prompting has emerged as a powerful technique for adapting pre-trained models to specific
tasks through parameter-efficient tuning. Traditional methods, however, often restrict the interaction
between visual prompts and the original image to a limited number of patches, overlooking the
potential benefits of shared information across different patches. Addressing these shortcomings, our
study introduces a novel approach, termed Low-Rank Matrix Multiplication for Visual Prompting
(LOR-VP ), which facilitates both shared and patch-specific information dissemination throughout
the image. Extensive experiments over seven networks and eight datasets consistently demonstrate
the effectiveness and efficiency of our method.

7 REPRODUCIBILITY STATEMENT

The authors have made an extensive effort to ensure the reproducibility of the results presented in the
paper. First, the details of the experimental settings are provided Section 5.1 and in the Appendix A.
This paper investigates eight datasets, and the details about each dataset are described in Table 6.
The evaluation metrics are also clearly introduced in Section 5.1. Second, the baseline methods’
implementation particulars are elucidated in Section 5.1. Simultaneously, the implementation details
of our method, LOR-VP , are included in Section 5.1 and Appendix A. Third, the codes are included
in the supplementary material for further reference.
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A IMPLEMENTATION DETAILS

Table 6: Dataset Information.

Dataset Original Resolution # Training Set Images # Test Set Images # Classes

ImageNet-21K (Deng et al., 2009) Varies 14M - 21,843
ImageNet-21K-P (Ridnik et al.) 224× 224 12M 0.6M 11,221
ImageNet-1K (Deng et al., 2009) Varies 1.3M 50K 1,000
ImageNet-R (Hendrycks et al., 2021a) Varies - 30K 200
ImageNet-Sketch (Wang et al., 2019) Varies - 50K 1,000
ImageNet-A (Hendrycks et al., 2021a) Varies - 7.5K 1,000
ImageNet-V2 (Recht et al., 2019) Varies - 10K 1,000
Tiny-ImageNet (Le & Yang) 64× 64 100K 10K 200
CIFAR100 (Krizhevsky et al., 2009) 32× 32 50K 10K 100
CIFAR10 (Krizhevsky et al., 2009) 32× 32 50K 10K 10

Table 7: Network Information.

Network Pre-trained Dataset # Model Params Resolution Classifier Head Input Features Classifier Head Output Features

ResNet-18 (He et al., 2016) ImageNet-1K 12M 224× 224 512 1,000
ResNet-50 (He et al., 2016) ImageNet-1K 26M 224× 224 2,048 1,000
ResNet-50-P (He et al., 2016) ImageNet-21K-P 46M 224× 224 2,048 11,221
ViT-B/16-P (Dosovitskiy et al., 2020) ImageNet-21K-P 94M 224× 224 768 11,221
ViT-B/16 (Dosovitskiy et al., 2020) ImageNet-21K, ImageNet-1K 87M 224× 224 768 1,000
ViT-B/32 (Dosovitskiy et al., 2020) ImageNet-21K, ImageNet-1K 88M 224× 224 768 1,000
Swin-B (Liu et al., 2021) ImageNet-21K 109M 224× 224 1,024 21,841
CLIP (Radford et al., 2021) WebImageText 86M 224× 224 512 -

Table 8: Implementation Details.

Network Pre-trained Data Downstream Data Resolution Optimizer LR Label Mapping LOR-VP Rank Epochs Batch Size

ResNet-18 ImageNet-1K CIFAR100 224× 224 SGD 0.02 Linear Probing 4 20 256
ResNet-50 ImageNet-1K CIFAR100 224× 224 SGD 0.02 Linear Probing 4 20 256
ViT-B/32 ImageNet-21K, ImageNet-1K CIFAR100 224× 224 SGD 0.02 Linear Probing 4 20 256
ResNet-50-P ImageNet-21K-P Tiny-ImageNet 224× 224 SGD 0.02 Linear Probing 4 20 256
ViT-B/16-P ImageNet-21K-P Tiny-ImageNet 224× 224 SGD 0.02 Linear Probing 4 20 256
Swin-B ImageNet-21K Tiny-ImageNet 224× 224 SGD 0.02 Linear Probing 4 20 256
CLIP WebImageText Tiny-ImageNet 224× 224 SGD 40 Linear Probing 4 20 256
Swin-B ImageNet-21K ImageNet-1K 224× 224 SGD 0.01 Linear Probing 4 10 256

B ADDITIONAL INVESTIGATION

Visual Prompting in Object Detection and Semantic Segmentation. In this paper, we primarily
focus on image classification tasks, following previous works such as AutoVP and ILM-VP. To
further explore the applicability of LOR-VP to object detection and semantic segmentation tasks,
we conduct experiments using YOLOv4 (Bochkovskiy et al., 2020) for detection and DeepLabv3+
(Chen et al., 2018) for segmentation. Both models use ImageNet-1K pre-trained ResNet-50 as
the backbone. Hyperparameters such as the number of epochs and the rank in LOR-VP are kept
consistent with those used in classification tasks.

For object detection, we train on the Pascal VOC 2012 and 2007 training sets and evaluate on the
Pascal VOC 2007 test set, following the setup in He et al. (2020). The bounding box head is modified
for output transformation, and a learning rate of 0.0001 is applied. For semantic segmentation, we
train on the Pascal VOC 2012 training set and evaluate on its validation set, with the DeepLabv3+
head adapted for downstream segmentation and a learning rate of 0.01. The experimental results
for detection are presented in Table 9, while the segmentation results are shown in Table 10. Our
method, LoR-VP, outperforms AutoVP by nearly 4% in AP50 on VOC 2007 detection and by 1.1%
on VOC 2012 segmentation, demonstrating the effectiveness of LOR-VP for object detection and
semantic segmentation tasks.
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Table 9: Performance (AP, AP50, and AP75)
for object detection using YOLOv4 with an
ImageNet-1K pre-trained ResNet-50 backbone,
evaluated on the Pascal VOC 2007 test set.

Method AP AP50 AP75

LP 42.87 75.25 47.74
AutoVP 41.72 73.07 44.85

LOR-VP 43.21 77.02 48.07

Table 10: Performance (mIOU) for seman-
tic segmentation using DeepLabv3+ with an
ImageNet-1K pre-trained ResNet-50 backbone,
evaluated on Pascal VOC 2012 validation set.

Method mIOU

LP 67.82
AutoVP 67.42

LOR-VP 68.55

Additional Investigation on Diverse Downstream Tasks. To assess the performance of LOR-
VP across a broader range of classification tasks, including those involving natural and artificial
objects, scenes, and textures, we conduct experiments on ten downstream datasets. These experi-
ments use ViT-B/32 pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K, following the
methodologies of AutoVP and ILM-VP, to further evaluate the generalization and robustness of our
approach. Although LOR-VP primarily focuses on pixel-level visual prompt designs, we extend our
comparison to include VPT-DEEP, as described by Jia et al. (2022), which modifies the transformer
layers. This allows for a more comprehensive evaluation against additional baselines. The exper-
imental results, presented in Table 11, show that LOR-VP achieves superior average performance
across the ten datasets compared to VPT and AutoVP. Specifically, LOR-VP improves performance
by 1.4% over AutoVP and 1.3% over VPT, further demonstrating its effectiveness in diverse scenar-
ios and against a wider range of baselines.

Table 11: Comparison of accuracy between LOR-VP and four baseline methods using ViT-B/32
pre-trained on ImageNet-21K and fine-tuned on ImageNet-1K across ten datasets.

Method Tiny-ImageNet EuroSAT OxfordPets Food101 DTD Flowers102 CIFAR10 CIFAR100 SVHN GTSRB Average

LP 83.95 95.67 91.90 82.18 69.83 97.98 96.51 86.21 83.09 83.21 87.05

VPT [ECCV22] 83.54 95.90 92.27 82.29 72.11 98.47 96.02 86.22 81.48 88.29 87.66

ILM-VP [CVPR23] 32.58 88.12 78.92 48.24 42.65 64.27 85.27 40.10 80.81 67.88 62.88

AutoVP [ICLR24] 82.43 96.25 92.12 82.86 70.81 98.42 95.45 85.96 85.24 86.39 87.59

LOR-VP 85.85 96.25 92.18 83.51 72.49 98.58 97.52 88.65 86.31 88.07 88.94

Table 12: Additional comparison of LOR-VP and AutoVP using LP and FM as output transforma-
tions, respectively.

Dataset Method Output Transformation Network

Swin-B ViT-B/16-P ViT-B/32 ResNet-18

Tiny-ImageNet

LP LP 86.54 82.75 83.95 65.17
AutoVP[ICLR24] FM 84.81 81.42 82.43 59.68

AutoVP w. LP[ICLR24] LP 86.45 82.92 83.31 65.58

LOR-VP w. FM FM 85.59 83.15 86.03 65.63
LOR-VP LP 88.28 84.40 85.85 68.28

CIFAR100

LP LP 87.37 88.90 86.21 67.06
AutoVP[ICLR24] FM 86.83 88.58 85.96 63.77

AutoVP w. LP[ICLR24] LP 88.70 89.34 87.00 68.10

LOR-VP w. FM FM 86.25 89.10 88.48 68.64
LOR-VP LP 90.42 89.69 88.65 69.88

Additional Investigation of Output Transformation. Table 3 presents the impact of output trans-
formations on LOR-VP , demonstrating that LOR-VP outperforms baseline methods, such as Au-

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

toVP and ILM-VP, when using the same output transformations. These results validate the effec-
tiveness of our visual prompt designs. To further examine the influence of different output trans-
formations and reinforce the superiority of our approach, we conduct additional ablation studies
comparing LOR-VP and AutoVP using LP and FM as output transformations. The experiments are
performed on the same architectures and datasets as those in Table 3. The results, shown in Table
12, indicate that LOR-VP consistently outperforms AutoVP with LP as the output transformation
across all models and datasets. Interestingly, AutoVP with LP achieves higher performance than
LP alone on CIFAR100 but performs comparably on Tiny-ImageNet. This variation may stem from
the scaling factors employed in AutoVP, which likely affect visual prompting performance differ-
ently across datasets. Notably, LOR-VP adopts a fixed visual prompt size of 224× 224, simplifying
its design by avoiding the need to account for scaling size, further underscoring its simplicity and
adaptability.
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