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ABSTRACT

Tabular data synthesis could overcome the tabular data incompleteness and data
availability issue. In most prior works, deep generative models are basically con-
structed following standard architecture designs. However, these works do not
consider the inter-relationships among the features, or the latent variables. To
fully leverage these inter-relationships, we develop a novel causal-aware asym-
metric variational autoencoder architecture (CAT) for tabular data generation, im-
putation, and intervention. The developed model, called CAT-MIWAE, learns
exogenous causal representation with a pre-defined causal graph in incomplete
data context. It provides interpretability for partially observed features and could
efficiently address missing value imputation problem. Besides, CAT-MIWAE can
sample data from distributions under arbitrary conditions and interventions. This
merit enables us to actively generate counterfactual or debiased fair data samples
for any subpopulation of interest. To validate the effectiveness of the proposed
causally aware models, we conduct extensive experiments on real-world tabular
datasets. Experiments show that the proposed models outperform the state-of-the-
art models. Moreover, we perform conditional average treatment effect (CATE)
estimations to show that CAT-MIWAE model could appropriately extrapolate any
conditional or interventional distributions from the original observed data distri-
bution.

1 INTRODUCTION

Tabular data is one of the most common types of data with structured features of heterogeneous types
(continuous and discrete). Due to its generic representation capability, on one hand, tabular data has
been widely used in many fields, such as medical diagnosis (Ulmer et al., 2020), finance (Tan et al.,
2018), recommendation systems (Sun et al., 2019). On the other hand, tabular data suffers from the
availability and quality for high cost of data collection or incompleteness of records, which weakens
the validity of inferences drawn from estimates and analysis (Tourangeau et al., 2013).

To mitigate this critical issue, tabular data synthesis, which can synthesize tabular data records with
high fidelity, is proposed. However, tabular data synthesis has two major concerns: 1) generation:
referring to training on the fully observed data and then generating intact records; 2) imputation:
referring to online learning on incomplete data and then imputing its missing values. Specifically,
imputation can generate data with arbitrary conditions. Substantial deep generative models (DGMs)
endeavor to efficiently handle these synthesis tasks, such as generative adversarial network (GAN)
(Goodfellow et al., 2014), variational autoencoder (VAE) (Kingma & Welling, 2013), normalizing
flow (Dinh et al., 2014), and their several variants Srivastava et al. (2017); Yoon et al. (2018); Li et al.
(2018); Ma et al. (2019; 2020); Peis et al. (2022). DGMs learn a mapping function from the latent
space (i.e., the latent distribution) to the feature space (i.e., the data distribution), drawing their high
fitting capability from deep neural architectures. Several DGMs specialized in tabular data synthesis
have been proposed and achieved significant success (Park et al., 2018; Xu et al., 2019; Lee et al.,
2021; Kim et al., 2021). However, most of aforementioned works do not explore the correlations
among the features, or the latent variables, which may significantly contribute to modeling the target
data distribution (Radford et al., 2015). This motivates our work in this paper.

To this end, we leverage causality to benefit tabular data synthesis. Causality is a typical inter-
variable relationship, which indicates the exact causal relationship between each feature. Inherently,
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causality can represent an individualized generative process for each feature, thereby implying their
mutual dependencies. Hence, incorporating causal knowledge in DGMs is capable to capture inter-
correlations and model target distribution for synthesizing higher quality data. Following this prin-
ciple, we leverage causal knowledge to benefit DGMs on imputation tasks. To the best of our
knowledge, this is the first work to incorporate causality in imputation tasks. Intuitively, addi-
tional causality enables model to better structure and control its online learning on incompletely
observed data. Causality can facilitate the target distribution modeling and missing features im-
putation. We consider tabular data with (partially) incomplete records but available causal knowl-
edge. The causal knowledge could be general domain knowledge provided by experts beforehand,
or learned by causal discovery method (Wen et al., 2022).

In this work, we develop a novel “CAT” architecture for VAE-based DGMs, standing for: 1) Causal:
causality-aware structure; 2) Asymmetric: single shared encoder with multiple specialized decoders;
3) Tabular: special treatments for heterogeneous types of features. The developed CAT-based ar-
chitecture characterizes itself with high flexibility and compatibility, and is capable of efficiently
handling both generation and imputation tasks. To show the effectiveness of CAT, we instantiate
it with MIWAE (Mattei & Frellsen, 2019) bound and propose CAT-MIWAE for imputation. CAT-
MIWAE learns the exogenous causal representation, i.e., a special case of causal representation
learning (Scholkopf et al., 2021), for any partially observed data. Besides, due to the combination
of imputation and causality, our CAT-MIWAE is able to sample data from distributions given arbi-
trary conditions and interventions. This critical advantage could potentially generate counterfactual
(Karimi et al., 2020), debiasing unfair data (van Breugel et al., 2021), and helping estimate condi-
tional average treatment effect (CATE), etc., exclusively for arbitrary subpopulation (subgroup) of
interest, rather than the whole or a single individual(s).

We highlight our contributions as follows.

1. We elaborate the analysis on how to integrate causality into VAE-based generative models,
providing theoretical support for our designations.

2. We propose CAT-based architecture with CAT-MIWAE, which can incorporate additional
causal knowledge to effectively learn the exogenous causal representation and handle tab-
ular data imputation tasks.

3. We show a significant merit of CAT-MIWAE that it allows to sample data from distributions
given arbitrary conditions and interventions (we refer to this as extrapolation).

4. We introduce comprehensive and reproducible empirical baselines for comparison. We
conduct extensive experiments on real-world datasets, and the results show that CAT-
MIWAE outperforms other state-of-the-art solutions.

2 RELATED WORK

DGMs for Tabular Data Choi et al. (2017) firstly applied GAN in electronic health record (EHR)
data and proposed MedGAN to generate high-dimensional discrete variables. TableGAN (Park
et al., 2018) adopted a well-designed combination of loss functions, striking a balance between
model utility and privacy concern. Xu et al. (2019) proposed a special perprocessing on continuous
variables for DGMs to more easily model the target distribution. Their proposed models, CTGAN
and TVAE, both achieve great performance improvements compared to prior works. Other two
works, Lee et al. (2021) and Kim et al. (2021), both followed the preprocessing of Xu et al. (2019),
and proposed to augment GAN frameworks with Neural Ordinary Differential Equation (NODE)
structure. Though acquiring fair results, the usage of NODE structure incurs huge computational
overhead.

DGMs for Missing Value Imputation Works related to imputation basically consider three missing
mechanisms setting (Little & Rubin, 2019): 1) missing completely at random (MCAR) : missing-
ness occurs entirely at random; 2) missing at random (MAR): missingness depends only on the
observed variables; 3) missing not at random (MNAR): missingness depends on both the observed
and the unobserved. For GAN-based DGMs, GAIN (Yoon et al., 2018) and MisGAN (Li et al.,
2018) are two representative works, both introducing additional networks to help learn the missing
mechanism. However, this may increase optimization difficulty, especially for min-max objective
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like GANs. Besides, their theoretical results are only available under MCAR assumption. For VAE-
based DGMs, the solution is more decent. In both MCAR and MAR cases, VAE does not consider
the missing mechanism. VAE just slightly changes its objective to obtain a lower bound of the like-
lihood of the observed data (more details in section 3.2 and 3.3). This variant is commonly referred
to as partial VAE that has been exploited in Ma et al. (2018; 2019; 2020); Nazabal et al. (2020) to
handle imputation task for heterogeneous tabular data. Mattei & Frellsen (2019) proposed MIWAE,
which combines partial VAE with IWAE bound (Burda et al., 2016). MIWAE could offer more flex-
ibility and produce more accurate imputed values. Based on MIWAE, Ipsen et al. (2021) proposed
not-MIWAE, which can further explicitly model the missing mechanism and handle MNAR case.

DGMs with Causality There are several works integrating causality into DGMs. For GAN-based
DGMs, there are CausalGAN (Kocaoglu et al., 2018), GCNN (Goudet et al., 2018), DECAF (van
Breugel et al., 2021), and Causal-TGAN (Wen et al., 2022). These works all adopted a generator
with causally aware structure. Specifically, CausalGAN aims at generating images from interven-
tional distributions which do not naturally exist. GCNN is targeted at causal discovery. DECAF aims
at causally debiasing and generating fair interventional data distribution. The goal of Causal-TGAN
is to generate high-quality tabular data. Different from our work, Causal-TGAN limits its scope
to generation task and do not provide flexibility or compatibility for imputation. For VAE-based
DGMs, Yang et al. (2021) proposed CausalVAE to perform disentangled representation learning for
images via causal neural layer. Karimi et al. (2020) used a collection of CVAEs to approximate
causal posteriors and generate counterfactuals for algorithmic recourse. Besides, Shen et al. (2020)
proposed DEAR, which combines VAE and adversarial training to learn the causal disentangled
representation.

3 PRELIMINARIES

3.1 GENERATIVE PROCESS WITH CAUSALITY
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Figure 1: Causal graph G and SEM MG .

Let X = {Xi}di=1 ∈ X ⊆ Rd denote a set of ran-
dom variables with distribution pX(X). We adopt
structural equation model (SEM)(Pearl, 2009) to
causally model the data generative process. We
illustrate an example of SEM with 4 variables
in Fig. 1. Formally, we formulate SEM as a
triplet MG = ⟨X,U,F⟩. G denotes the underly-
ing causal graph, which covers all causal relation-
ships. X denotes the set of endogenous variables,
and U = {Ui}di=1 denotes the set of exogenous
variables. Moreover, F = {f1}di=1 denotes the set
of causal equations. For a certain feature Xi, we
can express its generating process as causal equa-
tion Xi = fi(XpaG(i), Ui), where XpaG(i) is the
set of all the endogenous causal patents of Xi in G
(namely, paG(i) denotes corresponding indices).

Ui covers all other unobserved causes of Xi. Note that fi is actually a deterministic function that
places all randomness of the conditional distribution p(Xi|XpaG(i)) in the exogenous variable Ui.

In this paper, we consider MG is causally sufficient, i.e., {Ui}di=1 are mutually independent, like
other works do (Karimi et al., 2020). In this case, the probability distribution on X satisfies the
Markov Condition with respect to G (Pearl & Verma, 1995). One of the well-known forms is the
factorization p(X) =

∏d
i=1 p(Xi|XpaG(i)), which we may refer to as MCfactorization. Besides,

we consider the partial causal knowledge scenario. Namely, causal graph G is already known or
pre-defined as expert knowledge, while the specific structural equations MG is not.

3.2 AUTO-ENCODER WITH AMORTIZED VARIATIONAL INFERENCE

Variational auto-encoder (Kingma & Welling, 2013) is a deep generative model with latent vari-
ables. The objective of VAE is to maximize an evidence lower bound (ELBO) on the marginal
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log-likelihood, derived from Jensen’s inequality as

ℓ(θ) = logpθ(x) = logEqγ(z|x)

[
pθ(x, z)

qγ(z|x)

]
≥ Eqγ(z|x)

[
log

pθ(x, z)

qγ(z|x)

]
= L(θ, γ), (1)

where z is the latent variable. We could factorize the joint distribution pθ(x, z) as pθ(x|z)p(z),
where pθ(x|z) is the likelihood represented as the generative network (decoder) with parameters θ.
p(z) is the prior of latent variable. qγ(z|x) is the variational posterior represented as the inference
network (encoder) with parameters γ, introduced by amortized variational inference (Kingma &
Welling, 2013). qγ(z|x) serves as a proposal distribution to approximate the intractable true poste-
rior pθ(z|x), for practically solving the expectation (integral) of the marginal likelihood. The equal
sign in the inequality holds if and only if the variational posterior qγ(z|x) exactly equals to the true
posterior pθ(z|x). The ELBO L(θ, γ) could be estimated via Monte Carlo method.

3.3 MISSING VALUE IMPUTATION

When considering a data missing context, we can split each sample into an observed part and a
missing part, i.e., x = (xo,xm), where o and m denote the indices of observed and missing
features, respectively.

In this paper, we consider MCAR and MAR assumptions. Mattei & Frellsen (2019) and Ipsen et al.
(2021) stated that the impact of the missing mechanism could be ignored for both MCAR and MAR
cases, and the optimization objective of likelihood could simply be pruned to pθ(xo). Hence, we
could substitute all x with xo in Eq. 1 to derive a lower bound of the observed part (partial ELBO).
Further, combining with the importance-weighted auto-encoder (IWAE (Burda et al., 2016)), we
push the Monte Carlo estimate inside the logarithm with the idea of importance sampling

LK(θ, γ) = Ez1,...,zK∼qγ(z|xo)

[
log

1

K

K∑
k=1

pθ(xo|zk)p(zk)
qγ(zk|xo)

]
, (2)
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Figure 2: Graphical represen-
tation of the standard architec-
ture (C3VAE) with augmented
graph G′. Solid arrows denote
decoders, while dashdot arrows
denote encoders.

which is also known as the MIWAE bound (Mattei & Frellsen,
2019). When K = 1, this bound resembles the standard (partial)
ELBO. And Burda et al. (2016) proved that the larger K, the
tighter the bound, i.e.,

L1(θ, γ) ≤ ... ≤ LK(θ, γ) −−−−→
K→∞

ℓ(θ). (3)

With importance sampling, as studied by Cremer et al. (2017);
Domke & Sheldon (2018), the variational distribution qγ(z|x)
would be replaced by a more complex distribution qIW which
depends both on θ and γ. Thus, IWAE could allow additional
flexibility to train a decoder whose posterior does not need to fit
assumptions well (Burda et al., 2016; Mattei & Frellsen, 2019).

Note that some pre-imputation shall be performed in advance,
thereby filling in the missing features with dummy values in each
data point so as to feed it to the encoder. As Mattei & Frellsen
(2019) states, even a very rough pre-imputation is acceptable
with the usage of MIWAE bound. Therefore, in this work, we
conduct pre-imputation by replacing missing values with zeros.

4 METHODOLOGY

4.1 VAE WITH CAUSALLY AWARE ARCHITECTURE

For integrating causal knowledge in VAE-based model, a common intuition is to use the latent
variable Z to represent the exogenous variable U . Given a true causal graph G, under causal suffi-
ciency assumption, we can thus manually reorganize Z as a collection of d independent components
{Zi}di=1, where each component Zi correspondingly accounts for the exogenous cause of Xi. This
could also be visually represented as an augmented graph G′ of G, where XpaG′ (i) = {XpaG(i), Zi}.
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By this means, the generative process for each feature Xi can be considered as the conditional
distribution p(Xi|XpaG(i), Zi). The augmented graph G′ essentially models the joint distribution
p(X,Z). For better illustration, We provide an example in Fig. 2.

With G′, we review the ELBO in Eq. 1. Under extra causal assumptions, we conduct factorization
on the feature space, finally deriving a lower bound (see appendix A for more details)

LC3V AE(θ, γ) =

d∑
i=1

Eqγi (zi|xi,xpaG(i))

[
log

pθi(xi|xpaG(i), zi)p(zi)

qγi(zi|xi,xpaG(i))

]
, (4)

where θ = {θi}di=1 and γ = {γ}di=1 are collections of the parameters of decoders and encoders,
respectively. Each expectation in the above summation respectively corresponds to the ELBO of
a conditional VAE (CVAE) modeling conditional distribution pθi(xi|xpaG(i)) (more interpretations
in appendix A.1). This causal collection of total d separate CVAEs (we refer it as C3VAE), is
certainly a standard solution for integration of causality. Fig. 2 illustrates an example of the graphical
representation of C3VAE. In fact, this architecture has already been exploited by Karimi et al. (2020),
which aims at learning the posterior to generate counterfactual distribution for algorithmic recourse.

However, C3VAE has an obvious limitation that it is only suitable for learning in fully observed data
context. When some features are missing, the screened-off designation of encoders would not allow
to make full use of those observed values.

4.2 CAT-BASED ARCHITECTURE

To construct a more flexible and compatible architecture, we rearrange the intermediate Eq. 14b in
the deduction (appendix A) as

LCAT V AE(θ, γ) =

d∑
i=1

Eqγi (zi|x)

[
log

pθi(xi|xpaG(i), zi)p(zi)

qγi
(zi|x)

]
. (5)

Thus, we propose to design a shared encoder Eγ , which takes the full data features x = {xi}di=1

as input to infer the posteriors of all {zi}di=1 simultaneously. Whereas, we still leave multiple
specialized decoders topologically structured according to causal graph G, where each decoder Dθi
generates a certain feature xi. Note that here we slightly abuse the notations. γi in Eq. 14b refers to
partial parameters of the shared encoder Eγ , which takes charge of inferring zi.

This is exactly the key idea behind our “CAT” architecture. Though CAT-VAE seemingly does
not precisely utilize causal knowledge to infer posteriors, its shared encoder structure can offer
more flexibility instead, especially when handling missing values (more details in subsection 4.3).
Besides, since neural networks are universal approximators, CAT-VAE could finally arrive at as
close convergence as C3VAE, provided that their model capacities (especially for their encoders)
are comparable.

Deterministic Structural Function Note that with this modeling, we actually assume a generative
process p(Xi|XpaG(i), Zi), which is probabilistic. To keep in consistency with the deterministic
property of each causal equation fi, we consider a conditional expectation, i.e.,

fi(XpaG(i), Zi) = Epθi

[
Xi|XpaG(i), Zi

]
, (6)

which will be mainly adopted in the inference stage. In the training stage, we still focus on optimiz-
ing the probabilistic form to account for the uncertainty in the estimation.

Modeling Heterogeneous Features We consider two types of tabular features, discrete and contin-
uous, respectively modeling their likelihood with categorical and Gaussian distribution. For more
detailed processing and probability assumption, please refer to appendix A.2.

4.3 HANDLING MISSING VALUES

CAT-MIWAE Bound When some data are missing, as MIWAE bound in Eq. 2 suggested, ELBO
should only be calculated on those observed features. However, some missing features may be an
indispensable input (causal parent) for some generative processes p(Xi|XpaG(i), Zi). To tackle that,
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Figure 3: Overall architecture of our CAT-MIWAE with observed features xo = {x1,x3} and miss-
ing features xm = {x2,x4}, based on previous example of Fig. 1. Solid arrows denote feedforward,
dashed arrows denote reparameterization and feedforward, dotted arrows denote back propagation,
red double arrows denote the calculation of CAT-MIWAE ELBO loss. Red cross denotes that the
back propagation path is blocked.

we have to sample those missing values and fill in the vacancies, so as to ensure a thorough flow
along the causal graph. In other words, we essentially integrate over both the latent space and the
missing part of the data space.

With insights above, our proposed CAT-MIWAE bound could be acquired by reinforcing Eq. 14b
with MIWAE, as

LK
CAT MIWAE(θ, γ) = E

[
log

1

K

K∑
k=1

wk

]
, (7)

where wk is the unnormalized importance weight

wk =

∏
i∈o pθi(xi|P̃A

k

G(xi), z
k
i )

∏d
i=1 p(z

k
i )∏d

i=1 qγi
(zki |xo)

, P̃A
k

G(xi) = {xpaG(i)∩o,x
k
paG(i)∩m}, (8)

where ({z1i }di=1, {x1
i }i∈m), ..., ({zKi }di=1, {xK

i }i∈m) are K i.i.d. samples from joint distribution
via ancestral sampling

d∏
i=1

qγi
(zi|xo)

∏
i∈m

pθi(xi|P̃AG(xi), zi), (9)

over which the expectation in Eq. 7 is taken. paG(i) ∩ o denotes indices of the observed causal
parents of ith feature, while paG(i) ∩m refers to the missing ones.

Once CAT-MIWAE model has been trained, it can be used to impute missing values. We consider
single imputation here and follow Mattei & Frellsen (2019). Using self-normalized importance
sampling with proposal distribution in Eq. 9, imputed values would be estimated as

x̂m = E [xm|xo] ≈
K∑

k=1

akE
[
xm|zk

]
, ak =

wk

w1 + ...+ wK
, (10)

where ak is the normalized weight and w1, ..., wK are exactly the same as those used in training.

Interpretations of Design An example is illustrated in Fig. 3 for easier comprehension. Basically,
we summarize the excellence of our CAT-MIWAE into two aspects. On one hand, the shared global
encoder can be always aware of all the data features x = {xi}di=1 when inferring posterior of any
zi. As shown in Fig. 3, when feature x2 is missing, CAT-MIWAE can instead rely on its observed
descendants x1,x3 to infer z2. However, on the contrary, the screened-off encoder qγ2

(z2|x2) in
C3VAE could only shortsightedly perceive x2 itself. As a consequence, no meaningful information
for z2 could be acquired from its pre-imputed dummy values.
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On the other hand, the multiple structured decoders can subtly refine the posteriors through back
propagation in accordance with causality. As depicted in Fig. 3, qγ2

(z2|xo) would be jointly updated
by gradients backward from Dθ1 and Dθ3 . This is achieved by performing reparameterization,
sampling x2, and then feeding forward. Note that the backward path from Dθ3 to qγ1

(z1|xo) is
blocked, and this is reasonable since conditioning on x1 shall screen off all other dependency flows
from its descendants to z1. Besides, for z4, as neither x4 nor any descendants are observed, there
would be no extra knowledge about its posterior (i.e., posterior shall equal to its prior). As Eq.
8 suggests, the weight related to z4 is merely p(z4)/qγ4(z4|xo), which resembles the Kullback-
Leibler (KL) divergence, forcing posterior to approach prior. This is exactly what we are expecting.

It might be noticed that in the example of Fig. 3, the true posteriors for z1, z2 and z3 are not supposed
to be mutually independent, since conditioning on x1 and x3 (but not on x2) would unblock paths.
Thus, the factorized variational posterior qγ1

(z1|xo)qγ2
(z2|xo)qγ3

(z3|xo), which can never model
the inter-dependency, might not fit the true joint posterior pθ(z1, z2, z3|xo) well. This is exactly
when IWAE comes into play, as we stated in section 3.3, IWAE could construct a more complex
distribution qIW to alleviate this unfitness and tighten the bound. We empirically show from our
experiments that this factorized variational posterior modeling could lead to fair performance.

Extrapolation Let xcond denote arbitrary conditions and xint denote arbitrary interventions. Let
the remaining features, which are neither conditioned nor intervened, be denoted as xrem :=
x\{cond∪int}. In analogy to imputation, by feeding in xcond as observed values xo, and further
performing do-operator on xint, we can acquire the extrapolated distribution as

pγi,θi(x|do(xint),xcond) =

∫ d∏
i=1

qγi
(zi|xcond)

∏
i∈rem

pθi(xi|P̂AG(xi), zi)dz, (11)

where,
P̂AG(xi) = {xpaG(i)∩int,xpaG(i)∩{cond\int},xpaG(i)∩rem}. (12)

Therefore, xrem could be sampled ancestrally from the generative process defined inside the inte-
gral of Eq. 11. Formally, a newly sampled point is represented as x = {xint,xcond\int,xrem}.

Note that the interventions xint would only take part in P̂AG(xi) and affect their descendants, while
the conditions xcond could more than that and they also indirectly influence their ancestors through
the posterior qγi(zi|xcond). Besides, the interventions xint shall always have a higher priority
than the conditions xcond, where we use cond\int to denote those conditions which have not
been overwritten by interventions. When there is an inclusion, i.e., int ⊆ cond, this could be
interpreted as sampling counterfactuals for the subpopulation xcond.

5 EXPERIMENTS

We consider imputation and extrapolation for tabular data synthesis. For clear presentation, we
defer the dataset description and implementation details to appendix B. Besides, we explore the
effectiveness of CAT-based architecture on generation task. Due to space limitation, please refer to
appendix C for more results on generation. During the experiments, all reported results is averaged
over five random realizations.

5.1 IMPUTATION TASKS

For each test, we create missing data of the dataset by randomly dropping out values with a fixed
missing rate 50%. We then use this incomplete dataset to both train a DGM and test its imputation
performance.

Metrics We follow Nazabal et al. (2020) and use the imputation error, consisting of normalized root
mean square error (NRMSE) for continuous variables and classification error for discrete variables.

Comparisons To illustrate the superiority of the proposed model, we consider mean imputation,
MICE (Van Buuren & Groothuis-Oudshoorn, 2011), MissForest (Stekhoven & Bühlmann, 2012),
and the original MIWAE (Mattei & Frellsen, 2019) as the baselines. For our own models, we test
CAT-MIWAE, C3MIWAE (vanilla combination of C3VAE architecture and MIWAE bound), and
CAT-MIWAE-Cov (where we consider an unfactorizable posterior qγ(z|xo), and we model it using
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Table 1: Imputation Error on Six Datasets: Mean±Standard Deviation
Adult Dutch Credit Bank Cabs King

Mean 0.26±0.0 0.242±0.0 0.129±0.004 0.197±0.001 0.259±0.0 0.102±0.0
MICE 0.248±0.002 0.244±0.0 0.129±0.002 0.171±0.0 0.242±0.0 0.082±0.0

MissForest 0.231±0.003 0.225±0.002 0.128±0.003 0.157±0.001 0.224±0.0 0.074±0.002
MIWAE 0.156±0.0 0.161±0.0 0.099±0.002 0.134±0.001 0.175±0.0 0.06±0.003

C3MIWAE 0.16±0.003 0.163±0.001 0.1±0.0 0.136±0.0 0.176±0.001 0.064±0.001
CAT-MIWAE-Cov 0.153±0.001 0.162±0.001 0.099±0.0 0.133±0.0 0.175±0.001 0.063±0.001

CAT-MIWAE 0.151±0.001 0.159±0.0 0.097±0.0 0.132±0.0 0.172±0.001 0.062±0.0

Table 2: CATE Estimation of the Real Data and CAT-MIWAE Extrapolated Data on Adult
Conditions Real Extrapolated

ĈATE E[Y (0)] E[Y (1)]

None 0.281±0.003 0.271±0.006 0.177±0.005 0.448±0.004
hours-per-week = 50 0.334±0.007 0.334±0.004 0.213±0.003 0.547±0.005
hours-per-week = 40 0.276±0.005 0.26±0.004 0.164±0.003 0.424±0.003

relationship = Husband 0.381±0.004 0.38±0.005 0.278±0.003 0.658±0.003
relationship = Husband
& hours-per-week = 50

0.377±0.014 0.389±0.004 0.325±0.003 0.714±0.004

relationship = Husband
& hours-per-week = 40

0.411±0.004 0.406±0.006 0.290±0.004 0.696±0.003

relationship = Husband
& hours-per-week = 50
& workclass = Private

0.418±0.015 0.415±0.003 0.33±0.003 0.745±0.005

multivariate Gaussian with non-diagonal covariance to capture the inter-dependency among the pos-
teriors of exogenous variables (more details in appendix A.2)). For all MIWAE-based models, we
set K = 5 in the training, while using K = 500 for imputation.

Results Table 1 presents the performance for imputation measured by imputation error. We high-
light the best results in bold style, while the second best ones with underline. All MIWAE-based
models acquire significantly better results than other baselines. Compared to MIWAE, CAT-MIWAE
mostly dominates (except for King) with a relative performance boost for 1% to 3%. This obser-
vation indicates that the introduction of causality could benefit imputation. Moreover, C3MIWAE
almost always falls behind others with a relative performance degradation for 1% to 5%, justifying
the superiority of CAT architecture for imputation task.

Note that though CAT-MIWAE-Cov seems to be more reasonable, it shows inferior results than CAT-
MIWAE. Explicitly modeling the covariance introduces a large number of additional parameters,
which might be difficult for optimization instead. Besides, this modeling could be computational-
expensive, since its probability requires calculation of determinant. Thus, the factorized variational
posterior of CAT-MIWAE would competently be an efficient solution in practice.

5.2 EXTRAPOLATION TASKS

To enable CAT-MIWAE better capture the data patterns under arbitrary conditions, we propose to
use a dynamic missing mode. Specifically, we would sample a batch of complete data and then
dynamically drop out values with missing rate from 10% to 90%, with 10% intervals.

Metrics We consider to compare the consistency of CATEs. We first choose certain interested
subpopulation of subjects xcond and estimate CATE on its real data records. We implement The
real CATE estimation by adjusting for confounders (Pearl, 2009) and then fitting a R-learner (Nie
& Wager, 2021) with the CausalML library1. Then, for the same subpopulation, we follow the
extrapolation process in subsection 4.3 and use our trained CAT-MIWAE to generate two interven-
tional distributions respectively as the control group and the treatment group. Here Xint is exactly
the treatment variable, with the treatment-unassigned value denoted as xint(0) and the treatment-
assigned value as xint(1). Hence, the extrapolated CATE could be estimated as

ĈATE = E[Y (1)− Y (0)|xcond] = E[Y |do(xint(1)),xcond]− E[Y |do(xint(0)),xcond], (13)

1https://causalml.readthedocs.io/en/latest/index.html
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where Y is the outcome variable, while Y (0) and Y (1) denote the potential outcome for the un-
treated and the treated, respectively. And the expectation would be taken over the extrapolated
distribution given in Eq. 11. For each group, we sample 5000 samples to estimate this expectation
with Monte Carlo method.

We mainly rely on Adult dataset to conduct extrapolation tasks. The causal graph is given in
appendix D. We choose education as the treatment variable with the untreated value HS-grad
(high school graduation, xint(0)) and treated value Masters (xint(1)). And income is the out-
come variable, with value 0 (low income, ≤ $50K) and 1 (high income, > $50K). We choose
relationship = Husband, hours-per-week = 50 or 40, workclass = Private, and several
combinations of these categories as candidate conditions (subpopulation of interest). For real CATE
estimation, we always adjust for confounders race, age, native-country, and sex.

Results The results of CATE estimation are presented in Table 2. When no condition is given, we
estimate ATE, a special full-set case of CATE. We observe that the extrapolated CATE estimations
keep in high consistency with the real ones, with absolute errors always less than 2%. Note that for
several subpopulations with hours-per-week = 50, the estimated real CATEs show slightly high
variances. This is because of their relatively small population base, making up only less than 8% of
all the samples. Resorting to the extrapolation capability of CAT-MIWAE could potentially be an
auxiliary solution to mitigate this uncertainty.

Note that though we train CAT-MIWAE with a dynamic missing mode to evaluate its extrapolation
capability, this could be made more individualized when considering specific application. Having
already defined our subpopulation of interest, we could exclusively design some training tricks (e.g.,
data augmentation approaches (Yoon et al., 2020)), to further enhance extrapolation performance.

Table 3: KL divergence of
CAT-MIWAE on Adult,
when conditioning on
“relationship = Husband,
workclass = Private, and
hours-per-week = 50”

Feature KL
age 0.05

workclass 0.17
education 0.06

marital-status 0.22
occupation 0.02
relationship 0.02

race 0.00
sex 0.16

hours-per-week 1.40
native-country 0.01

income 0.01

Interpretations of Exogenous Representation In Table 3, we
present KL divergence (KLD) between posteriors and priors given
conditions “relationship = Husband, workclass = Private,
and hours-per-week = 50”. We highlight KLD higher than 0.05
in bold style. The exogenous posteriors of workclass and hours-
per-week both show striking distortions with KLD of 0.17 and 1.4,
thereby providing extra information for their reconstructions. It
seems unexpected that relationship stays insusceptible with only a
KLD of 0.02. However, this could be understood by tracing back to
its parents marital-status and sex, whose posteriors are distorted
with KLD of 0.22 and 0.16. We observe that these two exogenous
posteriors could respectively produce values of marital-status =
Married-civ-spouse and sex = Male, which are sufficient to
serve as the parental conditions to yield relationship = Husband.
This allows the posterior of relationship itself to be not that in-
formative. Besides, the posteriors of age and education are also
affected to some extent. This easily makes sense since the role of a
husband requires legal age of marriage, while workclass and work-
ing hours may require certain education levels. The above analysis
shows that the exogenous causal representations learned by CAT-
MIWAE could provide interpretablity for partially observed features.

6 CONCLUSION

In this paper, we propose a novel “CAT” (Causal, Asymmetric, and Tabular) architecture for VAE-
based DGMs. We instantiate CAT as CAT-MIWAE, which enables to learn the exogenous causal
representation with a pre-defined causal graph in incomplete data context. Our proposed model
provides interpretability for partially observed features and could efficiently address missing value
imputation problem. We further show that CAT-MIWAE is able to extrapolate distributions given
arbitrary conditions and interventions. We conduct extensive experiments on real-world tabular
datasets to demonstrate the effectiveness of our proposed approach on generation, imputation, and
extrapolation. Furthermore, CAT-MIWAE can be potentially applied to areas of counterfactual ex-
planations, causal debiasing, etc., especially when interested in certain subpopulation of subjects.
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Ignacio Peis, Chao Ma, and José Miguel Hernández-Lobato. Missing data imputation and
acquisition with deep hierarchical models and hamiltonian monte carlo. arXiv preprint
arXiv:2202.04599, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Bernhard Scholkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of
the IEEE, 109:612–634, 2021.

Xinwei Shen, Furui Liu, Hanze Dong, Qing Lian, Zhitang Chen, and Tong Zhang. Disentangled
generative causal representation learning. ArXiv, abs/2010.02637, 2020.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT press, 2000.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. Advances in neural informa-
tion processing systems, 30, 2017.
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A DEDUCTION FOR VAE ELBO WITH CAUSALITY

We review ELBO in Eq. 1. With augmented graph G′ modeling, we conduct factorization on the
feature space

Eqγ(z|x)

[
log

pθ(x, z)

qγ(z|x)

]
(14)

= Eqγ(z|x)

[
log

∏d
i=1 pθi(xi|xpaG(i), zi)

∏d
i=1 p(zi)

qγ(z|x)

]
(14a)

= E∏d
i=1 qγi (zi|x)

[
log

∏d
i=1 pθi(xi|xpaG(i), zi)

∏d
i=1 p(zi)∏d

i=1 qγi
(zi|x)

]
(14b)

= E∏d
i=1 qγi (zi|xi,xpaG(i))[

log

∏d
i=1 pθi(xi|xpaG(i), zi)

∏d
i=1 p(zi)∏d

i=1 qγi
(zi|xi,xpaG(i))

]
(14c)

=

d∑
i=1

Eqγi (zi|xi,xpaG(i))

[
log

pθi(xi|xpaG(i), zi)p(zi)

qγi(zi|xi,xpaG(i))

]
. (14d)

Eq. 14a could be derived by

1. conducting MCfactorization on the joint distribution pθ(x, z) with respect to graph G′;
2. substituting all xpaG′ (i) with {xpaG(i), zi}.

Likewise, Eq. 14b and Eq. 14c are derived as a factorization of the exogenous posterior. Eq.
14b holds due to the fact that observing all features X ensures independence among all exogenous
variables. Eq. 14c holds due to the fact that conditioning on Xi and XpaG(i) would sufficiently
block (screen off) all dependency flows to Zi (thus, knowing Xi and XpaG(i) is enough to infer its
posterior). Note that this factorization should have inherently applied to the true posterior pθ(z|x).
However, as we expect the variational posterior qγ(z|x) to be a good approximator of pθ(z|x), it is
reasonable to assume that qγ(z|x) shall also follow the same factorization.

A.1 C3VAE ARCHITECTURE

In Eq. 14d, each expectation in the summation exactly corresponds to the ELBO of a conditional
VAE (CVAE) model with decoder Dθi := pθi(xi|xpaG(i), zi), encoder Eγi

:= qγi
(zi|xi,xpaG(i)),

and prior p(zi). As a matter of fact, this CVAE ultimately attempts to maximize the conditional
log-likelihood

pθi(xi|xpaG(i)) =

∫
pθi(xi|xpaG(i), zi)p(zi|xpaG(i))dz =

∫
pθi(xi|xpaG(i), zi)p(zi)dz, (15)

where Eq. 15 holds due to the independence between xpaG(i) and zi (unless conditioned on xi).

Note that essentially, this CVAE ELBO could be achieved in another equivalent but more explicit
way. By directly conducting MCfactorization on the marginal likelihood of Eq. 1 w.r.t. G, we get
ℓ(θ) = logpθ(x) =

∑d
i=1 logpθi(xi|xpaG(i)). We still tend to present the more detailed deduction

in Eq. 14 for ease of explanations on our CAT-based model designation.

A.2 PROBABILISTIC ASSUMPTION AND FEATURE PROCESSING

For the latent space, we assume each prior as standard multivariate Gaussian, p(zi) = N (0, I),
and each posterior as multivariate Gaussian with diagonal covariance matrix, qγi(zi|x) =
N (µγi(x),Λγi(x)). µγi and Λγi denote the mappings of encoder for mean and diagonal covari-
ance, respectively.

For the feature space, we note that tabular data consists of mixed types of variables, which shall be
treated separately. We model each discrete variable as categorical distribution pθi(xi|xpaG(i), zi) =

13
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Cat(αθi(xpaG(i), zi)), where αθi denotes the mapping of decoder for outputing discrete probabil-
ity vector as its parameters. For each continuous variable, we standardize its values into [-1, 1]
and model with Gaussian distribution pθi(xi|xpaG(i), zi) = N (µθi(xpaG(i), zi), σ

2
θi
(xpaG(i), zi)),

where µθi and σ2
θi

denote the mappings of decoder for scalar mean and variance, respectively.

For generation and extrapolation tasks, we follow the mode-specific normalization of Xu et al.
(2019) to capture more patterns and produce richer diversity of continuous variables. Concretely, a
variational Gaussian mixture model (VGM) is fit so that each continuous value would be transformed
into: 1) a one-hot vector indicating which component it belongs to; 2) a single value normalized in [-
1, 1] using parameters of that Gaussian component. Thus, we finally model each continuous variable
as a joint distribution

pθi(xi|xpaG(i), zi) = N (µθi(xpaG(i), zi), σ
2
θi(xpaG(i), zi))Cat(αθi(xpaG(i), zi)). (16)

For CAT-MIWAE-Cov, we model the joint variational posterior as multivariate Gaussian with non-
diagonal cavariance, as

q(z|xo) = N (µγ(xo),Σγ(xo)), (17)
where Σγ(xo) is a positive definite matrix yielded by

Σγ(xo) = Lγ(xo)L
T
γ (xo) + ϵI. (18)

Lγ(xo) is the raw output matrix of encoder. ϵ is a small positive real number to ensure the positive
definiteness of Σγ(xo) to serve as covariance.

B EXPERIMENTAL CONFIGURATION

B.1 DATASETS

We choose six real-world tabular datasets to test the performance of our proposed approach, which
are listed as follow

• Adult2: composed of diverse demographic information in the U.S. from the 1994 Census
Survey. The task is to predict two classes of high (> $50K) and low (≤ $50K) income.

• Dutch3: extracted from The Dutch Virtual Census of 2001 program conducted by Statis-
tics Netherlands, where only anomynised values are available. The task is to predict occu-
pation status.

• Credit4: for prediction of the future loan status.
• Bank5: personal loans data provided by Zhongyuan bank in the CCF Big and Computing

Intelligence Contest, for predicting if the loan is default.
• Cabs6: collected by an Indian cab aggregator service company for predicting the types of

customers.
• King7: house sale data for King County in Seattle between May 2014 and May 2015, for

predicting house price.

We remove irrelevant columns (e.g., “id”, “date”) in some of the datasets, and select a portion of all
records to serve as the entire set for our experiments. A summary is presented in Table 4, where C
denotes classification, R denotes regression.

Regarding the pre-defined causal graph G, for Adult and Dutch, we use the graphs discovered and
presented by Zhang et al. (2017). For the other datasets, we use PC algorithm Spirtes et al. (2000)
with the pycausal library8 to estimate their causal graphs.

2http://archive.ics.uci.edu/ml/datasets/adult
3https://sites.google.com/site/faisalkamiran/
4https://www.kaggle.com/zaurbegiev/my-dataset
5https://www.datafountain.cn/competitions/530/datasets
6https://www.kaggle.com/arashnic/taxi-pricing-with-mobility-analytics
7https://www.kaggle.com/harlfoxem/housesalesprediction
8http://www.phil.cmu.edu/tetrad/index.html
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Table 4: Summary of the Datasets used in our Experiments
Name # records # continuous # discrete Task
Adult 30k 3 8 C
Dutch 60k 0 12 C
Credit 29k 12 5 C
Bank 10k 17 12 C
Cabs 41k 6 7 C
King 21k 12 4 R

B.2 IMPLEMENTATION DETAILS

We use Python 3.7 with PyTorch 1.8.1 to implement our CAT-MIWAE models. We construct each
individualized decoder as two-layer fully connected network, where the dimensions of the hidden
layers dim hidden(Dθi) are set to 32. For the encoder, we instantiate it with a multi-headed network
architecture. The first two layers are shared by all posteriors, with dimension adaptively set as
dim hidden(Dθi) × d (hopefully to match the network capacities with those decoders). Then, the
following structure of encoder branches into d heads where each head consists of two-layer with
the same dimension with decoders dim hidden(Dθi). We set the dimension of each latent variable
dim(zi) to 2. We use Gumbel softmax Jang et al. (2017) to ensure reparameterization for discrete
missing variables in the training stage. We train all our models using Adam optimizer Kingma & Ba
(2015) with learning rate 10−3.

Additionally, we observe that in both C3VAE and our CAT-based architecture, applying the naive
training procedure is vulnerable to KL vanishing, leading to uninformative posteriors. This may
result from the concatenation of latent variable and high dimensional conditions vector (causal par-
ents) at the input of decoder. Additional information provided by the causal parents could make the
latent variable prone to be ignored and degrade to prior. Thus, we use the cyclical annealing sched-
ule (Fu et al., 2019), which cyclically adjusts the weight of KL term during training, to alleviate this
issue. We implement it by setting a scale factor β as the exponent of likelihood in Eq. 8, i.e.,

wk =

∏
i∈o pθi(xi|P̃A

k

G(xi), z
k
i )

β
∏d

i=1 p(z
k
i )∏d

i=1 qγi
(zki |xo)

. (19)

In the tth epoch, β is set as

β =

{
2− sin π(t mod τ)

2Θ if t mod τ < Θ
1 otherwise

, (20)

where τ is the period, and Θ is the threshold. In the experiments, we set τ to 200 and Θ to 100.

C EXPERIMENTAL RESULTS FOR GENERATION TASKS

For each test, we run five-fold cross validation, where each fold consists of 80% data as training set
and the rest 20% as test set (validated also on training set).

Metrics We follow the evaluation protocol of machine learning efficacy (MLE) in Xu et al. (2019).
We first use trained DGM to generate fake tabular data, on which multiple classifiers (Decision Tree,
AdaBoost, MLP, and Losgistic Regression) or regressors (Linear Regression and MLP) are trained.
Then, we evaluate the performance of these learners using the test set with several metrics.

Comparisons We choose three typical models for tabular data synthesis, CTGAN, TVAE (Xu
et al., 2019), and Causal-TGAN (Wen et al., 2022). For our own models, we test both CAT-VAE and
C3VAE.

Results Table 5 and 6 present the performance for generation measured by MLE. We highlight the
best results in bold style, while the second best with underline.

In all 14 cases(total 14 evaluation metrics for 6 datasets), C3VAE or CAT-VAE could ensure at least
the second best performance, while achieving the best for 11 cases (for F1 on Credit, even outper-
form the real). This demonstrates the effectiveness of our proposed approaches on generation task.
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Table 5: Machine Learning Efficacy on Binary Classification Datasets: Mean±Standard Deviation
Adult Dutch Credit Bank

ROCAUC F1 ROCAUC F1 ROCAUC F1 ROCAUC F1
Real 0.864±0.011 0.738±0.012 0.873±0.051 0.803±0.047 0.712±0.069 0.635±0.06 0.802±0.079 0.622±0.075

CTGAN 0.849±0.012 0.692±0.041 0.859±0.048 0.78±0.047 0.671±0.063 0.603±0.061 0.765±0.081 0.593±0.073
TVAE 0.848±0.011 0.709±0.022 0.848±0.053 0.776±0.053 0.697±0.06 0.639±0.045 0.794±0.079 0.597±0.073

Causal-TGAN 0.837±0.01 0.72±0.01 0.859±0.051 0.784±0.051 0.69±0.063 0.627±0.045 0.754±0.112 0.613±0.074
C3VAE 0.851±0.019 0.715±0.03 0.867±0.05 0.796±0.049 0.699±0.056 0.642±0.028 0.793±0.08 0.602±0.073

CAT-VAE 0.860±0.011 0.721±0.021 0.867±0.05 0.794±0.045 0.704±0.061 0.642±0.034 0.793±0.08 0.599±0.077

Table 6: Machine Learning Efficacy on Multi-class Classification and Regression Datasets:
Mean±Standard Deviation

Cabs King
Accuracy Macro F1 Micro F1 R2 MSE Exp.Var

Real 0.728±0.007 0.701±0.009 0.725±0.008 0.595±0.053 0.044±0.011 0.596±0.053
CTGAN 0.657±0.034 0.621±0.041 0.645±0.042 0.402±0.17 0.053±0.015 0.451±0.13
TVAE 0.615±0.029 0.568±0.036 0.607±0.033 0.334±0.415 0.054±0.014 0.357±0.375

Causal-TGAN 0.699±0.018 0.671±0.017 0.697±0.018 0.459±0.05 0.051±0.012 0.462±0.049
C3VAE 0.704±0.012 0.665±0.022 0.698±0.013 0.464±0.066 0.051±0.012 0.467±0.065

CAT-VAE 0.707±0.023 0.65±0.061 0.697±0.034 0.463±0.061 0.051±0.011 0.465±0.061

Note that C3VAE and CAT-VAE always show consistently high performance with only impercep-
tible gaps (always less than 0.01). This observation almost verifies our analysis in 4.2 that though
CAT-based architecture seemingly do not make full use of causal knowledge to infer posteriors, it
could still converge to similar points and learn similar SEMs as C3VAE architecture.

We can conclude that the introduction of extra causal knowledge could indeed help improve the
quality of generated tabular data, since Causal-TGAN also achieves fair results on almost all F1
metrics, especially Macro F1 on Cabs. This indicates that Causal-TGAN may better pay attention
to the data imbalance of Cabs, while as a contrast, TVAE fails to handle this, showing a performance
degradation even greater than 0.1. Besides, TVAE suffers extremely high variance on King, this
results from negative R2 scores of certain folds.

D CAUSAL GRAPH FOR ADULT DATASET

race
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Figure 4: Causal graph used for Adult dataset. The treatment variable is in orange (education),
the outcome variable in green (income), and the potential conditional variables in blue (hours-per-
week, workclass, relationship).
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