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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has shown promise in en-
hancing the reasoning performance of large language models (LLMs) by increasing
test-time compute. However, even after extensive RLVR training, such models still
tend to generate unnecessary and low-quality steps in their chain-of-thought (CoT),
leading to inefficient overthinking and lower answer quality. We show that when the
initial direction or quality of the CoT is suboptimal, the model often fails to reach
the correct answer, even after generating several times more tokens than when the
initial CoT is well-initialized. To this end, we introduce Reinforcement Learning
with Re-solving (Re2), in which LLMs learn to flexibly abandon unproductive
reasoning paths and restart the solution process when necessary, rather than always
committing to a final answer. Re2 applies pure reinforcement learning without any
preliminary supervised fine-tuning, successfully amplifying the rare redo behavior
in vanilla models from only 0.5% to over 30%. This leads to substantial perfor-
mance gains over standard RLVR under the same training compute budget, and
also demonstrates notable improvements in test-time performance as the number
of samples increases.
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Figure 1: (a) Accuracy improvements of DAPO and Re2 on Qwen2.5-7B-Instruct at each training
step, with comparable numbers of generated and trained tokens per step. (b) Test-time scaling of
DAPO and Re2 under the same training budget, as the number of samples increases.

1 INTRODUCTION

Recent studies have shown that large language models (LLMs) can achieve strong reasoning abilities
through scaling test-time compute (Snell et al., 2024; Wu et al., 2025). By generating longer chains of
thought (CoTs) that incorporate planning, reflection, and self-correction, LLMs attain higher accuracy
on complex reasoning tasks such as coding and mathematics (Yang et al., 2025a; Bercovich et al.,
2025; Team et al., 2025; Wu et al., 2024). To this end, state-of-the-art models adopt reinforcement
learning (RL) in post-training, which has proven effective in producing longer CoTs and strengthening
deep-thinking capabilities (Guo et al., 2025; Shao et al., 2024; Yu et al., 2025).

However, even with extensive RL training, LLMs still suffer from issues such as overthinking (Chen
et al., 2024; Cuadron et al., 2025) and underthinking (Wang et al., 2025; Cuesta-Ramirez et al., 2025;
Ding et al., 2025), generating unnecessary or low-quality reasoning steps that degrade both efficiency
and overall performance. In this paper, we investigate the limitations of test-time scaling in existing
LLMs by analyzing the correlation between CoT length and accuracy, together with the impact
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AIME 24

Problem: Let ℬ be the set of rectangular boxes with surface area 54
and volume 23. Let & be the radius of the smallest sphere that can 

contain each of the rectangular boxes that are elements of ℬ . The value 

of &' can be written as 
(

)
, where * and + are relatively prime positive 

integers. Find * + +.

Reasoning Trace of DAPO:

Starting with D = /, 1, 2. The  & =
34564574

'
. S= 2 /1 + 12 + 2/

= 54 , V= /12 = 23 , to compute /' + 1' + 2' .
/' + 1' + 2' = ( / + 1 + 2) ' − 54 , set  L = / + 1 + 2 .  So  

&' = ⁄(='−54) 4 .

Using AM–GM inequality: L ≥ 3
?
23. Assuming equality L = 3

?
23, 

then &' = @(3 ⋅ 23
4

? − 54) 4,  simplifying into the form ⁄* +.

Answer given: * + + = 50 . (Wrong Answer)
(Error: Treating AM–GM lower bound as if it were achievable, but / =
1 = 2 contradicts the surface area condition.)

Reasoning Trace of Re2:

Starting with the same setup, &' =
(35657)4CDE

E
. First		apply	AM–GM	

get a + b + c ≥ 3
?
23 . Since	ab + bc + ac = 27 ,	this	bound	is	

consistent.	But	the	inequality	only	shows	feasibility,	without	exact	

values	of	a + b + c .

Seems complicated, Let’s use numerical approximation or try another 

approach: It's better to redo the question.

Restarting	from	scratch:	

Assuming	/ = 1.	From	/12 = 23 ,	get	/ =
'h

64
.	Plugging	into	/1 +

12 + 2/ = 27 leads	to	a	cubic:	1h − 271 + 46 = 0.

Found	integer	root	1 = 2 .	Then	/ =
'h

E
, 1 = 2, 2 = 2 .	This	satisfies	

both	surface	area	and	volume	exactly.

Final	answer:	* + + = 657 + 64 = 721 .	(Correct Answer)

Restarting from scratch

Figure 2: Illustration of reasoning with re-solving. (a) In standard reasoning, when the initial steps
are suboptimal, the LLM struggles to reach the correct answer even after generating more reasoning
steps and tokens. (b) Reasoning with re-solving, allowing the model to abandon an unpromising path
and restart at any point, leads to a higher overall accuracy. (c) Example trace of DAPO and Re2: Both
models initially attempt an incorrect approach using the AM–GM inequality; however, Re2 detects
the failure, restarts, and arrives at the correct answer.

of early reasoning quality on final outcomes. Our analysis reveals that when the initial reasoning
steps are suboptimal, LLMs struggle to reach the correct answer, even after generating significantly
more reasoning steps and tokens (Figure 2(a)). However, solving complex problems often requires
early exploration, during which the model may pursue directions that initially appear promising but
ultimately lead to dead ends or errors. Motivated by these findings, we aim to enable models to restart
the reasoning process when the current path proves unproductive, thereby improving overall accuracy
by escaping unpromising paths (Figure 2(b)).

To equip models with this capability, we introduce Reinforcement Learning with Re-solving (Re2),
a novel framework that equips models with the ability to either finalize an answer or re-solve the
problem. During training, the model extends partial reasoning trajectories and learns to decide
whether to continue or to restart from its current progress. If the model chooses to re-solve, its
trajectory receives a reward equal to the expected success rate of solving the problem from scratch. If
it instead produces a final answer, the reward is assigned as 1 for a correct solution and 0 otherwise.
Under this scheme, when the current reasoning prefix is in the wrong direction or of low quality,
abandoning it and re-solving the problem is more likely to yield higher accuracy and thus a larger
reward. Conversely, when the reasoning trajectory is promising, directly producing the final answer
leads to a higher expected reward. Notably, Re2 requires no preliminary supervised fine-tuning.
Through pure reinforcement learning alone, it amplifies the rare redo behavior in vanilla models from
just 0.5% to over 30%, thereby enabling models to flexibly decide when to re-solve and ultimately
leading to more accurate reasoning, as illustrated in Figure 2(c).

We evaluate Re2 on a diverse set of reasoning benchmarks, including AIME 2024, AIME
2025 (MAA Committees), AMC 2023 (AI-MO, 2024), GSM8K (Cobbe et al., 2021), and GPQA-
Diamond (Rein et al., 2021), covering a wide range of domains and difficulty levels. Our evaluation
covers five models ranging from 3B to 14B parameters, including pre-trained, instruction-tuned,
and reasoning models. Experimental results demonstrate that our approach achieves significant
improvements in reasoning performance compared to recent RLVR methods such as DAPO (Yu
et al., 2025) under the same training budget. Moreover, Re2 yields a superior trade-off curve between
test-time compute and performance compared to majority voting (Wang et al., 2022). We believe our
work highlights the promise of integrating RL with a new paradigm of re-solving reasoning, which
goes beyond the traditional single-chain approach and opens up new directions for developing more
flexible and reliable reasoning in LLMs.
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2 RELATED WORK

LLM for reasoning. Existing approaches enhance the reasoning capabilities of LLMs through
prompt engineering (Wei et al., 2022; Yang et al., 2023), supervised fine-tuning (Yang et al., 2024a;
Qin et al., 2024), and reinforcement learning (Schulman et al., 2017; Shao et al., 2024; Zheng et al.,
2025; Yue et al., 2025; Zhang et al., 2025; Wang et al., 2024). Among these, reinforcement learning
with verifiable rewards (RLVR) has emerged as a mainstream paradigm for post-training optimization,
encouraging models to produce longer CoTs with planning and self-reflection, thereby pushing the
frontier of reasoning performance (OpenAI, 2024; Qu et al., 2024; Gandhi et al., 2024; Zeng et al.,
2025). Nevertheless, even after extensive RLVR training, LLMs remain prone to overthinking and
underthinking, leading to redundant or low-quality reasoning steps (Chen et al., 2024; Cuadron et al.,
2025; Wang et al., 2025; Cuesta-Ramirez et al., 2025). This remains a fundamental limitation of the
prevailing paradigm, in which the model generates a single CoT trajectory and ultimately derives
its final answer within that trajectory (Wen et al., 2025; Shojaee et al., 2025). Recent studies (Yang
et al., 2025b; Fu et al., 2025) have attempted to address this issue by backtracking to earlier steps or
terminating low-confidence reasoning chains, but these methods are limited to supervised fine-tuning
or decoding strategies and do not leverage the potential of RL. To the best of our knowledge, our work
is the first to propose a reasoning paradigm that allows models to abandon unproductive reasoning
paths and re-solve problems from scratch through reinforcement learning.

Test-time scaling. Recent studies have shown that LLMs can effectively improve reasoning per-
formance by increasing inference-time compute (Snell et al., 2024; Welleck et al., 2024; Wu et al.,
2025; Muennighoff et al., 2025). Large reasoning models, as exemplified by OpenAI’s O1, learn
to produce traces that are longer than the typical solutions via SFT or RLVR (OpenAI, 2024; Qin
et al., 2024; Guo et al., 2025; Zhao et al., 2024). Some works improve performance by allowing
models to iteratively revise their answers through multiple rounds of self-correction (Xiong et al.,
2025; Zhao et al., 2025; Xi et al., 2024; Paul et al., 2024; Yang et al., 2024b). In addition, parallel
sampling methods (e.g., majority voting (Wang et al., 2022; Wan et al., 2024) and tree search (Hao
et al., 2023; Zhang et al., 2024)) further improve performance by increasing the number of samples.
In contrast, our approach scales test-time compute by enabling the model to abandon unpromising
reasoning trajectories and re-solve the problem when necessary, thereby unlocking the potential of
test-time scaling for reasoning.

3 DIFFICULTY OF RECOVERING FROM SUBOPTIMAL EARLY REASONING

To gain a deeper understanding of the limitations of test-time scaling in existing LLMs, we first
analyze the correlation between CoT length and reasoning accuracy (Section 3.1), and further
investigate why LLMs fail even when they having sufficient capabilities (Section 3.2). In our
experiments, we select Qwen2.5-7B-Instruct (Yang et al., 2024a) as a representative instruction-tuned
LLM and DeepScaleR-1.5B-Preview (Luo et al., 2025) as a representative long-CoT reasoning model
extensively trained with RLVR. We evaluate them on AMC23 and AIME25, respectively, which
aligns the difficulty of datasets with the capabilities of each model.

3.1 CORRELATION BETWEEN RESPONSE LENGTH AND PERFORMANCE

Although training models to produce longer CoTs can significantly improve reasoning performance,
we aim to examine whether, for the same problem across multiple samples, longer CoTs actually lead
to higher accuracy. To this end, we analyze the correlation between response length and accuracy
by sampling 128 responses per problem. As shown in Figure 3, our results reveal a clear negative
correlation between CoT length and accuracy, both across the entire dataset and at the level of
individual problems of varying difficulty. We further conduct case analysis of CoTs with different
lengths for the same problem, which shows that longer responses are typically caused by early critical
mistakes, such as following the wrong solution path or overanalyzing the problem’s assumptions,
making recovery unlikely regardless of the number of additional tokens generated. Additional results
are provided in Appendix E.
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Figure 3: Correlation between CoT length and reasoning performance. The bars represent the
proportion of cases within different CoT length intervals, while the line indicates the average accuracy
for responses in each interval. The large plots in the top row show the correlation across the entire
dataset. The small plots in the second row illustrate the correlation at the level of individual problems.

3.2 IMPACT OF INITIAL REASONING QUALITY ON FINAL ACCURACY

As shown in Section 3.1, shorter CoTs are typically more likely to be correct for a given problem.
We hypothesize that this is because suboptimal early reasoning leads the model to generate longer
responses, yet recovery is still challenging. To illustrate this phenomenon, we design an experiment
in which we truncate different proportions (20%, 40%, 60%, 80%) of incorrect responses and
prompt LLMs to continue reasoning from these prefixes. We then measure the average accuracy
of completions from each truncated prefix and compute the relative drop in accuracy compared to
reasoning from scratch on the original problem. As shown in Figure 4, for each prefix length we report
the number of cases where the relative drop in accuracy exceeds the 25% or 75% threshold (“All
Drops”). The results show that as prefix length increases, the relative drop becomes larger, indicating
that the longer a model continues along an incorrect trajectory, the more likely it is to fail.

Furthermore, we investigate how early such performance degradation begins in an incorrect response.
For each response, we record the shortest prefix at which the relative drop first exceeds the threshold
(“First Drops”). The results reveal that for most incorrect responses, a significant drop in accuracy
already occurs when only the first 20% of the response is used as the prefix. This demonstrates that
once early reasoning is misguided, the model rarely recovers and struggles to return to the
correct reasoning path.
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Figure 4: Number of cases where the relative drop exceeds the threshold when continuing from
different proportions of incorrect response prefixes, compared to reasoning from scratch. “All Drops”
counts all such cases at each prefix proportion, while “First Drops” records the earliest prefix for each
response where the drop exceeds the threshold.

3.3 TAKEAWAYS

Based on the above analysis, we conclude that: (1) For a given problem, shorter responses following
smoother reasoning tend to achieve higher accuracy, whereas longer responses are often associated
with lower accuracy; (2) The quality of early reasoning process is crucial for the final accuracy.
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Figure 5: The framework of Re2. For each query, Re2 samples multiple prefixes, then generates
multiple continuations for each prefix. The advantage is calculated within each group, while the
out-of-group accuracy is used as the reward for the redo action.

4 RE2: REINFORCEMENT LEARNING WITH RESOLVING

The above results highlight that a coherent reasoning process and high-quality early reasoning are
crucial for model performance. However, when tackling challenging problems, it is often unavoidable
for models to explore early reasoning paths that initially appear promising but ultimately fail to
yield correct solutions. LLMs are also prone to generating low-quality content during the initial
stages of reasoning. Similar to how humans may reconsider their strategy when solving difficult
problems, we aim to equip models with the ability to restart the reasoning process when the current
trajectory appears unpromising or leads to confusion. To this end, we propose Re2, which leverages
reinforcement learning to train models to flexibly re-solve problems during reasoning.

4.1 PREFIX GROUP GENERATION

Recent RLVR methods such as GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) improve
pass@1 accuracy by sampling multiple reasoning trajectories in parallel for each query and rewarding
only those that yield correct answers. In contrast, Re2 aims to improve the final answer quality by
allowing the model to rationally abandon an ongoing reasoning path and restart from scratch when
the trajectory appears confusing or unpromising. Meanwhile, our method requires estimating the
success rate of re-solving from scratch, which provides the reward signal that guides the model to
learn whether to redo or to commit to a final answer. To this end, we first sample n full responses
for each query. Each response is randomly truncated at a proportion uniformly drawn from [0, 0.8],
producing n diverse prefixes that serve as intermediate reasoning states. For each prefix, the model
generates m CoT continuations, and all continuations derived from the same prefix are grouped
together for subsequent advantage calculation, as illustrated in Figure 5. To incentivize the resolve
capability of the base model, we design a specialized prompting strategy, described in Appendix A.

4.2 REWARD STRATEGY WITH RE-SOLVING

To encourage the model to rationally abandon unpromising reasoning paths and restart from scratch
when necessary, we design a reward strategy that explicitly incorporates the option to re-solve. For
the j-th CoT continuation of the i-th prefix Prei, denoted as Oi,j , there are three possible outcomes
Ci,j : providing a correct final answer (Ci,j = correct), providing an incorrect final answer
(Ci,j = incorrect), or choosing to re-solve the problem (Ci,j = resolve).
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For continuations that yield final answers, the reward assignment follows standard RLVR: the model
receives a reward of 1 for a correct answer and 0 otherwise. For continuations that choose to re-solve,
the reward is given by the expected accuracy of re-solving from scratch, estimated using out-of-
group CoT completions, i.e., completions whose prefix is not Prei. Specifically, let P̸=i(correct),
P ̸=i(incorrect), and P̸=i(resolve) denote the empirical probabilities of correct, incorrect, and
resolve outcomes among the (n− 1)×m out-of-group continuations. When at most R redo rounds
are allowed, the reward is given by1:

ri,j =


1, if Ci,j = correct

0, if Ci,j = incorrect

P̸=i(correct) · 1−P ̸=i(resolve)
R

1−P̸=i(resolve)
, if Ci,j = resolve

(1)

This three-way reward strategy encourages the model to continue reasoning when the current trajectory
is promising, and to re-solve when the trajectory is confused or flawed, since the expected accuracy
of re-solving exceeds that of continuation.

4.3 ADVANTAGE COMPUTATION AND PARAMETER UPDATE

Algorithm 1 Re2: Reinforcement Learning with Resolving

Input initial policy model πθ; task prompts D; maximum training steps s; number of prefixes n;
number of continuations m; max resolve rounds R; clipping thresholds εlow, εhigh; update steps per
batch µ
for step = 1,...,s do
1: Sample a mini-batch Db from D
2: For each question q ∈ Db, sample n responses from πθold(· | q) and truncate them at random

ratios to form prefixes {Prei}ni=1
3: For each prefix Prei, sample m continuations {Oi,j}mj=1 ∼ πθold(· | q,Prefixi)
4: Compute rewards {ri,j} according to Eq. 1
5: Filter out degenerate groups if all {ri,j}mj=1 are identical
6: Compute group-wise advantages Âi,j for each continuation according to Eq. 2
7: for iteration = 1,...,µ do

Update the policy model πθ by maximizing JRe2(θ) (Eq. 3)
8: Update the old policy πθold ← πθ

Output updated policy πθ

After computing rewards under the re-solving strategy, we compute group-wise advantages and
update the policy parameters following DAPO (Yu et al., 2025). Specifically, the advantage for the
j-th continuation Oi,j of prefix Prei is defined as the reward normalized by subtracting the group
mean and dividing by the group standard deviation:

Âi,j =
ri,j −mean({ri,j}mj=1)

std({ri,j}mj=1)
. (2)

If all continuations within a group yield the same outcome (all correct, all incorrect, or all choosing
resolve), then Âi,j = 0 and the gradients vanish. Such degenerate groups are filtered out during
training. The computed advantage is then broadcast to all response tokens of the corresponding
continuation.

1The detailed derivation is provided in Appendix B.
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Formally, for each query q ∈ D, we first sample n prefixes {Prei}ni=1 ∼ πθold(· | q). For each prefix
Prei, we then sample m continuations {Oi,j}mj=1 ∼ πθold(· | q,Prei). The optimization objective is:

JRe2(θ) = E[q∼D,{Prei}n
i=1∼πθold (·|q),{Oi,j}m

j=1∼πθold (·|q,Prei)][
1

nm

n∑
i=1

m∑
j=1

1

|Oi,j |

|Oi,j |∑
t=1

min

(
πi,j,t
θ

πi,j,t
θold

Âi,j , clip
(πi,j,t

θ

πi,j,t
θold

, 1− εlow, 1 + εhigh

)
Âi,j

)]
, (3)

where πi,j,t = π(Oi,j,t | q,Prei, Oi,j,<t) denotes the conditional probability of the t-th token in
continuation Oi,j given the query q and the prefix Prei. The models πθ and πθold correspond to
the training policy and the sampling policy, respectively. The clipping thresholds εlow and εhigh are
hyperparameters used to bound the importance sampling ratio for stable optimization. The overall
training algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training datasets. We construct our training set from the DAPO-Math-17K dataset (Yu et al.,
2025), which is collected from AoPS2 and official competition sources. The dataset covers a wide
range of mathematical domains and contains 17K problems in total. To ensure reliable rule-based
reward signals and minimize parsing errors, all answers are transformed into integers.

Baselines & Models. We compare Re2 against the vanilla model (before RL training) and the
recent RLVR method DAPO (Yu et al., 2025), which we follow for advantage computation and
parameter updates. To ensure a fair comparison, both methods are trained with the same amount of
generated tokens during RL optimization. To evaluate the effectiveness of Re2 across model types and
scales, we conduct experiments on both base and instruction-tuned LLMs, including Qwen-7B-Base,
Qwen-14B-Base, Llama-3.2-3B-Instruct, and Qwen2.5-7B-Instruct (Dubey et al., 2024; Yang et al.,
2024a). We further evaluate on DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), a reasoning model
specifically finetuned to generate long chains of thought.

Benchmarks. To comprehensively evaluate the reasoning ability of our model, We adopt five widely
used benchmarks covering diverse difficulty levels and domains: AIME 2024 (MAA Committees)
contains 30 challenging problems from the 2024 American Invitational Mathematics Examination.
The exam is designed to test advanced problem-solving skills across algebra, geometry, combinatorics,
number theory, and probability, and is often used as a challenging benchmark for evaluating reasoning
ability in language models. AIME 2025 (MAA Committees) follows the same format as AIME
2024, with 30 comparably difficult problems. As the most recent edition, it reduces the risk of
contamination from pretraining or post-training data. AMC 2023 (AI-MO, 2024) consists of 40
problems covering algebra, geometry, number theory, and combinatorics. Compared to the AIME
benchmarks, its difficulty level is relatively lower. GSM8K (Cobbe et al., 2021) is a curated dataset of
1,319 elementary-level math word problems. Each problem typically requires two to eight reasoning
steps, primarily involving multi-step arithmetic, making it a standard benchmark for assessing
fundamental mathematical reasoning. GPQA (Rein et al., 2021) is a challenging dataset of graduate-
level questions in physics, biology, and chemistry, where even PhD-level domain experts achieve only
around 69.7% accuracy. In our experiments, we use the highest-quality subset, GPQA-Diamond,
which consists of 198 carefully selected questions designed to provide a rigorous test of advanced
scientific reasoning.

Training and evaluation details. For Re2, we use a learning rate of 1× 10−6. Each training step
processes a batch of 32 queries, with n = 8 prefixes sampled per query and m = 8 continuations
generated for each prefix. The maximum sequence length is set to 8192 tokens. The clipping
parameters are fixed at εlow = 0.2 and εhigh = 0.28, and the maximum number of redo rounds is
R = 5. For DAPO, we adopt the same learning rate of 1×10−6. To ensure comparable token budgets
with Re2, each batch contains 128 queries with n = 20 samples per query. All other hyperparameters

2https://artofproblemsolving.com/
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Table 1: Experimental results on five reasoning benchmarks. Re2 consistently improves the overall
reasoning performance of each model over DAPO (p-value < 0.05). Red numbers in parentheses
indicate performance gains relative to DAPO.

Models Methods AIME24 AIME25 AMC23 GSM8K GPQA Avg

Base Model

Qwen2.5-7B Base + DAPO 11.9 10.3 64.7 91.8 29.7 41.7
+ Re2 17.1 19.0 70.8 93.6 36.8 47.5 (+5.8)

Qwen2.5-14B Base + DAPO 18.2 15.7 64.0 94.3 44.8 47.4
+ Re2 28.5 23.4 68.5 94.6 49.6 52.9 (+5.5)

Instruct Model

Llama3.2-3B-Instruct
None 6.2 0.4 23.0 67.2 2.7 19.9
+ DAPO 15.0 0.5 32.3 80.4 20.7 29.8
+ Re2 17.7 2.8 38.4 83.2 20.2 32.5 (+2.7)

Qwen2.5-7B-Instruct
None 11.4 7.5 51.4 85.3 33.4 37.8
+ DAPO 16.0 8.6 62.3 92.6 35.4 43.0
+ Re2 18.6 21.2 64.7 94.1 38.4 47.4 (+4.4)

Reasoning Model

DeepSeek-R1-
Distill-Llama-8B

None 39.3 27.3 84.3 88.6 36.9 55.2
+ DAPO 38.4 26.5 86.9 89.6 38.4 55.9
+ Re2 47.2 29.6 88.7 92.2 44.8 60.5 (+4.4)

are kept identical to those used in Re2. During evaluation, the maximum sequence length is increased
to 16384 tokens, with sampling performed using a temperature of 0.6 and top-p of 0.95. For models
trained with Re2, whenever a sampled completion produces a redo action, sampling is restarted until
a final answer is generated, and the first valid final answer is taken as the model’s output.

5.2 MAIN RESULTS

As shown in Table 1, Re2 improves reasoning performance across all five benchmark datasets and five
model types, including base, instruction-tuned, and reasoning-optimized models ranging from 3B to
14B parameters. On pretrained models such as Qwen2.5-7B and Qwen2.5-14B, our method achieves
larger gains compared to DAPO. These consistent gains on in-domain mathematical benchmarks
of varying difficulty (AIME24, AIME25, AMC, GSM8K) as well as the out-of-domain scientific
reasoning benchmark (GPQA-Diamond) demonstrate the robustness of our approach. Moreover,
since AIME25 was released after all the evaluated models were trained, it is free from potential
data contamination, and Re2 achieves superior performance on this benchmark, further validating its
effectiveness. Notably, Re2 achieves substantial improvements on AIME24 and AIME25, highlighting
its effectiveness in tackling more challenging reasoning problems.

5.3 PERFORMANCE UNDER TEST-TIME SCALING

When tackling challenging problems (e.g., the AIME series), models trained with Re2 may perform
multiple redo attempts and generate several candidate solutions before producing a final answer,
thereby consuming more tokens during inference. To fairly assess the effect of this additional token
usage, we compare DAPO and Re2 under the same number of sampled outputs, regardless of whether
a sample corresponds to a direct final answer or a redo attempt. Accuracy is then measured using
majority voting over these samples.

As shown in Figure 6, Re2 fully exploits the benefits of test-time scaling: once the number of
samples exceeds 64, they consistently surpass RLVR-trained models, whose performance has already
saturated, and continue to improve as test-time compute increases. However, when the number
of samples is small, Re2 tends to trigger more redo actions on hard problems, which reduces the
proportion of valid final answers within the sampled outputs and can lead to lower accuracy than
RLVR under these settings.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

(a) Qwen2.5-14B-Base on AIME24
DAPO (Majority voting)
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

(b) Qwen2.5-14B-Base on AIME25
DAPO (Majority voting)
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

(c) Qwen2.5-7B-Instruct on AIME24
DAPO (Majority voting)
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

(d) Qwen2.5-7B-Instruct on AIME25
DAPO (Majority voting)
Re2

Figure 6: Test-time scaling of DAPO and Re2 under the same training budget as the number of
samples increases.

5.4 TRAINING DYNAMICS OF RE2

Figure 7 shows the training dynamics of Re2, including the average reward, the reward under the
resolve action, and the behavioral distribution over correct answers, incorrect answers, and re-solve
actions. Both the average reward and the reward for resolving steadily increase as training progresses.
In terms of behavior, the probability of choosing to re-solve rises sharply during the first 20 steps and
then gradually decreases with further training. Meanwhile, the probability of producing incorrect
answers drops substantially, while the probability of generating correct final answers increases slowly.
These results suggest that Re2 rapidly activates resolving behavior and then refines it, enabling the
model to abandon unproductive reasoning paths while maintaining exploration of correct but more
challenging trajectories.
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Figure 7: The training progress of Re2 on Qwen2.5-14B-Base.

5.5 ANALYZING THE MECHANISMS BEHIND RE2’S EFFECTIVENESS

To further investigate the underlying mechanisms behind the effectiveness of our method, we manually
inspected sampled cases and analyzed accuracy improvements across different difficulty levels.
Through manual inspection, we found that Re2 produces reasoning chains of consistently higher
quality than RLVR algorithms such as DAPO. This is largely because Re2 allows the model to
restart reasoning when the current trajectory is unlikely to lead to the correct answer, thereby
substantially reducing the tendency to force a final answer from flawed reasoning or nonexistent
conditions. We believe that the reward modeling in Re2 is fundamentally more rational than the
standard 0/1 end-reward paradigm in RLVR. Under a pure end-reward objective, the model is
encouraged to always output a final answer—even when it is uncertain—often producing spurious
steps and incoherent logic in an attempt to “guess correctly.” In contrast, Re2 enables the model to
output a final answer only when it is confident, and to honestly indicate the need to restart when the
reasoning becomes unpromising. This more rational and self-aware behavior allows the model to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

better recognize when its current chain of thought is unreliable and to avoid optimizing trajectories
that accidentally guess the correct answer, which is a common issue in RLVR training.

To illustrate these findings, we categorized problems by difficulty and measured the accuracy and
resolving rate of Re2. We mixed AMC and AIME25 questions to create a test set with a balanced
distribution of difficulty levels. In Fig. 8(a), we grouped questions into seven difficulty levels based
on the accuracy of the Qwen2.5-7B-Instruct model obtained through multiple samples. We then
evaluated DAPO and Re2 on each difficulty group and recorded Re2’s resolving rate. We observe
that for questions the base model is completely unable to solve (Group 1), reinforcement learning
cannot teach the model to solve them either. In such cases, DAPO often produces incorrect answers
with unclear or erroneous reasoning chains, while Re2 almost always refrains from giving a final
answer and attempts to resolve the problem instead. For difficult but solvable questions (Group 2),
Re2 achieves more than twice the accuracy of DAPO due to its ability to restart from failed prefixes.
Across all difficulty levels, Re2 consistently outperforms DAPO, and its resolving rate decreases as
question difficulty decreases.

In Fig. 8(b), we group questions by the difficulty estimated by DAPO, providing a more direct
comparison against a standard RLVR method. We find that the largest improvement occurs on
questions that RLVR occasionally solves (Group 4), where accuracy increases from 51.2% to 81.7%.
These are questions that RLVR models are capable of solving, but their ability to answer correctly is
highly unstable because they cannot discard unpromising prefixes. Re2 overcomes this limitation:
by allowing the model to restart, it substantially increases the probability of following a successful
reasoning trajectory.
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(b) Difficulty level by DAPO (1 = hardest)
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Figure 8: Analysis of accuracy and behavior across problem difficulty levels. (a) Accuracy improve-
ments of DAPO and Re2, along with the resolving rate of Re2, when questions are grouped by the
difficulty estimated by the base model. (b) Accuracy improvements and resolving rate of Re2 when
questions are grouped by the difficulty estimated by DAPO.

6 CONCLUSION

In this paper, we investigate the limitations of test-time scaling in existing LLMs and show that once
early reasoning is misguided, the model rarely recovers and struggles to return to the correct reasoning
path. To this end, we propose a new reasoning paradigm that allows language models to flexibly
restart reasoning when the current trajectory appears unpromising. We introduce Reinforcement
Learning with Re-solving (Re2), which leverages pure reinforcement learning to encourage models
to adopt re-solving behaviors. Empirical evaluations demonstrate that Re2 consistently outperforms
standard RLVR methods across benchmarks of varying domains and difficulty levels, while also
raising the upper bound of performance achievable under test-time scaling.

ETHICS STATEMENT

This paper presents work aimed at advancing the field of reasoning with large language models. As
with all research involving large language models, there are inherent risks, including the spread of
misinformation and the propagation of societal biases.
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REPRODUCIBILITY STATEMENT

Our work is based on open-source models and datasets. In Section 5 and Appendix A, we provide
detailed descriptions of the prompt templates, method implementation, and experimental setups.
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A IMPLEMENTATION DETAILS

During training, Re2 employs a specialized template, as illustrated in Figure 9, to elicit redo behavior
from the vanilla model. The template is designed to encourage the model to explicitly indicate when
it decides to abandon the current reasoning trajectory and restart the problem.

When performing reward assignment, if the model outputs a phrase such as “It’s better to
redo the question.” before producing a boxed final answer, we truncate the response at
that point and append a special <eos> token to mark the end of the sequence. This ensures that
redo actions are clearly distinguished from final-answer completions and allows the policy to learn
consistent behavior during reinforcement learning.

Re2 template

User: Solve the following math problem step by step. If you obtain a final answer, enclose it in
boxed{}.

{QUESTION}

Note: As you work through the problem, continuously assess your solution path in real time. If
you feel your current approach has become unclear or that rethinking the problem from scratch
would be more productive, **simply say "It’s better to redo the question."** Once you say this,
the answer should be immediately terminated (so do not use this phrase lightly—when reflecting
to yourself, use “Do I need to redo the question?” instead). When faced with unclear or tangled
reasoning, don’t hesitate to make use of the option to start over. Use this choice wisely for the
best results.

Assistant:

Figure 9: The template of Re2.

B DERIVATION OF THE REWARD OF RE2

We derive the expected reward for choosing resolve with at most R allowed rounds. For out-of-
group completions (i.e., prefixes ̸= Prei), let P̸=i(correct), P̸=i(incorrect), P̸=i(resolve)
denote the empirical probabilities of the three outcomes, estimated from the (n−1)×m out-of-group
CoTs. Each redo round draws one outcome from this distribution; a correct yields reward 1,
an incorrect yields reward 0, and a resolve consumes one round and restarts from the same
distribution. Hence, the expected reward of choosing resolve equals the probability that the first
non-resolve outcome within the first R rounds is correct:
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E[r | resolve, R] =

R∑
t=1

P ̸=i(resolve)
t−1︸ ︷︷ ︸

first t−1 are resolve

·P̸=i(correct)︸ ︷︷ ︸
the t-th is correct

= P ̸=i(correct)
R−1∑
t=0

P ̸=i(resolve)
t.

Evaluating the finite geometric series gives

E[r | resolve, R] = P̸=i(correct) ·
1− P̸=i(resolve)R

1− P̸=i(resolve)
.

Therefore, for Oi,j that chooses resolve, we set

ri,j = P̸=i(correct) ·
1− P̸=i(resolve)R

1− P̸=i(resolve)
.

15
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Table 2: Accuracy with 95% confidence intervals on five reasoning benchmarks, confidence intervals
are given in parentheses.

Models Methods AIME24 AIME25 AMC23 GSM8K GPQA

Base Model

Qwen2.5-7B Base + DAPO 11.9 (±1.0) 10.3 (±1.0) 64.7 (±1.3) 91.8 (±0.1) 29.7 (±0.5)
+ Re2 17.1 (±1.4) 19.0 (±1.2) 70.8 (±0.3) 93.6 (±0.0) 36.8 (±0.3)

Qwen2.5-14B Base + DAPO 18.2 (±1.2) 15.7 (±1.2) 64.0 (±1.3) 94.3 (±0.1) 44.8 (±0.6)
+ Re2 28.5 (±1.1) 23.4 (±1.3) 68.5 (±0.3) 94.6 (±0.0) 49.6 (±0.3)

Instruct Model

Llama3.2-3B-Instruct + DAPO 15.0 (±0.9) 0.5 (±0.3) 32.3 (±1.3) 80.4 (±0.2) 20.7 (±0.5)
+ Re2 17.7 (±1.1) 2.8 (±0.5) 38.4 (±0.8) 83.2 (±0.1) 20.2 (±0.3)

Qwen2.5-7B-Instruct + DAPO 16.0 (±1.1) 8.6 (±0.9) 62.3 (±1.3) 92.6 (±0.1) 35.4 (±0.6)
+ Re2 18.6 (±1.6) 21.2 (±1.1) 64.7 (±0.4) 94.1 (±0.0) 38.4 (±0.4)

Reasoning Model

DeepSeek-R1-
Distill-Llama-8B

+ DAPO 38.4 (±1.5) 26.5 (±1.4) 86.9 (±0.9) 89.6 (±0.1) 38.4 (±0.6)
+ Re2 47.2 (±0.7) 29.6 (±0.8) 88.7 (±0.2) 92.2 (±0.0) 44.8 (±0.3)

C EXPERIMENTS

C.1 MAIN RESULTS

We additionally provide a comparison between DAPO and Re2 with confidence intervals, as shown
in Table 2.

C.2 PERFORMANCE UNDER TEST-TIME SCALING
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Figure 10: Test-time scaling of Re2 compared
with additional baselines.

We further compare the test-time scaling perfor-
mance of Re2 with a broader set of baselines.
These include: GRPO (Shao et al., 2024), the
classical RLVR algorithm and the core technique
used in training DeepSeek-R1 (Guo et al., 2025);
DLER (Liu et al., 2025), the recent state-of-the-
art efficient reasoning method that reduces to-
ken consumption while maintaining performance
through truncated-length penalties and training-
stabilization strategies; and DeepConf (Fu et al.,
2025), which leverages internal confidence sig-
nals during decoding to dynamically terminate
low-quality reasoning traces.

We use the number of consumed tokens as the measure of computational cost and evaluate them on
the challenging AIME25 benchmark, which has no risk of data leakage. As shown in Figure 10, our
method achieves better test-time scaling than all competing approaches.

C.3 ANALYSIS OF THE RESOLVE REWARD ESTIMATOR

To better understand the performance of the resolve reward estimator in Re2, we evaluate how
accurately it estimates a model’s resolving accuracy. For each training question, we draw 1024 inde-
pendent samples and treat the proportion of correct responses as the ground-truth resolving accuracy.
We then compare the bias and variance of the estimator under different sampling configurations.

Specifically, we fix the number of suffixes at m = 8 and vary the number of prefixes n ∈ {2, 4, 8, 16},
and conversely fix n = 8 while varying m ∈ {2, 4, 8, 16}. As a baseline, we include an exponential
moving average (EMA) estimator with a decay rate of 0.9.
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As shown in Fig. 11, the Re2 reward estimator becomes increasingly accurate as either n or m
increases, exhibiting consistently lower bias and variance. It also outperforms the EMA baseline
across all settings, demonstrating the effectiveness of leveraging the naturally generated n×m suffix
samples for estimating resolving accuracy.
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Figure 11: Bias and variance of the estimated resolving accuracy under different values of n and m.

C.4 ANALYSIS OF THE DEGENERATION GROUP RATE

We report the degeneration group rate of DAPO and Re2, defined as the rate of groups in which all
samples receive the same reward and therefore have zero advantage. As shown in Fig. 12, in Re2,
degeneration groups that are “all-wrong” during the later training stages gradually turn into “all-redo,”
indicating that the model shifts from forcing an answer on unsolvable questions to choosing to redo
them. The overall degeneration rate of Re2 is about 10% higher than that of DAPO. However, as
noted in DAPO (Yu et al., 2025), “the filter strategy does not necessarily impede training efficiency,
because the generation time is typically dominated by the generation of long-tail samples if the RL
system is synchronized and the generation stage is not pipelined.” Consistent with this observation,
Re2 does not incur additional training cost due to this effect.
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Figure 12: Degeneration group rate during training for DAPO and Re2.

C.5 ANALYSIS OF THE REASONING LENGTH

We analyze the evolution of reasoning lengths for DAPO and Re2 throughout training. As shown in
Figure 13, combined with our inspection of a number of cases, DAPO exhibits steady growth in CoT
length during training due to increasing amounts of self-reflection, error correction, and switching
of reasoning strategies, similar to classical RLVR. Wrong CoTs are noticeably longer than correct
ones because many failed trajectories attempt to extend or patch flawed prefixes. This represents
the strategy optimization that occurs under the one-shot chain-of-thought paradigm. In contrast,
Re2 gradually stabilizes its CoT lengths, and the lengths of correct, wrong, and redo CoTs do not
show substantial differences. Both the statistical results and our qualitative observations indicate
that Re2 behaves more rationally under the multi-chain, resolving reasoning paradigm: the model
does not force itself into producing a strained and ultimately incorrect reasoning chain, nor does it
over-commit to unpromising trajectories.

In addition, redo-CoTs in Re2 tend to be longer at the beginning of training, and their lengths gradually
approach those of final correct or incorrect CoTs as training progresses. Consistent with our manual
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inspection of cases, early in training, the patterns that trigger a redo are relatively shallow—for
example, CoTs becoming excessively long and close to the context window limit, frequent switching
between reasoning threads, or resorting to brute-force enumeration on problems that actually require
summarizing underlying patterns. In later stages, however, redo decisions become more closely tied
to the intrinsic quality of the CoT, such as the effectiveness of the chosen approach or the soundness
of the assumptions.
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Figure 13: Reasoning lengths during training for DAPO and Re2.

D TRAINING COST ANALYSIS OF RE2
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Figure 14: Accuracy improvements of DAPO
and Re2 under the same training time.

Training Re2 involves a two-stage generation pro-
cess: the model first produces n prefixes and then
generates n×m suffixes. This sequential genera-
tion procedure can be more time-consuming than
directly generating responses in parallel. To quan-
tify this overhead, we measure the rollout time of
DAPO and Re2 on an 8×A100-PCIE-40GB server.

To produce the same number of rollout samples,
DAPO uses a global batch size of 128, generat-
ing 16 samples per question. Re2 uses a global
batch size of 32, generating 8 prefixes followed
by 8 suffixes for each prefix. On average, DAPO
requires 388 seconds per rollout step. In comparison, Re2 takes 89 seconds for prefix generation and
342 seconds for suffix generation, resulting in a total of 431 seconds, which corresponds to an 11%
increase in rollout time.

Considering the performance improvements Re2 provides during training, this additional cost is
acceptable. As shown in Fig. 14, Re2 outperforms DAPO under the same training time budget.

E CASE ANALYSIS OF COTS WITH DIFFERENT LENGTHS

Here, we present a case study comparing short and long CoT responses obtained from multiple
samples on the same problem in Figures 15, 16, 17, and 18. When the model follows a correct
reasoning path with high-quality initial steps, it can often reach the correct answer within a relatively
short CoT. In contrast, when the initial reasoning direction is misguided, the model tends to produce
longer CoTs with many additional tokens, yet still fails to arrive at the correct solution. This illustrates
the critical importance of early reasoning quality and highlights the inefficiency of over-extended
reasoning when the initial trajectory is flawed.
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longer and shorter response in AIME25

Problem:Let k be real numbers such that the system |25+20i−z| = 5 and |z−4−k| = |z−3i−k|
has exactly one complex solution z. The sum of all possible values of k can be written as m

n ,
where m and n are relatively prime positive integers. Find m+ n. Here i =

√
−1.

Shorter Response:Okay, so I need to solve this problem where we have two complex equations:
1. |25 + 20i− z| = 5
2. |z − 4− k| = |z − 3i− k|
And the system has exactly one complex solution z. We need to find the sum of all
possible values of k, express it as m/n where m and n are coprime, and then find
m + n.Alright, let’s break this down step by step.First, let’s understand what these equations
represent geometrically. Since z is a complex number, we can write z = x + yi.Then,
25 + 20i − z = 25 + 20i − (x + yi) = (25 − x) + (20 − y)i.The modulus of this is√

(25− x)2 + (20− y)2 = 5.So, squaring both sides: (25− x)2 + (20− y)2 = 25.That’s the
equation of a circle in the complex plane with center at (25, 20)and radius 5. So, z lies on this
circle.Now, moving to the second equation: |z − 4− k| = |z − 3i− k|.Let me write z as x+ yi

again. Then Left side= |(x+ yi)− 4− k| = |(x− 4− k) + yi| =
√

(x− 4− k)2 + y2,Right
side= |(x + yi) − 3i − k| = |(x − k) + (y − 3)i| =

√
(x− k)2 + (y − 3)2.Setting

them equal:
√
(x− 4− k)2 + y2 =

√
(x− k)2 + (y − 3)2. Squaring both

sides:(x − 4 − k)2 + y2 = (x − k)2 + (y − 3)2. Let’s expand both sides:Left side:
(x − (4 + k))2 + y2 = (x − 4 − k)2 + y2 = (x2 − 2(4 + k)x + (4 + k)2) + y2.
Right side: (x − k)2 + (y − 3)2 = (x2 − 2kx + k2) + (y2 − 6y + 9). Set them
equal:x2 − 2(4 + k)x+ (4 + k)2 + y2 = x2 − 2kx+ k2 + y2 − 6y + 9. Simplify both sides by
subtracting x2 and y2:−2(4 + k)x + (4 + k)2 = −2kx + k2 − 6y + 9. Bring all terms to the
left:−2(4 + k)x+ (4+ k)2 +2kx− k2 +6y− 9 = 0. Simplify term by term:First, combine the
x terms:−2(4 + k)x + 2kx = [−8 − 2k + 2k]x = −8x. Next, constants:(4 + k)2 − k2 − 9.
Let’s compute:(16 + 8k + k2) − k2 − 9 = 16 + 8k + k2 − k2 − 9 = 7 + 8k. So now,
equation becomes:−8x+ 7 + 8k + 6y = 0. So that’s the equation of the second condition.So
now, we have two conditions:1. z lies on the circle with center (25, 20) and radius 5;
2. z lies on the line defined by −8x + 6y + 7 + 8k = 0.Since the system has exactly
one solution, this implies that the line is tangent to the circle. So, the distance from the
center of the circle to the line must be equal to the radius.So, the center of the circle is
(25, 20), and the line is −8x + 6y + 7 + 8k = 0.The distance from the center (25, 20)to the
line is equal to the radius 5.The formula for the distance from a point (x0, y0) to the line
ax+ by + c = 0 is |ax0 + by0 + c|/

√
a2 + b2.In our case, the line is −8x+ 6y + (7 + 8k) = 0,

so a = −8, b = 6, c = 7+ 8k. The distance is | − 8 ∗ 25 + 6 ∗ 20 + 7 + 8k|/
√

((−8)2 + 62) =

| − 200 + 120 + 7 + 8k|/
√
64 + 36 = |(−200 + 120 + 7) + 8k|/

√
100 = |(−73) + 8k|/10.

Set this equal to the radius 5:| − 73+ 8k|/10 = 5 => |8k− 73| = 50. Therefore, 8k− 73 = 50
or 8k − 73 = −50.Solving:Case 1: 8k − 73 = 50 => 8k = 123 => k = 123/8.Case
2:8k − 73 = −50 => 8k = 23 => k = 23/8.Therefore, possible k are 123/8 and 23/8.Thus,
the sum is 123/8 + 23/8 = (123 + 23)/8 = 146/8 = 73/4.So m = 73, n = 4, which are
coprime. Thus, m+ n = 73 + 4 = 77.**Final Answer** 77 .(Correct Answer)

Figure 15: Case Analysis of CoTs with Different Lengths in AIME25
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longer and shorter response in AIME25

Longer Response: Okay, so I have this problem here where I need to find all real numbers k
such that the system of equations:1. |25+ 20i− z| = 5 ;2. |z− 4− k| = |z− 3i− k| has exactly
one complex solution z. Then, I need to find the sum of all possible values of k and express it
as m

n where m and n are coprime, and then find m + n.Alright, let’s break this down step by
step.First, let me understand what each equation represents geometrically.Starting with the first
equation: |25 + 20i− z| = 5. Since z is a complex number, let’s denote z = x+ yi where x and
y are real numbers.So, substituting z = x+ yi into the first equation:|25 + 20i− (x+ yi)| =
5.Simplify the expression inside the absolute value:|(25 − x) + (20 − y)i| = 5 .The modulus
of a complex number a + bi is

√
a2 + b2, so:

√
(25− x)2 + (20− y)2 = 5.Squaring both

sides:(25 − x)2 + (20 − y)2 = 25.This is the equation of a circle in the complex plane with
center at (25, 20) and radius 5.So, the first equation represents a circle centered at (25, 20)
with radius 5.Now, moving on to the second equation: |z − 4 − k| = |z − 3i − k|.Again,
substituting z = x + yi:Left side:|(x − 4 − k) + (y − k)i|.Right side: |(x) + (y − 3)i − k|.
Wait, perhaps better to substitute more carefully.Wait, actually, let’s note that z is x + yi,
so:Left side: |(x + yi) − (4 + k)| = |(x − 4 − k) + yi|.Right side: |(x + yi) − (3i + k)| =
|(x−k)+(y−3)i|.Therefore, the equation becomes:|(x−4−k)+yi| = |(x−k)+(y−3)i|.Which
is equivalent to:

√
(x− 4− k)2 + y2 =

√
(x− k)2 + (y − 3)2.Squaring both sides to remove

the square roots:(x − 4 − k)2 + y2 = (x − k)2 + (y − 3)2.Let’s expand both sides:Left side:
(x−(4+k))2+y2 = (x−(4+k))2+y2.Which expands to: x2−2x(4+k)+(4+k)2+y2.Right
side: (x − k)2 + (y − 3)2.Which expands to: x2 − 2kx + k2 + y2 − 6y + 9.Now, set left
side equal to right side:x2 − 2x(4 + k) + (4 + k)2 + y2 = x2 − 2kx + k2 + y2 − 6y +
9.Simplify both sides:First, notice that x2 and y2 appear on both sides, so they cancel out.Left
side: −2x(4 + k) + (4 + k)2.Right side: −2kx + k2 − 6y + 9.So, bring all terms to one
side:−2x(4 + k) + (4 + k)2 − (−2kx)− k2 + 6y − 9 = 0.Simplify term by term:First, expand
−2x(4+k)+2kx:Which is−8x−2kx+2kx = −8x. Wait, perhaps let’s do it step by step:After
cancelling x2 and y2, we have:Left:−2x(4+k)+(4+k)2.Right: −2kx+k2−6y+9.So, subtract
the right side from both sides:−2x(4+k)+(4+k)2− (−2kx)−k2+6y−9 = 0.Simplify each
term:First term: −2x(4+k)+2kx.Second term: (4+k)2−k2.Third term: 6y−9.Compute each
part:1. −2x(4+k)+2kx = (−8x−2kx)+2kx = −8x,2.(4+k)2−k2 = (16+8k+k2)−k2 =
16 + 8k,3.6y − 9.(Error 1)Putting it all together:−8x + 16 + 8k + 6y − 9 = 0.Simplify
constants:16−9 = 7, so:−8x+8k+7+6y = 0.Let’s rewrite:−8x+6y+(8k+7) = 0,We can
divide the entire equation by -1 to make it look cleaner:8x− 6y− (8k+7) = 0.Alternatively,
keep it as:−8x+6y+8k+7 = 0.This is the equation representing the set of points z = x+yisuch
that|z − 4 − k| = |z − 3i − k|.This equation is actually the perpendicular bisector of the
segment joining the points 4 + kand 3i + kin the complex plane.Wait, let’s think in terms of
coordinates.(Error 2)In the complex plane, z is a point(x, y). The equation |z − (4 + k)| =
|z − (3i + k)|can be rewritten as |(x + yi) − (4 + k)| = |(x + yi) − (0 + (3 + k)i)|.So,
this is the set of points equidistant from (4, k) and(0, 3 + k). Therefore, the perpendicular
bisector of the segment connecting (4, k) and (0, 3+k).Therefore, the second equation represents
the perpendicular bisector of the segment between (4, k) and (0, 3 + k).So, now we have two
conditions:1. z lies on the circle centered at (25, 20)with radius 5;2.z lies on the perpendicular
bisector of the segment between (4, k) and (0, 3 + k).We are told that the system has exactly
one solution. That means that the line (perpendicular bisector) intersects the circle at exactly
one point. Therefore, the line must be tangent to the circle.Therefore, the distance from the
center of the circle to the line must be equal to the radius of the circle.So, perhaps the steps are:1.
Find the equation of the perpendicular bisector of the segment between (4, k) and (0, 3 + k).2.
Find the distance from the center of the circle (25, 20) to this line.3. Set this distance equal
to the radius 5, and solve for k.4. Sum all possible values of k.So, let’s proceed step by
step.First, let’s find the equation of the perpendicular bisector.Given two points A(4, k) and
B(0, 3 + k).The midpoint M of segment AB is:Mx = 4+0

2 = 2,My = k+(3+k)
2 = 3+2k

2 So,
midpoint is (2, (3 + 2k)/2).Next, the slope of AB is:mAB = (3+k)−k

0−4 = 3
−4 = −3/4.Therefore,

the slope of the perpendicular bisector is the negative reciprocal, which is 4/3.Therefore, the
equation of the perpendicular bisector is:y −My = (4/3)(x −Mx).Plugging in Mx = 2and
My = (3 + 2k)/2:y − (3 + 2k)/2 = (4/3)(x− 2).

Figure 16: Case Analysis of CoTs with Different Lengths in AIME25
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longer and shorter response in AIME25

Let’s write this in standard form ax + by + c = 0.Multiply both sides by 3 to eliminate the
fraction:3(y − (3 + 2k)/2) = 4(x − 2).Simplify:3y − (9 + 6k)/2 = 4x − 8.Multiply all
terms by 2 to eliminate denominator:6y − 9 − 6k = 8x − 16.Bring all terms to left side:
−8x+ 6y − 9− 6k + 16 = 0.Simplify constants:−9 + 16 = 7.Thus:−8x+ 6y + 7− 6k = 0
Or, −8x + 6y + (7 − 6k) = 0 .We can write this as: 8x − 6y + (6k − 7) = 0 .Wait, let me
check.From above:After multiplying by 2:6y − 9 − 6k = 8x − 16.Then, moving all terms to
left:−8x+ 6y + (−9− 6k + 16) = 0.Which is:n− 8x+ 6y + (7− 6k) = 0.So, if we want to
write it as ax+ by + c = 0, (Error 1)then:−8x+ 6y + (7− 6k) = 0.Alternatively, multiply
both sides by -1:8x− 6y − 7 + 6k = 0,Which is:8x− 6y + 6k − 7 = 0.Thus, the equation is
8x−6y+(6k−7) = 0.Alternatively, let’s verify.Alternatively, perhaps it’s better to keep the
equation as:From above: -8x+6y+7−6k = 0 .Which can be written as:8x−6y = 7−6k.But
perhaps let’s consider the standard form as:8x− 6y + (−7 + 6k) = 0.Either way, perhaps
it’s better to find the distance from the center (25, 20) to this line.The distance from a point
(x0, y0) to the line ax + by + c = 0 is |ax0 + by0 + c|/

√
(a2 + b2).So, first, let’s write the

equation in standard form.From above, the equation is:−8x+ 6y + 7− 6k = 0.We can write it
as:−8x+6y+(7−6k) = 0.Thus, coefficients are a = −8, b = 6, c = 7−6k.Therefore, distance
from (25, 20) is:|−8∗25+6∗20+(7−6k)|/

√
((−8)2+62).Compute numerator:First compute

each term:−8 ∗ 25 = −200, 6 ∗ 20 = 120.So, total so far: −200 + 120 = −80.Add (7 − 6k):
−80 + 7− 6k = −73− 6k.So numerator is | − 73− 6k|.Denominator is

√
64 + 36 =

√
100 =

10.Since the distance must be equal to radius 5, we have:| − 73− 6k|/10 = 5.Therefore,| − 73−
6k| = 50.Which implies:−73− 6k = 50 or −73− 6k = −50Case 1: −73− 6k = 50,−6k =
50 + 73 = 123,k = −123/6 = −41/2.Case 2: −73− 6k = −50,−6k = −50 + 73 = 23,k =
−23/6.Therefore, the possible values of k are −41/2 and −23/6.Therefore, the sum of all
possible values is:−41/2 + −23/6 = convert to common denominator:−41/2 = −123/6, so
total is −123/6− 23/6 = (−146)/6 = −73/3.(Error 3)But wait, the question says "the sum
of all possible values of k" so perhaps we need to check if both solutions are valid.Wait,
perhaps let’s see if these k’s result in exactly one solution.Since each k gives a different line,
each line can intersect the circle at two points, one point, or none. Since we have exactly
one solution, it’s when the line is tangent to the circle.Therefore, perhaps both k’s are valid,
but perhaps we need to check if both lead to lines that are tangent to the circle.Alternatively,
perhaps only one of them is valid because for some k, the line might not intersect the circle
or something. But perhaps both are valid.Therefore, perhaps sum is (−41/2) + (−23/6)= as
above, which is (−123/6 − 23/6) = (−146)/6 = (−73)/3.But since the problem says "the
sum of all possible values of k", which could be negative or positive,but perhaps we need
to check if both are valid.Alternatively, perhaps the sum is (-41/2) + (-23/6) = (-123 -23)/6=
(-146)/6= -73/3.But since the problem says "sum of all possible values of k", perhaps we
can write it as a fraction.But perhaps let’s verify.First, let’s check for k = −41/2.Compute
the distance from center to the line: | − 73− 6 ∗ (−41/2)|/10.Compute:−73− 6 ∗ (−41/2) =
−73+ (6 ∗ 41)/2 = −73+ (246)/2 = −73+ 123 = 50.Thus, |50|/10 = 5, which is the radius.
So this is correct.Similarly, for k = −23/6:Compute | − 73− 6 ∗ (−23/6)| = | − 73 + 23| =
| − 50| = 50.Thus, same result, distance is 5.Therefore, both k’s are valid.Hence, the sum is
(−41/2) + (−23/6) = (−123/6 − 23/6) = (−146)/6 = (−73)/3.Thus, m = −73, n = 3.
Wait, but m and n must be positive integers. So perhaps take absolute values? Wait, perhaps
the problem expects the sum as positive.But perhaps not, since k can be negative. The
problem says "sum of all possible values of k", so perhaps we just add them as they are.Thus,
(−41/2) + (−23/6) = (−41 ∗ 3 − 23)/6 = (−123 − 23)/6 = (−146)/6 = (−73)/3.So, the
sum is −73/3, which can be written as −73/3. Since m and n are coprime, m = 73, n = 3, but
since the sum is negative, perhaps the question expects the absolute value? But no, because
the problem says "the sum of all possible values of k can be written as m/n". ......Therefore,
the sum is −73/3, so m = 73, n = 3, which are coprime. Thus, m+ n = 73 + 3 = 76.**Final
Answer** 76 (Wrong Answer)
(Error:1.Repeated reformulation of the equation form. 2.Coordinate extraction error,renders all
following calculations invalid. 3.Ineffective repeated verification of the answer)

Figure 17: Case Analysis of CoTs with Different Lengths in AIME25
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longer and shorter response in AMC

Problem:How many positive perfect squares less than 2023 are divisible by 5?
Shorter Response:To determine how many positive perfect squares less than 2023 are divisible
by 5, we start by noting that a perfect square is divisible by 5 if and only if the integer itself
is divisible by 5. This is because if n2 is divisible by 5, then n must be divisible by 5 (since 5
is a prime number).Let n = 5k where k is an integer. Then, n2 = (5k)2 = 25k2 . We need
25k2 < 2023. Solving for k, we get:25k2 < 2023 =⇒ k2 < 2023

25 =⇒ k2 < 80.92.The
largest integer k that satisfies this inequality is 8, because 82 = 64 and 92 = 81 which is greater
than 80.92. Therefore, k can take any integer value from 1 to 8. This gives us 8 possible values
for k.Thus, there are 8 positive perfect squares less than 2023 that are divisible by 5. The answer
is: 8 (Correct Answer)
Longer Response:To determine how many positive perfect squares less than 2023 are divisible
by 5, we start by noting that a perfect square divisible by 5 must itself be a multiple of 25 (since
the square of any integer that is not a multiple of 5 cannot be divisible by 5, and the square
of an integer that is a multiple of 5 must be a multiple of 52 = 25.We need to find the largest
integer n such that 25n2 < 2023. This is equivalent to finding the largest integer n such that
n2 < 2023

25 = 80.92. Since n must be an integer, we take the greatest integer less than
√
80.92,

which is 8 (since
√
80.92 ≈ 8.996).Thus, n can take any integer value from 1 to 8. (Error)We

can verify this by calculating the squares of these integers and checking if they are less
than 2023:12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 = 36, 72 = 49, 82 = 64, 92 =
81, 102 = 100, 112 = 121, 122 = 144, 132 = 169, 142 = 196, 152 = 225, 162 = 256, 172 =
289, 182 = 324, 192 = 361, 202 = 400, 212 = 441, 222 = 484, 232 = 529, 242 = 576, 252 =
625, 262 = 676, 272 = 729, 282 = 784, 292 = 841, 302 = 900, 312 = 961, 322 = 1024, 332 =
1089, 342 = 1156, 352 = 1225, 362 = 1296, 372 = 1369, 382 = 1444, 392 = 1521, 402 =
1600, 412 = 1681, 422 = 1764, 432 = 1849, 442 = 1936, 452 = 2025.Since 452 = 2025 is not
less than 2023, the largest integer n is 44. Therefore, the positive perfect squares less than 2023
that are divisible by 5 are the squares of the integers from 1 to 44, which are 44 in total.Thus, the
number of positive perfect squares less than 2023 that are divisible by 5 is: 44 . (Wrong Answer)
(Error:Overlooking the “divisible by 5” constraint during verification.)

Figure 18: Case Analysis of CoTs with Different Lengths in AMC
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F RE2 EXAMPLES

We present examples of Re2 in Figures 19, 20, 21, and 22.

Re2 Examples 1

Problem:How many ordered pairs of positive real numbers (a, b) satisfy the
equation(1 + 2a)(2 + 2b)(2a+ b) = 32ab?

Reansoning Trace of Re2:To solve the equation (1 + 2a)(2 + 2b)(2a + b) = 32ab for
ordered pairs (a, b) of positive real numbers, we start by simplifying and analyzing the equa-
tion.First, let’s rewrite the equation for clarity:(1 + 2a)(2 + 2b)(2a+ b) = 32ab.We can factor
out the common terms in the first two factors:(1 + 2a)2(1 + b)(2a + b) = 32ab.This
simplifies to:2(1 + 2a)(1 + b)(2a + b) = 32ab.Dividing both sides by 2, we
get:(1 + 2a)(1 + b)(2a + b) = 16ab.Next, we will test some simple values for a and b
to see if we can find any solutions. Let’s start with a = b. Substituting a = b into the equation, we
get:(1 + 2a)(1 + a)(2a+ a) = 16a2.This simplifies to:(1 + 2a)(1 + a)(3a) = 16a2.Expanding
the left side, we get:3a(1 + 2a)(1 + a) = 3a(1 + 3a+ 2a2) = 3a+ 9a2 + 6a3.So the equation
becomes:3a+ 9a2 + 6a3 = 16a2.Rearranging terms, we get:6a3 + 9a2 + 3a− 16a2 = 0,which
simplifies to:6a3−7a2+3a = 0.Factoring out a, we get:a(6a2−7a+3) = 0.Since a is a positive
real number, a ̸= 0. Therefore, we need to solve the quadratic equation:6a2 − 7a+ 3 = 0.The
discriminant of this quadratic equation is:(−7)2 − 4 · 6 · 3 = 49 − 72 = −23.Since the
discriminant is negative, the quadratic equation has no real solutions.
Therefore, there are no positive real solutions for a when a = b. It’s better to redo the question.
Restarting from scratch:
Next, let’s try another approach by assuming a = 1

2 and solving for b:(1+2· 12 )(2+2b)(2· 12+b) =

32 · 12 ·b,which simplifies to:(1+1)(2+2b)(1+b) = 16b or 2(2+2b)(1+b) = 16b. Simplifying
further, we get:2(2 + 2b + 2b + 2b2) = 16b or 2(2 + 4b + 2b2) = 16b,which simplifies
to:4 + 8b+ 4b2 = 16b or 4b2 − 8b+ 4 = 0.Dividing by 4, we get:b2 − 2b+ 1 = 0,which factors
to:(b− 1)2 = 0.So, b = 1. Therefore, (a, b) = ( 12 , 1) is a solution.To confirm that there are no
other solutions, we can use the symmetry and the nature of the equation. Given the complexity
and the fact that we have found a solution, we can conclude that there are no other positive
real solutions.Thus, the number of ordered pairs (a, b) that satisfy the equation is: 1 .(Correct
Answer)

Figure 19: Re2 Examples 1

G LIMITATIONS AND FUTURE WORK

In this section, we outline several limitations of our study that highlight areas for future research and
improvement: (1) Although our method improves performance on challenging problems through
better test-time scaling, models may still require multiple re-solving rounds to reach the correct
answer. At present, there is no mechanism to explicitly control the probability of invoking the re-solve
action during inference, which may affect efficiency. (2) Our experiments primarily focus on large
language models, leaving the potential of applying Re2 to other generative modalities (e.g., vision or
multi-modal reasoning) unexplored. (3) We mainly study reasoning benchmarks, while extending
Re2 to more complex tasks, such as tool use, or search-intensive problems could also provide benefits.
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LLMs were used solely for language polishing of the manuscript.
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Re2 Examples 2

Problem:Ralph has a record store where people can trade their own records for new ones. People
can trade 2 old records for 1 new one. 5 people come in with old records and leave with 7 new
records between them. How many old records did the 5 people bring in?

Reansoning Trace of Re2:To determine how many old records the 5 people brought to
Ralph’s record store, we need to understand the trade ratio and the total number of new records
they received.The trade ratio is 2 old records for 1 new record. So, if each person trades 2 old
records for 1 new record, and 5 people are trading, we need to find out how many old records
were traded in total to get 7 new records.Let’s denote the number of new records each person
receives as n. Since each new record is obtained by trading 2 old records, if each of the 5 people
receives n new records, the total number of new records is 5n. We know that the total number of
new records they leave with is 7, so we have: 5n = 7 .Solving for n :n = 7

5 .This means each
person receives 7

5 new records.
However, since each person can only receive a whole number of new records, we need to consider
the total number of new records and the trade ratio in another way. It’s better to redo the question.
Restarting from scratch:
If 5 people together leave with 7 new records, and each new record is obtained by trading 2 old
records, the total number of old records traded is: 7 new records×2 old records per new record =
14 old records .Therefore, the 5 people brought in a total of 14 old records. So, the number of old
records the 5 people brought in is: 14 (Correct Answer)

Figure 20: Re2 Examples 2
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Re2 Examples 3

Problem:Let x, y and z be positive real numbers that satisfy the following system of
equations:log2(

x
yz = 1

2 log2(
y
xz ) = 1

3 log2(
z
xy ) = 1

4 .Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers. Find m+ n.

Reansoning Trace of Re2:Let’s start by expressing the given logarithmic equations in terms of
x, y, and z.The given equations are:log2

(
x
yz

)
= 1

2 ,log2
(

y
xz

)
= 1

3 ,log2
(

z
xy

)
= 1

4 .We

can rewrite these equations as:log2(x) − log2(yz) = 1
2 ,log2(y) − log2(xz) =

1
3 ,log2(z) − log2(xy) = 1

4 .Using the properties of logarithms, we can further simplify these
equations:log2(x) − (log2(y) + log2(z)) = 1

2 ,log2(y) − (log2(x) + log2(z)) = 1
3 ,log2(z) −

(log2(x) + log2(y)) = 1
4 .Let’s denote:log2(x) = a, log2(y) = b, log2(z) = c.So the

equations become:a−(b+c) = 1
2 ,b−(a+c) = 1

3 ,c−(a+b) = 1
4 .Simplifying each equation, we

get:a− b− c = 1
2 (Equation 1),b− a− c = 1

3 (Equation 2),c− a− b = 1
4 (Equation 3).We

now have a system of linear equations:a − b − c = 1
2 (Equation 1),−b + a − c =

1
3 (Equation 2),−c − a + b = 1

4 (Equation 3).Let’s add all three equations
together:(a − b − c) + (−b + a − c) + (−a − b + c) = 1

2 + 1
3 + 1

4 .Simplifying the
left side:a − b − c − b + a − c − a − b + c = 2a − 3b − 2c = 1

2 + 1
3 + 1

4 .The
right side can be simplified as: 12 + 1

3 + 1
4 = 6

12 + 4
12 + 3

12 = 13
12 .So we

have:2a − 3b − 2c = 13
12 .However, let’s instead solve for a, b, and c by subtracting

pairs of equations to find individual expressions.Subtract Equation 2 from Equation
1:(a−b−c)− (−b+a−c) = 1

2 −
1
3 ,a−b−c+b−a+c = 1

2 −
1
3 ,0 = 1

2 −
1
3 = 3

6 −
2
6 = 1

6 .This
simplifies to:0 = 1

6 .This is a contradiction, which indicates we need to recheck our method of
solving. Instead, let’s solve for a, b, and c by another method.It’s better to redo the question.
Restarting from scratch:
Let’s add Equation 1, Equation 2, and Equation 3 and then solve for a, b, and c individu-
ally.From the system:a − b − c = 1

2 (Equation 1),b − a − c = 1
3 (Equation 2),c − a − b =

1
4 (Equation 3).We can add these equations:(a− b− c) + (b− a− c) + (c− a− b) = 1

2 +
1
3 +

1
4 , a−b−c+b−a−c+c−a−b = 13

12 ,−a−c−b =
13
12 ,−(a+b+c) = 13

12 ,a+b+c = − 13
12 .This

is incorrect, so let’s re-evaluate by solving the system of linear equations.Instead, let’s solve for a,
b, and c directly. It’s better to redo the question.
Restarting from scratch:
We can use a different approach by expressing a, b, and c in terms of a common variable. Let’s add
and subtract the equations in a different way.From:a−b−c = 1

2 , b−a−c =
1
3 , c−a−b =

1
4 .Let’s

solve these equations by eliminating variables step-by-step. We can start by expressing c
in terms of a and b from the first equation:c = a − b − 1

2 .Substitute c into the second
equation:b − a − (a − b − 1

2 ) = 1
3 ,b − a − a + b + 1

2 = 1
3 ,2b − 2a + 1

2 = 1
3 ,2(b − a) =

1
3 −

1
2 = 2

6 −
3
6 = − 1

6 .2(b − a) = − 1
6 , b − a = − 1

12 , b = a − 1
12 .Now substitute

b = a − 1
12 and c = a − b − 1

2 into the third equation:c = a − (a − 1
12 ) −

1
2 =

a− a+ 1
12 −

1
2 = 1

12 −
1
2 = 1

12 −
6
12 = − 5

12 .Substitute b = a− 1
12 and c = − 5

12 into the third
equation:− 5

12 − a− (a− 1
12 ) =

1
4 ,−

5
12 − a− a+ 1

12 = 1
4 ,−

5
12 + 1

12 − 2a = 1
4 ,−

4
12 − 2a =

1
4 ,−

1
3 − 2a = 1

4 ,−2a = 1
4 + 1

3 = 3
12 + 4

12 = 7
12 . − 2a = 7

12 , a = − 7
24 .Substitute a = − 7

24

back to find b and c:b = a − 1
12 = − 7

24 −
1
12 = − 7

24 −
2
24 = − 9

24 = − 3
8 .c = − 5

12 .Now
we have:a = − 7

24 , b = − 3
8 , c = − 5

12 .We need to find (
∣∣log2(x4y3z2)

∣∣). First, we
express x4y3z2 in terms of a, b, and c:log2(x

4y3z2) = 4a + 3b + 2c.Substituting a, b, and
c : 4a + 3b + 2c = 4

(
− 7

24

)
+ 3

(
− 3

8

)
+ 2

(
− 5

12

)
= − 28

24 −
9
8 −

10
12 = − 28

24 −
27
24 −

20
24 =

− 28+27+20
24 = − 75

24 = − 25
8 .Thus,

∣∣log2(x4y3z2)
∣∣ = ∣∣− 25

8

∣∣ = 25
8 .So,

∣∣log2(x4y3z2)
∣∣ = 25

8 . The
fraction 25

8 is in simplest form, so m = 25 and n = 8. Therefore, m + n = 25 + 8 = 33.The
final answer is: 33 (Correct Answer)

Figure 21: Re2 Examples 3
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Re2 Examples 4

Problem:Let f be the unique function defined on the positive integers such that
∑

d|n d·f
(
n
d

)
= 1

for all positive integers n. What is f(2023)?

Reansoning Trace of Re2:To determine the function f defined on the positive integers
such that

∑
d|n d · f

(
n
d

)
= 1.for all positive integers n , we start by analyzing the functional

equation. We will use the properties of the function and the structure of the equation to find f(n)
.Step-by-Step Analysis
1. Base Case: n = 1 ,

∑
d|1 d · f

(
1
d

)
= 1. The only divisor of 1 is 1 itself, so the sum reduces to:

1 · f(1) = 1 =⇒ f(1) = 1.
2. General Case: n = p where p is a prime number,

∑
d|p d · f

(
p
d

)
= 1.The divisors of p are 1

and p , so the sum becomes: 1 · f(p) + p · f(1) = 1 =⇒ f(p) + p · 1 = 1 =⇒ f(p) + p =
1 =⇒ f(p) = 1− p.
3. General Case: n = pe11 pe22 · · · p

ek
k (where pi are distinct primes,

∑
d|n d · f

(
n
d

)
= 1. For

n = pe11 , we have:
∑

d|pe1
1
d · f

(
p
e1
1

d

)
= 1. The divisors of pe11 are (1, p1, p

2
1, . . . , p

e1
1 ). So,

the sum becomes:
∑e1

j=0 p
j
1 · f(p

e1−j
1 ) = 1.Substituting f(pm1 ) = 1 − pm1 for m ≥ 1 and

f(1) = 1 , we get:p01 · f(p
e1
1 ) + p11 · f(p

e1−1
1 ) + p21 · f(p

e1−2
1 ) + · · · + pe11 · f(1) = 1 =⇒

(1 − pe11 ) + p1 · (1 − pe1−1
1 ) + p21 · (1 − pe1−2

1 ) + · · · + pe11 · 1 = 1 =⇒ (1 − pe11 ) + p1(1 −
pe1−1
1 ) + p21(1− pe1−2

1 ) + · · ·+ pe11 = 1 =⇒ (1− pe11 ) + p1 − pe11 + p21 − pe11 + · · ·+ pe11 =
1.(1+p1+p21+· · ·+pe11 )−(pe11 +pe11 +· · ·+pe11 ) = 1 =⇒ (1+p1+p21+· · ·+pe11 )−pe11 ·e1 = 1.
The sum 1 + p1 + p21 + · · · + pe11 is a geometric series:(pe1+1

1 − 1)/(p1 − 1).So we
get:(pe1+1

1 − 1)/(p1 − 1) − pe11 · e1 = 1. Simplifying this, we need to check if this holds for
general n . It’s better to redo the question.
Restarting from scratch:
Let’s hypothesize that f(n) = 1

n . We substitute f(n) = 1
n into the original equation:∑

d|n d · f
(
n
d

)
=
∑

d|n d ·
1
n
d
=
∑

d|n d ·
d
n =

∑
d|n

d2

n = 1
n

∑
d|n d

2.For this to equal 1, we

need: 1n
∑

d|n d
2 = 1 =⇒

∑
d|n d

2 = n.This is not generally true for all n , so we need to
re-evaluate our hypothesis. It’s better to redo the question.
Restarting from scratch:
Instead, let’s directly use the functional equation and the values we have derived.
Determining f(2023).First, factorize 2023:2023 = 7× 172.Using the functional equation and the
derived values, we need to find f(2023) . We can use the multiplicative property of f if we assume
f is multiplicative. That means if n = pe11 pe22 · · · p

ek
k , then f(n) = f(pe11 )f(pe22 ) · · · f(pekk ).We

already have:f(p) = 1− p for prime p.So:f(7) = 1− 7 = −6,f(17) = 1− 17 = −16.Since
2023 = 7 × 172, we have:f(2023) = f(7) · f(172).We need to determine
f(172) :

∑
d|172 d · f

(
172

d

)
= 1.The divisors of 172 are (1, 17, 172). So the sum

is:1 · f(172) + 17 · f(17) + 172 · f(1) = 1.Substituting f(172) = 1 − 172 , f(17) = −16 ,
and f(1) = 1 : f(172) + 17 · (−16) + 172 · 1 = 1, f(172) − 272 + 289 = 1, f(172) + 17 =
1, f(172) = 1 − 17 = −16.So:f(2023) = f(7) · f(172) = −6 · −16 = 96.Thus, the value of
f(2023) is: 96 . (Correct Answer)

Figure 22: Re2 Examples 4
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