
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Re2: UNLOCKING LLM REASONING VIA REINFORCE-
MENT LEARNING WITH RE-SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has shown promise in en-
hancing the reasoning performance of large language models (LLMs) by increasing
test-time compute. However, even after extensive RLVR training, such models still
tend to generate unnecessary and low-quality steps in their chain-of-thought (CoT),
leading to inefficient overthinking and lower answer quality. We show that when the
initial direction or quality of the CoT is suboptimal, the model often fails to reach
the correct answer, even after generating several times more tokens than when the
initial CoT is well-initialized. To this end, we introduce Reinforcement Learning
with Re-solving (Re2), in which LLMs learn to flexibly abandon unproductive
reasoning paths and restart the solution process when necessary, rather than always
committing to a final answer. Re2 applies pure reinforcement learning without any
preliminary supervised fine-tuning, successfully amplifying the rare redo behavior
in vanilla models from only 0.5% to over 30%. This leads to substantial perfor-
mance gains over standard RLVR under the same training compute budget, and
also demonstrates notable improvements in test-time performance as the number
of samples increases.

0 20 40 60 80 100 120 140 160
Train Steps

0.075

0.100

0.125

0.150

0.175

0.200

Ac
cu

ra
cy

(a) Train-Time Scaling on AIME25

DAPO
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

(b) Test-Time Scaling on AIME25

DAPO (Majority voting)
Re2

Figure 1: (a) Accuracy improvements of DAPO and Re2 on Qwen2.5-7B-Instruct at each training
step, with comparable numbers of generated and trained tokens per step. (b) Test-time scaling of
DAPO and Re2 under the same training budget, as the number of samples increases.

1 INTRODUCTION

Recent studies have shown that large language models (LLMs) can achieve strong reasoning abilities
through scaling test-time compute (Snell et al., 2024; Wu et al., 2025). By generating longer chains of
thought (CoTs) that incorporate planning, reflection, and self-correction, LLMs attain higher accuracy
on complex reasoning tasks such as coding and mathematics (Yang et al., 2025a; Bercovich et al.,
2025; Team et al., 2025; Wu et al., 2024). To this end, state-of-the-art models adopt reinforcement
learning (RL) in post-training, which has proven effective in producing longer CoTs and strengthening
deep-thinking capabilities (Guo et al., 2025; Shao et al., 2024; Yu et al., 2025).

However, even with extensive RL training, LLMs still suffer from issues such as overthinking (Chen
et al., 2024; Cuadron et al., 2025) and underthinking (Wang et al., 2025; Cuesta-Ramirez et al., 2025;
Ding et al., 2025), generating unnecessary or low-quality reasoning steps that degrade both efficiency
and overall performance. In this paper, we investigate the limitations of test-time scaling in existing
LLMs by analyzing the correlation between CoT length and accuracy, together with the impact

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Step1

Step1

Step2Step1

Step2

Step2

Step2

Step1

Step3

Step3

Step3

Step3

Step4

Step4

Step4

Step5

Step5

Step6

Answer

Answer

Answer

Answer

Problem

Step1

Step1

Step2Step1

Step2

Step2

Step2

Step1

Step3

Step3

Step3

Step4

Answer

Answer

Problem

Resolving

Resolving

Restarting from scratch

Step

: High-quality initial steps with correct directionStep

: Low-quality or misdirected initial steps Answer : Incorrect final answer

: Correct final answerAnswer

(a) Standard Reasoning

(b) Reasoning with Re-solving Overall accuracy: 1.0

Overall accuracy: 0.5

(c) Example Trace of DAPO and Re2

AIME 24

Problem: Let ℬ be the set of rectangular boxes with surface area 54
and volume 23. Let & be the radius of the smallest sphere that can

contain each of the rectangular boxes that are elements of ℬ . The value

of &' can be written as
(

)
, where * and + are relatively prime positive

integers. Find * + +.

Reasoning Trace of DAPO:

Starting with D = /, 1, 2. The & =
34564574

'
. S= 2 /1 + 12 + 2/

= 54 , V= /12 = 23 , to compute /' + 1' + 2' .
/' + 1' + 2' = (/ + 1 + 2) ' − 54 , set L = / + 1 + 2 . So

&' = ⁄(='−54) 4 .

Using AM–GM inequality: L ≥ 3
?
23. Assuming equality L = 3

?
23,

then &' = @(3 ⋅ 23
4

? − 54) 4, simplifying into the form ⁄* +.

Answer given: * + + = 50 . (Wrong Answer)
(Error: Treating AM–GM lower bound as if it were achievable, but / =
1 = 2 contradicts the surface area condition.)

Reasoning Trace of Re2:

Starting with the same setup, &' =
(35657)4CDE

E
. First		apply	AM–GM	

get a + b + c ≥ 3
?
23 . Since	ab + bc + ac = 27 ,	this	bound	is	

consistent.	But	the	inequality	only	shows	feasibility,	without	exact	

values	of	a + b + c .

Seems complicated, Let’s use numerical approximation or try another

approach: It's better to redo the question.

Restarting	from	scratch:	

Assuming	/ = 1.	From	/12 = 23 ,	get	/ =
'h

64
.	Plugging	into	/1 +

12 + 2/ = 27 leads	to	a	cubic:	1h − 271 + 46 = 0.

Found	integer	root	1 = 2 .	Then	/ =
'h

E
, 1 = 2, 2 = 2 .	This	satisfies	

both	surface	area	and	volume	exactly.

Final	answer:	* + + = 657 + 64 = 721 .	(Correct Answer)

Restarting from scratch

Figure 2: Illustration of reasoning with re-solving. (a) In standard reasoning, when the initial steps
are suboptimal, the LLM struggles to reach the correct answer even after generating more reasoning
steps and tokens. (b) Reasoning with re-solving, allowing the model to abandon an unpromising path
and restart at any point, leads to a higher overall accuracy. (c) Example trace of DAPO and Re2: Both
models initially attempt an incorrect approach using the AM–GM inequality; however, Re2 detects
the failure, restarts, and arrives at the correct answer.

of early reasoning quality on final outcomes. Our analysis reveals that when the initial reasoning
steps are suboptimal, LLMs struggle to reach the correct answer, even after generating significantly
more reasoning steps and tokens (Figure 2(a)). However, solving complex problems often requires
early exploration, during which the model may pursue directions that initially appear promising but
ultimately lead to dead ends or errors. Motivated by these findings, we aim to enable models to restart
the reasoning process when the current path proves unproductive, thereby improving overall accuracy
by escaping unpromising paths (Figure 2(b)).

To equip models with this capability, we introduce Reinforcement Learning with Re-solving (Re2),
a novel framework that equips models with the ability to either finalize an answer or re-solve the
problem. During training, the model extends partial reasoning trajectories and learns to decide
whether to continue or to restart from its current progress. If the model chooses to re-solve, its
trajectory receives a reward equal to the expected success rate of solving the problem from scratch. If
it instead produces a final answer, the reward is assigned as 1 for a correct solution and 0 otherwise.
Under this scheme, when the current reasoning prefix is in the wrong direction or of low quality,
abandoning it and re-solving the problem is more likely to yield higher accuracy and thus a larger
reward. Conversely, when the reasoning trajectory is promising, directly producing the final answer
leads to a higher expected reward. Notably, Re2 requires no preliminary supervised fine-tuning.
Through pure reinforcement learning alone, it amplifies the rare redo behavior in vanilla models from
just 0.5% to over 30%, thereby enabling models to flexibly decide when to re-solve and ultimately
leading to more accurate reasoning, as illustrated in Figure 2(c).

We evaluate Re2 on a diverse set of reasoning benchmarks, including AIME 2024, AIME
2025 (MAA Committees), AMC 2023 (AI-MO, 2024), GSM8K (Cobbe et al., 2021), and GPQA-
Diamond (Rein et al., 2021), covering a wide range of domains and difficulty levels. Our evaluation
covers five models ranging from 3B to 14B parameters, including pre-trained, instruction-tuned,
and reasoning models. Experimental results demonstrate that our approach achieves significant
improvements in reasoning performance compared to recent RLVR methods such as DAPO (Yu
et al., 2025) under the same training budget. Moreover, Re2 yields a superior trade-off curve between
test-time compute and performance compared to majority voting (Wang et al., 2022). We believe our
work highlights the promise of integrating RL with a new paradigm of re-solving reasoning, which
goes beyond the traditional single-chain approach and opens up new directions for developing more
flexible and reliable reasoning in LLMs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

LLM for reasoning. Existing approaches enhance the reasoning capabilities of LLMs through
prompt engineering (Wei et al., 2022; Yang et al., 2023), supervised fine-tuning (Yang et al., 2024a;
Qin et al., 2024), and reinforcement learning (Schulman et al., 2017; Shao et al., 2024; Zheng et al.,
2025; Yue et al., 2025; Zhang et al., 2025; Wang et al., 2024). Among these, reinforcement learning
with verifiable rewards (RLVR) has emerged as a mainstream paradigm for post-training optimization,
encouraging models to produce longer CoTs with planning and self-reflection, thereby pushing the
frontier of reasoning performance (OpenAI, 2024; Qu et al., 2024; Gandhi et al., 2024; Zeng et al.,
2025). Nevertheless, even after extensive RLVR training, LLMs remain prone to overthinking and
underthinking, leading to redundant or low-quality reasoning steps (Chen et al., 2024; Cuadron et al.,
2025; Wang et al., 2025; Cuesta-Ramirez et al., 2025). This remains a fundamental limitation of the
prevailing paradigm, in which the model generates a single CoT trajectory and ultimately derives
its final answer within that trajectory (Wen et al., 2025; Shojaee et al., 2025). Recent studies (Yang
et al., 2025b; Fu et al., 2025) have attempted to address this issue by backtracking to earlier steps or
terminating low-confidence reasoning chains, but these methods are limited to supervised fine-tuning
or decoding strategies and do not leverage the potential of RL. To the best of our knowledge, our work
is the first to propose a reasoning paradigm that allows models to abandon unproductive reasoning
paths and re-solve problems from scratch through reinforcement learning.

Test-time scaling. Recent studies have shown that LLMs can effectively improve reasoning per-
formance by increasing inference-time compute (Snell et al., 2024; Welleck et al., 2024; Wu et al.,
2025; Muennighoff et al., 2025). Large reasoning models, as exemplified by OpenAI’s O1, learn
to produce traces that are longer than the typical solutions via SFT or RLVR (OpenAI, 2024; Qin
et al., 2024; Guo et al., 2025; Zhao et al., 2024). Some works improve performance by allowing
models to iteratively revise their answers through multiple rounds of self-correction (Xiong et al.,
2025; Zhao et al., 2025; Xi et al., 2024; Paul et al., 2024; Yang et al., 2024b). In addition, parallel
sampling methods (e.g., majority voting (Wang et al., 2022; Wan et al., 2024) and tree search (Hao
et al., 2023; Zhang et al., 2024)) further improve performance by increasing the number of samples.
In contrast, our approach scales test-time compute by enabling the model to abandon unpromising
reasoning trajectories and re-solve the problem when necessary, thereby unlocking the potential of
test-time scaling for reasoning.

3 DIFFICULTY OF RECOVERING FROM SUBOPTIMAL EARLY REASONING

To gain a deeper understanding of the limitations of test-time scaling in existing LLMs, we first
analyze the correlation between CoT length and reasoning accuracy (Section 3.1), and further
investigate why LLMs fail even when they having sufficient capabilities (Section 3.2). In our
experiments, we select Qwen2.5-7B-Instruct (Yang et al., 2024a) as a representative instruction-tuned
LLM and DeepScaleR-1.5B-Preview (Luo et al., 2025) as a representative long-CoT reasoning model
extensively trained with RLVR. We evaluate them on AMC23 and AIME25, respectively, which
aligns the difficulty of datasets with the capabilities of each model.

3.1 CORRELATION BETWEEN RESPONSE LENGTH AND PERFORMANCE

Although training models to produce longer CoTs can significantly improve reasoning performance,
we aim to examine whether, for the same problem across multiple samples, longer CoTs actually lead
to higher accuracy. To this end, we analyze the correlation between response length and accuracy
by sampling 128 responses per problem. As shown in Figure 3, our results reveal a clear negative
correlation between CoT length and accuracy, both across the entire dataset and at the level of
individual problems of varying difficulty. We further conduct case analysis of CoTs with different
lengths for the same problem, which shows that longer responses are typically caused by early critical
mistakes, such as following the wrong solution path or overanalyzing the problem’s assumptions,
making recovery unlikely regardless of the number of additional tokens generated. Additional results
are provided in Appendix E.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: Correlation between CoT length and reasoning performance. The bars represent the
proportion of cases within different CoT length intervals, while the line indicates the average accuracy
for responses in each interval. The large plots in the top row show the correlation across the entire
dataset. The small plots in the second row illustrate the correlation at the level of individual problems.

3.2 IMPACT OF INITIAL REASONING QUALITY ON FINAL ACCURACY

As shown in Section 3.1, shorter CoTs are typically more likely to be correct for a given problem.
We hypothesize that this is because suboptimal early reasoning leads the model to generate longer
responses, yet recovery is still challenging. To illustrate this phenomenon, we design an experiment
in which we truncate different proportions (20%, 40%, 60%, 80%) of incorrect responses and
prompt LLMs to continue reasoning from these prefixes. We then measure the average accuracy
of completions from each truncated prefix and compute the relative drop in accuracy compared to
reasoning from scratch on the original problem. As shown in Figure 4, for each prefix length we report
the number of cases where the relative drop in accuracy exceeds the 25% or 75% threshold (“All
Drops”). The results show that as prefix length increases, the relative drop becomes larger, indicating
that the longer a model continues along an incorrect trajectory, the more likely it is to fail.

Furthermore, we investigate how early such performance degradation begins in an incorrect response.
For each response, we record the shortest prefix at which the relative drop first exceeds the threshold
(“First Drops”). The results reveal that for most incorrect responses, a significant drop in accuracy
already occurs when only the first 20% of the response is used as the prefix. This demonstrates that
once early reasoning is misguided, the model rarely recovers and struggles to return to the
correct reasoning path.

0.2 0.4 0.6 0.8
Prefix Truncation Ratio

0

50

100

150

200

Co
un

t

Relative drop > 25%
All Drops
First Drops

0.2 0.4 0.6 0.8
Prefix Truncation Ratio

0

50

100

150

Co
un

t

Relative drop > 75%
All Drops
First Drops

Prefix Accuracy Drops of Qwen2.5-7B-Instruct on AMC23

0.2 0.4 0.6 0.8
Prefix Truncation Ratio

0

25

50

75

100

Co
un

t

Relative drop > 25%
All Drops
First Drops

0.2 0.4 0.6 0.8
Prefix Truncation Ratio

0

20

40

60

80

Co
un

t

Relative drop > 75%
All Drops
First Drops

Prefix Accuracy Drops of Deepscaler on AIME25

Figure 4: Number of cases where the relative drop exceeds the threshold when continuing from
different proportions of incorrect response prefixes, compared to reasoning from scratch. “All Drops”
counts all such cases at each prefix proportion, while “First Drops” records the earliest prefix for each
response where the drop exceeds the threshold.

3.3 TAKEAWAYS

Based on the above analysis, we conclude that: (1) For a given problem, shorter responses following
smoother reasoning tend to achieve higher accuracy, whereas longer responses are often associated
with lower accuracy; (2) The quality of early reasoning process is crucial for the final accuracy.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Query

…

COT
prefixn

COT1,1

COT1,m

…
COT1,2COT

prefix1

COT
prefix2

COT2,1

COT2,m

COT2,2

COTn,1

COTn,m

COTn,2

Redo

Redo

group 1

Policy
model!

Group
computation

… …

Reward computation

Rk,j =

0

1

Avg accuracy
of groupsi≠k

Redo

Reward in groupk :

R1,1

R1,2

R1,m

…

…

…

R2,1

R2,2

R2,m

…

Rn,1

Rn,2

Rn,m

…

A1,1

A1,2

A1,m

…

A2,1

A2,2

A2,m

…

An,1

An,2

An,m

…

: Correct final answer : Incorrect final answer : Choose to retryRedo R : Reward A : AdvantageCorrect

Correct

Correct

Wrong

Correct

Wrong

Wrong

Wrong

Wrong

Correct

Wrong
Policy
model!

Policy
model!

Policy
model!

group 2

group n

Group
computation

Group
computation

Figure 5: The framework of Re2. For each query, Re2 samples multiple prefixes, then generates
multiple continuations for each prefix. The advantage is calculated within each group, while the
out-of-group accuracy is used as the reward for the redo action.

4 RE2: REINFORCEMENT LEARNING WITH RESOLVING

The above results highlight that a coherent reasoning process and high-quality early reasoning are
crucial for model performance. However, when tackling challenging problems, it is often unavoidable
for models to explore early reasoning paths that initially appear promising but ultimately fail to
yield correct solutions. LLMs are also prone to generating low-quality content during the initial
stages of reasoning. Similar to how humans may reconsider their strategy when solving difficult
problems, we aim to equip models with the ability to restart the reasoning process when the current
trajectory appears unpromising or leads to confusion. To this end, we propose Re2, which leverages
reinforcement learning to train models to flexibly re-solve problems during reasoning.

4.1 PREFIX GROUP GENERATION

Recent RLVR methods such as GRPO (Shao et al., 2024) and DAPO (Yu et al., 2025) improve
pass@1 accuracy by sampling multiple reasoning trajectories in parallel for each query and rewarding
only those that yield correct answers. In contrast, Re2 aims to improve the final answer quality by
allowing the model to rationally abandon an ongoing reasoning path and restart from scratch when
the trajectory appears confusing or unpromising. Meanwhile, our method requires estimating the
success rate of re-solving from scratch, which provides the reward signal that guides the model to
learn whether to redo or to commit to a final answer. To this end, we first sample n full responses
for each query. Each response is randomly truncated at a proportion uniformly drawn from [0, 0.8],
producing n diverse prefixes that serve as intermediate reasoning states. For each prefix, the model
generates m CoT continuations, and all continuations derived from the same prefix are grouped
together for subsequent advantage calculation, as illustrated in Figure 5. To incentivize the resolve
capability of the base model, we design a specialized prompting strategy, described in Appendix A.

4.2 REWARD STRATEGY WITH RE-SOLVING

To encourage the model to rationally abandon unpromising reasoning paths and restart from scratch
when necessary, we design a reward strategy that explicitly incorporates the option to re-solve. For
the j-th CoT continuation of the i-th prefix Prei, denoted as Oi,j , there are three possible outcomes
Ci,j : providing a correct final answer (Ci,j = correct), providing an incorrect final answer
(Ci,j = incorrect), or choosing to re-solve the problem (Ci,j = resolve).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

For continuations that yield final answers, the reward assignment follows standard RLVR: the model
receives a reward of 1 for a correct answer and 0 otherwise. For continuations that choose to re-solve,
the reward is given by the expected accuracy of re-solving from scratch, estimated using out-of-
group CoT completions, i.e., completions whose prefix is not Prei. Specifically, let P̸=i(correct),
P ̸=i(incorrect), and P̸=i(resolve) denote the empirical probabilities of correct, incorrect, and
resolve outcomes among the (n− 1)×m out-of-group continuations. When at most R redo rounds
are allowed, the reward is given by1:

ri,j =


1, if Ci,j = correct

0, if Ci,j = incorrect

P̸=i(correct) · 1−P ̸=i(resolve)
R

1−P̸=i(resolve)
, if Ci,j = resolve

(1)

This three-way reward strategy encourages the model to continue reasoning when the current trajectory
is promising, and to re-solve when the trajectory is confused or flawed, since the expected accuracy
of re-solving exceeds that of continuation.

4.3 ADVANTAGE COMPUTATION AND PARAMETER UPDATE

Algorithm 1 Re2: Reinforcement Learning with Resolving

Input initial policy model πθ; task prompts D; maximum training steps s; number of prefixes n;
number of continuations m; max resolve rounds R; clipping thresholds εlow, εhigh; update steps per
batch µ
for step = 1,...,s do
1: Sample a mini-batch Db from D
2: For each question q ∈ Db, sample n responses from πθold(· | q) and truncate them at random

ratios to form prefixes {Prei}ni=1
3: For each prefix Prei, sample m continuations {Oi,j}mj=1 ∼ πθold(· | q,Prefixi)
4: Compute rewards {ri,j} according to Eq. 1
5: Filter out degenerate groups if all {ri,j}mj=1 are identical
6: Compute group-wise advantages Âi,j for each continuation according to Eq. 2
7: for iteration = 1,...,µ do

Update the policy model πθ by maximizing JRe2(θ) (Eq. 3)
8: Update the old policy πθold ← πθ

Output updated policy πθ

After computing rewards under the re-solving strategy, we compute group-wise advantages and
update the policy parameters following DAPO (Yu et al., 2025). Specifically, the advantage for the
j-th continuation Oi,j of prefix Prei is defined as the reward normalized by subtracting the group
mean and dividing by the group standard deviation:

Âi,j =
ri,j −mean({ri,j}mj=1)

std({ri,j}mj=1)
. (2)

If all continuations within a group yield the same outcome (all correct, all incorrect, or all choosing
resolve), then Âi,j = 0 and the gradients vanish. Such degenerate groups are filtered out during
training. The computed advantage is then broadcast to all response tokens of the corresponding
continuation.

1The detailed derivation is provided in Appendix B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Formally, for each query q ∈ D, we first sample n prefixes {Prei}ni=1 ∼ πθold(· | q). For each prefix
Prei, we then sample m continuations {Oi,j}mj=1 ∼ πθold(· | q,Prei). The optimization objective is:

JRe2(θ) = E[q∼D,{Prei}n
i=1∼πθold (·|q),{Oi,j}m

j=1∼πθold (·|q,Prei)][
1

nm

n∑
i=1

m∑
j=1

1

|Oi,j |

|Oi,j |∑
t=1

min

(
πi,j,t
θ

πi,j,t
θold

Âi,j , clip
(πi,j,t

θ

πi,j,t
θold

, 1− εlow, 1 + εhigh

)
Âi,j

)]
, (3)

where πi,j,t = π(Oi,j,t | q,Prei, Oi,j,<t) denotes the conditional probability of the t-th token in
continuation Oi,j given the query q and the prefix Prei. The models πθ and πθold correspond to
the training policy and the sampling policy, respectively. The clipping thresholds εlow and εhigh are
hyperparameters used to bound the importance sampling ratio for stable optimization. The overall
training algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training datasets. We construct our training set from the DAPO-Math-17K dataset (Yu et al.,
2025), which is collected from AoPS2 and official competition sources. The dataset covers a wide
range of mathematical domains and contains 17K problems in total. To ensure reliable rule-based
reward signals and minimize parsing errors, all answers are transformed into integers.

Baselines & Models. We compare Re2 against the vanilla model (before RL training) and the
recent RLVR method DAPO (Yu et al., 2025), which we follow for advantage computation and
parameter updates. To ensure a fair comparison, both methods are trained with the same amount of
generated tokens during RL optimization. To evaluate the effectiveness of Re2 across model types and
scales, we conduct experiments on both base and instruction-tuned LLMs, including Qwen-7B-Base,
Qwen-14B-Base, Llama-3.2-3B-Instruct, and Qwen2.5-7B-Instruct (Dubey et al., 2024; Yang et al.,
2024a). We further evaluate on DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), a reasoning model
specifically finetuned to generate long chains of thought.

Benchmarks. To comprehensively evaluate the reasoning ability of our model, We adopt five widely
used benchmarks covering diverse difficulty levels and domains: AIME 2024 (MAA Committees)
contains 30 challenging problems from the 2024 American Invitational Mathematics Examination.
The exam is designed to test advanced problem-solving skills across algebra, geometry, combinatorics,
number theory, and probability, and is often used as a challenging benchmark for evaluating reasoning
ability in language models. AIME 2025 (MAA Committees) follows the same format as AIME
2024, with 30 comparably difficult problems. As the most recent edition, it reduces the risk of
contamination from pretraining or post-training data. AMC 2023 (AI-MO, 2024) consists of 40
problems covering algebra, geometry, number theory, and combinatorics. Compared to the AIME
benchmarks, its difficulty level is relatively lower. GSM8K (Cobbe et al., 2021) is a curated dataset of
1,319 elementary-level math word problems. Each problem typically requires two to eight reasoning
steps, primarily involving multi-step arithmetic, making it a standard benchmark for assessing
fundamental mathematical reasoning. GPQA (Rein et al., 2021) is a challenging dataset of graduate-
level questions in physics, biology, and chemistry, where even PhD-level domain experts achieve only
around 69.7% accuracy. In our experiments, we use the highest-quality subset, GPQA-Diamond,
which consists of 198 carefully selected questions designed to provide a rigorous test of advanced
scientific reasoning.

Training and evaluation details. For Re2, we use a learning rate of 1× 10−6. Each training step
processes a batch of 32 queries, with n = 8 prefixes sampled per query and m = 8 continuations
generated for each prefix. The maximum sequence length is set to 8192 tokens. The clipping
parameters are fixed at εlow = 0.2 and εhigh = 0.28, and the maximum number of redo rounds is
R = 5. For DAPO, we adopt the same learning rate of 1×10−6. To ensure comparable token budgets
with Re2, each batch contains 128 queries with n = 20 samples per query. All other hyperparameters

2https://artofproblemsolving.com/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Experimental results on five reasoning benchmarks. Re2 consistently improves the overall
reasoning performance of each model over DAPO (p-value < 0.05). Red numbers in parentheses
indicate performance gains relative to DAPO.

Models Methods AIME24 AIME25 AMC23 GSM8K GPQA Avg

Base Model

Qwen2.5-7B Base + DAPO 11.9 10.3 64.7 91.8 29.7 41.7
+ Re2 17.1 19.0 70.8 93.6 36.8 47.5 (+5.8)

Qwen2.5-14B Base + DAPO 18.2 15.7 64.0 94.3 44.8 47.4
+ Re2 28.5 23.4 68.5 94.6 49.6 52.9 (+5.5)

Instruct Model

Llama3.2-3B-Instruct
None 6.2 0.4 23.0 67.2 2.7 19.9
+ DAPO 15.0 0.5 32.3 80.4 20.7 29.8
+ Re2 17.7 2.8 38.4 83.2 20.2 32.5 (+2.7)

Qwen2.5-7B-Instruct
None 11.4 7.5 51.4 85.3 33.4 37.8
+ DAPO 16.0 8.6 62.3 92.6 35.4 43.0
+ Re2 18.6 21.2 64.7 94.1 38.4 47.4 (+4.4)

Reasoning Model

DeepSeek-R1-
Distill-Llama-8B

None 39.3 27.3 84.3 88.6 36.9 55.2
+ DAPO 38.4 26.5 86.9 89.6 38.4 55.9
+ Re2 47.2 29.6 88.7 92.2 44.8 60.5 (+4.4)

are kept identical to those used in Re2. During evaluation, the maximum sequence length is increased
to 16384 tokens, with sampling performed using a temperature of 0.6 and top-p of 0.95. For models
trained with Re2, whenever a sampled completion produces a redo action, sampling is restarted until
a final answer is generated, and the first valid final answer is taken as the model’s output.

5.2 MAIN RESULTS

As shown in Table 1, Re2 improves reasoning performance across all five benchmark datasets and five
model types, including base, instruction-tuned, and reasoning-optimized models ranging from 3B to
14B parameters. On pretrained models such as Qwen2.5-7B and Qwen2.5-14B, our method achieves
larger gains compared to DAPO. These consistent gains on in-domain mathematical benchmarks
of varying difficulty (AIME24, AIME25, AMC, GSM8K) as well as the out-of-domain scientific
reasoning benchmark (GPQA-Diamond) demonstrate the robustness of our approach. Moreover,
since AIME25 was released after all the evaluated models were trained, it is free from potential
data contamination, and Re2 achieves superior performance on this benchmark, further validating its
effectiveness. Notably, Re2 achieves substantial improvements on AIME24 and AIME25, highlighting
its effectiveness in tackling more challenging reasoning problems.

5.3 PERFORMANCE UNDER TEST-TIME SCALING

When tackling challenging problems (e.g., the AIME series), models trained with Re2 may perform
multiple redo attempts and generate several candidate solutions before producing a final answer,
thereby consuming more tokens during inference. To fairly assess the effect of this additional token
usage, we compare DAPO and Re2 under the same number of sampled outputs, regardless of whether
a sample corresponds to a direct final answer or a redo attempt. Accuracy is then measured using
majority voting over these samples.

As shown in Figure 6, Re2 fully exploits the benefits of test-time scaling: once the number of
samples exceeds 64, they consistently surpass RLVR-trained models, whose performance has already
saturated, and continue to improve as test-time compute increases. However, when the number
of samples is small, Re2 tends to trigger more redo actions on hard problems, which reduces the
proportion of valid final answers within the sampled outputs and can lead to lower accuracy than
RLVR under these settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

(a) Qwen2.5-14B-Base on AIME24
DAPO (Majority voting)
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

(b) Qwen2.5-14B-Base on AIME25
DAPO (Majority voting)
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

(c) Qwen2.5-7B-Instruct on AIME24
DAPO (Majority voting)
Re2

21 22 23 24 25 26 27 28 29 210

Number of Samples

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

(d) Qwen2.5-7B-Instruct on AIME25
DAPO (Majority voting)
Re2

Figure 6: Test-time scaling of DAPO and Re2 under the same training budget as the number of
samples increases.

5.4 TRAINING DYNAMICS OF RE2

Figure 7 shows the training dynamics of Re2, including the average reward, the reward under the
resolve action, and the behavioral distribution over correct answers, incorrect answers, and re-solve
actions. Both the average reward and the reward for resolving steadily increase as training progresses.
In terms of behavior, the probability of choosing to re-solve rises sharply during the first 20 steps and
then gradually decreases with further training. Meanwhile, the probability of producing incorrect
answers drops substantially, while the probability of generating correct final answers increases slowly.
These results suggest that Re2 rapidly activates resolving behavior and then refines it, enabling the
model to abandon unproductive reasoning paths while maintaining exploration of correct but more
challenging trajectories.

0 25 50 75 100 125
Training Step

0.2

0.3

0.4

0.5

0.6

0.7

Re
w

ar
d

Average Reward

0 25 50 75 100 125
Training Step

0.1

0.2

0.3

0.4

0.5

0.6

Re
w

ar
d

Resolve Reward

0 25 50 75 100 125
Training Step

0.1

0.2

0.3

0.4

0.5

0.6

Pr
op

or
ti

on

Behavior Probabilities
Wrong
Right
Redo

Figure 7: The training progress of Re2 on Qwen2.5-14B-Base.

5.5 ANALYZING THE MECHANISMS BEHIND RE2’S EFFECTIVENESS

To further investigate the underlying mechanisms behind the effectiveness of our method, we manually
inspected sampled cases and analyzed accuracy improvements across different difficulty levels.
Through manual inspection, we found that Re2 produces reasoning chains of consistently higher
quality than RLVR algorithms such as DAPO. This is largely because Re2 allows the model to
restart reasoning when the current trajectory is unlikely to lead to the correct answer, thereby
substantially reducing the tendency to force a final answer from flawed reasoning or nonexistent
conditions. We believe that the reward modeling in Re2 is fundamentally more rational than the
standard 0/1 end-reward paradigm in RLVR. Under a pure end-reward objective, the model is
encouraged to always output a final answer—even when it is uncertain—often producing spurious
steps and incoherent logic in an attempt to “guess correctly.” In contrast, Re2 enables the model to
output a final answer only when it is confident, and to honestly indicate the need to restart when the
reasoning becomes unpromising. This more rational and self-aware behavior allows the model to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

better recognize when its current chain of thought is unreliable and to avoid optimizing trajectories
that accidentally guess the correct answer, which is a common issue in RLVR training.

To illustrate these findings, we categorized problems by difficulty and measured the accuracy and
resolving rate of Re2. We mixed AMC and AIME25 questions to create a test set with a balanced
distribution of difficulty levels. In Fig. 8(a), we grouped questions into seven difficulty levels based
on the accuracy of the Qwen2.5-7B-Instruct model obtained through multiple samples. We then
evaluated DAPO and Re2 on each difficulty group and recorded Re2’s resolving rate. We observe
that for questions the base model is completely unable to solve (Group 1), reinforcement learning
cannot teach the model to solve them either. In such cases, DAPO often produces incorrect answers
with unclear or erroneous reasoning chains, while Re2 almost always refrains from giving a final
answer and attempts to resolve the problem instead. For difficult but solvable questions (Group 2),
Re2 achieves more than twice the accuracy of DAPO due to its ability to restart from failed prefixes.
Across all difficulty levels, Re2 consistently outperforms DAPO, and its resolving rate decreases as
question difficulty decreases.

In Fig. 8(b), we group questions by the difficulty estimated by DAPO, providing a more direct
comparison against a standard RLVR method. We find that the largest improvement occurs on
questions that RLVR occasionally solves (Group 4), where accuracy increases from 51.2% to 81.7%.
These are questions that RLVR models are capable of solving, but their ability to answer correctly is
highly unstable because they cannot discard unpromising prefixes. Re2 overcomes this limitation:
by allowing the model to restart, it substantially increases the probability of following a successful
reasoning trajectory.

1 2 3 4 5 6 7
(a) Difficulty level by Qwen-7B-it (1 = hardest)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Qwen-7B-it accuracy
DAPO accuracy
Re2 accuracy
resolve probability

0.0

0.2

0.4

0.6

0.8

1.0

Re
so

lv
e

pr
ob

ab
ili

ty

1 2 3 4 5 6 7
(b) Difficulty level by DAPO (1 = hardest)

0.0

0.2

0.4

0.6

0.8

1.0

ac
c

DAPO acc
Re2 acc
resolve prob

0.0

0.2

0.4

0.6

0.8

1.0

Re
so

lv
e

pr
ob

ab
ili

ty

Figure 8: Analysis of accuracy and behavior across problem difficulty levels. (a) Accuracy improve-
ments of DAPO and Re2, along with the resolving rate of Re2, when questions are grouped by the
difficulty estimated by the base model. (b) Accuracy improvements and resolving rate of Re2 when
questions are grouped by the difficulty estimated by DAPO.

6 CONCLUSION

In this paper, we investigate the limitations of test-time scaling in existing LLMs and show that once
early reasoning is misguided, the model rarely recovers and struggles to return to the correct reasoning
path. To this end, we propose a new reasoning paradigm that allows language models to flexibly
restart reasoning when the current trajectory appears unpromising. We introduce Reinforcement
Learning with Re-solving (Re2), which leverages pure reinforcement learning to encourage models
to adopt re-solving behaviors. Empirical evaluations demonstrate that Re2 consistently outperforms
standard RLVR methods across benchmarks of varying domains and difficulty levels, while also
raising the upper bound of performance achievable under test-time scaling.

ETHICS STATEMENT

This paper presents work aimed at advancing the field of reasoning with large language models. As
with all research involving large language models, there are inherent risks, including the spread of
misinformation and the propagation of societal biases.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Our work is based on open-source models and datasets. In Section 5 and Appendix A, we provide
detailed descriptions of the prompt templates, method implementation, and experimental setups.

REFERENCES

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examining
the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Jhouben Cuesta-Ramirez, Samuel Beaussant, and Mehdi Mounsif. Large reasoning models are not
thinking straight: on the unreliability of thinking trajectories. arXiv preprint arXiv:2507.00711,
2025.

Bowen Ding, Yuhan Chen, Futing Wang, Lingfeng Ming, and Tao Lin. Do thinking tokens help or
trap? towards more efficient large reasoning model. arXiv preprint arXiv:2506.23840, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv
preprint arXiv:2508.15260, 2025.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In NeurIPS 2023 Workshop on Generalization
in Planning, 2023.

Shih-Yang Liu, Xin Dong, Ximing Lu, Shizhe Diao, Mingjie Liu, Min-Hung Chen, Hongxu Yin,
Yu-Chiang Frank Wang, Kwang-Ting Cheng, Yejin Choi, et al. Dler: Doing length penalty
right-incentivizing more intelligence per token via reinforcement learning. arXiv preprint
arXiv:2510.15110, 2025.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

11

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time
scaling. In Workshop on Reasoning and Planning for Large Language Models, 2025.

OpenAI. Learning to reason with llms, 9 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. In Proceedings of
the 18th Conference of the European Chapter of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1100–1126, 2024.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan,
Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. arXiv
preprint arXiv:2410.18982, 2024.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. Advances in Neural Information Processing Systems,
37:55249–55285, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Guangya Wan, Yuqi Wu, Jie Chen, and Sheng Li. Reasoning aware self-consistency: Leveraging
reasoning paths for efficient llm sampling. arXiv preprint arXiv:2408.17017, 2024.

Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. arXiv preprint
arXiv:2412.10400, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2022.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
o1-like llms. arXiv preprint arXiv:2501.18585, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

12

https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sean Welleck, Amanda Bertsch, Matthew Finlayson, Hailey Schoelkopf, Alex Xie, Graham Neubig,
Ilia Kulikov, and Zaid Harchaoui. From decoding to meta-generation: Inference-time algorithms
for large language models. Transactions on Machine Learning Research, 2024.

Hao Wen, Yifan Su, Feifei Zhang, Yunxin Liu, Yunhao Liu, Ya-Qin Zhang, and Yuanchun Li.
Parathinker: Native parallel thinking as a new paradigm to scale llm test-time compute. arXiv
preprint arXiv:2509.04475, 2025.

Siwei Wu, Zhongyuan Peng, Xinrun Du, Tuney Zheng, Minghao Liu, Jialong Wu, Jiachen Ma, Yizhi
Li, Jian Yang, Wangchunshu Zhou, et al. A comparative study on reasoning patterns of openai’s o1
model. arXiv preprint arXiv:2410.13639, 2024.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for llm problem-solving. In The Thirteenth
International Conference on Learning Representations, 2025.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang, Guanyu Li, Yiwen Ding, Wei He, Boyang
Hong, Shihan Do, Wenyu Zhan, et al. Enhancing llm reasoning via critique models with test-time
and training-time supervision. arXiv preprint arXiv:2411.16579, 2024.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding
correction for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024a.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Minkai Xu, Joseph E Gonzalez, Bin Cui, and Shuicheng
Yan. Supercorrect: Advancing small llm reasoning with thought template distillation and self-
correction. arXiv preprint arXiv:2410.09008, 2024b.

Xiao-Wen Yang, Xuan-Yi Zhu, Wen-Da Wei, Ding-Chu Zhang, Jie-Jing Shao, Zhi Zhou, Lan-Zhe
Guo, and Yu-Feng Li. Step back to leap forward: Self-backtracking for boosting reasoning of
language models. arXiv preprint arXiv:2502.04404, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, et al. Vapo: Efficient and reliable reinforcement learning for
advanced reasoning tasks. arXiv preprint arXiv:2504.05118, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Kaiyan Zhang, Yuxin Zuo, Bingxiang He, Youbang Sun, Runze Liu, Che Jiang, Yuchen Fan, Kai
Tian, Guoli Jia, Pengfei Li, et al. A survey of reinforcement learning for large reasoning models.
arXiv preprint arXiv:2509.08827, 2025.

13

https://arxiv.org/abs/2503.18892

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xutong Zhao, Tengyu Xu, Xuewei Wang, Zhengxing Chen, Di Jin, Liang Tan, Zishun Yu, Zhuokai
Zhao, Yun He, Sinong Wang, et al. Boosting llm reasoning via spontaneous self-correction. arXiv
preprint arXiv:2506.06923, 2025.

Yu Zhao, Huifeng Yin, Bo Zeng, Hao Wang, Tianqi Shi, Chenyang Lyu, Longyue Wang, Weihua Luo,
and Kaifu Zhang. Marco-o1: Towards open reasoning models for open-ended solutions. arXiv
preprint arXiv:2411.14405, 2024.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025.

A IMPLEMENTATION DETAILS

During training, Re2 employs a specialized template, as illustrated in Figure 9, to elicit redo behavior
from the vanilla model. The template is designed to encourage the model to explicitly indicate when
it decides to abandon the current reasoning trajectory and restart the problem.

When performing reward assignment, if the model outputs a phrase such as “It’s better to
redo the question.” before producing a boxed final answer, we truncate the response at
that point and append a special <eos> token to mark the end of the sequence. This ensures that
redo actions are clearly distinguished from final-answer completions and allows the policy to learn
consistent behavior during reinforcement learning.

Re2 template

User: Solve the following math problem step by step. If you obtain a final answer, enclose it in
boxed{}.

{QUESTION}

Note: As you work through the problem, continuously assess your solution path in real time. If
you feel your current approach has become unclear or that rethinking the problem from scratch
would be more productive, **simply say "It’s better to redo the question."** Once you say this,
the answer should be immediately terminated (so do not use this phrase lightly—when reflecting
to yourself, use “Do I need to redo the question?” instead). When faced with unclear or tangled
reasoning, don’t hesitate to make use of the option to start over. Use this choice wisely for the
best results.

Assistant:

Figure 9: The template of Re2.

B DERIVATION OF THE REWARD OF RE2

We derive the expected reward for choosing resolve with at most R allowed rounds. For out-of-
group completions (i.e., prefixes ̸= Prei), let P̸=i(correct), P̸=i(incorrect), P̸=i(resolve)
denote the empirical probabilities of the three outcomes, estimated from the (n−1)×m out-of-group
CoTs. Each redo round draws one outcome from this distribution; a correct yields reward 1,
an incorrect yields reward 0, and a resolve consumes one round and restarts from the same
distribution. Hence, the expected reward of choosing resolve equals the probability that the first
non-resolve outcome within the first R rounds is correct:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E[r | resolve, R] =

R∑
t=1

P ̸=i(resolve)
t−1︸ ︷︷ ︸

first t−1 are resolve

·P̸=i(correct)︸ ︷︷ ︸
the t-th is correct

= P ̸=i(correct)
R−1∑
t=0

P ̸=i(resolve)
t.

Evaluating the finite geometric series gives

E[r | resolve, R] = P̸=i(correct) ·
1− P̸=i(resolve)R

1− P̸=i(resolve)
.

Therefore, for Oi,j that chooses resolve, we set

ri,j = P̸=i(correct) ·
1− P̸=i(resolve)R

1− P̸=i(resolve)
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Accuracy with 95% confidence intervals on five reasoning benchmarks, confidence intervals
are given in parentheses.

Models Methods AIME24 AIME25 AMC23 GSM8K GPQA

Base Model

Qwen2.5-7B Base + DAPO 11.9 (±1.0) 10.3 (±1.0) 64.7 (±1.3) 91.8 (±0.1) 29.7 (±0.5)
+ Re2 17.1 (±1.4) 19.0 (±1.2) 70.8 (±0.3) 93.6 (±0.0) 36.8 (±0.3)

Qwen2.5-14B Base + DAPO 18.2 (±1.2) 15.7 (±1.2) 64.0 (±1.3) 94.3 (±0.1) 44.8 (±0.6)
+ Re2 28.5 (±1.1) 23.4 (±1.3) 68.5 (±0.3) 94.6 (±0.0) 49.6 (±0.3)

Instruct Model

Llama3.2-3B-Instruct + DAPO 15.0 (±0.9) 0.5 (±0.3) 32.3 (±1.3) 80.4 (±0.2) 20.7 (±0.5)
+ Re2 17.7 (±1.1) 2.8 (±0.5) 38.4 (±0.8) 83.2 (±0.1) 20.2 (±0.3)

Qwen2.5-7B-Instruct + DAPO 16.0 (±1.1) 8.6 (±0.9) 62.3 (±1.3) 92.6 (±0.1) 35.4 (±0.6)
+ Re2 18.6 (±1.6) 21.2 (±1.1) 64.7 (±0.4) 94.1 (±0.0) 38.4 (±0.4)

Reasoning Model

DeepSeek-R1-
Distill-Llama-8B

+ DAPO 38.4 (±1.5) 26.5 (±1.4) 86.9 (±0.9) 89.6 (±0.1) 38.4 (±0.6)
+ Re2 47.2 (±0.7) 29.6 (±0.8) 88.7 (±0.2) 92.2 (±0.0) 44.8 (±0.3)

C EXPERIMENTS

C.1 MAIN RESULTS

We additionally provide a comparison between DAPO and Re2 with confidence intervals, as shown
in Table 2.

C.2 PERFORMANCE UNDER TEST-TIME SCALING

211 213 215 217 219

Total Computation (tokens)
0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ra
cy

Test-Time Scaling on AIME25
Re2

DAPO
DLER
GRPO
DEEPCONF

Figure 10: Test-time scaling of Re2 compared
with additional baselines.

We further compare the test-time scaling perfor-
mance of Re2 with a broader set of baselines.
These include: GRPO (Shao et al., 2024), the
classical RLVR algorithm and the core technique
used in training DeepSeek-R1 (Guo et al., 2025);
DLER (Liu et al., 2025), the recent state-of-the-
art efficient reasoning method that reduces to-
ken consumption while maintaining performance
through truncated-length penalties and training-
stabilization strategies; and DeepConf (Fu et al.,
2025), which leverages internal confidence sig-
nals during decoding to dynamically terminate
low-quality reasoning traces.

We use the number of consumed tokens as the measure of computational cost and evaluate them on
the challenging AIME25 benchmark, which has no risk of data leakage. As shown in Figure 10, our
method achieves better test-time scaling than all competing approaches.

C.3 ANALYSIS OF THE RESOLVE REWARD ESTIMATOR

To better understand the performance of the resolve reward estimator in Re2, we evaluate how
accurately it estimates a model’s resolving accuracy. For each training question, we draw 1024 inde-
pendent samples and treat the proportion of correct responses as the ground-truth resolving accuracy.
We then compare the bias and variance of the estimator under different sampling configurations.

Specifically, we fix the number of suffixes at m = 8 and vary the number of prefixes n ∈ {2, 4, 8, 16},
and conversely fix n = 8 while varying m ∈ {2, 4, 8, 16}. As a baseline, we include an exponential
moving average (EMA) estimator with a decay rate of 0.9.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

As shown in Fig. 11, the Re2 reward estimator becomes increasingly accurate as either n or m
increases, exhibiting consistently lower bias and variance. It also outperforms the EMA baseline
across all settings, demonstrating the effectiveness of leveraging the naturally generated n×m suffix
samples for estimating resolving accuracy.

5 10 15
n (number of prefixes)

0.04

0.06

0.08

M
ea

n
|e

st
im

at
e

- g
ol

d|

Bias vs n (m = 8)
Re2 estimator bias
EMA estimator bias

5 10 15
n (number of prefixes)

0.005

0.010

0.015

0.020

0.025

0.030

Va
r(

es
ti

m
at

e
- g

ol
d)

Variance vs n (m = 8)
Re2 estimator variance
EMA estimator variance

5 10 15
m (number of suffixes)

0.040

0.045

0.050

0.055

0.060

M
ea

n
|e

st
im

at
e

- g
ol

d|

Bias vs m (n = 8)
Re2 estimator bias
EMA estimator bias

5 10 15
m (number of suffixes)

0.005

0.006

0.007

0.008

0.009

0.010

Va
r(

es
ti

m
at

e
- g

ol
d)

Variance vs m (n = 8)
Re2 estimator variance
EMA estimator variance

Figure 11: Bias and variance of the estimated resolving accuracy under different values of n and m.

C.4 ANALYSIS OF THE DEGENERATION GROUP RATE

We report the degeneration group rate of DAPO and Re2, defined as the rate of groups in which all
samples receive the same reward and therefore have zero advantage. As shown in Fig. 12, in Re2,
degeneration groups that are “all-wrong” during the later training stages gradually turn into “all-redo,”
indicating that the model shifts from forcing an answer on unsolvable questions to choosing to redo
them. The overall degeneration rate of Re2 is about 10% higher than that of DAPO. However, as
noted in DAPO (Yu et al., 2025), “the filter strategy does not necessarily impede training efficiency,
because the generation time is typically dominated by the generation of long-tail samples if the RL
system is synchronized and the generation stage is not pipelined.” Consistent with this observation,
Re2 does not incur additional training cost due to this effect.

0 20 40 60 80 100 120
Training steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
op

or
ti

on

Degeneration group rate of DAPO
Total
All correct
All wrong

0 20 40 60 80 100 120
Training steps

Degeneration group rate of Re2

Total
All correct
All wrong
All redo

Figure 12: Degeneration group rate during training for DAPO and Re2.

C.5 ANALYSIS OF THE REASONING LENGTH

We analyze the evolution of reasoning lengths for DAPO and Re2 throughout training. As shown in
Figure 13, combined with our inspection of a number of cases, DAPO exhibits steady growth in CoT
length during training due to increasing amounts of self-reflection, error correction, and switching
of reasoning strategies, similar to classical RLVR. Wrong CoTs are noticeably longer than correct
ones because many failed trajectories attempt to extend or patch flawed prefixes. This represents
the strategy optimization that occurs under the one-shot chain-of-thought paradigm. In contrast,
Re2 gradually stabilizes its CoT lengths, and the lengths of correct, wrong, and redo CoTs do not
show substantial differences. Both the statistical results and our qualitative observations indicate
that Re2 behaves more rationally under the multi-chain, resolving reasoning paradigm: the model
does not force itself into producing a strained and ultimately incorrect reasoning chain, nor does it
over-commit to unpromising trajectories.

In addition, redo-CoTs in Re2 tend to be longer at the beginning of training, and their lengths gradually
approach those of final correct or incorrect CoTs as training progresses. Consistent with our manual

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

inspection of cases, early in training, the patterns that trigger a redo are relatively shallow—for
example, CoTs becoming excessively long and close to the context window limit, frequent switching
between reasoning threads, or resorting to brute-force enumeration on problems that actually require
summarizing underlying patterns. In later stages, however, redo decisions become more closely tied
to the intrinsic quality of the CoT, such as the effectiveness of the chosen approach or the soundness
of the assumptions.

0 20 40 60 80 100 120
Training steps

600

800

1000

1200

1400

1600

1800

Co
T

le
ng

th

DAPO CoT length

0 20 40 60 80 100 120
Training steps

Re2 CoT length

correct CoT wrong CoT redo CoT

Figure 13: Reasoning lengths during training for DAPO and Re2.

D TRAINING COST ANALYSIS OF RE2

0 5 10 15 20 25
Training Time (hours)

0.075

0.100

0.125

0.150

0.175

0.200

Ac
cu

ra
cy

Train-Time Scaling on AIME25

DAPO
Re2

Figure 14: Accuracy improvements of DAPO
and Re2 under the same training time.

Training Re2 involves a two-stage generation pro-
cess: the model first produces n prefixes and then
generates n×m suffixes. This sequential genera-
tion procedure can be more time-consuming than
directly generating responses in parallel. To quan-
tify this overhead, we measure the rollout time of
DAPO and Re2 on an 8×A100-PCIE-40GB server.

To produce the same number of rollout samples,
DAPO uses a global batch size of 128, generat-
ing 16 samples per question. Re2 uses a global
batch size of 32, generating 8 prefixes followed
by 8 suffixes for each prefix. On average, DAPO
requires 388 seconds per rollout step. In comparison, Re2 takes 89 seconds for prefix generation and
342 seconds for suffix generation, resulting in a total of 431 seconds, which corresponds to an 11%
increase in rollout time.

Considering the performance improvements Re2 provides during training, this additional cost is
acceptable. As shown in Fig. 14, Re2 outperforms DAPO under the same training time budget.

E CASE ANALYSIS OF COTS WITH DIFFERENT LENGTHS

Here, we present a case study comparing short and long CoT responses obtained from multiple
samples on the same problem in Figures 15, 16, 17, and 18. When the model follows a correct
reasoning path with high-quality initial steps, it can often reach the correct answer within a relatively
short CoT. In contrast, when the initial reasoning direction is misguided, the model tends to produce
longer CoTs with many additional tokens, yet still fails to arrive at the correct solution. This illustrates
the critical importance of early reasoning quality and highlights the inefficiency of over-extended
reasoning when the initial trajectory is flawed.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

longer and shorter response in AIME25

Problem:Let k be real numbers such that the system |25+20i−z| = 5 and |z−4−k| = |z−3i−k|
has exactly one complex solution z. The sum of all possible values of k can be written as m

n ,
where m and n are relatively prime positive integers. Find m+ n. Here i =

√
−1.

Shorter Response:Okay, so I need to solve this problem where we have two complex equations:
1. |25 + 20i− z| = 5
2. |z − 4− k| = |z − 3i− k|
And the system has exactly one complex solution z. We need to find the sum of all
possible values of k, express it as m/n where m and n are coprime, and then find
m + n.Alright, let’s break this down step by step.First, let’s understand what these equations
represent geometrically. Since z is a complex number, we can write z = x + yi.Then,
25 + 20i − z = 25 + 20i − (x + yi) = (25 − x) + (20 − y)i.The modulus of this is√

(25− x)2 + (20− y)2 = 5.So, squaring both sides: (25− x)2 + (20− y)2 = 25.That’s the
equation of a circle in the complex plane with center at (25, 20)and radius 5. So, z lies on this
circle.Now, moving to the second equation: |z − 4− k| = |z − 3i− k|.Let me write z as x+ yi

again. Then Left side= |(x+ yi)− 4− k| = |(x− 4− k) + yi| =
√

(x− 4− k)2 + y2,Right
side= |(x + yi) − 3i − k| = |(x − k) + (y − 3)i| =

√
(x− k)2 + (y − 3)2.Setting

them equal:
√
(x− 4− k)2 + y2 =

√
(x− k)2 + (y − 3)2. Squaring both

sides:(x − 4 − k)2 + y2 = (x − k)2 + (y − 3)2. Let’s expand both sides:Left side:
(x − (4 + k))2 + y2 = (x − 4 − k)2 + y2 = (x2 − 2(4 + k)x + (4 + k)2) + y2.
Right side: (x − k)2 + (y − 3)2 = (x2 − 2kx + k2) + (y2 − 6y + 9). Set them
equal:x2 − 2(4 + k)x+ (4 + k)2 + y2 = x2 − 2kx+ k2 + y2 − 6y + 9. Simplify both sides by
subtracting x2 and y2:−2(4 + k)x + (4 + k)2 = −2kx + k2 − 6y + 9. Bring all terms to the
left:−2(4 + k)x+ (4+ k)2 +2kx− k2 +6y− 9 = 0. Simplify term by term:First, combine the
x terms:−2(4 + k)x + 2kx = [−8 − 2k + 2k]x = −8x. Next, constants:(4 + k)2 − k2 − 9.
Let’s compute:(16 + 8k + k2) − k2 − 9 = 16 + 8k + k2 − k2 − 9 = 7 + 8k. So now,
equation becomes:−8x+ 7 + 8k + 6y = 0. So that’s the equation of the second condition.So
now, we have two conditions:1. z lies on the circle with center (25, 20) and radius 5;
2. z lies on the line defined by −8x + 6y + 7 + 8k = 0.Since the system has exactly
one solution, this implies that the line is tangent to the circle. So, the distance from the
center of the circle to the line must be equal to the radius.So, the center of the circle is
(25, 20), and the line is −8x + 6y + 7 + 8k = 0.The distance from the center (25, 20)to the
line is equal to the radius 5.The formula for the distance from a point (x0, y0) to the line
ax+ by + c = 0 is |ax0 + by0 + c|/

√
a2 + b2.In our case, the line is −8x+ 6y + (7 + 8k) = 0,

so a = −8, b = 6, c = 7+ 8k. The distance is | − 8 ∗ 25 + 6 ∗ 20 + 7 + 8k|/
√

((−8)2 + 62) =

| − 200 + 120 + 7 + 8k|/
√
64 + 36 = |(−200 + 120 + 7) + 8k|/

√
100 = |(−73) + 8k|/10.

Set this equal to the radius 5:| − 73+ 8k|/10 = 5 => |8k− 73| = 50. Therefore, 8k− 73 = 50
or 8k − 73 = −50.Solving:Case 1: 8k − 73 = 50 => 8k = 123 => k = 123/8.Case
2:8k − 73 = −50 => 8k = 23 => k = 23/8.Therefore, possible k are 123/8 and 23/8.Thus,
the sum is 123/8 + 23/8 = (123 + 23)/8 = 146/8 = 73/4.So m = 73, n = 4, which are
coprime. Thus, m+ n = 73 + 4 = 77.**Final Answer** 77 .(Correct Answer)

Figure 15: Case Analysis of CoTs with Different Lengths in AIME25

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

longer and shorter response in AIME25

Longer Response: Okay, so I have this problem here where I need to find all real numbers k
such that the system of equations:1. |25+ 20i− z| = 5 ;2. |z− 4− k| = |z− 3i− k| has exactly
one complex solution z. Then, I need to find the sum of all possible values of k and express it
as m

n where m and n are coprime, and then find m + n.Alright, let’s break this down step by
step.First, let me understand what each equation represents geometrically.Starting with the first
equation: |25 + 20i− z| = 5. Since z is a complex number, let’s denote z = x+ yi where x and
y are real numbers.So, substituting z = x+ yi into the first equation:|25 + 20i− (x+ yi)| =
5.Simplify the expression inside the absolute value:|(25 − x) + (20 − y)i| = 5 .The modulus
of a complex number a + bi is

√
a2 + b2, so:

√
(25− x)2 + (20− y)2 = 5.Squaring both

sides:(25 − x)2 + (20 − y)2 = 25.This is the equation of a circle in the complex plane with
center at (25, 20) and radius 5.So, the first equation represents a circle centered at (25, 20)
with radius 5.Now, moving on to the second equation: |z − 4 − k| = |z − 3i − k|.Again,
substituting z = x + yi:Left side:|(x − 4 − k) + (y − k)i|.Right side: |(x) + (y − 3)i − k|.
Wait, perhaps better to substitute more carefully.Wait, actually, let’s note that z is x + yi,
so:Left side: |(x + yi) − (4 + k)| = |(x − 4 − k) + yi|.Right side: |(x + yi) − (3i + k)| =
|(x−k)+(y−3)i|.Therefore, the equation becomes:|(x−4−k)+yi| = |(x−k)+(y−3)i|.Which
is equivalent to:

√
(x− 4− k)2 + y2 =

√
(x− k)2 + (y − 3)2.Squaring both sides to remove

the square roots:(x − 4 − k)2 + y2 = (x − k)2 + (y − 3)2.Let’s expand both sides:Left side:
(x−(4+k))2+y2 = (x−(4+k))2+y2.Which expands to: x2−2x(4+k)+(4+k)2+y2.Right
side: (x − k)2 + (y − 3)2.Which expands to: x2 − 2kx + k2 + y2 − 6y + 9.Now, set left
side equal to right side:x2 − 2x(4 + k) + (4 + k)2 + y2 = x2 − 2kx + k2 + y2 − 6y +
9.Simplify both sides:First, notice that x2 and y2 appear on both sides, so they cancel out.Left
side: −2x(4 + k) + (4 + k)2.Right side: −2kx + k2 − 6y + 9.So, bring all terms to one
side:−2x(4 + k) + (4 + k)2 − (−2kx)− k2 + 6y − 9 = 0.Simplify term by term:First, expand
−2x(4+k)+2kx:Which is−8x−2kx+2kx = −8x. Wait, perhaps let’s do it step by step:After
cancelling x2 and y2, we have:Left:−2x(4+k)+(4+k)2.Right: −2kx+k2−6y+9.So, subtract
the right side from both sides:−2x(4+k)+(4+k)2− (−2kx)−k2+6y−9 = 0.Simplify each
term:First term: −2x(4+k)+2kx.Second term: (4+k)2−k2.Third term: 6y−9.Compute each
part:1. −2x(4+k)+2kx = (−8x−2kx)+2kx = −8x,2.(4+k)2−k2 = (16+8k+k2)−k2 =
16 + 8k,3.6y − 9.(Error 1)Putting it all together:−8x + 16 + 8k + 6y − 9 = 0.Simplify
constants:16−9 = 7, so:−8x+8k+7+6y = 0.Let’s rewrite:−8x+6y+(8k+7) = 0,We can
divide the entire equation by -1 to make it look cleaner:8x− 6y− (8k+7) = 0.Alternatively,
keep it as:−8x+6y+8k+7 = 0.This is the equation representing the set of points z = x+yisuch
that|z − 4 − k| = |z − 3i − k|.This equation is actually the perpendicular bisector of the
segment joining the points 4 + kand 3i + kin the complex plane.Wait, let’s think in terms of
coordinates.(Error 2)In the complex plane, z is a point(x, y). The equation |z − (4 + k)| =
|z − (3i + k)|can be rewritten as |(x + yi) − (4 + k)| = |(x + yi) − (0 + (3 + k)i)|.So,
this is the set of points equidistant from (4, k) and(0, 3 + k). Therefore, the perpendicular
bisector of the segment connecting (4, k) and (0, 3+k).Therefore, the second equation represents
the perpendicular bisector of the segment between (4, k) and (0, 3 + k).So, now we have two
conditions:1. z lies on the circle centered at (25, 20)with radius 5;2.z lies on the perpendicular
bisector of the segment between (4, k) and (0, 3 + k).We are told that the system has exactly
one solution. That means that the line (perpendicular bisector) intersects the circle at exactly
one point. Therefore, the line must be tangent to the circle.Therefore, the distance from the
center of the circle to the line must be equal to the radius of the circle.So, perhaps the steps are:1.
Find the equation of the perpendicular bisector of the segment between (4, k) and (0, 3 + k).2.
Find the distance from the center of the circle (25, 20) to this line.3. Set this distance equal
to the radius 5, and solve for k.4. Sum all possible values of k.So, let’s proceed step by
step.First, let’s find the equation of the perpendicular bisector.Given two points A(4, k) and
B(0, 3 + k).The midpoint M of segment AB is:Mx = 4+0

2 = 2,My = k+(3+k)
2 = 3+2k

2 So,
midpoint is (2, (3 + 2k)/2).Next, the slope of AB is:mAB = (3+k)−k

0−4 = 3
−4 = −3/4.Therefore,

the slope of the perpendicular bisector is the negative reciprocal, which is 4/3.Therefore, the
equation of the perpendicular bisector is:y −My = (4/3)(x −Mx).Plugging in Mx = 2and
My = (3 + 2k)/2:y − (3 + 2k)/2 = (4/3)(x− 2).

Figure 16: Case Analysis of CoTs with Different Lengths in AIME25

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

longer and shorter response in AIME25

Let’s write this in standard form ax + by + c = 0.Multiply both sides by 3 to eliminate the
fraction:3(y − (3 + 2k)/2) = 4(x − 2).Simplify:3y − (9 + 6k)/2 = 4x − 8.Multiply all
terms by 2 to eliminate denominator:6y − 9 − 6k = 8x − 16.Bring all terms to left side:
−8x+ 6y − 9− 6k + 16 = 0.Simplify constants:−9 + 16 = 7.Thus:−8x+ 6y + 7− 6k = 0
Or, −8x + 6y + (7 − 6k) = 0 .We can write this as: 8x − 6y + (6k − 7) = 0 .Wait, let me
check.From above:After multiplying by 2:6y − 9 − 6k = 8x − 16.Then, moving all terms to
left:−8x+ 6y + (−9− 6k + 16) = 0.Which is:n− 8x+ 6y + (7− 6k) = 0.So, if we want to
write it as ax+ by + c = 0, (Error 1)then:−8x+ 6y + (7− 6k) = 0.Alternatively, multiply
both sides by -1:8x− 6y − 7 + 6k = 0,Which is:8x− 6y + 6k − 7 = 0.Thus, the equation is
8x−6y+(6k−7) = 0.Alternatively, let’s verify.Alternatively, perhaps it’s better to keep the
equation as:From above: -8x+6y+7−6k = 0 .Which can be written as:8x−6y = 7−6k.But
perhaps let’s consider the standard form as:8x− 6y + (−7 + 6k) = 0.Either way, perhaps
it’s better to find the distance from the center (25, 20) to this line.The distance from a point
(x0, y0) to the line ax + by + c = 0 is |ax0 + by0 + c|/

√
(a2 + b2).So, first, let’s write the

equation in standard form.From above, the equation is:−8x+ 6y + 7− 6k = 0.We can write it
as:−8x+6y+(7−6k) = 0.Thus, coefficients are a = −8, b = 6, c = 7−6k.Therefore, distance
from (25, 20) is:|−8∗25+6∗20+(7−6k)|/

√
((−8)2+62).Compute numerator:First compute

each term:−8 ∗ 25 = −200, 6 ∗ 20 = 120.So, total so far: −200 + 120 = −80.Add (7 − 6k):
−80 + 7− 6k = −73− 6k.So numerator is | − 73− 6k|.Denominator is

√
64 + 36 =

√
100 =

10.Since the distance must be equal to radius 5, we have:| − 73− 6k|/10 = 5.Therefore,| − 73−
6k| = 50.Which implies:−73− 6k = 50 or −73− 6k = −50Case 1: −73− 6k = 50,−6k =
50 + 73 = 123,k = −123/6 = −41/2.Case 2: −73− 6k = −50,−6k = −50 + 73 = 23,k =
−23/6.Therefore, the possible values of k are −41/2 and −23/6.Therefore, the sum of all
possible values is:−41/2 + −23/6 = convert to common denominator:−41/2 = −123/6, so
total is −123/6− 23/6 = (−146)/6 = −73/3.(Error 3)But wait, the question says "the sum
of all possible values of k" so perhaps we need to check if both solutions are valid.Wait,
perhaps let’s see if these k’s result in exactly one solution.Since each k gives a different line,
each line can intersect the circle at two points, one point, or none. Since we have exactly
one solution, it’s when the line is tangent to the circle.Therefore, perhaps both k’s are valid,
but perhaps we need to check if both lead to lines that are tangent to the circle.Alternatively,
perhaps only one of them is valid because for some k, the line might not intersect the circle
or something. But perhaps both are valid.Therefore, perhaps sum is (−41/2) + (−23/6)= as
above, which is (−123/6 − 23/6) = (−146)/6 = (−73)/3.But since the problem says "the
sum of all possible values of k", which could be negative or positive,but perhaps we need
to check if both are valid.Alternatively, perhaps the sum is (-41/2) + (-23/6) = (-123 -23)/6=
(-146)/6= -73/3.But since the problem says "sum of all possible values of k", perhaps we
can write it as a fraction.But perhaps let’s verify.First, let’s check for k = −41/2.Compute
the distance from center to the line: | − 73− 6 ∗ (−41/2)|/10.Compute:−73− 6 ∗ (−41/2) =
−73+ (6 ∗ 41)/2 = −73+ (246)/2 = −73+ 123 = 50.Thus, |50|/10 = 5, which is the radius.
So this is correct.Similarly, for k = −23/6:Compute | − 73− 6 ∗ (−23/6)| = | − 73 + 23| =
| − 50| = 50.Thus, same result, distance is 5.Therefore, both k’s are valid.Hence, the sum is
(−41/2) + (−23/6) = (−123/6 − 23/6) = (−146)/6 = (−73)/3.Thus, m = −73, n = 3.
Wait, but m and n must be positive integers. So perhaps take absolute values? Wait, perhaps
the problem expects the sum as positive.But perhaps not, since k can be negative. The
problem says "sum of all possible values of k", so perhaps we just add them as they are.Thus,
(−41/2) + (−23/6) = (−41 ∗ 3 − 23)/6 = (−123 − 23)/6 = (−146)/6 = (−73)/3.So, the
sum is −73/3, which can be written as −73/3. Since m and n are coprime, m = 73, n = 3, but
since the sum is negative, perhaps the question expects the absolute value? But no, because
the problem says "the sum of all possible values of k can be written as m/n".Therefore,
the sum is −73/3, so m = 73, n = 3, which are coprime. Thus, m+ n = 73 + 3 = 76.**Final
Answer** 76 (Wrong Answer)
(Error:1.Repeated reformulation of the equation form. 2.Coordinate extraction error,renders all
following calculations invalid. 3.Ineffective repeated verification of the answer)

Figure 17: Case Analysis of CoTs with Different Lengths in AIME25

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

longer and shorter response in AMC

Problem:How many positive perfect squares less than 2023 are divisible by 5?
Shorter Response:To determine how many positive perfect squares less than 2023 are divisible
by 5, we start by noting that a perfect square is divisible by 5 if and only if the integer itself
is divisible by 5. This is because if n2 is divisible by 5, then n must be divisible by 5 (since 5
is a prime number).Let n = 5k where k is an integer. Then, n2 = (5k)2 = 25k2 . We need
25k2 < 2023. Solving for k, we get:25k2 < 2023 =⇒ k2 < 2023

25 =⇒ k2 < 80.92.The
largest integer k that satisfies this inequality is 8, because 82 = 64 and 92 = 81 which is greater
than 80.92. Therefore, k can take any integer value from 1 to 8. This gives us 8 possible values
for k.Thus, there are 8 positive perfect squares less than 2023 that are divisible by 5. The answer
is: 8 (Correct Answer)
Longer Response:To determine how many positive perfect squares less than 2023 are divisible
by 5, we start by noting that a perfect square divisible by 5 must itself be a multiple of 25 (since
the square of any integer that is not a multiple of 5 cannot be divisible by 5, and the square
of an integer that is a multiple of 5 must be a multiple of 52 = 25.We need to find the largest
integer n such that 25n2 < 2023. This is equivalent to finding the largest integer n such that
n2 < 2023

25 = 80.92. Since n must be an integer, we take the greatest integer less than
√
80.92,

which is 8 (since
√
80.92 ≈ 8.996).Thus, n can take any integer value from 1 to 8. (Error)We

can verify this by calculating the squares of these integers and checking if they are less
than 2023:12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25, 62 = 36, 72 = 49, 82 = 64, 92 =
81, 102 = 100, 112 = 121, 122 = 144, 132 = 169, 142 = 196, 152 = 225, 162 = 256, 172 =
289, 182 = 324, 192 = 361, 202 = 400, 212 = 441, 222 = 484, 232 = 529, 242 = 576, 252 =
625, 262 = 676, 272 = 729, 282 = 784, 292 = 841, 302 = 900, 312 = 961, 322 = 1024, 332 =
1089, 342 = 1156, 352 = 1225, 362 = 1296, 372 = 1369, 382 = 1444, 392 = 1521, 402 =
1600, 412 = 1681, 422 = 1764, 432 = 1849, 442 = 1936, 452 = 2025.Since 452 = 2025 is not
less than 2023, the largest integer n is 44. Therefore, the positive perfect squares less than 2023
that are divisible by 5 are the squares of the integers from 1 to 44, which are 44 in total.Thus, the
number of positive perfect squares less than 2023 that are divisible by 5 is: 44 . (Wrong Answer)
(Error:Overlooking the “divisible by 5” constraint during verification.)

Figure 18: Case Analysis of CoTs with Different Lengths in AMC

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

F RE2 EXAMPLES

We present examples of Re2 in Figures 19, 20, 21, and 22.

Re2 Examples 1

Problem:How many ordered pairs of positive real numbers (a, b) satisfy the
equation(1 + 2a)(2 + 2b)(2a+ b) = 32ab?

Reansoning Trace of Re2:To solve the equation (1 + 2a)(2 + 2b)(2a + b) = 32ab for
ordered pairs (a, b) of positive real numbers, we start by simplifying and analyzing the equa-
tion.First, let’s rewrite the equation for clarity:(1 + 2a)(2 + 2b)(2a+ b) = 32ab.We can factor
out the common terms in the first two factors:(1 + 2a)2(1 + b)(2a + b) = 32ab.This
simplifies to:2(1 + 2a)(1 + b)(2a + b) = 32ab.Dividing both sides by 2, we
get:(1 + 2a)(1 + b)(2a + b) = 16ab.Next, we will test some simple values for a and b
to see if we can find any solutions. Let’s start with a = b. Substituting a = b into the equation, we
get:(1 + 2a)(1 + a)(2a+ a) = 16a2.This simplifies to:(1 + 2a)(1 + a)(3a) = 16a2.Expanding
the left side, we get:3a(1 + 2a)(1 + a) = 3a(1 + 3a+ 2a2) = 3a+ 9a2 + 6a3.So the equation
becomes:3a+ 9a2 + 6a3 = 16a2.Rearranging terms, we get:6a3 + 9a2 + 3a− 16a2 = 0,which
simplifies to:6a3−7a2+3a = 0.Factoring out a, we get:a(6a2−7a+3) = 0.Since a is a positive
real number, a ̸= 0. Therefore, we need to solve the quadratic equation:6a2 − 7a+ 3 = 0.The
discriminant of this quadratic equation is:(−7)2 − 4 · 6 · 3 = 49 − 72 = −23.Since the
discriminant is negative, the quadratic equation has no real solutions.
Therefore, there are no positive real solutions for a when a = b. It’s better to redo the question.
Restarting from scratch:
Next, let’s try another approach by assuming a = 1

2 and solving for b:(1+2· 12)(2+2b)(2· 12+b) =

32 · 12 ·b,which simplifies to:(1+1)(2+2b)(1+b) = 16b or 2(2+2b)(1+b) = 16b. Simplifying
further, we get:2(2 + 2b + 2b + 2b2) = 16b or 2(2 + 4b + 2b2) = 16b,which simplifies
to:4 + 8b+ 4b2 = 16b or 4b2 − 8b+ 4 = 0.Dividing by 4, we get:b2 − 2b+ 1 = 0,which factors
to:(b− 1)2 = 0.So, b = 1. Therefore, (a, b) = (12 , 1) is a solution.To confirm that there are no
other solutions, we can use the symmetry and the nature of the equation. Given the complexity
and the fact that we have found a solution, we can conclude that there are no other positive
real solutions.Thus, the number of ordered pairs (a, b) that satisfy the equation is: 1 .(Correct
Answer)

Figure 19: Re2 Examples 1

G LIMITATIONS AND FUTURE WORK

In this section, we outline several limitations of our study that highlight areas for future research and
improvement: (1) Although our method improves performance on challenging problems through
better test-time scaling, models may still require multiple re-solving rounds to reach the correct
answer. At present, there is no mechanism to explicitly control the probability of invoking the re-solve
action during inference, which may affect efficiency. (2) Our experiments primarily focus on large
language models, leaving the potential of applying Re2 to other generative modalities (e.g., vision or
multi-modal reasoning) unexplored. (3) We mainly study reasoning benchmarks, while extending
Re2 to more complex tasks, such as tool use, or search-intensive problems could also provide benefits.

H USE OF LLMS

LLMs were used solely for language polishing of the manuscript.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Re2 Examples 2

Problem:Ralph has a record store where people can trade their own records for new ones. People
can trade 2 old records for 1 new one. 5 people come in with old records and leave with 7 new
records between them. How many old records did the 5 people bring in?

Reansoning Trace of Re2:To determine how many old records the 5 people brought to
Ralph’s record store, we need to understand the trade ratio and the total number of new records
they received.The trade ratio is 2 old records for 1 new record. So, if each person trades 2 old
records for 1 new record, and 5 people are trading, we need to find out how many old records
were traded in total to get 7 new records.Let’s denote the number of new records each person
receives as n. Since each new record is obtained by trading 2 old records, if each of the 5 people
receives n new records, the total number of new records is 5n. We know that the total number of
new records they leave with is 7, so we have: 5n = 7 .Solving for n :n = 7

5 .This means each
person receives 7

5 new records.
However, since each person can only receive a whole number of new records, we need to consider
the total number of new records and the trade ratio in another way. It’s better to redo the question.
Restarting from scratch:
If 5 people together leave with 7 new records, and each new record is obtained by trading 2 old
records, the total number of old records traded is: 7 new records×2 old records per new record =
14 old records .Therefore, the 5 people brought in a total of 14 old records. So, the number of old
records the 5 people brought in is: 14 (Correct Answer)

Figure 20: Re2 Examples 2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Re2 Examples 3

Problem:Let x, y and z be positive real numbers that satisfy the following system of
equations:log2(

x
yz = 1

2 log2(
y
xz) = 1

3 log2(
z
xy) = 1

4 .Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n

where m and n are relatively prime positive integers. Find m+ n.

Reansoning Trace of Re2:Let’s start by expressing the given logarithmic equations in terms of
x, y, and z.The given equations are:log2

(
x
yz

)
= 1

2 ,log2
(

y
xz

)
= 1

3 ,log2
(

z
xy

)
= 1

4 .We

can rewrite these equations as:log2(x) − log2(yz) = 1
2 ,log2(y) − log2(xz) =

1
3 ,log2(z) − log2(xy) = 1

4 .Using the properties of logarithms, we can further simplify these
equations:log2(x) − (log2(y) + log2(z)) = 1

2 ,log2(y) − (log2(x) + log2(z)) = 1
3 ,log2(z) −

(log2(x) + log2(y)) = 1
4 .Let’s denote:log2(x) = a, log2(y) = b, log2(z) = c.So the

equations become:a−(b+c) = 1
2 ,b−(a+c) = 1

3 ,c−(a+b) = 1
4 .Simplifying each equation, we

get:a− b− c = 1
2 (Equation 1),b− a− c = 1

3 (Equation 2),c− a− b = 1
4 (Equation 3).We

now have a system of linear equations:a − b − c = 1
2 (Equation 1),−b + a − c =

1
3 (Equation 2),−c − a + b = 1

4 (Equation 3).Let’s add all three equations
together:(a − b − c) + (−b + a − c) + (−a − b + c) = 1

2 + 1
3 + 1

4 .Simplifying the
left side:a − b − c − b + a − c − a − b + c = 2a − 3b − 2c = 1

2 + 1
3 + 1

4 .The
right side can be simplified as: 12 + 1

3 + 1
4 = 6

12 + 4
12 + 3

12 = 13
12 .So we

have:2a − 3b − 2c = 13
12 .However, let’s instead solve for a, b, and c by subtracting

pairs of equations to find individual expressions.Subtract Equation 2 from Equation
1:(a−b−c)− (−b+a−c) = 1

2 −
1
3 ,a−b−c+b−a+c = 1

2 −
1
3 ,0 = 1

2 −
1
3 = 3

6 −
2
6 = 1

6 .This
simplifies to:0 = 1

6 .This is a contradiction, which indicates we need to recheck our method of
solving. Instead, let’s solve for a, b, and c by another method.It’s better to redo the question.
Restarting from scratch:
Let’s add Equation 1, Equation 2, and Equation 3 and then solve for a, b, and c individu-
ally.From the system:a − b − c = 1

2 (Equation 1),b − a − c = 1
3 (Equation 2),c − a − b =

1
4 (Equation 3).We can add these equations:(a− b− c) + (b− a− c) + (c− a− b) = 1

2 +
1
3 +

1
4 , a−b−c+b−a−c+c−a−b = 13

12 ,−a−c−b =
13
12 ,−(a+b+c) = 13

12 ,a+b+c = − 13
12 .This

is incorrect, so let’s re-evaluate by solving the system of linear equations.Instead, let’s solve for a,
b, and c directly. It’s better to redo the question.
Restarting from scratch:
We can use a different approach by expressing a, b, and c in terms of a common variable. Let’s add
and subtract the equations in a different way.From:a−b−c = 1

2 , b−a−c =
1
3 , c−a−b =

1
4 .Let’s

solve these equations by eliminating variables step-by-step. We can start by expressing c
in terms of a and b from the first equation:c = a − b − 1

2 .Substitute c into the second
equation:b − a − (a − b − 1

2) = 1
3 ,b − a − a + b + 1

2 = 1
3 ,2b − 2a + 1

2 = 1
3 ,2(b − a) =

1
3 −

1
2 = 2

6 −
3
6 = − 1

6 .2(b − a) = − 1
6 , b − a = − 1

12 , b = a − 1
12 .Now substitute

b = a − 1
12 and c = a − b − 1

2 into the third equation:c = a − (a − 1
12) −

1
2 =

a− a+ 1
12 −

1
2 = 1

12 −
1
2 = 1

12 −
6
12 = − 5

12 .Substitute b = a− 1
12 and c = − 5

12 into the third
equation:− 5

12 − a− (a− 1
12) =

1
4 ,−

5
12 − a− a+ 1

12 = 1
4 ,−

5
12 + 1

12 − 2a = 1
4 ,−

4
12 − 2a =

1
4 ,−

1
3 − 2a = 1

4 ,−2a = 1
4 + 1

3 = 3
12 + 4

12 = 7
12 . − 2a = 7

12 , a = − 7
24 .Substitute a = − 7

24

back to find b and c:b = a − 1
12 = − 7

24 −
1
12 = − 7

24 −
2
24 = − 9

24 = − 3
8 .c = − 5

12 .Now
we have:a = − 7

24 , b = − 3
8 , c = − 5

12 .We need to find (
∣∣log2(x4y3z2)

∣∣). First, we
express x4y3z2 in terms of a, b, and c:log2(x

4y3z2) = 4a + 3b + 2c.Substituting a, b, and
c : 4a + 3b + 2c = 4

(
− 7

24

)
+ 3

(
− 3

8

)
+ 2

(
− 5

12

)
= − 28

24 −
9
8 −

10
12 = − 28

24 −
27
24 −

20
24 =

− 28+27+20
24 = − 75

24 = − 25
8 .Thus,

∣∣log2(x4y3z2)
∣∣ = ∣∣− 25

8

∣∣ = 25
8 .So,

∣∣log2(x4y3z2)
∣∣ = 25

8 . The
fraction 25

8 is in simplest form, so m = 25 and n = 8. Therefore, m + n = 25 + 8 = 33.The
final answer is: 33 (Correct Answer)

Figure 21: Re2 Examples 3

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Re2 Examples 4

Problem:Let f be the unique function defined on the positive integers such that
∑

d|n d·f
(
n
d

)
= 1

for all positive integers n. What is f(2023)?

Reansoning Trace of Re2:To determine the function f defined on the positive integers
such that

∑
d|n d · f

(
n
d

)
= 1.for all positive integers n , we start by analyzing the functional

equation. We will use the properties of the function and the structure of the equation to find f(n)
.Step-by-Step Analysis
1. Base Case: n = 1 ,

∑
d|1 d · f

(
1
d

)
= 1. The only divisor of 1 is 1 itself, so the sum reduces to:

1 · f(1) = 1 =⇒ f(1) = 1.
2. General Case: n = p where p is a prime number,

∑
d|p d · f

(
p
d

)
= 1.The divisors of p are 1

and p , so the sum becomes: 1 · f(p) + p · f(1) = 1 =⇒ f(p) + p · 1 = 1 =⇒ f(p) + p =
1 =⇒ f(p) = 1− p.
3. General Case: n = pe11 pe22 · · · p

ek
k (where pi are distinct primes,

∑
d|n d · f

(
n
d

)
= 1. For

n = pe11 , we have:
∑

d|pe1
1
d · f

(
p
e1
1

d

)
= 1. The divisors of pe11 are (1, p1, p

2
1, . . . , p

e1
1). So,

the sum becomes:
∑e1

j=0 p
j
1 · f(p

e1−j
1) = 1.Substituting f(pm1) = 1 − pm1 for m ≥ 1 and

f(1) = 1 , we get:p01 · f(p
e1
1) + p11 · f(p

e1−1
1) + p21 · f(p

e1−2
1) + · · · + pe11 · f(1) = 1 =⇒

(1 − pe11) + p1 · (1 − pe1−1
1) + p21 · (1 − pe1−2

1) + · · · + pe11 · 1 = 1 =⇒ (1 − pe11) + p1(1 −
pe1−1
1) + p21(1− pe1−2

1) + · · ·+ pe11 = 1 =⇒ (1− pe11) + p1 − pe11 + p21 − pe11 + · · ·+ pe11 =
1.(1+p1+p21+· · ·+pe11)−(pe11 +pe11 +· · ·+pe11) = 1 =⇒ (1+p1+p21+· · ·+pe11)−pe11 ·e1 = 1.
The sum 1 + p1 + p21 + · · · + pe11 is a geometric series:(pe1+1

1 − 1)/(p1 − 1).So we
get:(pe1+1

1 − 1)/(p1 − 1) − pe11 · e1 = 1. Simplifying this, we need to check if this holds for
general n . It’s better to redo the question.
Restarting from scratch:
Let’s hypothesize that f(n) = 1

n . We substitute f(n) = 1
n into the original equation:∑

d|n d · f
(
n
d

)
=
∑

d|n d ·
1
n
d
=
∑

d|n d ·
d
n =

∑
d|n

d2

n = 1
n

∑
d|n d

2.For this to equal 1, we

need: 1n
∑

d|n d
2 = 1 =⇒

∑
d|n d

2 = n.This is not generally true for all n , so we need to
re-evaluate our hypothesis. It’s better to redo the question.
Restarting from scratch:
Instead, let’s directly use the functional equation and the values we have derived.
Determining f(2023).First, factorize 2023:2023 = 7× 172.Using the functional equation and the
derived values, we need to find f(2023) . We can use the multiplicative property of f if we assume
f is multiplicative. That means if n = pe11 pe22 · · · p

ek
k , then f(n) = f(pe11)f(pe22) · · · f(pekk).We

already have:f(p) = 1− p for prime p.So:f(7) = 1− 7 = −6,f(17) = 1− 17 = −16.Since
2023 = 7 × 172, we have:f(2023) = f(7) · f(172).We need to determine
f(172) :

∑
d|172 d · f

(
172

d

)
= 1.The divisors of 172 are (1, 17, 172). So the sum

is:1 · f(172) + 17 · f(17) + 172 · f(1) = 1.Substituting f(172) = 1 − 172 , f(17) = −16 ,
and f(1) = 1 : f(172) + 17 · (−16) + 172 · 1 = 1, f(172) − 272 + 289 = 1, f(172) + 17 =
1, f(172) = 1 − 17 = −16.So:f(2023) = f(7) · f(172) = −6 · −16 = 96.Thus, the value of
f(2023) is: 96 . (Correct Answer)

Figure 22: Re2 Examples 4

26

	Introduction
	Related work
	Difficulty of Recovering from Suboptimal Early Reasoning
	Correlation between Response Length and Performance
	Impact of Initial Reasoning Quality on Final Accuracy
	Takeaways

	RE2: Reinforcement Learning with Resolving
	Prefix Group Generation
	Reward Strategy with Re-solving
	Advantage Computation and Parameter Update

	Experiments
	Experimental Setup
	Main Results
	Performance under Test-Time Scaling
	Training Dynamics of Re2
	Analyzing the Mechanisms Behind Re2’s Effectiveness

	Conclusion
	Implementation Details
	Derivation of the Reward of Re2
	Experiments
	Main Results
	Performance under test-time scaling
	Analysis of the Resolve Reward Estimator
	Analysis of the Degeneration Group Rate
	Analysis of the Reasoning Length

	Training Cost Analysis of Re2
	Case Analysis of CoTs with Different Lengths
	Re2 Examples
	Limitations and Future Work
	Use of LLMs

