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ABSTRACT

Conventional supervised learning typically assumes that the learning task can be
solved by approximating a single target function. However, this assumption is
often invalid in open-ended environments where no manual task-level data par-
titioning is available. In this paper, we investigate a more general setting where
training data is sampled from multiple domains while the data in each domain
conforms to a domain-specific target function. When different domains possess
distinct target functions, training data exhibits inherent “conflict”, thus rendering
single-model training problematic. To address this issue, we propose a framework
termed subjective learning where the key component is a subjective function that
automatically allocates the data among multiple candidate models to resolve the
conflict in multi-domain data, and draw an intriguing connection between subjec-
tive learning and a variant of Expectation-Maximization. We present theoretical
analysis on the learnability and the generalization error of our approach, and em-
pirically show its efficacy and potential applications in a range of regression and
classification tasks with synthetic data.

1 INTRODUCTION

Conventional supervised learning typically assumes that the learning task can be solved by approx-
imating a single ground-truth target function (Vapnik, 1999). However, this assumption is often
violated in open-ended environments where the data may implicitly belong to multiple, disparate
domains with potentially different target functions when no manual task-level data partitioning is
available. For instance, when curating a dataset using web images, an image of a red sphere may
be labeled as both “red” and “sphere”, implicitly representing two distinct domains that respectively
corresponds to two metaconcepts (Han et al., 2019): “color” and “shape”. Also, in some practical
scenarios such as federated learning (McMahan et al., 2017) and algorithmic fairness (Mitchell
et al., 2021), training data is usually collected from multiple sources (e.g., clients or populations)
with concept shift (Kairouz et al., 2021), thus exhibiting different target functions (more generally,
different input-conditional label distributions) due to personal preferences or other latent factors.

When different subsets of training data conform to different target functions, it is not hard to see
that training a single model with standard Empirical Risk Minimization (ERM) is problematic due
to the inherent “conflict” in data: in the above example, single-model training provably leads to the
unfavorable result of “50% red, 50% sphere” (assuming the data is balanced). Similar phenomena
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have also been demonstrated by prior works (Finn et al., 2019; Su et al., 2020) in the context of
regression, where a learner simultaneously regressing from multiple target functions trivially out-
puts their mean. This indicates that conflicting data exhibits a structural difference compared with
conventional supervised data. In the sequel, we introduce a novel, dataset-level measure termed
mapping rank to explicitly formalize such difference:
Definition 1 (Mapping rank). Let X be an input space, Y an output space, and Z = {(xi, yi)}li=1
a dataset with cardinality l. Let F (r) = {fi}ri=1 be a function set with cardinality r, where each
element is a deterministic function from X to Y . Then, the mapping rank of Z, denoted by R or
R(Z), is defined as the minimal positive integer r satisfying that there exists a function set F (r)
such that for every (x, y) ∈ Z, there exists f ∈ F (r) with f(x) = y.

Note that we assume that the relation between inputs and outputs in the same domain is deterministic,
and we will further discuss this assumption in Section 6. Under Definition 1, conventional super-
vised data yields a mapping rank R = 1 as it assumes that the whole dataset can be characterized by
a single target function. In contrast, conflicting data has a mapping rank R > 1 since for the same
input different outputs exist. Hence, it is natural to consider allocating the data to multiple models,
so that the data processed by each model has a mapping rank R = 1 and thus can be handled with
ERM. Although in some scenarios, apart from data samples there also exists side-information or
metadata that can be exploited to identify the domains, this information may be difficult to define
or collect in practice (Hanna et al., 2020; Creager et al., 2021); even when such side-information
is available, in many cases it still remains unclear how to leverage such information to detect and
resolve the potential conflict between domains. Therefore, the problem of how to allocate conflicting
data properly and automatically without additional human intervention is highly non-trivial.

To tackle the aforementioned challenge, we present a subjective learning framework to enable effec-
tive learning from conflicting data. Concretely, our framework maintains a set of low-level models
and a high-level subjective function that automatically allocates the data among these models so that
the data processed by each model exhibits no conflict. Here we use the term “subjective” because
in conventional supervised learning such allocation is manually performed during the data cleaning
process and thus complies with human subjectivity. The high-level motivation of our method is that
if the subjective function yields an inappropriate allocation, i.e., assigning conflicting data to the
same model, then it will hinder the global minimization of the training error due to the conflict,
which itself may be harnessed to update the allocation strategy of the subjective function. Using
a probablistic reinterpretation of our framework, we establish the connection between subjective
learning and a variant of the Expectation-Maximization (EM) algorithm (Dempster et al., 1977),
and show that the form of the subjective function can be explicitly derived.

Theoretically, we respectively analyse the Probably Approximately Correct (PAC) learnabil-
ity (Valiant, 1984) and the generalization error of subjective learning using the tools from statistical
learning theory (Vapnik, 2013). We show that the relation between the number of low-level models
and the mapping rank of data plays a key role in the learnability of subjective learning, and the gen-
eralization error of our method can be decomposed into terms that respectively reflect high-level data
allocation and low-level prediction errors. Empirically, we conduct extensive experiments that span
regression and classification tasks with synthetic data. Experimental results validate our theoretical
claims, demonstrate the efficacy of subjective learning, and showcase its potential applicability in
several different scenarios.

2 SUBJECTIVE LEARNING FRAMEWORK

In this section, we present the overall formulation and the algorithm of subjective learning. We
adhere to the conventional terminology in supervised learning, and let X be an input space, Y an
output space, H a hypothesis space where each hypothesis (model) is a function from X to Y ,
and ` : Y × Y → [0, 1] a non-negative and bounded loss function without loss of generality. We
use [k] = {1, 2, · · · , k} for positive integers k, and denote by 1(·) the indicator function. We use
superscripts to denote sampling indices (e.g., di and xij) and subscripts as element indices (e.g., di).

2.1 PROBLEM STATEMENT

We begin by introducing the notion of domain to formulate the sampling process of conflicting data
that is considered throughout the paper. Inspired by the seminal work in domain adpatation (Ben-
David et al., 2010), we define a domain d as a pair 〈P, c〉 consisting of a distribution P on X and
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a target function c : X → Y , and assume that the data is generated from a domain set D =
{di}Ni=1 = {〈Pi, ci〉}Ni=1 containing N (agnostic to the learner) domains. Each domain has its
own sub-dataset Zi = {(xij , yij)}lij=1 with cardinality li, where xi1, · · · , xili are i.i.d. drawn from
Pi and yij = ci(xij). The whole dataset is the union of these sub-datasets: Z =

⋃N
i=1 Zi with

cardinality l =
∑N
i=1 li and mapping rank 1 < R ≤ N . We consider a bilevel sampling procedure:

first, m domain samples are i.i.d. drawn from a distribution Q defined on D with replacement
(thus the same domain may be sampled multiple times), resulting in m sampling episodes; second,
in each sampling episode n data samples are i.i.d. drawn from the sub-dataset corresponding to
the sampled domain. This sampling regime is analagous to the bilevel sampling process adopted
by meta-learning (Pentina & Lampert, 2014; Amit & Meir, 2018). However, meta-learning usually
assumes a dense distribution of related domains to enable task-level generalization, while our setting
here is compatible with scarce and disparate domains and inter-domain transfer is orthogonal.

As we have mentioned in Section 1, single-model training is insufficient when R > 1. Thus, we
equip the learner with a hypothesis set H = {hi}Ki=1 consisting of K > 1 hypotheses, enhancing its
expressive capability. Although both N and K are assumed unknown, we will show that in general
K ≥ R suffices (see Section 3.1), which eases the difficulty of setting the hyperparameter K.

In the above setting, we introduce an episodic sample number parameter n, implicitly assuming
that we are able to sample a size-n data batch at a time from each domain. While this formulation
subsumes the fully online case of n = 1, we note that although sometimes n = 1 works in practice, it
also tends to be risky since it may raise difficulties in controlling the generalization error, as we will
both theoretically and empirically demonstrate in the following sections (see Sections 3.2 and 4.3).

2.2 GLOBAL ERROR

In this section, we present the global learning objective of subjective learning. Since conflicting
data implicitly contains multiple input-output mappings, a primary start point can be the empirical
multi-task loss with pre-defined data-domain correspondences:

êrMTL(H) =
1

m

m∑
i=1

1

n

n∑
j=1

`
[
hORACLE(i)

(
xij
)
, yij

]
, (1)

where ORACLE : [m] → [K] is an oracle mapping function that determines which hypothesis the
data batch Zi := {(xij , yij)}nj=1 in each episode should be assigned to. However, in subjective
learning the oracle mapping function is unavailable, imposing a fundamental discrepancy. To tackle
this difficulty, here we substitute the oracle mapping function with a learnable empirical subjective
function ĝ : HK ×Xn × Yn → H that aims to select a hypothesis h from the hypothesis set H for
the data batch Zi. This substitution yields the empirical global error of subjective learning:

êr(H) :=
1

m

m∑
i=1

1

n

n∑
j=1

`
[
ĝ
(
H,Zi

) (
xij
)
, yij

]
. (2)

Our insight is that the data batch itself can be harnessed to guide its suitable allocation in the presence
of conflict: intuitively, a single model trained by conflicting data batches results in an inevitable
global training error. Therefore, minimizing the global error can in turn facilitates data allocation
with less conflict. Given the empirical error 2, we can give its expected counterpart:

er(H) := Edi∼QEx∼Pi
` [g(H, di)(x), ci(x)] , (3)

where g : HK ×D → H is an expected subjective function, which can be viewed as the empirical
subjective function with infinite data from every single domain so that all available domain infor-
mation can be fully reflected by the sampled data. So far, our framework remains incomplete since
the exact form of the subjective function is still undefined. In the next section, we will present our
design of the subjective function and elucidate its rationale.

2.3 DERIVATION OF SUBJECTIVE FUNCTION

To attain a reasonable choice of the subjective function, in this section we provide an alter-
native, probabilistic reinterpretation of subjective learning from the angle of maximum condi-
tional likelihood, and draw an intriguing connection between the choice of the subjective func-
tion and the posterior maximization in a variant of the EM algorithm (Dempster et al., 1977)
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on conflicting data. Concretely, let p(Y |X) represents the predictive conditional distribution
of the hypothesis set H , where we use X and Y as the shorthand for (x11,x12, · · · ,xmn)
and (y11,y12, · · · ,ymn) respectively. We consider maximizing the empirical log-likelihood
log p(Y |X) =

∑m
i=1

∑n
j=1 log

∑K
k=1 p(y

ij , h = hk |xij) using EM, where h denotes the selected
hypothesis. Accordingly, in the i-th sampling episode, in the E-step we aim to estimate the model
posterior P (h = hk |Zi) that represents the responsibility of the k-th hypothesis in the hypothesis
set w.r.t. the local data batch Zi = {(xij ,yij)}nj=1, while in the M-step we seek to maximize

L(H) =

K∑
k=1

P
(
h = hk |Zi

) n∑
j=1

log
[
πkp

(
yij |xij , hk

)]
, (4)

where πk := P (h = hk) > 0 denotes the prior of the k-th hypothesis in H . This draws a direct
connection between subjective learning and EM: the E-step corresponds to the functionality of the
subjective function that chooses a hypothesis for a given data batch; the M-step corresponds to
updating the selected hypothesis by minimizing the empirical prediction error in the episode. The
main difference is that here we assume the subjective function to be deterministic, representing a
“hard” assignment of the data to the model. This entails the usage of a variant known as hard
EM (Samdani et al., 2012), which considers the posterior to be a Dirac delta function. Applying this
constraint, the E-step of EM yields h = arg maxhk∈H

∑n
j=1 log p(yij |xij , hk) under a uniform

prior, motivating a principled choice of the subjective function:

ĝ
(
H,Zi

)
= arg min

h∈H

n∑
j=1

`
[
h(xij), yij

]
, i ∈ [m], (5a)

g(H, di) = arg min
h∈H

Ex∼Pi
` [h(x), y] , i ∈ [N ], (5b)

which can be interpreted as selecting the hypothesis that incurs the smallest (empirical or expected)
error. While this connection is not rigorous in general, in some cases exact equivalence can be
derived when certain types of loss functions and likelihood families are applied, which encompasses
common regression and classification settings. We provide a concrete analysis in Appendix A.

2.4 OVERALL ALGORITHM

We assume that the hypothesis setH comprisesK parameterized hypotheses with parameter vectors
Θ = (θ1, θ2, · · · , θK) respectively. In the high level, with the choice of the empirical subjective
function 5a, our algorithm consists of two phases in each sampling episode: (i) evaluating the error
of each hypothesis in H w.r.t. the data in this episode, and (ii) training the hypothesis with the
smallest error. For brevity, we introduce a notion of empirical episodic error defined as

êri (h; θ) :=
1

n

n∑
j=1

`
[
h
(
xij ; θi

)
, yij

]
, i ∈ [m], (6)

where h ∈ H is a hypothesis parameterized by θ. Then, phase (i) aims to find a hypothesis that
mininize 6. Note that this selection process may induce a bias between empirical and expected
objectives 2 and 3, since a hypothesis that minimizes the empirical loss on finite samples may not
minimize the expected loss of this domain. Hence, the global error of subjective learning can be
intuitively decomposed into a high-level subjective error that measures the reliability of this selection
process, and a low-level model error that measures the accuracy of models, on which we provide
detailed theoretical analysis in Section 3.2. In practice, we parameterize each hypothesis in the
hypothesis set with a deep neural network (DNN), and apply stochastic gradient descent (SGD) for
the optimization process. We provide the pseudo-code of subjective learning in Appendix B.

3 THEORETICAL ANALYSIS

In this section, we analyze the learnability and the generalization error of subjective learning.

3.1 LEARNABILITY

We first analyze the learnability of subjective learning based on PAC learnability (Valiant, 1984).
Since our analysis directly applys to conventional supervised learning by setting K = 1, we also
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verify the conflict phenomenon mentioned in Section 1 from a theoretical perspective. While the
learnability in conventional PAC analysis mainly relates to the choice of the hypothesis space, con-
flicting data imposes a new source of complexity by its mapping rank, and we expect the cardinality
of the proposed hypothesis set can compensate this complexity. We consider the realizable case
where the hypothesis space covers the target functions in all domains, which helps to underline the
core characteristic of our problem. We begin by a result on the form of the optimal solution of
subjective learning. The proofs of all theoretical results are deferred to Appendix C.

Proposition 1 (Form of the optimal solution). Assume that the target functions in all domains are
realizable. Then, the following two propositions are equivalent:

(1) For all domain distributions Q and data distributions P1, P2, · · · , PN , er(H) = 0.

(2) For each domain d = 〈P, c〉 in D, there exists h ∈ H such that Ex∼P ` [h(x), c(x)] = 0.

Proposition 1 suggests that minimizing the expected global error 3 with 5b elicits a global optimal
solution where every target function is learned accurately. Note that this does not require N hy-
potheses for N domains, since non-conflict domains can be incorporated into the same model. In
other words, what determines the minimal cardinality of the hypothesis set is not the number of the
domains, but the number of conflicting domains, which can be exactly characterized by the mapping
rank. Formally, we attain a necessary condition of the PAC learnability of subjective learning.

Theorem 1. A necessary condition of the PAC learnability of subjective learning is K ≥ R.

Theorem 1 indicates that the cardinality of the hypothesis set should be large enough to enable
effective learning, and shows the impact of mapping rank on the learnability of subjective learning.

Remark 1. While it is generally hard to derive a necessary and sufficient condition of PAC learn-
ability theoretically (which requires a sample-efficient optimization algorithm), we empirically find
that K ≥ R is indeed an essential condition for learnability with complex hypothesis spaces such as
parameterized DNNs. We also note that several recent works (Allen-Zhu et al., 2019; Du et al., 2019)
have proved that over-parameterized neural networks trained by SGD can achieve zero training error
in polynomial time under non-convexity, which may also be used to enhance our analysis. We leave
a more rigorous study for future work.

3.2 GENERALIZATION ERROR

We have shown that minimizing the expected global error is sufficient for effective learning from
conflicting data. However, in practice, since we only have access to the empirical global error, how
to control the discrepancy between these two errors, i.e., the generalization error, remains crucial.
In this section, we identify the terms in the generalization error that respectively correspond to the
high-level subjective error and the low-level prediction error of subjective learning, and discuss
their controlling strategies. The key results are (i) the number of episodes and episodic samples can
compensate each other in controlling the low-level prediction error, and (ii) the number of episodic
samples is critical for controlling the high-level subjective error. We have the following theorem:

Theorem 2 (Generalization error upper bound). For any δ ∈ (0, 1], the following inequality holds
uniformly for all hypothesis sets H ∈ HK with probability at least 1− δ:

er(H) ≤ êr(H) +

√
VC(S̄) (ln 2m/VC(S̄) + 1)− ln δ/12

m
+

1

m
(7a)

+

N∑
k=1

mk

m

√
VC(S) (ln 2mkn/VC(S) + 1)− ln δ/12N

mkn
+

1

mn

 (7b)

+ 2

√
VC(S) (ln 2n/VC(S) + 1)− ln δ/24m

n
+

2

n
, (7c)

where S̄ := {〈P, c〉 7→ Ex∼P ` [h(x; θ), c(x)]}, θ ∈ Θ is the function set of the domain-wise expected
error, S := {(x, y) 7→ ` [h(x; θ), y]}, θ ∈ Θ is the function set of the sample-wise error, mk :=∑m
i=1 1

(
ci = ck

)
is the sampling count of the target function from the k-th domain dk(k ∈ [N ]),

and VC(·) the Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971).
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Figure 1: Classification tasks and datasets considered in our experiments.

Theorem 2 indicates that the expected global error is bounded by the empirical global error plus three
terms. The subjective estimation error term 7c is derived by bounding the discrepancy between the
empirical and the expected subjective functions due to the limitation of finite episodic samples. This
term can be controlled by sample-level complexity VC(S) and the number of episodic samples n.
Although in theory this error term converges to zero only if n→∞, in practice we find that usually
a very small n (e.g., n = 2) suffices (see Section 4). We posit that this is because the domains in
our experiments are relatively diverse, thus reducing the difficulty of discriminating between differ-
ent domains. The domain estimation error term 7a contains domain-level complexity VC(S̄), and
converges to zero if the number of episodes m→∞; the instance estimation error term 7b contains
sample-level complexity VC(S), and converges to zero if the sample number in each episode or the
number of episodes reaches infinity (n→∞ or m→∞), showing the synergy between high-level
domain samples and low-level data samples in controlling the model-wise generalization error.

Comparison with existing bounds. We compare our bound 7 with existing bounds of conventional
supervised learning (Vapnik, 2013; McAllester, 1999) and meta-learning (Pentina & Lampert, 2014;
Amit & Meir, 2018). Typically, supervised learning bounds contain a instance-level complexity term
as 7b, and meta-learning bounds further contain a task-level complexity term as 7a. Yet, conven-
tional supervised learning only considers a single domain or multiple known domains, while meta-
learning treats each episode as a new domain rather than domains that may have been encountered
as in subjective learning. Thus, none of these bounds contain an explicit inference term as 7c.

Remark 2. While our bound applies VC dimension as the complexity measure, extensions to other
data-dependant complexity measures such as Rademacher and Gaussian complexities (Bartlett &
Mendelson, 2002; Koltchinskii & Panchenko, 2000) is straightforward. It is worth noting that the
bounds based on these measures share the same asymptotic property w.r.t. m and n as in bound 7.

4 EXPERIMENTS

In this section, we report experimental results on two basic supervised learning tasks with conflicting
data: regression and classification. Our experiments are designed to (i) validate our theoretical
claims, (ii) assess the effectiveness of subjective learning and show its potential applicability in
different settings, and (iii) compare subjective learning with task-specific baselines.

4.1 SETUP AND BASELINES

Regression. We consider a regression task in which data points are simultaneously sampled from
three heterogeneous functions, as shown in Figure 2a (solid lines). We compare subjective learning
with three baselines: (1) Vanilla: a conventional ERM-based learner. (2) MAML (Finn et al., 2017):
a popular gradient-based meta-learning approach. (3) Modular (Alet et al., 2018): a modular meta-
learning approach that extends MAML using multiple modules. We set the hyperparameters of
subjective learning to K = 3,m = 250 and n = 2. To verify our theoretical results, we also run
subjective learning with different number of hypotheses (K = 2 and K = 4) and different sampling
hyperparameters (m = 50, n = 2 and m = 250, n = 1). More details on the task and the baselines
are in Appendix D.

In addition, we demonstrate the effectiveness of subjective learning on a real-world multi-
dimensional regression task; details and results are in Appendix E.1.

Classification. We consider two types of image recognition tasks where the same image may corre-
spond to different labels in different sample pairs. We refer to these tasks according to the structure
of their label spaces, namely parallel and hierarchical tasks. For parallel tasks, we derive the data
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(a) Vanilla (dashed) (b) MAML (c) Modular

(d) subjective learn-
ing (K = 2)

(e) subjective learn-
ing (K = 3)

(f) subjective learn-
ing (K = 4)

Figure 2: Results on the regression task. (a) Ground-truth
functions (solid) and the result of Vanilla (dashed). (b)(c)
Results of MAML and Modular. (d)(e)(f) Results of sub-
jective learning with different number of low-level mod-
els (solid). The dashed line in (f) indicates that subjective
learning abandons a redundant model.

suber =0.1221 MSE=0.0666

(a) Smaller m

ersub=0.5314 MSE=0.5314

(b) Smaller n

(c) Subjective error of (b) (dashed)

Figure 3: Impact of sampling hyper-
parameters on subjective learning. (a)
Fewer episodes (m = 50). (b) Fewer
episodic samples (n = 1). (c) The
subjective error when n = 1 (dashed
lines represent incorrect data alloca-
tions).

respectively from Colored MNIST, a variant of MNIST where each digit is assigned with a digit label
and a color label, and Fashion Product Images (Aggarwal, 2019), a multi-attribute clothes dataset
that involves 3 main parallel tasks including gender, category and color classification, as shown in
Figure 1a; we construct conflicting datasets by randomly choosing one label from the label set for
each image. For the hierarchical task, we derive the data from CIFAR-100 (Krizhevsky & Hinton,
2009), a widely-used image recognition dataset comprising 100 classes with “fine” labels subsumed
by 20 superclasses with “coarse” labels, as shown in Figure 1b; we construct the conflicting dataset
by randomly using the fine or the coarse label for each image. In classification, the most relevant
problem setting to subjective learning is multi-label learning (Zhang & Zhou, 2014), which consid-
ers the scenario where an input x is related with a label set y = {yi}Ni=1. The key difference is
that multi-label learning requires that all labels in the label set are provided simaltaneously, while
in subjective learning each data sample only contains one label yi ∈ y. Therefore, the setting
of subjective learning can be alternatively modeled as “multi-label learning with missing labels”,
i.e., in each sample N − 1 labels in y are missing and only one label remains (note that this is a
very extreme setting). Therefore, we compare subjective learning with the following baselines. (1)
Probabilistic concepts (ProbCon) (Devroye et al., 1996): this baseline directly models the relation
between inputs and outputs using an conditional probability distribution and choose top-N labels
as final prediction results. (2) Semi-supervised multi-label learning: this class of methods model
classification as the problem of “multi-label learning with missing labels” as discussed above, and
we compare subjective learning with two representative methods: Pseudo-label (Pseudo-L) (Lee,
2013) and Label propagation (LabelProp) (Iscen et al., 2019). In addition, we introduce two oracle
baselines as ablations: (3) Full labels (Full-L): a standard multi-label learning method where we
provide the full label set for each image, hence there is no missing labels. (4) Full tasks (Full-T): a
standard multi-task learning method where the “task” of each image is designated by human experts
in advance to ensure that there is no conflict within each task. More details on baselines can be
found in Appendix D.

To further demonstrate the applicability of subjective learning, we also conducted an experiment on
Fashion Product Images with simulated concept shift between domains with the same label space;
details and results are in Appendix E.2

4.2 EVALUATION METRICS

Since the error of subjective learning is related to the error of both the high-level subjective function
and the low-level models, we respectively adopt two metrics to quantitatively estimate these errors.

Subjective error. This metric measures the learner’s ability to perform appropriate data allocation.
Given a domain d, a good subjective function should yield stable allocations for all data batches
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Table 1: Results of subjective learning and the baselines on classification tasks. We report subjective
errors and model errors on Number (Num) and Color (Col) domains of Colored MNIST, Gender
(Gen), Category (Cat) and Color (Col) domains of Fashion Product Images, and Superclass (Sup)
and Class (Cla) domains of CIFAR-100 respectively.

Methods
Colored MNIST Fashion Product Images CIFAR-100

SUBERR MODERR SUBERR MODERR SUBERR MODERR

Num Col Num Col Gen Cat Col Gen Cat Col Sup Cla Sup Cla

ProbCon 0.09 0.34 3.04 0.39 8.81 13.54 12.50 22.80 18.02 33.15 5.59 5.44 27.35 31.20
Pseudo-L 6.62 9.25 7.47 10.08 4.95 5.40 14.59 33.69 20.04 34.06 9.26 8.38 28.46 38.96
LabelProp 7.53 0.28 11.52 13.57 2.91 7.22 21.97 14.59 50.43 64.48 18.82 10.34 66.62 45.17
Subjective 0.10 0.00 1.70 0.03 0.00 0.00 0.00 7.87 1.93 12.85 1.05 0.82 21.40 25.05

Full-L 0.23 0.00 1.02 0.00 1.19 0.86 7.44 8.46 1.17 9.45 7.84 0.84 22.08 26.29
Full-T 0 0 1.20 0.00 0 0 0 7.14 1.90 11.04 0 0 21.11 25.08

sampled from this domain. Thus, we measure the error of the subjective function using the rate of
inconsistent data allocations, which we define as

SUBERR(d) = 1−max
h∈H

1

ld

ld∑
j=1

1
[
g
(
H, zj

)
= h

]
, (8)

where ld denotes the total number of samples in domain d (the same below).

Model error. This metric measures the learner’s ability to make accurate in-domain predictions,
which is analagous to the traditional single-task error. Given a domain d, it is defined as

MODERR(d) = min
h∈H

1

ld

ld∑
j=1

e [h (xj) , yj ] , (9)

where we apply e(y, y′) = (y − y′)2 for regression and e(y, y′) = 1(y 6= y′) for classification.

4.3 EMPIRICAL RESULTS AND ANALYSES

We compare the performance of subjective learning and the baselines in Figure 2. Unsurprisingly,
the vanilla baseline converges to a trivial mean function (dashed curve in Figure 2a). MAML suc-
cessfully predicts the left part of all target functions by fine-tuning from episodic samples, but fails
in the right part where functions exhibit larger difference. We hypothesis that it is because meta-
learning typically requires tasks to be in sufficient numbers, and with more similarity. Although
Modular currectly predicts the general trend of the curves, its predictions are still inaccurate in
fine-grained details. Note that both meta-learning methods use more episodic data samples than
subjective learning (see Appendix D.3.1). Meanwhile, subjective learning withK ≥ R (K = 3 or 4)
successfully distinguishes different functions and recover each of them accurately while subjective
learning with K < R (K = 2) fails, which matches our analysis in Section 3.1. In particular,
subjective learning with K = 4 automatically leaves one network to be redundant (dashed curve in
Figure 2f), demonstrating the robustness of our framework. Figure 3 illustrates the impact of sam-
pling hyperparameters on subjective learning. Concretely, fewer sampling episodesm = 50 induces
a large model error 9, which corresponds to the sample-wise estimation term in the generalization
error 7b since the product mn is not sufficiently large. On the other hand, subjective learning with
fewer episodic samples n = 1 induces a large subjective error 8, which corresponds to the subjective
estimation term in the generalization error 7c. Another interesting phenomenon is that the curves in
Figure 3b are partially swapped compared with the ground truth when n = 1, indicating wrong data
allocation, which also corroborates our theory.

Classification. Table 1 shows the results of subjective learning and the baselines on classification
tasks. On all tasks, subjective learning outperforms all baselines on both the subjective error and the
model error. It is also worth noting that compared to the oracle Full-L with full label annotations,
subjective learning still induces smaller subjective error, showing a strong capability of domain-level
cognition that resembles the “ground truth” annotated by humans (Full-T).

8



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

5 RELATED WORK

Apart from the formulation in this paper, conflicting data may also be formulated using the frame-
work of multi-label learning with partial labels (Zhang & Zhou, 2014) or probabilistic density es-
timation such as probabilistic concepts (Kearns & Schapire, 1994; Devroye et al., 1996) and the
energy-based learning framework (LeCun et al., 2006). A fundamental difference between these
formulations and subjective learning is that these methods learn a unified model, while our method
explicitly encourages the learner to perform high-level data allocation and result in a set of inde-
pendent models. Su et al. (2020) studies a similar problem as ours where the goal of the learner
is to learn from online multi-task samples without task annotation. However, our work employs a
different objective function and presents more formal theoretical justification.

Extensive literature has explored the collaboration of multiple models or modules in completing one
or multiple tasks (Doya et al., 2002; Andreas et al., 2016; Alet et al., 2018; Meyerson & Miikku-
lainen, 2019; Yang et al., 2020; Gao et al., 2020). A crucial difference between our work and these
works is that our multi-model architecture is driven by the inherent conflict in conflicting data itself.
Our approach can also be viewed as an implementation of mixture-of-experts methods (Yuksel et al.,
2012; Shazeer et al., 2017), where our main innovation is the subjective function which serves as an
effective model selection method for conflicting data, and we only allow a single low-level model to
be invoked during a sampling episode. More discussions on related work are in Appendix F.

6 DISCUSSION

In this work, we investigate a novel learning scenario of learning from conflicting data, which gener-
alizes the single target function assumption that has been widely adopted by conventional machine
learning methods. We hope that our work can serve as a stepping stone in the pursuit of general
learning paradigms with fewer assumptions on data distributions compared with conventional ma-
chine learning regimes. In the following we list two limitations of our current work for future
research:

Noisy data. As mentioned in Definition 1, our formulation is limited to fully-informative data
where absolute predictions can be made given the inputs. While this assumption is valid in a variety
of applications, it is interesting to develop methods that can also handle data with noise. However,
this raises a fundamental question: how can we decide whether the stochasticity in data is caused by
“pure” noise or some unobserved, semantically-meaningful factors (e.g., different target functions)?
We believe that answering this question is crucial for devising algorithms that apply to more general
learning scenarios.

Continual learning. In open-ended environments, the data usually comes in a continual manner
with no explicit train-test delineation. Hence, developing continual learning agents that benefit from
the growing diversity (in terms of both data and domains) of conflicting data would be an exciting
future research avenue.
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A DISCUSSION ON THE SUBJECTIVE FUNCTION

In Section 2.3, we derive our design of the subjective function using an EM-based maximum likeli-
hood formulation. However, the exact equivalence between the E-step of hard EM and the subjective
function has not been established, since it relies on the exact form of the loss function `(y, y′) and
the conditional likelihood p(y |x, hk), k ∈ [K]. As a complement, in the sequel we provide two
examples where under the uniform prior, the exact equivalence between calculating the posterior
P (h = hk |x,y) and the expected subjective function 5b can be obtained (hence their empirical
counterparts are also equivalent).

Example 1 (Regression with isotropic Gaussian joint likelihood). Consider a regression task where
we assume that given the random variable (x,y), the joint distribution of its conditional likelihoods
conforms to an isotropic Gaussian N (µK , εIK) where ε ∈ R+ is a variance parameter and IK is a

K ×K identity matrix. From p(y |x, hk) ∝ exp
[
− (y−µk(x))2

2ε2

]
and µk(x) = hk(x) we have that

arg maxhk∈H p(y |x, hk)⇔ arg minhk∈H
[
(y − hk(x))2

]
. This equals to the expected subjective

function with squared loss `(y, y′) = (y − y′)2.

Example 2 (Classification with independent categorical likelihoods). Consider a multi-class clas-
sification task where we assume that given the random variable (x,y), all conditional likeli-
hoods conform to independent categorical distributions with parameters (λ1,λ2, · · · ,λK), where
λk = (λk1, · · · , λkL),

∑L
j=1 λkj = 1, k ∈ [K] and L is the number of classes. From p(y |x, hk) =∏L

j=1 λkj(x)yj , where y = (y1, · · · , yL) ∈ {0, 1}L,
∑L
j=1 yj = 1 and λk(x) = hk(x) we have

that arg maxhk∈H log p(y |x, hk) ⇔ arg minhk∈H [−
∑L
j=1 yj log hkj(x)], where hkj(x) denotes

the predicted probability of the j-th class and yj is the corresponding ground truth. This equals to
the expected subjective function with cross-entropy loss `(y, y′) = −

∑L
i=1 y

′
i log yi.

B ALGORITHM PSEUDO-CODE

We provide the pseudo-code of subjective learning in Algorithm 1.

C PROOFS OF THEORETICAL RESULTS

In this section, we provide the proofs of our theoretical results. For better exposition, we restate
each theorem before its proof.

C.1 PROOF OF PROPOSITION 1

Proposition 1 (Form of the optimal solution). Assume that the target functions in all domains are
realizable. Then, the following two propositions are equivalent:

(1) For all domain distributions Q and data distributions P1, P2, · · · , PN , er(H) = 0.

(2) For each d = 〈P, c〉 in D, there exists h ∈ H such that Ex∼P ` [h(x), c(x)] = 0.

Proof. The derivation of proposition (1) from proposition (2) is obvious. On the other hand, if
proposition (2) is false, i.e., there exists k ∈ [N ] such that for all j ∈ [K], hj 6= ck. Then, we have

er(H) = Eci∼Q min
h∈H

erPi (h, ci)

≥ q(ck) min
h∈H

erPk
(h, ck)

From the above we know that ck /∈ H , thus there exists Pk such that erPk
(h, ck) > 0 for every

h ∈ H . This indicates that er(H) > 0, which is in contradiction with proposition (a). Therefore,
proposition (2) must hold if proposition (1) is true.
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Algorithm 1 Subjective Learning for Conflicting Data

Require: Hypothesis set H = {h1, h2, · · · , hK}, sampling hyperparameters m and n.
1: for i = 1, 2, · · · ,m episodes do
2: Sample data Zi = {(xij , yij}nj=1.
3: Select a hypothesis ĥi from the hypothesis set using the empirical subjective function 5a.
4: Train the hypothesis ĥi by minimizing the empirical episodic error 6.
5: end for

C.2 PROOF OF THEOREM 1

We first present a generalized definition of PAC learnability.
Definition 2 (PAC learnability). A target function set class C is said to be PAC learnable if there
exists an algorithm and a polynomial function poly(·, ·, ·) such that for any ε > 0 and δ > 0, for
all distributions Q and distribution set P := {P1, · · · , Pn}, the following holds for any sample size
mn ≥ poly(1/ε, 1/δ, size(C)) :

P [er(H) ≤ ε] ≥ 1− δ. (10)

The above definition can be viewed as an extension of the single-task PAC learnability (Haussler,
1990) that considers the problem of learning a single target function. Based on this definition, in the
following we give the proof.
Theorem 1. A necessary condition of the PAC learnability of subjective learning is K ≥ R.

Proof. According to Definition 2, if subjective learning is PAC learnable, there must exist an algo-
rithm that outputs a hypothesis set H with zero error, i.e., er(H) = 0 for every Q and P (otherwise
the inequality 10 will not hold for a small enough ε and δ < 1). Proposition 1 indicates that this
is equivalent to ci ∈ H, i ∈ [N ], which is impossible if K < R according to Definition 1 and the
drawer principle.

C.3 PROOF OF THEOREM 2

We first introduce several technical lemmas.
Lemma 1. Let {Ei}ni=1 be a set of events satisfying P (Ei) ≥ 1 − δi, with some δi ≥ 0, i =

1, · · · , n. Then, P (
⋂n
i=1Ei) ≥ 1−

∑n
i=1 δi.

Lemma 2 (Single-task generalization error bound (Vapnik, 2013)). Let A ≤ Q(z, α) ≤ B,α ∈ Λ
be a measurable and bounded real-valued function set, of which the Vapnik-Chervonenkis (VC)
dimension (Vapnik & Chervonenkis, 1971) is VC(Q). Let {z1, z2, · · · , zn}ni=1 be data samples
sampled i.i.d. from a distribution P with size n. Then, for any δ ∈ (0, 1], the following inequality
holds with probability at least 1− δ:∣∣∣∣∣Ez∼PQ(z, α)− 1

n

n∑
i=1

Q (zi, α)

∣∣∣∣∣ ≤ (B −A)
√
ε(n) +

1

n
, (11)

where

ε(n) =
VC(Q) (ln 2n/VC(Q) + 1)− ln δ/4

n
. (12)

Then, we upper bound the error induced by the estimation of the expected subjective function 5b
in each sampling episode of subjective learning, which is critical in bounding the generalization
error. Recall that we use superscripts to denote the sampling index, e.g., di = 〈P i, ci〉 denotes the
i-th domain sample, which can be any domains in the domain set D. We define two shorthands as
follows:

h∗i := arg min
h∈H

Ex∼P i`
[
h(x), ci(x)

]
, i ∈ [m], (13a)

ĥ∗i := arg min
h∈H

n∑
j=1

`
[
h
(
xij
)
, yij

]
, i ∈ [m], (13b)
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where i denotes the i-th sampling episode of subjective learning, H is the hypothesis set.

Lemma 3 (Subjective estimation error bound). Let
{(
xi1, yi1

)
, · · · ,

(
xin, yin

)}
be episodic sam-

ples in the i-th (i ∈ [m]) sampling episode i.i.d. drawn from domain di with size n. Then, for any
δ ∈ (0, 1], the following inequality holds uniformly for all hypothesis h ∈ H with probability at
least 1− δ:

1

m

m∑
i=1

1

n

n∑
j=1

`
[
h∗i
(
xij
)
, yij

]
− 1

m

m∑
i=1

1

n

n∑
j=1

`
[
ĥ∗i
(
xij
)
, yij

]
≤ 2

√
VC(S)(ln 2n/VC(S) + 1)− ln δ/8m

n
+

2

n
,

(14)

where S := {(x, y) 7→ ` [h(x; θ), y]}, θ ∈ Θ is the function set of the sample-wise error.

Proof. We have the following decomposition:

1

m

m∑
i=1

1

n

n∑
j=1

`
[
h∗i
(
xij
)
, yij

]
− 1

m

m∑
i=1

1

n

n∑
j=1

`
[
ĥ∗i
(
xij
)
, yij

]

=
1

m

m∑
i=1

 1

n

n∑
j=1

`
[
h∗i
(
xij
)
, yij

]
− Ex∼P i`

[
h∗i (x), ci(x)

]
+

1

m

m∑
i=1

{
Ex∼P i`

[
h∗i (x), ci(x)

]
− Ex∼P i`

[
ĥ∗i (x), ci(x)

]}

+
1

m

m∑
i=1

Ex∼P i`
[
ĥ∗i (x), ci(x)

]
− 1

n

n∑
j=1

`
[
ĥ∗i
(
xij
)
, yij

] ,

in which the original difference is decomposed into three terms. By definition 13a and 13b
the middle term is non-positive. Using Lemma 2 by substituting Q with S = {(x, y) 7→
` [h(x; θ), y]} and replacing δ with δ/2m, the first term and the last term can both be bounded by√

VC(S) ln (2n/VC(S) + 1)− ln δ/8m

n
+

1

n
with probability at least 1− δ/2 (Lemma 1). Combining

these two bounds using Lemma 1 completes the proof.

Now we can give the proof of the main theorem.

Theorem 2 (Generalization error upper bound). For any δ ∈ (0, 1], the following inequality holds
uniformly for all hypothesis sets H ∈ HK with probability at least 1− δ:

er(H) ≤ êr(H) +

√
VC(S̄) (ln 2m/VC(S̄) + 1)− ln δ/12

m
+

1

m
(15a)

+

N∑
k=1

mk

m

√
VC(S) (ln 2mkn/VC(S) + 1)− ln δ/12N

mkn
+

1

mn

 (15b)

+ 2

√
VC(S) (ln 2n/VC(S) + 1)− ln δ/24m

n
+

2

n
, (15c)

where S̄ := {〈P, c〉 7→ Ex∼P ` [h(x; θ), c(x)]}, θ ∈ Θ is the function set of the domain-wise expected
error, S := {(x, y) 7→ ` [h(x; θ), y]}, θ ∈ Θ is the function set of the sample-wise error, mk :=∑m
i=1 1

(
ci = ck

)
is the sampling count of the target function from the k-th domain dk(k ∈ [N ]),

and VC(·) the Vapnik-Chervonenkis (VC) dimension (Vapnik & Chervonenkis, 1971).
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Proof. Combining the objectives 2 3 with the subjective function 5a 5b, we have the following
decomposition:

er(H)− êr(H) =

{
Edi∼Q min

h∈H
Ex∼Pi

` [h(x), ci(x)]− 1

m

m∑
i=1

min
h∈H

Ex∼P i`
[
h(x), ci(x)

]}

+

 1

m

m∑
i=1

min
h∈H

Ex∼P i`
[
h(x), ci(x)

]
− 1

m

m∑
i=1

1

n

n∑
j=1

`
[
h∗i
(
xij
)
, yij

]
+

 1

m

m∑
i=1

1

n

n∑
j=1

`
[
h∗i
(
xij
)
, yij

]
− 1

m

m∑
i=1

min
h∈H

1

n
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By definition 13a and 13b we rewrite the equation above:

er(H)− êr(H) =

{
Edi∼QEx∼Pi` [h∗i (x), ci(x)]− 1

m

m∑
i=1

Ex∼P i`
[
h∗i (x), ci(x)

]}

+
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m
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]
− 1

m

m∑
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1

n
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(
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)
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 1

m
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1

n
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(
xij
)
, yij

]
− 1

m

m∑
i=1

1

n
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ĥ∗i
(
xij
)
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] ,

in which the generalization error of subjective learning is decomposed into three terms. By substitut-
ingQ in Lemma 2 by S̄ = {〈P, c〉 7→ Ex∼P ` [h(x; θ), c(x)]} and replacing δ with δ/3, the first term

can be bounded by

√
VC(S̄) ln (2m/VC(S̄) + 1)− ln δ/12

m
+

1

m
with probability at least 1−δ/3. By re-

placing δ with δ/3 in Lemma 3 we bound the last term by 2

√
VC(S)(ln 2n/VC(S) + 1)− ln δ/24m

n
+

2

n
with probability at least 1− δ/3. There remains the middle term for which we have

1

m
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− 1
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1

n
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`
[
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(
xij
)
, yij

]

=
1
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m∑
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Ex∼P i`
[
h∗i (x), ci(x)

]
− 1

n

n∑
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`
[
h∗i
(
xij
)
, yij

]
=

1

m

N∑
k=1

mkEx∼Pk
` [h∗k(x), ck(x)]− 1

n

nmk∑
j=1

` [h∗k (xkj , ykj)]


=

1

m

N∑
k=1

mk

Ex∼Pk
` [h∗k(x), ck(x)]− 1

nmk

nmk∑
j=1

` [h∗k (xkj , ykj)]

 .

Recall that mk :=
∑m
i=1 1

(
ci = ck

)
. In the above we re-arrange the total m data batches accord-

ing to the domains they belong to. With a little abuse of notation, in the third and fourth rows
we use h∗k to denote the hypothesis that yields the smallest expected error in the k-th domain in
D, i.e., h∗k = arg minh∈H Ex∼Pk

` [h(x), ck(x)] , k ∈ [N ]. Note that this is different from the
definition 13a, where h∗i is defined upon the i-th domain sample. The above transformation ag-
gregates the domain samples so that data samples from the same domains that emerge multiple
times can be accumulated and jointly considered, which leads to a tighter and more realistic error
bound. By Lemma 2, for every k ∈ [N ] and δ ∈ (0, 1], each inside term Ex∼Pk

` [h∗k(x), ck(x)] −
1

nmk

∑nmk

j=1 ` [h∗k (xkj , ykj)] can be bounded by
√

VC(S) (ln 2mkn/VC(S) + 1)− ln δ/12N

mkn
+

1

mkn
with probability at least 1 − δ. By replacing δ with δ/3N we bound the whole second term
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by
∑N
k=1

(
mk

m

√
VC(S) (ln 2mkn/VC(S) + 1)− ln δ/12N

mkn
+

1

mn

)
with probability at least 1 − δ/3

(Lemma 1).

Finally, combining the above bounds for all three terms using Lemma 1 gives the result.

D EXPERIMENT DETAILS

In this section, additional details on the setup and settings of the experiment are provided. All
experiments were conducted based on PyTorch (Paszke et al., 2019) using a NVIDIA 2080ti GPU.
All data we used does not contain personally identifiable information or offensive content, and can
be obtained from public data sources.

D.1 REGRESSION

We consider three heterogeneous mapping functions in absolute, sinusoidal and logarithmic function
families as below:

y = 2 |x| − 2,

y = 2 sin
(

3x+
π

2

)
,

y =
3

2
log

(
−x+

5

2

)
− 1,

where the range of x is [−2, 2] for all three functions, yielding the conflicting data with R = 3. The
sample hyperparameters are m = 250, n = 2, i.e., a total number of 500 data points are collected in
250 episodes, each with 2 samples in the data batch, and their underlying generation functions are
randomly chosen from the three mapping functions.

Network and optimizer. A simple network architecture with 5 fully-connected linear layers, each
with 32 hidden units, is adopted and trained with SGD with step size α = 0.05, momentum = 0.9,
and `2 weight decay = 10−4.

D.2 CLASSIFICATION

Colored MNIST is an extended version of the well-known character recognition dataset MNIST,
in which each gray-scale digital images are randomly colored with 8 different colors. The dataset
contains two parallel tasks of color and number classification (R = 2) with a total number of 60000
colored digits. The sample hyperparameters are m = 60000, n = 1.

Fashion Product Images (Aggarwal, 2019) is a dataset for automatic attribute completion and Q&A
of clothing product images with multiple category labels in different domains. We choose 3 main
parallel tasks (color, gender, category) with 8 main labels from the original dataset (R = 3), with
15000 images in total. The sampling hyperparameters are m = 15000, n = 1.

CIFAR-100 (Krizhevsky & Hinton, 2009) is a classical benchmark for general image classification.
It has a hierarchical structure with 20 superclasses and 100 classes, with 60000 images in total.
Each superclass is from an upper-level “coarse” task, consisting of 5 “fine” classes, e.g., “insects”
includes “bee, beetle, butterfly, caterpillar, cockroach”. In our experiments, these two different
kinds of labels are randomly provided given an image (R = 2). The sampling hyperparameters are
m = 30000, n = 2.

Network and optimizer. In Colored MNIST, each network consists of 3 convolutional layers and 1
fully-connected layer. In Fashion Product Images, each network consists of 5 convolutional layers
and 3 fully-connected layers. We use Adam optimizer (Kingma & Ba, 2015) with step size α =
0.002 and betas = (0.5, 0.999) for these two datasets. In CIFAR-100, for subjective learning and all
baselines, we use a pre-trained DenseNet (Huang et al., 2017) backbone of DenseNet-L190-k40 for
feature extraction to ensure a fair comparison, and add 2 fully-connected layers after the DenseNet
backbone. We use SGD as the optimizer with step size α = 0.1 and momentum = 0.9.
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D.3 BASELINE DETAILS

In this section, we provide more details on the baselines.

D.3.1 REGRESSION

MAML. For MAML, we adapt a standard PyTorch implememtation from GitHub1 with the same
network with ours, and use the following hyperparameters:

Shot = 2, Evalation = 100, Outer step size = 0.05, Inner step size = 0.015,
Inner grad steps = 2, Eval grad steps = 5, Eval iters = 10, Iterations = 20000.

Modular. For modular meta-learning, we use the official PyTorch implementation from GitHub2,
and use the following hyperparameters:

Shot = 2, Support = 2, Network = Linear 1− 16− 16− 1, Num modules = 5,
Composer = Sum,meta lr = 0.003, Steps = 3000.

Note that for Modular Meta-Learning a larger episodic sample number n = 4 (consisting of 2
support samples and 2 query samples) is adopted. Nevertheless, subjective learning still outperforms
this approach using a smaller episodic sample number (n = 2).

D.3.2 CLASSIFICATION

Probablistic concepts. From the perspective of probability modeling, the relation between input x
and output y is subject to a probability distribution p(y |x), which is the learning target. In classi-
fication, when different domains share similar frequency, such a distribution can be approximated
with the total probability formula:

p(y |x) =
∑
h∈H

p(y |x, h) · p(h) ≈ 1

ld

∑
h∈H

p(y |x, h)

For classification problems, in each domain d, the corresponding p(y |x, h) is unimodal. Thus, their
sum p(y |x) is a multi-modal distribution, and a network trained with cross-entropy loss is still an
unbiased estimation for it. The final prediction is the labels with top-N conditional probabilities
p(y |x).

Semi-supervised multi-label learning. From the perspective of semi-supervised multi-label learn-
ing, the classification problem can be modeled as “multi-label learning with missing labels”: con-
sider the fully labeled data x → y = {yi}Ni=1, then, conflicting data provides only one label y ∈ Y
for each x, i.e., all other labels are missing. Therefore, existing semi-supervised learning approaches
may be modified to handle such problems. We consider two representative techniques, including
Pseudo-label and Label propagation. Both implementations are slightly modified to fit our tasks.

Pseudo-label randomly allocates additional ”pseudo” labels to each input to compensate the missing
labels. The learning machine is trained on the augmented dataset and then reevaluate the confidence
of all pseudo labels according to its predictions, and all pseudo labels will iteratively be modified
during training until convergence.

Label propagation builds a graph over the samples, where each node on the graph represents a data
sample, and each edge represents the distance of two nodes it collects in the feature space. The
labels are propagated on adjacent nodes until all samples are fully labeled. The feature space is also
iteratively adjusted along during training.

Full labels & full tasks. Both these oracle baselines utilize manual annotations to tranform the
conflicting data with R > 1 to conventional supervised data with R = 1. More concretely, for Full
labels, label annotations from all domains are provided simultaneously as a “multi-hot” label vector
for each input sample, resulting in a standard multi-label learning problem. For Full tasks, raw data
is separated into single-class classification tasks according to additional manual task annotation,
resulting in a standard multi-task learning problem.

1https://github.com/dragen1860/MAML-Pytorch (MIT license)
2https://github.com/FerranAlet/modular-metalearning (MIT license)
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Table 2: Results of subjective learning on multi-dimensional regression task on gas sensor array
under dynamic gas mixtures dataset. We report RMSE on each domain and the macro-average
RMSE over both domains.

Methods RMSE (domain 1) RMSE (domain 2) RMSE (macro-average)

Vanilla (single model) 76.5 89.7 83.1
Subjective 34.0 72.6 53.3
Oracle 31.9 66.8 49.4

D.3.3 MEASURING THE SUBJECTIVE ERROR OF BASELINES IN CLASSIFICATION

Since the baselines in classification experiments do not explicitly assign a separate model to each
domain, the subjective error metric 8 does not directly apply to these baselines. Hence, we estimate
their subjective errors using another method: we directly select top-N predictions of these methods
and compare them with the label spaces of different domains. We define the “coverage” of the
selected top-N labels over domain d as

COVERAGE(d) =
1

ld

ld∑
i=1

1(∃ top-N labels for input xi that is in the label space of d),

where ld denotes the total number of samples in domain d. The subjective error on d is then calcu-
lated as 1− COVERAGE(d).

E ADDITIONAL EXPERIMENTAL RESULTS AND VISUALIZATIONS

In this section, we provide additional experimental results and visualizations.

E.1 MULTI-DIMENSIONAL OPEN-ENDED REGRESSION

To further demonstrate the efficacy of subjective learning in regression problems, we conducted
experiments on a real-world multidimensional regression dataset from UCI machine learning repos-
itory: Gas sensor array under dynamic gas mixtures dataset (Fonollosa et al., 2015). This dataset
contains the recordings of 16 chemical sensors exposed to two dynamic gas mixtures and the aim is
to predict the concentrations of gases, with 417,8504 instances and 16-dimensional attributes. We
treat each gas mixture as one domain, respectively representing Ethylene & Methane (domain 1) and
Ethylene & CO (domain 2) gas mixtures, and randomly split both domains into training (90%) and
test sets (10%).

In this task, we compare subjective learning (two models, trained on the union of both domains)
with a vanilla single model regressor (trained on the union of both domains) and an oracle regressor
with two models separately trained on each domain. We report root mean square error (RMSE)
on each domain and the macro-average RMSE over both domains in Table 2. The results indicate
that subjective learning benefits from its automatic data allocation process, surpassing the vanilla
baseline that trains a single global model by a large margin and performs similarly with the oracle.

E.2 SIMULATED CONCEPT SHIFT CLASSIFICATION

To further demonstrate the applicability of subjective learning, we conducted an experiment on
Fashion Product Images with simulated concept shift between domains with the same label spaces.
Concretely, we randomly split the dataset into two domains according to the “gender” attribute:
50% of samples labeled as “Male” and 50% samples labeled as “Female” are assigned to domain
1 with “Male” relabeled as “1” and “Female” relabeled as “0”, and other samples are assigned to
domain 2 with “Male” relabeled as “0” and “Female” relabeled as “1”. As shown in Figure 4, this
setting resembles a simple scenario of concept shift caused by human preference: the label “1”
can be interpreted as an indicator of “interested” or “recommended”, while the label “0” can be
interpreted as an indicator of “not interested” or “not recommended”. Since different people may
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Domain 1

Domain 2

Recommended

Labels

Not recommended

Recommended

Not recommended

Male

Female

Figure 4: Classification tasks with simulated concept shift based on the Fashion Product Images
dataset. Two domains indicate different recommendations based on the gender attribute.

Table 3: Results of subjective learning on simulated concept shift classification task. We report
subjective and model errors on both domains.

Methods SUBERR MODERR
Domain 1 Domain 2 Domain 1 Domain 2

Vanilla (single model) - - 49.5 50.5
Subjective 5.37 5.37 7.40 9.65
Full-T (oracle) 0 0 7.14 6.53

have different preferences (in this simulated experiment this is caused by gender – domain 1 and
domain 2 respectively represents appropriate recommendations to male and female users), the data
samples from different domains may possess different input-label conditional probability P (y |x),
albeit with the same label space.

Since the label space is binary and completely shared by both domains, multi-label baselines are
inapplicable in this setting since they will always produce both labels “0” and “1” for every input
and do not discriminate between different domains, which is unmeaningful. Therefore, we compare
subjective learning with the single-model baseline (vanilla) and an oracle (Full-T) which separately
train two models on both domains explicitly with data-domain correspondences known in advance.
We report the model error and the subjective error of subjective learning in Table 3. Results show that
the vanilla single-model baseline cannot learn meaningful prediction results since it lacks the mech-
anism to distinguish conflicting samples from different domains, while subjective learning achieves
relatively small subjective errors and similar model errors as the Full-T oracle, which demonstrate
that subjective learning is effective even in the context where different domains possess exactly the
same label spaces yet different input-label relations.

E.3 TRAINING AND INFERENCE TIME ON FASHION PRODUCT IMAGES

In Table 4, we compare the computational cost of subjective learning and other baselines in terms
of training and inference time on the Fashion Product Images dataset. We measure the required
wall-clock time (in seconds) for each method to reach convergence during training as well as the
averaged wall-clock time for each method to predict all labels of one given input (in milliseconds).
Concretely, for subjective learning and all baselines except for two oracles (Full-L and Full-T), we
train the models for 50 epochs with about 15,000 images in every epoch; for Full-L and Full-T, we
train for 10 epochs since these methods generally converge faster. For each method, we test its total
inference time on the same 3,000 test samples randomly sampled from the test set and report the
mean inference time on each test sample. All results are obtained with PyTorch using a NVIDIA
2080ti GPU.

As shown in the table, the time cost of subjective learning is generally on par with or lower than
baselines that also involve iterative training (Pseudo-L and LabelProp). Although the ProbCon
baseline trains faster, it learns a global model without the mechanism of data allocation and thus
performs significantly worse than subjective learning as we have shown. Meanwhile, compared
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Table 4: Wall-clock training and inference time of subjective learning and baselines on the Fashion
Product Images dataset. The training time of ProbCon, Pseodu-L, LabelProp and subjective learning
is measured over 50 epochs, and the training time of Full-L and Full-T is measured over 10 epochs.
The inference time of all methods is measured using an average over 3,000 test samples.

Methods Training time (in seconds) Inference time (in milliseconds)

ProbCon 415 0.67
Pseudo-L 833 2.00
LabelProp 915 0.59
Subjective 580 0.79

Full-L 159 0.68
Full-T 93 0.76

Figure 5: An example of the iteration process and the final decision boundaries of the subjective
function in the regression task.

with the Full-T oracle that knows the data-domain correspondences in advance, subjective learning
only exhibits a little additional computational overhead. This indicates that although subjective
learning incorporates an extra data allocation process implemented by the subjective function, this
process only induces a limited computational cost since it only requires additional network forward
process without loss backpropagation, which is in general efficient.

E.4 ITERATION PROCESS ON THE REGRESSION TASK

In subjective learning, since the performance of the low-level models will impact the data allocation
process of the high-level subjective function, the training of the subjective function and low-level
networks can be regarded as an iterative process, as shown by Figure 5 with an example in regression,
in which the different colored lines are designated to different subjects. All networks are randomly
initialized, and in each iteration, each sample may be reallocated by the subjective function and used
to further train the low-level networks. With the increasing of iterations, both subjective and model
errors will reduce and converge along with the global loss. The last subfigure displays the final
decision boundary of subjective function.

E.5 FEATURE VISUALIZATION ON THE CLASSIFICATION TASK

The subjective learning approach can extract different semantics from the same input sample, and
map them to different feature spaces. Figure 6 displays the features output under all subjectives,
where each color represents a subjective and each point corresponds to an image in the dataset.

F MORE DISCUSSIONS ON RELATED WORK

In this section, we provide more discussion on related work.

Ensemble learning. Ensemble learning approaches typically employ multiple models to coopera-
tively solve a given task (Dietterich, 2002; Zhang & Ma, 2012; Sagi & Rokach, 2018; Zhou, 2021).
The prediction of each model is combined by weighting (boosting), majority voting (bagging) or
learning a second-level meta-learner (stacking). Since different models process the same set of
data (although sometimes with different sample weights), in ensemble learning there is typically
no explicit “hard” allocation process between the data and models. In contrast, the multi-model
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Figure 6: Additional visualization of image features by subjective learning on Fashion Product
Images.

architecture of subjective learning is driven by the inherent conflict in conflicting data, and each
model only handles a proportion of the whole dataset without overlapping.

Domain adaptation and domain generalization. Domain adaptation (Ben-David et al., 2010;
Pan & Yang, 2010; Tan et al., 2018; Wang & Deng, 2018; Hoffman et al., 2018) and domain gen-
eralization (Blanchard et al., 2011; Muandet et al., 2013; Zhou et al., 2021) consider the scenario
where the learner trained on one or multiple source domain(s) is transferred to one or multiple
new target domain(s). Typically, domain adaptation focuses on the problem where there exist some
labeled or unlabeled instances in the new domain, while domain generalization considers the setting
where there the information of the new domains is inaccessible during training (i.e., zero-shot gen-
eralization). In other words, these formulations focus on the adaptation or generalization capability
of the model on target domain(s). In contrast, subjective learning focuses on the multi-domain train-
ing process and considers the scenario where directly training a global model using the data from
multiple conflicting domains is problematic, and aims to resolve this training issue by performing
automatic data allocation. Another important difference is that in domain adaptation and domain
generalization the data-domain correspondences are available, while subjective learning weakens
this assumption by only assuming that the data from each sampling episode is obtained from the
same domain.
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