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Abstract001

Large language models (LLMs) exhibit re-002
markable capabilities in natural language pro-003
cessing but face catastrophic forgetting when004
learning new tasks, where adaptation to a new005
domain leads to a substantial decline in per-006
formance on previous tasks. In this paper,007
we propose Controlled LoRA (CLoRA), a sub-008
space regularization method on LoRA struc-009
ture. Aiming to reduce the scale of output010
change while introduce minimal constraint on011
model capacity, CLoRA imposes constraint on012
the direction of updating matrix’s null space.013
Experimental results on one-stage LLM fine-014
tuning tasks and continual learning settings015
highlight the superority of CLoRA as a ef-016
fective parameter-efficient finetuning method017
with catastrophic forgetting mitigating. Fur-018
ther investigation for model parameters in-019
dicates that CLoRA effectively balances the020
trade-off between model capacity and degree021
of forgetting.022

1 Introduction023

Large language models (LLMs) demonstrate re-024

markable capabilities in natural language tasks.025

However, when performing continued training on026

additional datasets, a key challenge may faced,027

known as catastrophic forgetting (McCloskey and028

Cohen, 1989), where adaptation to a new domain029

leads to a substantial decline in performance on030

previous tasks.031

Existing approaches to mitigate catastrophic for-032

getting can be broadly categorized into data-based,033

architecture-based, and learning-based methods034

(Wang et al., 2023a). Data-based methods (de Mas-035

son D’Autume et al., 2019) primarily based on036

rehearsing prior training data, which raises data037

privacy concerns. Additionally, for LLMs, ob-038

taining the necessary prior training data samples039

is challenging due to their training on massive040

datas. Architecture-based methods (Wang et al.,041

2023c; Razdaibiedina et al., 2023) introduce iso- 042

lated parameters for each continued training stage 043

for reducing interference. In contrast, learning- 044

based methods train in the shared vector space, con- 045

trolling learning process by adding regularization 046

terms to the loss or employing specific optimiza- 047

tion designs. Inference for architecure-based meth- 048

ods typically involves a selection process (Gurbuz 049

and Dovrolis, 2022; Kang et al., 2022), which is 050

more complex than that for learning-based methods. 051

As continued trained LLMs are generally regarded 052

as foundation models, flexibility is essential for 053

their broader applications. Consequently, due to 054

deployment considerations, learning-based meth- 055

ods are preferred over architecture-based methods 056

for LLMs. 057

The core idea of learning-based methods is to 058

constrain parameter updates, which aligns pre- 059

cisely with the Parameter-Efficient FineTuning 060

(PEFT) research paradigm of LLMs. Although 061

initially proposed for computational efficiency, 062

PEFTs have demonstrated to learn less and for- 063

get less(Biderman et al., 2024), primarily due to 064

their constrained model capacity. Notably, a well- 065

established insight that related to learning-based 066

methods in PEFT research is that LLMs are primar- 067

ily finetuned within a specific low-rank subspace, 068

this insight has led to the development of the Low- 069

Rank Adaptation method (LoRA)(Hu et al., 2021). 070

However, LoRA imposes no restrictions on pa- 071

rameter updates beyond the low-rank constraint, 072

and matrix perturbation theory suggests that even 073

low-rank updates can significantly influence ma- 074

trix properties (Sherman, 1949; Davis and Kahan, 075

1970). For instance, in an extreme case, it is theo- 076

retically possible to learn a model that eliminates 077

all top-k principal components (optimal rank-k ap- 078

proximation) through a rank-k update, thus destroy 079

most of the base model’s ability. Therefore, LoRA 080

would be benifit from more constraints for mitigat- 081

ing catastrophic forgetting. However, more con- 082
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Figure 1: Illustration of the intuition behind our ap-
proach. For input x, the component in Null(∆W ) (null
space of the updating matrix ∆W ) would be ignored,
the change of output ∆y is obtained only from the com-
ponent in Row(∆W ) (row space of ∆W , the orthogo-
nal complement of Null(∆W )). CLoRA introduces a
pre-defined subset of Null(∆W ) by imposing orthogo-
nal regularization with pre-defined matrix P .

straints would reduce model capacity for updat-083

ing, which influences the effectiveness of training.084

For instance, adding L2 regularization significantly085

restricts the norm of the updating matrix. Con-086

sequently, effective management of the capacity-087

forgetting balancing has become a major concern.088

To address this concern, in this work, we propose089

Controlled LoRA (CLoRA), a subspace regulariza-090

tion method on LoRA structure. We start the design091

of CLoRA from the perspective of the null space092

of updating matrix. The intuition behind CLoRA093

is illustrated in Figure 1, where the output change094

∆y is derived from applying the updating matrix095

∆W on the component of the input x that falls096

within the row space of ∆W , while components097

in the null space are ignored. Under this intuition,098

for reducing the scale of output change, options099

include reducing the scale of ∆W , and encourag-100

ing more input component fall in the null space of101

∆W . The former is more related to model capacity,102

and for concerns of capacity-forgetting balancing,103

we focus on the latter.104

The dimension of the null space for the updat-105

ing matrix is directly determined by the rank of106

it, which LoRA already addressed. A key factor107

remains, the direction of null space, which influ-108

ence input components that fall in, but free-learned109

LoRA does not constraint. CLoRA constraint the110

direction of null space of updating matrix by intro-111

ducing a pre-defined subspace, this is implemented112

by orthogonal regularization with a pre-defined ma-113

trix. Unlike methods that impose restrictions on114

rank or norm, which significantly influence model115

capacity, CLoRA introduces constraint on the di-116

rection of the null space. We take experiments on 117

commonly used one-stage LLM finetuning evalu- 118

ations and continual learning evaluations, results 119

indicate the superiority of CLoRA as an effective 120

approach for parameter-efficient finetuning with 121

catastrophic forgetting mitigating. Additionally, we 122

take analysis on parameters of the learned model, 123

results show that CLoRA reduces the scale of out- 124

put change with minimal impact on model capacity. 125

Our contributions are summarized as follows, 126

• We propose CLoRA, a subspace regularization 127

method on LoRA, which serves as an advanced 128

parameter-efficient finetuning technique with 129

catastrophic forgetting mitigating for LLMs. 130

• Our proposed CLoRA demonstrates superior per- 131

formance on both in-domain and out-domain 132

evaluation in commonly used one-stage LLM 133

finetuning setting. Additionally, it showns re- 134

markable mitigating of catastrophic forgetting in 135

continual learning setting. 136

• Parameter investigation results indicate that 137

CLoRA effectively balances the trade-off be- 138

tween model capacity and degree of forgetting. 139

2 Related Works 140

2.1 Mitigating Catastrophic Forgeting 141

Catastrophic forgetting is a significant challenge 142

in various transfer learning scenarios, including 143

continual learning (Wang et al., 2023a) and LLM 144

finetuning (Wu et al., 2024). In these settings, con- 145

tinued training on new tasks may impair abilities of 146

the pre-trained model. Approaches for mitigating 147

catastrophic forgetting can be broadly categorized 148

into data-based, architecture-based and learning- 149

based methods. 150

Data-based methods primarily based on re- 151

hearsal of prior training data or representation, 152

(de Masson D’Autume et al., 2019) introduce an 153

episodic memory for experience rehearsal, (Rebuffi 154

et al., 2017; Chaudhry et al., 2019) selects previous 155

training data for rehearsaling. For LLMs, acquiring 156

the necessary prior training data is challenging due 157

to the extensive amount of data used in their train- 158

ing. Instead, the concept of rehearsal is commonly 159

adopted by mixing data from general domains for 160

LLM continued training. This approach is gener- 161

ally orthogonal to model-related methods, thus we 162

will not discuss it further. 163
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Architecture-based methods (Wang et al.,164

2023c; Razdaibiedina et al., 2023) introduce iso-165

lated parameters for each continued training stage166

to reduce interference. (Wang et al., 2023c) use167

isolated parameters for each task, and enables a168

selecting mechenism during inference. Progressive169

Prompts (Razdaibiedina et al., 2023) sequentially170

concatenates prompts for each task with previously171

learned prompts. These architecture-based meth-172

ods generally require specific techniques for infer-173

ence and continued training, resulting in a lack of174

flexibility, particularly in the context of LLMs.175

Learning-based methods performs continued176

training in a shared vector space, controlling learn-177

ing process by adding regularization term on loss or178

applying specific optimization designs. Notabley,179

O-LoRA (Wang et al., 2023b) introduce regular-180

ization with previous continual learned parameters181

for reducing interference in the multi-stage training182

setting. Our proposed CLoRA imposes orthogonal183

regularization similar to O-LoRA, but the regular-184

ization matrix is not restricted to be the previous185

learned parameter, thus CLoRA can be used for186

one-stage continued training whereas O-LoRA not.187

2.2 LoRA and Subspace Tuning188

Parameter-Efficient FineTuning (PEFT) (Han et al.,189

2024) aims to tune models with minimizing compu-190

tational resources, which is widely used for large-191

scale models including LLMs. Among these meth-192

ods, LoRA (Hu et al., 2021) and its subsequent193

variants (Wang et al., 2024a; Liu et al., 2024) learn194

a low-rank decomposition for updating parameter195

matrices, and could be categorized into learning-196

based continued training method, which is the fo-197

cus of our work.198

The core insight of LoRA is to tune model within199

a low-rank subspace, and with no additional con-200

straints imposed on this tuning subspace. Some201

subsequent works delve deeper into the tuning sub-202

space to mitigate catastrophic forgetting for LLM203

continued training, MiLoRA (Wang et al., 2024a)204

and PiSSA (Meng et al., 2024) use singular value205

decomposition (SVD) components of the original206

parameters for LoRA initialization, with MiLoRA207

uses minor components while PiSSA uses major208

components; O-LoRA (Wang et al., 2023b) intro-209

duce orthogonal regularization for each LoRA sub-210

space. Our proposed CLoRA also falls within this211

category, differing from the selection and utiliza-212

tion of the focused subspace.213

Notation Description
W parameter matrix in base model

∆W updating of the parameter
x input for W
y output for W , y = Wx

∆y output change, ∆y = ∆Wx
||v|| L2 norm of vector v
||A|| L2 norm(largest singular value)

of matrix A
r rank of updating matrix
k number of regularization vectors

Table 1: Notations.

3 Prelimilaries 214

3.1 Notations 215

The notations commonly used in this paper are sum- 216

marized in table 1. We provide some additional 217

notes here. While generally used for denote the in- 218

put and output of the while model, we denote x, y 219

as input and output to a single linear layer, repre- 220

sented by W . ||A|| denotes L2 norm (largest singu- 221

lar value) in our paper, instead of Frobenius norm 222

(||A||F =
√∑

A[i, j]2). r and k are most impor- 223

tant hyperparameters for CLoRA, r is the rank of 224

updating matrix, which is used in all LoRA works, 225

k is the number of regularization vectors(column 226

of regularization matrix) in CLoRA. 227

3.2 Problem Definition 228

Catastrophic forgetting menifest as performance 229

decline on tasks from previous domain when train- 230

ing on new domain. In this work, we aim to miti- 231

gate catastrophic forgetting in LLM finetuning and 232

continual learning settings. 233

3.2.1 LLM Finetuning 234

In this setting, we conduct experiments on one- 235

stage LLM finetuning, To evaluate this, we conduct 236

both in-domain tasks (demonstrating the effective- 237

ness of training) and out-domain tasks (from previ- 238

ous domain, indicating the degree of forgetting) for 239

LLM finetuning. Specifically, we finetune a base 240

LLM on one training dataset, then take in-domain 241

and out-domain evaluations. Note that there is no 242

clear domain specific for base LLMs, but bench- 243

marks exist for evaluating the ability of LLMs on 244

wide range of domains (Gao et al., 2024), and we 245

take those with minimal overlap with training data 246

for out-domain evaluation. 247
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Figure 2: Illustration of CLoRA on typical decoder-only transformer based LLMs. LoRA updating is applied on
v-proj in multi-head attention layer for each layer. CLoRA add orthogonal loss computes from trainable LoRA
parameters (A and B) to the original language modeling loss.

3.2.2 Continual Learning248

Continual learning focuses on developing learn-249

ing algorithms to accumulate knowledge on non-250

stationary data(Wang et al., 2023b). In this setting,251

we conduct experiments for multi-stage finetuning.252

Specifically, we finetune the model on a sequence253

of tasksD1, . . . , Dt, where each taskDt contains a254

pair of train and test datasetsDt = (Dtrain
t , Dtest

t ).255

The t-th model with finetuned sequentially on256

Dtrain
1 , . . . , Dtrain

t−1 is tested over all previous test257

datasets Dtest
1 , . . . , Dtest

t−1 .258

4 Method259

In this section, we introduce Controlled Low-Rank260

Adaptation (CLoRA) method. We illustrate the ap-261

plication of CLoRA in transformer-based LLMs262

in Figure 2. CLoRA shares the same modeling263

structure with LoRA, but imposes on orthogonal264

regularization term computed using LoRA parame-265

ters into the loss function.266

CLoRA Modeling Consistent with LoRA,267

CLoRA decomposes the updating for a parameter268

matrix W to a multiplication of two lor-rank269

matrices ∆W = ABT , where W,∆W ∈ Rm×n,270

A ∈ Rm×r, B ∈ Rn×r, r � m,n.271

CLoRA computes orthogonal regularization for272

A and BT with untrainable pre-defined matrix273

PA ∈ Rm×k and PB ∈ Rn×k, where k is a hy-274

perparameter controlling the size of regularization275

matrix, larger k introduces more constraint. The276

orthogonal regularization loss on one LoRA param- 277

eter A is defined as 278

Lorth(A,PA) =
∑
i,j

||AP T
A [i, j]||2 (1) 279

whereA ∈ Rm×r, PA ∈ Rm×k. Lorth(A,PA) reg- 280

ularize on orthogonality of every (A[:, i], PA[:, j]) 281

pairs. The final loss of CLoRA in a transformer- 282

based LLM is defined as 283

LLM (Θ, input)+ (2) 284

λ
∑
i

(Lorth(Ai, PAi) + Lorth(BT
i , P

T
Bi

)) 285

where LLM (Θ, input) is the original language 286

model loss on text input and LLM parameters Θ, 287

the summation on Lorth is over index of all train- 288

able parameter matrices. λ controls the weighting 289

of orthogonal loss, we set it to 1 as default. 290

Initialization Following LoRA(Hu et al., 2021), 291

we initialize A with gaussian noise and B is zeros, 292

ensuring ∆W is zero at the begining of training. 293

For the CLoRA regularization matrices, follow- 294

ing the priciple of Occam’s Razor, we adopt the 295

most simple random initialization here. For uni- 296

form regularization over each row in regularization 297

matrices, we suggest using orthogonal initialization. 298

Specifically, for regularization matrix P ∈ Rm×k, 299

||P [:, i]|| = 1 for every i, and P [:, i]P [:, j] = 0 for 300

i 6= j. 301
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5 Experiments and Analysis302

5.1 One-Stage LLM Finetuning303

In this section, we conduct experiments on one-304

stage LLM finetuning to evaluate our proposed305

CLoRA as a parameter-efficient finetuning method.306

We aim to answer the following research questions,307

• RQ1: Does CLoRA performs effectively as a308

parameter-efficient finetuning method for LLMs309

with catastrophic forgetting mitigating?310

• RQ2: How the size of regularization matrix k311

influence the performance of CLoRA? Does it312

differs across tasks?313

• RQ3: How does CLoRA demonstrate superiority314

on capability-forgetting balancing?315

5.1.1 Datasets and Tasks316

Following previous works on PEFT(Liu et al.,317

2024; Wang et al., 2024a), we conduct experiments318

on commonsense reasoning tasks and math tasks.319

Commonsense Reasoning Setting We use320

Commonsense170K (Hu et al., 2023) for finetun-321

ing. For in-domain evaluation, eight common-322

sense reasoning datasets are used, including BoolQ323

(Clark et al., 2019), PIQA (Bisk et al., 2020),324

SIQA (Sap et al., 2019), HellaSwag (Zellers et al.,325

2019), WinoGrande (Sakaguchi et al., 2019), ARC-326

e, ARC-c (Clark et al., 2018), and OBQA (Mi-327

haylov et al., 2018). The tasks are formulated as328

multiple-choice problem, and we report accuracy329

based on the last checkpoint.330

For out-domain evaluations, BIG-Bench-Hard331

(Suzgun et al., 2022) and MMLU-Pro (Wang et al.,332

2024b) are used. These benchmarks encompass333

challenging subsets of tasks across a wide range334

of domains and are widely employed for evaluat-335

ing the capabilities of LLMs. Additionally, they336

include samples that are more complex than those337

in our training data, ensuring minimal overlap. We338

use lm-eval (Gao et al., 2024), available with MIT339

License, for reporting out-domain evaluation.340

Math Setting We use MetaMathQA (Yu et al.,341

2024) for finetuning, which contains 395K samples342

augmented from the training set of GSM8K (Cobbe343

et al., 2021) and MATH(Hendrycks et al., 2021).344

We use test set of GSM8K and MATH for evalua-345

tion and report the results on the last checkpoint.346

5.1.2 Comparison Methods 347

• LoRA (Hu et al., 2021) is a widely-used 348

parameter-efficient finetuning technique, and it 349

serves as the foundation of our proposed CLoRA. 350

• DoRA (Liu et al., 2024) is a recent work on struc- 351

ture improvement of LoRA, we include it as a 352

baseline for improved LoRA. 353

• PiSSA (Meng et al., 2024) and MiLoRA (Wang 354

et al., 2024a) are two variants of LoRA, both 355

employing SVD components for LoRA initial- 356

ization, MiLoRA use minor components while 357

PiSSA use major. Notably, MiLoRA can be cat- 358

egorized as a catastrophic forgetting mitigating 359

method. 360

• Reducing the updating rank(-r*): Lower rank 361

r imposes stricter constraints on the updating 362

matrix. We maintain a consistent rank across 363

all methods and consider variations in rank as a 364

separate baseline. 365

• L2 regularization(-L2) introduces L2 regular- 366

ization for trainable parameters, serving as a fun- 367

damental approach to limit updates. 368

• CLoRA: Our proposed CLoRA method, with 369

random initialized regularization matrix. 370

5.1.3 Experimental Configuration 371

We use the same base LLM choice LLaMA-2-7B 372

(Touvron et al., 2023) and hyperparameter configu- 373

rations as (Wang et al., 2024a). Details are listed 374

in Appendix A. Notably, we use 32 (commonsense 375

reasoning) and 64 (math) for updating matrix rank 376

r as default for all methods if not explicitly speci- 377

fied. For the size of CLoRA regularization matrix, 378

we select k in [128, 256, 512, 1024, 2048] for com- 379

monsense reasoning and [64, 128, 256] for more 380

challenging math setting. For LoRA-L2, 1e-5 is 381

used for weighting of L2 regularization, we note 382

that 1e-4 is also tested, but too large for getting 383

effective finetuning. We report results finetuned 384

on LLaMA-2-7B here, more results are listed in 385

Appendix A. 386

5.1.4 Main Results (RQ1) 387

For commonsense reasoning setting, we report the 388

results of in-domain evaluation and out-domain 389

LLM benchmarks in Table 2. The results demon- 390

strate that CLoRA outperforms on all datasets, sur- 391

passing the best baseline for in-domain evaluation 392

5



In-domain Out-domain
Method BQ PQ SQ HS WG ACe ACc OQ Avg. BBH MMLU
LLaMA2-7b - - - - - - - - - 34.91 18.56
LoRA 71.9 80.9 78.9 90.3 83.5 83.0 70.2 80.8 79.9 26.69 14.46
DoRA 73.0 81.9 80.3 90.2 82.8 84.6 69.4 81.8 80.5 28.24 11.67
PiSSA 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8 29.54 11.33
MiLoRA 71.5 82.0 80.0 91.0 83.0 82.3 68.9 81.2 80.0 25.14 17.74
LoRA-r8 71.0 80.5 78.1 90.0 83.0 81.1 68.5 78.0 78.8 26.90 14.58
LoRA-r16 71.0 81.8 78.9 90.3 81.1 83.1 69.7 82.2 79.8 26.73 11.54
LoRA-L2 70.3 83.0 80.2 92.7 83.1 84.2 71.2 81.4 80.8 32.93 16.59
CLoRA-k128 72.7 84.1 77.7 91.6 83.0 85.3 69.9 81.6 80.7 30.82 12.07
CLoRA-k256 71.3 83.2 79.1 92.4 83.2 84.5 71.0 81.0 80.7 31.92 17.81
CLoRA-k512 72.8 83.0 79.5 93.0 83.9 85.7 73.0 84.8 82.0 34.32 17.00
CLoRA-k1024 73.3 84.8 79.6 91.1 86.1 86.9 73.1 85.6 82.6 36.49 19.52
CLoRA-k2048 73.7 84.5 80.9 94.5 85.9 88.1 75.9 86.0 83.7 38.67 20.59

Table 2: Results for our proposed CLoRA and baselines for in-domain commonsense reasoning evaluations and
out-domain LLM benchmarks, with accuracy scores (%) reported. Bold font indicates the highest performance for
each task across all compared PEFT methods.

Method GSM8K MATH
LoRA 60.58 16.88
PiSSA 58.23 15.84
MiLoRA 63.53 17.76
CLoRA-k64 64.29 17.52
CLoRA-k128 64.59 18.38
CLoRA-k256 63.45 17.58

Table 3: Math evaluation on GSM8K and MATH, with
accuracy scores (%) reported.

by an average accuracy of 2.9 points. Results for393

math setting also demonstrate the superority of394

CLoRA over previous LoRA baselines (Table 3).395

These outcomes suggest that, although primar-396

ily proposed for mitigating catastrophic forgetting,397

CLoRA also serves as an effective PEFT method.398

We attribute this to the nature of LLM finetuning,399

which is an instance of transfer learning. The per-400

formance of LLM finetuning is strongly correlated401

with the base model’s ability, when catastrophic402

forgetting occurs during training, the base model’s403

strength may diminish. Therefore, we claim that a404

method with effective capacity-forgetting balanc-405

ing would exhibit strong effectiveness in LLM fine-406

tuning.407

For out-domain evaluation, results show that all408

baselines underperform the base model, highlight-409

ing the severe issue of catastrophic forgetting in410

this setup. Notably, our proposed CLoRA not only411

outperforms all baselines by a significant margin412

but also surpasses the base model’s performance. 413

We attribute this to CLoRA’s effective capacity- 414

forgetting balancing, which enables the extraction 415

of generally useful knowledge from the common- 416

sense reasoning training dataset. 417

The superior performance in both in-domain and 418

out-domain evaluations demonstrates that CLoRA 419

serves as an effective parameter-efficient finetuning 420

method with catastrophic forgetting mitigation. 421

The superior performance in both in-domain and 422

out-domain evaluations demonstrates that our pro- 423

posed CLoRA serves effectively as a parameter- 424

efficient finetuning method with catastrophic for- 425

getting mitigating. Thus, we answer RQ1. 426

5.1.5 Evaluating for different CLoRA k 427

(RQ2) 428

The size of the regularization matrix k is a crucial 429

hyperparameter in CLoRA, balancing the trade-off 430

between model capacity and the degree of forget- 431

ting. We focus here on how k influence the perfor- 432

mance of finetuning LLM with CLoRA, and inves- 433

tigate whether the optimal k is consistent across 434

tasks. 435

In commonsense reasoning setting, results show 436

that larger k leads to better performance in both in- 437

domain and out-domain evaluations (Table 2). In 438

math setting, unlike the upward trend in common- 439

sense reasoning setting, performance decreases 440

when k exceeds 128(Table 3). We attribute this 441

discrepancy to the complexity of math tasks, which 442

require greater model capacity during finetuning. 443
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Method ||∆W || F
reference 2.42
LoRA 22.63 0.79
MiLoRA 24.32 0.92
LoRA-r16 12.70 1.03
LoRA-r8 6.45 0.95
LoRA-L2 2.07 0.29
CLoRA-k128 10.84 0.36
CLoRA-k256 10.25 0.34
CLoRA-k512 8.19 0.27
CLoRA-k1024 6.64 0.21
CLoRA-k2048 5.00 0.14

Table 4: Measuring model updating capacity(||∆W ||,
larger for more capacity) and degree of forgetting(F,
lower for less forgetting) for trained models.

Emperical results support the intuitive claim444

that larger k imposes more restrictions on updates,445

which helps mitigating catastrophic forgetting but446

potentially limiting finetuning model capacity and447

harming performance.448

Thus, we answer RQ2 by demonstrating that the449

optimal k depends on task complexity. Notably, our450

proposed CLoRA provides flexibility in balancing451

capacity and forgetting by adjusting k, we suggest452

choosing a smaller k for more challenging tasks.453

5.1.6 Understanding Capacity-Forgetting454

Balancing(RQ3)455

To answer RQ3, we investigate the parameter of456

trained models to quantify the capacity-forgetting457

balancing issue.458

Measuring Model Capacity and Degree of For-459

getting Consider that catastrophic forgetting pri-460

marily arises from output changes caused by pa-461

rameter updating, the greater the impact of these462

updates, the more severe the catastrophic forgetting463

may be. We measure the degree of forgetting with464

the relative scale of output change in the parame-465

ter level, to be specific, for updating matrix ∆W ,466

with input x, the relative scale of output change467

(denoted as F) is defined as468

F(∆W,x) =
||∆Wx||
||x||

(3)469

We highlight the role of x in the measurement of F,470

as it reflects the real world case. Specifically, we471

sample 100 text data from test set and collect input472

x for each parameter from the model forward pass.473

To measure model capacity, we note that there474

is a gap between theoretical capacity of a model475

(Abu-Mostafa, 1989) and the practical outcome 476

of the learned model. Therefore, we delegate the 477

measurement of model capacity to the scale of the 478

parameters in the learned model. Specifically, we 479

measure the L2 norm ||∆W || for each updating 480

parameter matrix. 481

Results and Analysis We report the measure- 482

ments averaged over all tokens and all updating 483

parameters in Table 4. All models use LoRA rank 484

r of 32 unless specified otherwise. 485

The “reference” row is computed using the 486

LoRA trained model, noting the output scale of 487

original parameter W instead of ∆W . Compared 488

with “reference” and LoRA, the difference of F is 489

not far, suggesting that LoRA training indeed intro- 490

duces significant output change, thus still prone to 491

catastrophic forgetting. 492

For MiLoRA, although intuitively promising, 493

without effective control during training, it did not 494

mitigate catastrophic forgetting, as evidenced by 495

both downstream evaluations (Table 2) and the sim- 496

ilar F and ∆W with LoRA. 497

For LoRA with lower rank (r8/16), after training, 498

with ||∆W || indicates the reduction of capacity, 499

F does not show a decrease. Although theoreti- 500

cally, reducing the rank of the update matrix can 501

increase the dimension of the null space and help 502

to reduce the scale of output change, results not 503

show this case. This suggests that altering r may 504

not a effctive way to alter forgetting. 505

For LoRA-L2, F indicates that it indeed mitigate 506

forgetting, but in a large cost of capacity, demon- 507

strated by the very small ||∆W ||. 508

For our proposed CLoRA, F shows a signifi- 509

cantly reduce the scale of output change, while a 510

relatively larger ||∆W || is maintained. This indi- 511

cates that CLoRA minimizes catastrophic forget- 512

ting caused by large updates while having a sub- 513

tle impact on model capacity. Thus we answer 514

RQ3 that CLoRA performs effectively on capacity- 515

forgetting balancing. 516

5.2 Continual Learning 517

5.2.1 Experimental Setup 518

To demonstrate the effectiveness of CLoRA for 519

continual learning(CL) setting, we conduct experi- 520

ments on standard CL benchmark and more chal- 521

lenging large number of tasks benchmark, follow- 522

ing the experiment setup of O-LoRA(Wang et al., 523

2023b). 524
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Standard CL Benchmark Large Number of Tasks
Method Order-1 Order-2 Order-3 avg. Order-4 Order-5 Order-6 avg.
SeqFT 18.9 24.9 41.7 28.5 7.4 7.4 7.5 7.4
SeqLoRA 44.6 32.7 53.7 43.7 2.3 0.6 1.9 1.6
IncLoRA 66 64.9 68.3 66.4 63.3 58.5 61.7 61.2
Replay 55.2 56.9 61.3 57.8 55 54.6 53.1 54.2
EWC 48.7 47.7 54.5 50.3 45.3 44.5 45.6 45.1
LwF 54.4 53.1 49.6 52.3 50.1 43.1 47.4 46.9
L2P 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1
LFPT5 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2
O-LoRA 75.4 75.7 76.3 75.8 72.3 64.8 71.6 69.6
CLoRA 79.7 79.1 78.2 79.0 70.7 65.6 68.2 68.1
PerTaskFT 70.0 70.0 70.0 70.0 78.1 78.1 78.1 78.1
MTL 80.0 80.0 80.0 80.0 76.5 76.5 76.5 76.5

Table 5: Results on two CL benchmarks with T5-large base model. Averaged accuracy after training on the last
task is reported. Bold font indicates the highest performance across all compared CL methods.

Datasets and Tasks The standard CL benchmark525

consists of five text classification datasets(Zhang526

et al., 2015). The large number of tasks benchmark527

consists of 15 datasets (Razdaibiedina et al., 2023),528

include tasks for natural language understanding529

and text classification. Task samples follows pre-530

vious work (Wang et al., 2023b). Details for tasks531

are listed in Appendix B.532

Comparison Methods We compare CLoRA533

with normal finetuning baselines and previous CL534

methods. We include non CL results that train sep-535

arate model for each task (PerTaskFT) and multi-536

task learning (MTL) as reference.537

• Normal Finetuing baselines include sequen-538

tially training on same parameter space with539

full parameter finetune (SeqFT) and LoRA540

(SeqLoRA), and incremental learning of new541

LoRA parameters on a sequential series of tasks.542

• Continual Learning methods include data-543

based methods Replay; architecture-based meth-544

ods L2P(Wang et al., 2022), LFPT5(Qin and545

Joty, 2022)O-LoRA(Wang et al., 2023b); and546

learning-based methods EWC(Kirkpatrick et al.,547

2017), LwF(Leibe et al., 2016). Details for these548

methods are listed in Appendix B.549

Experimental Configuration Following O-550

LoRA(Wang et al., 2023b), we use T5-large551

as base model, and finetune on each task with552

specified order(Appendix B). We train each task553

with one epoch, with constant learning rate of554

1e-3, batch size of 64, dropout rate of 0.1, weight555

decay rate of 0, and LoRA dim r of 8. CLoRA 556

regularization matrix size k is set to 256. 557

5.2.2 Results and Analysis 558

We report the results in Table 5. Results demon- 559

strate that CLoRA outperforms all comparision 560

methods, include the most related strong baseline 561

O-LoRA, with a notable margin in the stadard CL 562

benchmark. We attribute this to the advantage of 563

CLoRA toward O-LoRA: 1. CLoRA helps learn- 564

ing in the first finetuning stage while O-LoRA not; 565

2. CLoRA can independently alter k for balanc- 566

ing learning and forgetting, while “k” equivalent 567

in O-LoRA is restrained by LoRA r. 568

In the large number of tasks benchmark, CLoRA 569

performs near the strong baseline O-LoRA and 570

LFPT5. We note that vanilla CLoRA with random 571

regularization matrix is a learning-based method, 572

without machanism for isolating finetuning tasks. 573

6 Conclusion 574

In this paper, we introduce Controlled Low- 575

Rank Adaptation(CLoRA), a simple yet effective 576

parameter-efficient finetuning method for LLMs 577

that mitigates catastrophic forgetting. We investi- 578

gate the effectiveness of CLoRA on both one-stage 579

LLM finetuning and continual learning settings. 580

Experiment results demonstrate the effectiveness of 581

CLoRA as a parameter-efficient finetuning method 582

with catastrophic forgetting mitigating. Further 583

investigation for model parameters indicates that 584

CLoRA effectively balances the trade-off between 585

model capacity and degree of forgetting. 586
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7 Limitations587

There are still several limitations that we reserve588

for future work: 1) We use the simplest random589

initialization for regularization matrix, insight for590

more dedicated choice may benifit CLoRA learn-591

ing, such as combine CLoRA with architecture-592

based continual learning method(O-LoRA). 2) We593

delegate the measurement of model capacity and594

degree of forgetting to simple measurement of595

scale. Although these measurements reveal sig-596

nificant differences between CLoRA and previous597

works, we believe that further investigation would598

aid in the design of methods with stronger capacity-599

forgetting balancing capability.600
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A Experiment Details for One-Stage857

Finetuning858

A.1 Hyperparameter Settings859

Table 6 shows our detailed hyperparameters. This860

setting follows MiLoRA(Wang et al., 2024a) and861

DoRA(Liu et al., 2024).862

A.2 Computation Environment863

All of our experiments are conducted on 8 NVIDIA864

A800 GPUs. All methods for LoRA subsequents865

use Huggingface peft library1, training is con-866

ducted using trainer in Huggingface transformers867

library2, with DeepSpeed ZeRO(Rajbhandari et al.,868

2020) intergration.869

A.3 Additional CLoRA variants870

We use the simplest random initialization for871

CLoRA regularization matrix in the main paper.872

Considering the idea of PiSSA and MiLoRA that873

explore the roles of singular value decomposition874

(SVD) components in LLM parameters, we adopt875

this intuition to initialize CLoRA regularization876

matrices from SVD. For a SVD decomposition877

of parameter W = USV T with rank r, where878

W ∈ Rm×n, U ∈ Rm×r, S ∈ Rr×r is a diag-879

onal matrix, V ∈ Rn×r. For CLoRA updating880

∆W = ABT , we initialize the regularization ma-881

trix PA ∈ Rm×k as U [:, s], PB ∈ Rn×k as V [:, s],882

where s is a list of selecting index with length k.883

We add two CLoRA variants as follows, and con-884

duct experiments on commonsense reasoning set-885

ting,886

• CLoRA-major: Use SVD major components to887

initialize CLoRA regularization matrix.888

• CLoRA-minor: Use SVD minor components to889

initialize CLoRA regularization matrix.890

A.4 Full Results on Commonsense891

Finetuning892

We report the full results that we conducted on in-893

domain evaluation(Table 7) and out-domain evalu-894

ation(Table 8) for commonsense reasoning finetun-895

ing. Results for LLaMA-3-8b are also included for896

CLoRA-random. All models use LoRA rank r of897

32 unless specified otherwise.898

1https://github.com/huggingface/peft
2https://github.com/huggingface/transformers

A.4.1 Analysis for different CLoRA variants 899

Results indicate that the choice of regulariza- 900

tion matrix does influence the effectiveness of 901

CLoRA, albeit not significantly. Generally, we 902

recommend using random initialization (CLoRA- 903

random) or initialization from major SVD compo- 904

nents (CLoRA-major). 905

B Detailed Experiment Setups for 906

Continual Learning 907

B.1 Dataset Details 908

We list the details of the datasets used in Table 9. 909

Order of finetuning are listed in Table 10. 910

B.2 Computation Environment 911

All of our experiments are conducted on 1 NVIDIA 912

GeForce RTX 3090 GPU. All methods for LoRA 913

subsequents use Huggingface peft library, training 914

is conducted using trainer in Huggingface trans- 915

formers library, with DeepSpeed ZeRO intergra- 916

tion. 917

B.3 Comparision Methods 918

Here we provide details for continual learning base- 919

lines for our continual learning experiment setting. 920

• Replay: data-based method that replay samples 921

from old tasks when learning new tasks to avoid 922

forgetting. 923

• L2P: architecture-based method that uses the in- 924

put to dynamically select and update prompts 925

from the prompt pool in an instance-wise fash- 926

ion. 927

• LFPT5: architecture-based method that contin- 928

uously train a soft prompt that simultaneously 929

learns to solve the tasks and generate training 930

samples for replay. 931

• EWC: learning-based method that finetune the 932

whole model with a regularization loss that pre- 933

vents updating parameters that could interfere 934

with previously learned tasks. 935

• LwF: learning-based method that constrains the 936

shared representation layer to be similar to its 937

original state before learning the new task. 938

• O-LoRA: architecture and learning-based 939

method that prevent subsequent LoRA update 940

interfere previous. 941
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Hyperparameter CS Math
LoRA rank r 32 64

LoRA α 64 128
Dropout 0.05

Optimizer AdamW
LR for LLaMA-2-7B 3e-4
LR for LLaMA-3-8B 1e-4

LR Scheduler Linear
Batch Size 16

Warmup Steps 100
Epochs 3

LoRA target modules query, key, value, MLP up, MLP down

Table 6: Hyperparameters for commonsense reasooning (CS) and Math settings.

Model PEFT BoolQ PIQA SIQA HS WG ARC-e ARC-c OBQA Avg.
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0
LLaMA-2-7B LoRA 71.9 80.9 78.9 90.3 83.5 83.0 70.2 80.8 79.9

PiSSA 67.6 78.1 78.4 76.6 78.0 75.8 60.2 75.6 73.8
MiLoRA 71.5 82.0 80.0 91.0 83.0 82.3 68.9 81.2 80.0
DoRA 73.0 81.9 80.3 90.2 82.8 84.6 69.4 81.8 80.5
LoRA-r8 71.0 80.5 78.1 90.0 83.0 81.1 68.5 78.0 78.8
LoRA-r16 71.0 81.8 78.9 90.3 81.1 83.1 69.7 82.2 79.8
LoRA-L2-0.0001 - - - - - - - - -
LoRA-L2-0.00001 70.3 83.0 80.2 92.7 83.1 84.2 71.2 81.4 80.8
CLoRA-random-k128 72.7 84.1 77.7 91.6 83.0 85.3 69.9 81.6 80.7
CLoRA-random-k256 71.3 83.2 79.1 92.4 83.2 84.5 71.0 81.0 80.7
CLoRA-random-k512 72.8 83.0 79.5 93.0 83.9 85.7 73.0 84.8 82.0
CLoRA-random-k1024 73.3 84.8 79.6 91.1 86.1 86.9 73.1 85.6 82.6
CLoRA-random-k2048 73.7 84.5 80.9 94.5 85.9 88.1 75.9 86.0 83.7
CLoRA-major-k128 72.4 81.9 77.9 83.9 82.4 84.4 70.0 82.6 79.4
CLoRA-major-k256 73.2 83.5 79.6 93.0 83.3 88.1 72.6 84.2 82.2
CLoRA-major-k512 73.6 83.7 79.9 93.4 83.9 86.4 73.0 86.0 82.5
CLoRA-major-k1024 73.2 85.5 80.5 94.3 85.7 87.2 75.9 85.4 83.5
CLoRA-major-k2048 73.9 84.8 80.6 95.0 85.3 87.7 76.5 84.6 83.6
CLoRA-minor-k128 71.5 82.7 78.7 91.8 83.2 85.0 70.9 81.6 80.7
CLoRA-minor-k256 72.6 83.5 80.2 91.3 85.4 85.4 72.1 83.6 81.8
CLoRA-minor-k512 73.0 84.0 80.1 93.1 82.0 86.4 72.9 84.4 82.0
CLoRA-minor-k1024 73.1 83.7 79.2 93.7 84.8 87.1 73.2 83.2 82.3
CLoRA-minor-k2048 72.9 84.2 80.8 93.7 85.3 87.2 73.5 86.0 83.0

LLaMA-3-8B LoRA 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PiSSA 67.1 81.1 77.2 83.6 78.9 77.7 63.2 74.6 75.4
MiLoRA 68.8 86.7 77.2 92.9 85.6 86.8 75.5 81.8 81.9
DoRA 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
CLoRA-random-k128 75.5 89.1 81.6 95.9 87.9 92.6 81.8 86.8 86.4
CLoRA-random-k256 75.3 88.8 81.4 85.7 88.7 92.7 82.3 88.4 85.4
CLoRA-random-k512 75.9 89.3 82.6 96.3 88.9 92.1 82.9 86.8 86.9
CLoRA-random-k1024 76.5 89.1 82.1 96.3 88.6 93.0 81.7 90.0 87.2
CLoRA-random-k2048 76.2 90.0 82.7 96.6 88.8 93.3 83.4 89.2 87.5

Table 7: In-domain results on commonsense reasoning evaluations, with accuracy scores (%) reported. Bold font
indicates the highest performance for each dataset across the different PEFT methods for each base model.
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Model PEFT BBH MMLU-Pro Avg.
LLaMA-2-7B - 34.91 18.56 26.74

LoRA 26.69 14.46 20.58
PiSSA 29.54 11.33 20.44
MiLoRA 25.14 17.74 21.44
DoRA 28.24 11.67 19.96
LoRA-r8 26.90 14.58 20.74
LoRA-r16 26.73 11.54 19.13
LoRA-L2-0.00001 32.93 16.59 24.76
CLoRA-random-k128 30.82 12.07 21.45
CLoRA-random-k256 31.92 17.81 24.87
CLoRA-random-k512 34.32 17.00 25.66
CLoRA-random-k1024 36.49 19.52 28.01
CLoRA-random-k2048 38.67 20.59 29.63
CLoRA-major-k128 32.69 18.09 25.39
CLoRA-major-k256 35.11 18.89 27.00
CLoRA-major-k512 35.81 19.88 27.85
CLoRA-major-k1024 37.06 19.73 28.40
CLoRA-major-k2048 38.83 20.08 29.46
CLoRA-minor-k128 34.06 17.03 25.55
CLoRA-minor-k256 33.16 17.11 25.13
CLoRA-minor-k512 35.42 18.97 27.20
CLoRA-minor-k1024 37.08 18.87 27.98
CLoRA-minor-k2048 40.96 20.37 30.67

Table 8: Out-domain results on two LLM benchmarks, with accuracy scores (%) reported. Bold font indicates the
highest performance for each benchmark across all methods.

Dataset name Category Task Domain
Yelp CL Benchmark sentiment analysis Yelp reviews
Amazon CL Benchmark sentiment analysis Amazon reviews
DBpedia CL Benchmark topic classification Wikipedia
Yahoo CL Benchmark topic classification Yahoo Q&A
AG News CL Benchmark topic classification news
MNLI GLUE NLI various
QQP GLUE paragraph detection Quora
RTE GLUE NLI news, Wikipedia
SST-2 GLUE sentiment analysis movie reviews
WiC SuperGLUE word sense disambiguation lexical databases
CB SuperGLUE NLI various
COPA SuperGLUE QA blogs, encyclopedia
BoolQA SuperGLUE boolean QA Wikipedia
MultiRC SuperGLUE QA various
IMDB SuperGLUE sentiment analysis movie reviews

Table 9: Summary of datasets used in the continual learning setting.
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Order Task Sequence
1 dbpedia→ amazon→ yahoo→ ag
2 dbpedia→ amazon→ ag→ yahoo
3 yahoo→ amazon→ ag→ dbpedia
4 mnli→ cb→ wic→ copa→ qqp→ boolqa→ rte→ imdb

→ yelp→ amazon→ sst-2→ dbpedia→ ag→ multirc→ yahoo
5 multirc→ boolqa→ wic→ mnli→ cb→ copa→ qqp→ rte

→ imdb→ sst-2→ dbpedia→ ag→ yelp→ amazon→ yahoo
6 yelp→ amazon→ mnli→ cb→ copa→ qqp→ rte→ imdb

→ sst-2→ dbpedia→ ag→ yahoo→ multirc→ boolqa→ wic

Table 10: Order of finetuning in the continual learning setting.
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