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Abstract001

Cross-domain aspect-based sentiment analysis002
(ABSA) aims to learn domain-specific knowl-003
edge from a source domain to perform various004
ABSA tasks in a target domain. Recent works005
mainly focus on leveraging domain adaptation006
techniques to transfer the domain-agnostic fea-007
tures from the labeled source domain to the008
unlabeled target domain, yet manually col-009
lecting target-domain data remains impracti-010
cal owing to the facts like privacy concerns011
in banking or insurance. To alleviate this is-012
sue, we propose ZeroABSA, a unified zero-013
shot framework for cross-domain ABSA that014
effectively eliminates dependency on target-015
domain annotations. Specifically, ZeroABSA016
consists of two novel components, namely, (1)017
a LLM-driven augmentation module synthesiz-018
ing domain-adaptive target data through itera-019
tively evaluating the metrics (e..g, vocabulary020
richness, semantic coherence, and sentiment/-021
domain consistency) of augmented exemplars022
for refinement; (2) a domain-contextualized023
chain-of-thought (COT) strategy trains mod-024
els on augmented data while explicitly model-025
ing domain-invariant reasoning to bridge the026
well-known cross-domain gap. Extensive eval-027
uations across four diverse domains demon-028
strate that ZeroABSA surpasses the state-of-029
the-arts, which advances the practicality of030
cross-domain ABSA in real-world scenarios031
where target-domain data is unavailable.032

1 Introduction033

Aspect-based Sentiment Analysis (ABSA) is a034

widely-discussed fine-grained sentiment analysis035

task (Pontiki et al., 2016), aims at identifying senti-036

ment targets within sentences to form the structured037

pairs like <aspect, polarity>, where the polarity038

“positive” is a specific sentiment towards a target039

aspect “food” in sentence “The food at this restau-040

rant is good.” This end-to-end formulation has041

evolved into three principal subtasks: (1) Aspect042

Term Extraction (ATE), isolating domain-spcific as- 043

pect terms from sentences (Liu et al., 2015); (2) As- 044

pect Sentiment Classification (ASC), predicting the 045

sentiment polarities for given terms (Zhang et al., 046

2016; Wang et al., 2020); and (3) Aspect Sentiment 047

Triplet Extraction (ASTE), extending initial ABSA 048

to a triplet (e.g., “<food, good, positive>”), captur- 049

ing richer contextual sementics (Peng et al., 2020; 050

Chen et al., 2021; Liang et al., 2023). However, 051

these paradigms still restricted to domain-specific 052

data scarcity in low-resource domains. 053

Therefore, many researchers tackle various 054

ABSA tasks beyond a specific domain. They pri- 055

marily focus on cross-domain sentiment correla- 056

tions by aligning latent feature distributions across 057

domains, which is known as cross-domain ABSA 058

(Wang and Pan, 2018; Li et al., 2019; Zhou et al., 059

2021), leveraging the availability of a tremendous 060

amount of sentiments expressed across different do- 061

mains. The principle of such methods is to employ 062

unsupervised domain adaptation (UDA) techniques 063

to learn domain-invariant features for various cross- 064

domain ABSA tasks, which, however, always heav- 065

ily relies on numerous collected unlabeled data 066

from the target domain to minimize the domain 067

gap for training (Blitzer et al., 2007; Zhuang et al., 068

2015; Dai et al., 2020; Chen et al., 2022). Never- 069

theless, it may face a significant challenge, that is, 070

the inadequacy of unlabeled data in target domain, 071

as such data are usually scarce in practice due to 072

facts like data security concerns in the banking or 073

insurance domain. 074

Recent advancements have explored the use of 075

pre-trained language models for data augmentation 076

in cross-domain ABSA tasks (Yu et al., 2021; Yang 077

et al., 2022; Yu et al., 2023). For instance, Yu et al. 078

combines domain-adaptive pseudo-labeling with 079

language modeling to improve the effectiveness of 080

cross-domain data augmentation. However, these 081

approaches still depend on unlabeled target domain 082

data to generate pseudo-labeled data. Furthermore, 083
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the common approach of training first on labeled084

source domain data and then on generated target085

domain data (Deng et al., 2023) can lead to incon-086

sistencies. The generated target domain data often087

differ significantly from the source domain data,088

causing difficulties in maintaining domain-specific089

awareness during inference. This can result in mod-090

els struggling to bridge the gap between source and091

target domains effectively, ultimately impacting092

performance.093

To overcome these limitations, we propose a094

novel zero-shot cross-domain ABSA framework095

that achieves cross-domain invariant feature learn-096

ing and annotation-free knowledge transfer, com-097

prising: 1) Zero-Shot Data Augmentation: We098

utilize large language models (LLMs) to synthe-099

size target-domain data via target-domain weak100

supervision (e.g., domain names) with the exist-101

ing labeled source domain data. By harnessing in-102

context learning, we generate diverse, semantically103

coherent simulated target-domain examples. A sub-104

set is further augmented with reference-free gen-105

eration to maximize diversity, facilitating learning106

of domain-invariant representations that generalize107

to target-domain characteristics. 2) Evaluation of108

Generated Data: To ensure the quality and fluency109

of the generated data, we first calculate its vocab-110

ulary richness using Shannon entropy. Addition-111

ally, we evaluate the data by calculating Domain112

Consistency, Sentiment Consistency, and Sentence113

Fluency using a ranking model. Based on these114

metrics, we select the highest-quality data and com-115

bine it with existing domain data for model training.116

3) Domain-Contextualized Chain-of-Thought:117

To enhance cross-domain adaptation, we propose118

Domain-Contextualized Chain-of-Thought (DC-119

CoT), a structured reasoning framework that guides120

models through a multi-stage reasoning process: it121

first considers the domain of the data, then gener-122

ates intermediate reasoning steps, and finally pro-123

duces the final output. By grounding intermedi-124

ate reasoning in domain-specific context, DCCoT125

systematically aligns latent representations with126

target-domain characteristics, enabling robust per-127

formance across diverse ABSA tasks.128

The main contributions of our work can be sum-129

marized as follows:130

• To our knowledge, we are the first to tackle cross-131

domain ABSA in a zero-shot setting, where no132

target domain data is available. This approach is133

particularly significant for scenarios with strict134

data privacy and security requirements, where 135

collecting target domain data is not feasible. 136

• We introduce an innovative framework that inte- 137

grates hybrid data augmentation with Domain- 138

Contextualized Chain-of-Thought Reasoning. 139

This framework enhances domain-invariant fea- 140

ture learning and bridges the gap between source 141

and target domains by using LLMs to generate 142

high-quality target data and ensuring domain- 143

specific sensitivity during inference. 144

• Extensive experimental results validate the effec- 145

tiveness of our method, showing that it outper- 146

forms existing approaches in zero-shot settings 147

for cross-domain ABSA tasks, thereby demon- 148

strating the robustness of our approach. 149

2 Related Work 150

2.1 Cross-Domain ABSA 151

Cross-domain ABSA has become a highly dis- 152

cussed topic in recent years. Early studies em- 153

ployed common techniques from Unsupervised Do- 154

main Adaptation (UDA), using specific syntactic 155

rules of the target domain to minimize the loss 156

caused by domain transfer (Jakob and Gurevych, 157

2010; Ding et al., 2017; Wang and Pan, 2019). Ad- 158

ditionally, many studies have used domain discrim- 159

inators to learn generalizable knowledge across 160

different domains (Li et al., 2019; Zhang et al., 161

2023). Recently, with the rising popularity of the 162

pre-training model paradigm, some works have 163

utilized pre-trained models to generate additional 164

data (Wei and Zou, 2019; Yu et al., 2021; Li et al., 165

2022; Yu et al., 2023). Although these methods 166

are effective, they almost all require corpus data 167

or other external resources from the target domain, 168

which can pose certain challenges in real-world 169

applications. 170

2.2 Data Augmentation 171

Data augmentation is a technique used to increase 172

the amount of training data by applying various 173

transformations to existing data or generating new 174

data, thereby enhancing the model’s generalization 175

ability and performance (Feng et al., 2021; Mu- 176

muni and Mumuni, 2022). In the field of NLP 177

(Natural Language Processing), early data augmen- 178

tation techniques typically involved synonym re- 179

placement, random insertion, random swap, and 180

random deletion. Recently, with the rising popu- 181

larity of the pre-training model paradigm, some 182

works have utilized pre-trained models to gener- 183
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Source Domain: Laptop
Review: The battery life of this laptop
is amazing.
Annotation: (battery life, positive)

Target Domain: Resturant
Review: The service at this
restaurant is amazing.
Annotation: (service, positive)

Domain
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Sentence
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e
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Generate 
Domain-Aware 

Chain-of-Thought

Review:The service at this restaurant is amazing.
CoT: In the domain of "restaurants," the sentence evaluates the quality
of the service. The phrase "The service at this restaurant is amazing"
shows a strong positive sentiment towards the service, indicating an
exceptionally good experience.
Annotation: (service, positive)

Figure 1: Overall Framework of Data Augmentation in Our Work. Orange represents source domain data, red
represents generated target domain data, purple represents generated data filtered by ranking, and red represents the
final mixed data with Chain-of-Thought Explanation.

ate additional data for data augmentation (Kumar184

et al., 2020; Yu et al., 2023). Although these meth-185

ods have shown remarkable results, they all face186

the issue of relying on labeled data or pure cor-187

pus information from specific domains. Moreover,188

Existing cross-domain ABSA data augmentation189

methods typically rely on MLM for word replace-190

ment, which often results in generated data that191

lacks diversity and fluency. Moreover, it’s notewor-192

thy that while zero-shot data augmentation has seen193

some exploration in the field of computer vision194

(CV) (Fahes et al., 2023), its application in NLP195

remains relatively underexplored.196

2.3 Large Language Model197

Since OpenAI released ChatGPT, an increasing198

number of studies have examined the performance199

of LLMs on various downstream NLP tasks (Ope-200

nAI et al., 2024; Zhao et al., 2023; Wei et al.,201

2022a). Due to their pre-training on extensive cor-202

pora, LLMs have demonstrated excellent gener-203

alization and strong transfer learning capabilities204

across diverse tasks. These models not only gen-205

erate high-quality natural language text but also206

perform well on new tasks and domains without207

specialized training. For example, in sentiment208

analysis, question answering systems, and text sum-209

marization, LLMs have achieved significant results.210

Moreover, their ability to adapt to structured pre-211

diction tasks, such as named entity recognition and212

syntactic parsing, further highlights their versatility.213

One key factor contributing to these successes is the214

emergent capabilities of LLMs, such as in-context215

learning and Chain-of-Thought reasoning (Wei216

et al., 2022b). These capabilities enable the models 217

to solve complex reasoning tasks through contex- 218

tual inference and step-by-step thinking (Wei et al., 219

2022c). This makes it possible to utilize LLMs for 220

various NLP tasks. Furthermore, the ability of 221

LLMs to generalize across domains has opened up 222

exciting opportunities for applying them to previ- 223

ously unexplored tasks. 224

With the popularity of LLMs, an increasing num- 225

ber of studies have utilized the strong generaliza- 226

tion capabilities of these models for data augmen- 227

tation to achieve domain adaptation (Sahu et al., 228

2022). Compared to previous generative models, 229

LLMs trained on more extensive corpora can gen- 230

erate more fluent and diverse data. Although LLMs 231

may lack domain-specific knowledge of the tar- 232

get domain, they excel at capturing broad patterns 233

across different domains (Wei et al., 2022a). Given 234

labeled source domain examples, an LLM can ap- 235

proximate the characteristics of the target domain 236

solely through natural language descriptions of the 237

target domain. Previous studies have demonstrated 238

that LLMs can still generate reasonably good data 239

for data augmentation (Whitehouse et al., 2023), 240

even in unfamiliar domains. However, despite these 241

advancements, few works focus on using LLMs to 242

achieve domain transfer for ABSA tasks, especially 243

in a zero-shot setting. 244

3 Methodology 245

3.1 Problem Definition and Notations 246

Based on the previous work on defining the ABSA 247

task, given a sentence X = {w1, w2, . . . , wn} with 248

3



n words, the goal of the ABSA task is to extract249

several tuples Y = {(ai, pi)}|Y |
i=1, where a repre-250

sents aspect terms, which are subsets of words251

in the sentence S. For each aspect a, the corre-252

sponding sentiment polarity p belongs to P =253

{Positive,Negative,Neutral}.254

Our work focuses on achieving domain adapta-255

tion for the ABSA task in a zero-shot setting. In this256

setting, there are labeled source domain datasets,257

but no data from the target domain is available be-258

fore testing. Let DS = {(XS
i , Y

S
i )}|D

S |
i=1 represent259

the labeled data from the source domains. The task260

is to extract tuples Y from the target domain DT261

given labeled data DS from any source domain.262

3.2 Overall Framework263

Our method comprises three stages: Zero-shot264

Data Augmentation, Evaluation of Generated265

Data, and Domain-Contextualized Chain-of-266

Thought. In the first stage, we utilize the names267

and the description of the target domain to generate268

target data. Leveraging pre-trained large models,269

we generate a series of simulated data for the target270

domain. In the second stage, we employ a rank271

model to score the generated data based on its flu-272

ency and relevance. Combined with the vocabulary273

richness of the data, we conduct a comprehensive274

ranking, selecting high-scoring data to mix with275

the existing data. In the third stage, we propose276

a Domain-Contextualized Chain-of-Thought ap-277

proach. This involves providing explanatory steps278

for data generation and using this comprehensive279

data for model training. By reflecting on specific280

domains during inference and outputting step-by-281

step reasoning, the model can become more attuned282

to the target domain, despite being trained on data283

from various domains and sources. We present284

the overall framework of data augmentation in our285

work in Figure 1.286

3.3 Zero-shot Data Augmentation287

In this stage, our primary objective is to generate288

a rich dataset for the target domain DT in a zero-289

shot setting. Inspired by previous work in the field290

of image classification in computer vision (Fahes291

et al., 2023), we use only a general description in292

natural language of the target domain to generate293

target domain data. To ensure the generated data294

closely resembles real reviews, we leverage the in-295

context learning capabilities of LLMs. For every296

source domain data, we manually construct k ex-297

Evaluate the data quality based on the
following metric and rate it from 1 to 10.

Instruction

Sentiment
Consistency

Domain
Consistency

Sentence Fluency

LLM

metric

Is the sentiment consistent with the
annotation?

Does the domain match the
{TARGET_DOMAIN}?

How is the overall fluency of the
sentence?

Generated
Data

8

7

9

8 The service at this restaurant is amazing.
Annotation: (service, positive)

Figure 2: The main process of the Rank Model in our
work. We use a large model as the Rank Model, scoring
each piece of generated data from the source domain
based on three metrics.

amples and ultlize the LLM’s extensive corpus to 298

replace them with structurally similar simulated tar- 299

get domain data. Previous work has implemented 300

similar approaches (Yu et al., 2023), primarily re- 301

lying on BERT-based models for replacements and 302

necessitating additional target domain vocabulary. 303

By using LLMs, we effectively reduce dependency 304

on specific vocabulary. Moreover, due to the au- 305

toregressive nature of LLMs, they can dynamically 306

adjust vocabulary and sentence structure during 307

generation, resulting in more natural and diverse 308

target domain data. Through in-context learning 309

with source domain data, the model can generate 310

text that aligns with the style and context of the tar- 311

get domain. To further enhance the diversity of the 312

generated data, we also prompt LLMs to perform 313

reference-free data generation. The examples we 314

used is presented in Appendix G. 315

3.4 Evaluation of Generated Data 316

For existing LLMs, although they excel at data gen- 317

eration, the generated data can sometimes exhibit 318

hallucinations (i.e., content that is inaccurate or not 319

factually correct). Even target domain data gener- 320

ated from source domain data can vary in quality, 321

lacking fluency in expression, which are crucial 322

for the model’s understanding and generation of 323

natural language. To ensure that the generated data 324

effectively supports model training with high qual- 325

ity, we introduce data ranking and filtering steps. 326

In our observations, LLMs tend to replace key- 327

words from the source domain with a single vo- 328

cabulary. To ensure the vocabulary richness of the 329

generated data, our work calculate the Shannon 330

entropy of the sentences as one of the ranking met- 331
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Instruction

LLM

Task Definition：Recognize all aspect terms with their
corresponding sentiment polarity in the given review.

Chain-of-Thought: Output the thinking explanation process
first and extract aspects and sentiments after.

One shot example

In the domain of "restaurants," the
sentence evaluates different aspects of

the dining experience.

The phrase "The price is reasonable"
indicates a positive opinion about the
cost of the meal, suggesting that the
customer feels they are getting good

value for their money. 

The phrase "the service is poor"
reflects a negative opinion about the

quality of service, indicating
dissatisfaction with the staff or the

service provided.

These evaluations provide insight into the
customer's overall experience at the
restaurant, with a positive sentiment

towards the price and a negative
sentiment towards the service.

Annotation：[(price, POS),(service, NEG)]

Input Sentence Annotation

Figure 3: The main process of the Domain-
Contextualized Chain-of-Thought.

rics:332

H(X) = −
∑
w∈X

p(w) log2 p(w) (1)333

To measure the fluency and task relevance of the334

generated data, we adopted the LLM-as-Judge335

framework commonly used in LLM benchmarks336

(Zheng et al., 2023), utilizing an LLM as the rank337

model. After obtaining generated data from the338

previous stage, we first need to remove examples339

that do not meet the required format. Then, we use340

the rank model to score the data quality.341

We selected Sentiment Consistency, Domain342

Consistency, and Sentence Fluency as the scoring343

metrics. For each sentence X, the model outputs344

scores from 1 to 10 for each metric. We use their345

average SAvg as final score of the rank model, de-346

noted as SAvg. The main process of the rank model347

is illustrated in Figure 2.348

Finally, we combine the Shannon entropy and349

the rank model’s score to compute the final score S.350

This score ensures that the generated data is both351

diverse in vocabulary and high in quality. The final352

score is calculated as follows:353

S = α · H −Hmin

Hmax −Hmin
+ β · S − Smin

Smax − Smin
, (2)354

where Hmin and Hmax are the minimum and max- 355

imum Shannon entropy values in the dataset re- 356

spectively. Smin and Smax are the minimum and 357

maximum scores from the rank model in the dataset 358

respectively. α and β are the weights for the two 359

metrics. 360

Based on the aforementioned data ranking, we 361

select the top γ% of the target domain data gener- 362

ated from each source domain as the training data, 363

ultimately mixing the data generated from n source 364

domains. To ensure diversity and authenticity of 365

the data, we also mix the generated data with the 366

source domain data for model training. Analysis of 367

the generated data can be found in Appendix E and 368

Appendix B. 369

3.5 Domain-Contextualized 370

Chain-of-Thought 371

To address the issue of performance instability 372

caused by training on multi-source domain gener- 373

ated data, we propose the Domain-Contextualized 374

Chain-of-Thought Reasoning. This method guides 375

the model to perform step-by-step reasoning during 376

inference, ensuring it can recognize and understand 377

the characteristics and context of the target domain, 378

thereby enhancing its performance in the target 379

domain. 380

Specifically, at the start of the inference, the 381

model first identifies the domain to which the cur- 382

rent data belongs. This step enables the model to 383

adjust its subsequent reasoning process and gen- 384

eration strategy accordingly. Then, based on the 385

domain information, the model generates interme- 386

diate steps through a pre-designed chain of thought. 387

These steps involve reflecting on and understanding 388

domain-specific features, ensuring that the model 389

fully considers the context and characteristics of 390

the target domain during generation. Finally, af- 391

ter going through the chain of thought process, 392

the model produces the final output. This process 393

not only ensures the accuracy and fluency of the 394

generated content but also enhances the model’s 395

sensitivity and adaptability to the target domain. 396

Unlike prior approaches such as Kim et al. that 397

allow the model to perform arbitrary-direction rea- 398

soning, our Domain-Contextualized CoT explicitly 399

models domain-aware reasoning steps (Figure 3, 400

e.g., "Considering the rest domain, the aspect ‘de- 401

liver’ likely relates to..."). This design ensures that 402

the model adapts its reasoning process to domain- 403

specific nuances, whereas previous methods lack 404

explicit mechanisms for domain adaptation. 405
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Table 1: Statistics of the datasets.

Dataset Total Positive Negative Neutral

Devicetrain 1411 908 503 0
Devicetest 697 481 216 0
Laptoptrain 2303 988 861 454
Laptoptest 634 339 130 165
Resttrain 4314 2610 1037 667
Resttest 2289 1524 501 264
Servicetrain 1844 1034 698 112
Servicetest 887 506 320 61

To ensure that the model strictly follows the406

Domain-Contextualized CoT process, we first uti-407

lize LLMs to generate the thinking process for the408

training data. This allows the model to internalize409

domain-specific reasoning patterns and learn the410

prior probability distribution of the generation pro-411

cess, reinforcing its ability to follow structured log-412

ical steps. To ensure that the model strictly follows413

the Domain-Contextualized CoT format, we pro-414

vide a one-shot example as guidance in the prompt.415

This one-shot example is provided in Appendix D.1.416

An illustration of this example is provided in Figure417

3.418

4 Experiments419

4.1 Datasets and Metrics420

In our experiments, to validate the effectiveness421

of our method for cross-domain ABSA tasks, we422

follow previous work and evaluate on four datasets:423

Laptop (L), Restaurant (R), Device (D), and Ser-424

vice (S). The statistics for these four datasets are425

shown in Table 1.426

Among these datasets, Laptop and Restaurant427

are from SemEval (Pontiki et al., 2014, 2015,428

2016). They are two of the most common English429

datasets in ABSA tasks. Device comes from the430

work of Hu and Liu, and includes reviews of dig-431

ital cameras, cellular phones, MP3 players, and432

DVD players. Service is from the work of Toprak433

et al. and mainly contains reviews of online ser-434

vices such as PayPal, eGroups, and eTrade. We435

applied the most commonly used metrics in ABSA436

tasks, Accuracy and Macro-F1. For the extraction437

of (aspect, polarity) tuples, a tuple is considered438

correct only if both components are accurate.439

4.2 Experimental Settings440

In our experiments, we used gpt-4o-mini as the441

model for generating target domain data and as the442

rank model. In the stage of data generation, about 443

20% of our data is generated in reference-free set- 444

tings. The remaining data is generated with refer- 445

ence to the labeled source domain data in a few- 446

shot setting with k = 3. For model training, we 447

adopted LLaMA-3-8b-instruct and Qwen2.5-7B- 448

Instruct as our base model (Grattafiori et al., 2024). 449

We fine-tuned the model for downstream tasks us- 450

ing LoRA, setting the LoRA rank and LoRA al- 451

pha to 32. We optimized the parameters using the 452

Adam algorithm with a learning rate of 1e-4. The 453

model was trained for 10 epochs on 8 NVIDIA 454

RTX 4090 GPUs with 24GB of memory each. For 455

the hyperparameter settings in the data evaluation 456

phase, based on extensive experimentation, we set 457

α = 0.5, β = 0.5 and γ = 0.25. After the model 458

outputs its results, given that the model is case- 459

insensitive, we restored the original casing of each 460

word in the output to ensure complete matching. 461

All data presented in this study are averaged over 462

five runs. Further experimental details can be found 463

in Appendix D. 464

4.3 Baselines 465

To demonstrate the effectiveness of our method in 466

zero-shot settings, we compared our method with 467

the following competitive cross-domain adaptation 468

methods. Since most previous works are unable to 469

perform in a zero-shot setting, for a fair compari- 470

son, we compared our method with some baselines 471

under non-zero-shot settings, and our approach still 472

shows competitive results. 473

The baselines that require target domain data for 474

comparison are as follows: 475

• BERT-UDA (Gong et al., 2020) An unified 476

feature and instance-based domain adaption 477

method. 478

• BERT-CDRG (Yu et al., 2021) An method that 479

generates pseudo-labels for target domain review 480

texts. 481

• BGCA (Yu et al., 2023) A model that leverages 482

a bidirectional generative framework for data 483

augmentation in cross-domain ABSA. We select 484

the label-to-text version of the model proposed 485

in the work. 486

• DA2LM (Yu et al., 2023) An approach based 487

on Domain-Adaptive Language Modeling. We 488

select the GPT version of the model proposed in 489

the work. 490

• RSDA (Wang et al., 2024) A method that refines 491

generated labeled data and synthesizes diverse 492

labeled data. 493
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Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D
Target Domain Needed

BERT-UDA† 47.09 45.46 42.68 33.12 27.89 28.03 33.68 34.77 34.93 32.10
BERT-CDRG† 47.92 49.79 47.64 35.14 38.14 37.22 38.68 33.69 27.46 34.08
BGCA† 56.39 61.69 59.12 43.20 39.76 47.94 45.52 36.40 34.16 36.57
DA2LM∗ 58.64 60.39 58.98 40.44 36.84 35.75 42.91 36.97 41.28 40.28
RSDA∗ 56.36 62.78 59.79 44.84 45.27 48.66 46.85 36.59 36.22 37.19

Zero-shot
BERT-base† 44.66 40.38 40.32 19.48 25.78 30.31 31.44 30.47 27.55 33.96
LLaMA-base 59.99 48.56 56.34 32.04 27.54 38.28 45.52 39.73 42.12 38.22
Qwen-base 51.59 46.18 49.22 37.01 34.50 35.95 43.51 37.35 44.67 40.28
GPT-4o 55.91 49.85 54.37 29.33 26.91 30.09 31.87 34.02 37.32 35.26
ZeroABSA(L) 60.45 48.97 57.49 46.27 43.83 51.22 36.80 38.09 34.08 40.89
ZeroABSA(Q) 52.14 46.75 50.81 49.62 45.92 46.18 37.92 39.21 35.07 41.56

Table 2: Comparison results of different methods for Cross-Domain End-to-End ABSA tasks based on Macro-F1.
The best results are highlighted in bold, while the second-best results are underlined. The notation † and ∗ denote
results from Yu et al. and Wang et al..

The baselines we compared under the zero-shot494

settings are as follows:495

• BERT-base Directly fine-tuned version of bert-496

uncased from Devlin et al. on labeled source497

domain data.498

• LLaMA-base and Qwen-base LLaMA-3-8b-499

instruct and Qwen2.5-7B-Instruct models only500

fine-tuned on the labeled source domain, em-501

ploying the same prompts and training format502

as our method, except for the chain-of-thought503

component.504

• GPT-4o Utilizing one of the most powerful505

LLMs currently available, GPT-4o, to achieve506

cross-domain ABSA. Specifically, we selected507

the gpt-4o-2024-08-06 version and employed508

three randomly chosen labeled source domain509

data points as few-shot examples for inference.510

We are the first group to investigate zero-shot cross-511

domain ABSA. Compared to previous work, our512

approach considers scenarios where target domain513

data is inaccessible, achieving domain transfer in514

zero-shot settings. If our method surpasses previ-515

ous approaches that require target domain data, it516

demonstrates that our method can still ensure ef-517

fectiveness even in the absence of target domain518

corpus.519

4.4 Main Results520

We present the results for the End-to-End ABSA521

and ATE tasks in Table 2 and Table 3, respectively.522

Overall, our method performs exceptionally well523

across both the target domain needed and zero-524

shot baseline settings. Notably, even when com- 525

pared with state-of-the-art methods that require 526

unlabeled target domain data, our method leads in 527

most tasks. For instance, in tasks where the tar- 528

get domain is service, our method surpasses the 529

previous state-of-the-art by 3-4%. 530

Compared to previous methods that require un- 531

labeled target domain data, our approach demon- 532

strates robust effectiveness. Despite the absence of 533

target domain corpus for learning domain-specific 534

features, our data augmentation and prompt tech- 535

niques enable the model to significantly improve its 536

performance in the target domain. Compared to the 537

baselines in the zero-shot setting, our model signifi- 538

cantly outperformed the BERT-base model, indicat- 539

ing that decoder-only models are also suitable for 540

extraction-based tasks like ABSA. When compared 541

with one of the most powerful closed-source LLMs, 542

GPT-4o, our zero-shot approach, using only the 8B 543

base model, surpasses its performance in few-shot 544

settings. However, we observe that the particularly 545

large gains on the service domain arise because, 546

in zero-shot mode, the untrained generator tends 547

to extract a greater number of {aspect, polarity} 548

pairs—boosting recall at the expense of precision, 549

and the service test set itself has relatively sparse 550

annotated aspects. As a result, extra extractions 551

(which on denser domains would count as false 552

positives) still improve overall F1 in the service 553

setting. 554

Experimental results demonstrate that GPT-4o 555

performs well across various ATE tasks. Further- 556
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Methods S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D
Target Domain Needed

BERT-UDA† 56.08 51.91 50.54 34.62 32.49 34.52 46.87 43.98 40.34 38.36
BERT-CDRG† 56.26 60.03 52.71 42.36 47.08 41.85 46.65 39.51 32.60 36.97
BGCA† 63.20 69.53 65.33 45.86 44.85 54.07 57.13 46.15 37.15 38.24
DA2LM∗ 65.78 68.72 63.86 43.41 41.06 38.20 54.55 44.96 44.29 43.24
RSDA∗ 63.69 69.53 66.74 49.82 51.48 54.45 58.15 47.47 38.25 39.12

Zero-shot
BERT-base† 54.29 46.74 44.63 22.31 30.66 33.33 37.02 36.88 32.03 38.06
LLaMA-base 65.12 51.84 59.07 35.92 30.34 39.58 53.09 44.84 45.43 40.22
Qwen-base 61.22 52.54 53.53 39.84 39.38 38.97 49.09 43.76 49.15 41.38
GPT-4o 69.22 64.90 66.69 47.61 45.34 48.30 51.31 54.76 40.48 38.78
ZeroABSA(L) 65.98 53.30 63.82 51.99 50.26 55.43 41.45 44.99 36.78 42.07
ZeroABSA(Q) 70.64 65.72 63.12 52.45 50.80 57.80 43.50 45.62 50.09 45.66

Table 3: Comparison results of different methods for Cross-Domain ATE tasks based on Macro-F1. The best results
are highlighted in bold, while the second-best results are underlined. The notation † and ∗ denote results from Yu
et al. and Wang et al..

more, even with simple adjustments to prompts and557

inference methods, and fine-tuning on the LLaMA558

model, its performance far surpasses that of tradi-559

tional BERT models. This finding indicates that560

leveraging advanced LLMs allows our approach561

to achieve superior results in cross-domain ABSA562

tasks, even in zero-shot settings, significantly im-563

proving performance in the target domain. This564

clearly underscores the potential and advantages of565

LLMs in data augmentation and domain adaptation.566

Despite the significant progress achieved with fine-567

tuning LLaMA and GPT-4o, our approach further568

integrates Hybird Data Augmentation and Domain-569

Contextualized Chain-of-Thought Reasoning, re-570

sulting in even more outstanding performance in571

cross-domain ABSA tasks. More experiment re-572

sults and analysis could be found in Appendix A,573

Appendix B and Appendix C.574

4.5 Ablation Study575

We conducted an ablation study to assess the con-576

tribution of individual components in our zero-shot577

cross-domain ABSA method. Table 4 reports the578

performance of the full model and several variants579

obtained by removing specific components. The580

model parameters in the ablation study remain un-581

changed compared to previous experiments; only582

specific steps and components have been removed.583

Excluding the data ranking module led to a no-584

ticeable drop in performance, which confirms that585

high-quality generated data is essential for effec-586

tive knowledge transfer. When both the data aug-587

mentation and the Domain-Contextualized Chain- 588

of-Thought components are removed, the model 589

achieves the worst results across all metrics. Omit- 590

ting the chain-of-thought reasoning caused a de- 591

cline in F1-score, although its effect on recall was 592

less pronounced. Additional ablation studies can 593

be found in Appendix A. 594

Model Recall Precision F1-score

w/o Data Rank 32.72 48.57 39.11
w/o DA and CoT 24.35 46.84 32.04
w/o DA 36.02 40.01 37.91
w/o CoT 45.77 41.64 43.61
Full 48.69 44.08 46.27

Table 4: Ablation study results of our method. “w/o”
denotes version without the specific component.

5 Conclusion 595

In this work, we introduce a novel zero-shot 596

cross-domain ABSA method that effectively com- 597

bines hybrid data augmentation with Domain- 598

Contextualized Chain-of-Thought, enabling do- 599

main transfer without requiring any target domain 600

data. We generated high-quality target domain 601

data, which was later evaluated and selected for 602

training. The experimental results validate the ef- 603

fectiveness of our method, offering new insights 604

and approaches for advancing cross-domain ABSA 605

research. To the best of our knowledge, our work 606

is the first to explore how to perform cross-domain 607

ABSA without access to any target-domain data. 608
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6 Limitations609

The proposed method relies on data from only four610

domains in the SemEval dataset, which may not611

fully represent the diversity of real-world domains.612

This limits the generalizability of the approach613

to other domains with different linguistic features614

or specific sentiment nuances. Additionally, the615

method’s reliance on LLMs could pose scalability616

and computational challenges in real-world appli-617

cations. The use of synthetic data generated by618

LLMs could unintentionally introduce biases or619

even violate privacy in sensitive domains, such as620

finance or healthcare, if not properly managed.621
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A Additional Experiments 922

A.1 More Comarison with gpt-4o-mini 923

We conducted experiments comparing our model 924

with gpt-4o-mini, which we used in data generation 925

and ranking. Results are presented in Table 11. 926

A.2 More Comparison with BERT-UDA 927

We conducted experiments comparing our model 928

with BERT-UDA trained on augmented data. The 929

results across various domain transfers (source-to- 930

target) are presented in Table 10: 931

The results demonstrate that our model sig- 932

nificantly outperforms BERT-UDA-based models. 933

This improvement can be attributed to our method’s 934

ability to leverage CoT, which enhances perfor- 935

mance when working with augmented CoT-based 936

data. In contrast, simply using augmented CoT data 937

11

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/2023.emnlp-main.44
https://doi.org/10.18653/v1/2023.emnlp-main.44
https://doi.org/10.18653/v1/2023.emnlp-main.44
https://aclanthology.org/2022.coling-1.476
https://aclanthology.org/2022.coling-1.476
https://aclanthology.org/2022.coling-1.476
https://aclanthology.org/2022.coling-1.476
https://aclanthology.org/2022.coling-1.476
https://doi.org/10.18653/v1/2021.findings-acl.421
https://doi.org/10.18653/v1/2021.findings-acl.421
https://doi.org/10.18653/v1/2021.findings-acl.421
https://doi.org/10.18653/v1/2021.findings-acl.421
https://doi.org/10.18653/v1/2021.findings-acl.421
https://doi.org/10.18653/v1/2023.acl-long.81
https://doi.org/10.18653/v1/2023.acl-long.81
https://doi.org/10.18653/v1/2023.acl-long.81
https://doi.org/10.18653/v1/2023.acl-long.81
https://doi.org/10.18653/v1/2023.acl-long.81
https://doi.org/10.1109/TKDE.2021.3075238
https://doi.org/10.1109/TKDE.2021.3075238
https://doi.org/10.1109/TKDE.2021.3075238
https://doi.org/10.1109/TKDE.2021.3075238
https://doi.org/10.1109/TKDE.2021.3075238
https://arxiv.org/abs/2303.18223
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.1609/aaai.v35i16.17719
https://doi.org/10.1609/aaai.v35i16.17719
https://doi.org/10.1609/aaai.v35i16.17719
https://doi.org/10.1609/aaai.v35i16.17719
https://doi.org/10.1609/aaai.v35i16.17719


with BERT-UDA does not fully leverage the advan-938

tages of the CoT structure, resulting in suboptimal939

performance.940

γ ↓, α → 0.1 0.3 0.5 0.7 0.9
5 45.2 48.6 50.1 49.5 46.7
15 48.0 51.5 53.2 52.3 50.0
25 50.9 54.3 57.5 55.4 53.1
35 49.6 52.0 55.0 54.0 51.2
45 47.8 50.5 52.9 51.5 48.9

Table 5: Hyperparameter sensitivity analysis. The com-
bination of λ = 25, α = 0.5, and β = 0.5 yielded the
best performance with a peak score of 57.49.

A.3 Hyperparameter Sensitivity Analysis941

We conducted a sensitivity analysis to evaluate the942

effect of different hyperparameters on performance.943

The results are summarized in Table 5:944

From the analysis, we found that the optimal945

combination of hyperparameters (λ = 25, α = 0.5,946

β = 0.5) yields the best performance, with a peak947

score of 57.49. Further details will be provided in948

the revised manuscript.949

Mix Domain Recall Precision F1-Score
LDR→S 43.27 61.72 50.87
SDR→L 41.45 41.51 41.48
SLR→D 48.08 30.51 37.33
SLD→R 45.42 54.24 49.44

Table 6: Preliminary results on multiple-domain transfer.
For example, SLR→D denotes transfer from Service,
Laptop, and Restaurant domains to the Device domain.

A.4 Multi-Domain Transfer950

We conducted preliminary experiments that ex-951

plored the performance of a multi-domain transfer952

approach. The results of these experiments, shown953

in Table 6, indicate that the multi-domain approach954

yielded an overall F1- score slightly above the av-955

erage of the individual domain scores.956

A.5 Ablation Study without In-Context957

Examples958

In our experiments, for models that cannot be fine-959

tuned on specific domains, such as GPT-4o, we as-960

sess their cross-domain generalization ability by us-961

ing examples from the source domain as in-context962

examples. In order to compare the performance of963

different settings without in-context examples, we964

evaluate GPT-4o and LLaMA3 in a setting where965

they are only prompted with the desired output966

format, without being provided any in-context ex-967

amples as guidance. Table 7 reports the results968

across four domains: Restaurant, Laptop, Device, 969

and Service. For comparison, we include the orig- 970

inal models, as well as those that are fine-tuned 971

with source domain data or provided with few-shot 972

examples. 973

From Table 7, we observe that while the mod- 974

els (LLaMA-no and GPT-4o without source do- 975

main examples) perform reasonably well across 976

the domains, their performance improves when 977

fine-tuning with source domain data or incorporat- 978

ing in-context examples. In particular, our method 979

consistently outperforms all baselines. This indi- 980

cates that our approach, which leverages both data 981

augmentation and domain-contextualized chain-of- 982

thought reasoning, effectively bridges the gap be- 983

tween source and target domains, leading to supe- 984

rior performance in the setting without in-context 985

examples. The setting without in-context exam- 986

ples (ICE) corresponds to directly evaluating the 987

model’s raw performance in each domain. For com- 988

parison, the performance with ICE is computed 989

as the average of the model’s results when using 990

source-domain in-context examples. For example, 991

the result of LLaMA w/ ICE on the Device domain 992

is the average of LLaMA-base’s performance in 993

the R→D and S→D settings, as shown in Table 2. 994

Method Rest Laptop Device Service

LLaMA 52.86 31.09 35.82 36.84
GPT-4o 52.99 26.08 32.75 25.94
LLaMA w/ ICE 54.85 32.59 42.63 40.17
GPT-4o w/ ICE 53.38 32.95 36.29 28.78
Ours 55.64 47.11 37.85 37.49

Table 7: Performance comparison across domains in the
setting without in-context examples.

B Qualitative Error Analysis of 995

LLM-Generated Data 996

Although we employ Shannon entropy and an 997

LLM-as-Judge ranking to filter out low-quality syn- 998

thetic instances, purely quantitative measures may 999

overlook subtle biases or hallucinations. To com- 1000

plement our quantitative analysis, we randomly 1001

sampled 200 examples across all domains and man- 1002

ually categorized the most common error types. 1003

Table 12 summarizes the prevalence of each er- 1004

ror category and provides representative examples. 1005

Overall, 12% of instances contained hallucinated 1006

or domain-irrelevant content (e.g., “The engine per- 1007

formance was outstanding” in a restaurant review), 1008

4% exhibited sentiment mismatches (e.g., labeling 1009
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“The slow service was positive”), and 2% suffered1010

from fluency issues (e.g., “Food was good. But1011

service.”). The full set of annotated examples.1012

C Implementation Complexity and1013

Deployment Efficiency1014

Our proposed framework indeed consists of1015

several interlinked modules (data augmentation,1016

Domain-Contextualized Chain-of-Thought (CoT),1017

and LoRA-based fine-tuning), which can incur1018

nontrivial computational and latency overheads in1019

real-world deployment. In the data augmenta-1020

tion stage, we rely primarily on GPT API calls to1021

generate synthetic training examples, while in the1022

model training stage we adopt LoRA to efficiently1023

fine-tune large language models. To quantify the1024

deployment cost of our CoT component, we con-1025

ducted an ablation without CoT, removing both1026

standard and domain-contextualized CoT from in-1027

ference in Table 4. This simplification yields1028

only a modest performance degradation (∆F1 ≈1029

−2.66 points), indicating that CoT can be omit-1030

ted when latency or cost constraints are stringent.1031

Moreover, we measured the inference latency of1032

Domain-Contextualized CoT on LLaMA-3-8B: en-1033

abling this component increases end-to-end latency1034

by roughly 150% relative to the base model.1035

Source Domain Target-Domain Keyword

Restaurant Online Restaurant Reviews
Device Online Device Reviews
Laptop Online Laptop Reviews
Service Online Service Reviews

Table 8: Mapping from each source domain to its target-
domain keyword used in prompts.

D Implementation Details1036

D.1 One-Shot Example for Thinking Paths1037

Generation1038

To enforce adherence to the Domain-1039

Contextualized CoT format, we incorporate1040

a single illustrative example in the prompt to guide1041

the model’s output. Its sole purpose is to prompt1042

the model to follow the desired output format. For1043

all intermediate CoT generations, we use the same1044

example as guidance, as shown below:1045

Sentence: The price is reasonable al-1046

though the service is poor .1047

Target: [(price, POS),(service, NEG)]1048

Explaination: In the domain of "restau- 1049

rants," the sentence evaluates different 1050

aspects of the dining experience. First, 1051

the phrase "The price is reasonable" in- 1052

dicates a positive opinion about the cost 1053

of the meal, suggesting that the customer 1054

feels they are getting good value for their 1055

money. Second, the phrase "the service 1056

is poor" reflects a negative opinion about 1057

the quality of service, indicating dissatis- 1058

faction with the staff or the service pro- 1059

vided. These evaluations provide insight 1060

into the customer’s overall experience at 1061

the restaurant, with a positive sentiment 1062

towards the price and a negative senti- 1063

ment towards the service. 1064

Generate explaination of the sentence be- 1065

low following the above example. 1066

Sentence:{Sentence} 1067

Target:{Target} 1068

Explaination:... 1069

D.2 Target Domain Information Generation 1070

As noted in Section 3.3, ZeroABSA requires no 1071

target sentences but does need a natural-language 1072

description of the target domain. Concretely, we 1073

use the following prompt template to synthesize 1074

domain-targeted reviews: 1075

Translate a review from the 1076

{source_domain} domain to the 1077

{target_domain} domain. Please 1078

maintain the sentence structure 1079

as much as possible while 1080

replacing the subject of the 1081

description. 1082

For example, if the source domain is “Device” and 1083

the target is “Rest”, we substitute domain-specific 1084

entities (e.g. “battery life” → “food quality”) while 1085

preserving sentiment and syntax. This procedure 1086

generates labeled examples that reflect the new do- 1087

main distribution without any human annotations. 1088

The specific configuration of domain-specific key- 1089

words is shown in Table 8. 1090

D.3 Example Construction with LLM 1091

To generate structurally similar simulated 1092

target-domain data, we first manually construct k 1093

seed examples (e.g. 3 restaurant reviews) in our 1094

source domain. We then prompt the LLM to re- 1095

place both the aspect term and the domain-specific 1096
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context—while preserving the original sentence1097

structure and sentiment polarity. For instance:1098

Device Review: “Finally, Amazon’s free1099

shipping is really getting good; it took1100

only three working days for the player to1101

reach me!”1102

Generated Restaurant Review: “Fi-1103

nally, the restaurant’s free delivery is re-1104

ally getting good; it took only 30 minutes1105

for the food to reach me!”1106

Unlike prior BERT-based methods (Yu et al.,1107

2023), our LLM dynamically adjusts its vocab-1108

ulary and syntax. It therefore produces richer,1109

domain-adaptive samples without requiring an ex-1110

plicit list of target-domain terms. In practice, we1111

generate approximately 1,500 new samples per tar-1112

get domain, striking a balance between diversity1113

and quality. The k = 3 seed examples serve solely1114

as in-context prompts; we maintain the same three1115

prompts for all generations in a given domain to1116

ensure format consistency. Detailed information1117

can be found in Appendix G.1118

D.4 Ablation of LLM-as-Judge1119

While using the same model for both generation1120

and evaluation could introduce bias, we mitigate1121

this risk through two key strategies: iterative refine-1122

ment and rank-based filtering, which assesses vo-1123

cabulary richness, fluency, and domain/sentiment1124

consistency. To further validate our approach, we1125

evaluated the generated restaurant dataset using1126

GPT-4o-mini-all and Gemini-2.5-pro-exp-03-25,1127

more advanced models than the one used for gener-1128

ation. The results showed no significant difference1129

compared to previous evaluations, supporting the1130

reliability of our methodology. Results are shown1131

in Table 9.1132

Table 9: Zero-Shot Evaluation of ZeroABSA (LLaMA)
with Different Judges

Judge S→R L→R D→R

gpt-4o-mini 60.45 48.97 57.49
GPT-o3-mini-all 60.29 49.65 57.22
Gemini-2.5-Pro 59.79 49.16 57.60

E Quantifying Domain Alignment1133

To validate that our contextualized CoT induces1134

domain-specific reasoning, we compare the as-1135

pect–polarity distribution of generated data versus1136

both source and real target data using KL diver- 1137

gence: 1138

DKL

(
pgen ∥ preal

)
and DKL

(
psrc ∥ preal

)
. 1139

We find DKL(pgen ∥ preal) = 17.038, which 1140

is lower than DKL(psrc ∥ preal) = 17.418 1141

(∆ KL = 0.38). Although absolute values re- 1142

main high—reflecting the inherent complexity of 1143

cross-domain aspect distributions—the relative re- 1144

duction demonstrates that our hybrid augmentation 1145

better bridges the gap to the target distribution. For 1146

instance, in the device → restaurant task, gener- 1147

ated reviews emphasize “service speed” and “food 1148

freshness” (mirroring real target examples) rather 1149

than “battery life,” confirming that the model inter- 1150

nalizes domain-specific CoT patterns during gener- 1151

ation. 1152

F Future Work 1153

While our current focus is on extracting (aspect, 1154

polarity) pairs for fair comparison with prior 1155

cross-domain ABSA work, our LLM-based frame- 1156

work can readily extend to extract (aspect, opin- 1157

ion, polarity) triplets via prompt modifications. In 1158

addition, exploring output formats that are better 1159

aligned with the nature of extraction tasks may 1160

further improve performance—for instance, by em- 1161

ploying techniques from controllable text gener- 1162

ation. We leave a comprehensive study of this 1163

extension to future work. 1164

G Domain-Transfer Examples 1165

• device 1166
– laptop 1167

1. Query: “the high resolution screen is easy to read 1168
and has a backlight.” A: “The high resolution dis- 1169
play is easy to read and has a backlight.” 1170

2. Query: “i received the apex ad-2600 before i ex- 1171
pected.” A: “I received the laptop before I expected.” 1172

3. Query: “the mms technology is very well integrated 1173
with this phone, which you will enjoy.” A: “The 1174
MMS software is very well integrated with this lap- 1175
top, which you will enjoy.” 1176

– rest 1177
1. Query: “the high resolution screen is easy to read 1178

and has a backlight.” A: “The menu is easy to read 1179
and has a clear layout.” 1180

2. Query: “i received the apex ad-2600 before i ex- 1181
pected.” A: “I received my reservation confirmation 1182
before I expected.” 1183

3. Query: “the mms technology is very well integrated 1184
with this phone, which you will enjoy.” A: “The 1185
reservation system is very well integrated with this 1186
restaurant, which you will enjoy.” 1187

– service 1188
1. Query: “the high resolution screen is easy to read 1189

and has a backlight.” A: “The user interface is easy 1190
to read and has a clear design.” 1191
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Method S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D
UDA 47.09 45.46 42.68 33.12 27.89 28.03 33.68 34.77 34.93 32.10
UDA-0shot 44.89 43.12 41.34 34.48 29.56 26.31 35.69 33.25 32.92 30.77
ZeroABSA (L) 60.45 48.97 57.49 46.27 43.83 51.22 36.80 38.09 34.08 40.89

Table 10: Comparison of our model with BERT-UDA on domain transfer tasks. Our model significantly outperforms
BERT-UDA.

Method S→R L→R D→R R→S L→S D→S R→L S→L R→D S→D
GPT-4o-mini 52.12 46.91 52.73 27.83 25.63 28.14 28.74 32.18 34.26 33.60
GPT-4o 55.91 49.85 54.37 29.33 26.91 30.09 31.87 34.02 37.32 35.26
ZeroABSA (L) 60.45 48.97 57.49 46.27 43.83 51.22 36.80 38.09 34.08 40.89

Table 11: Comparison of GPT-4o variants and ZeroABSA (Large) on domain transfer tasks. ZeroABSA-L achieves
the best performance across most transfer directions.

2. Query: “i received the apex ad-2600 before i ex-1192
pected.” A: “I received the service request confirma-1193
tion before I expected.”1194

3. Query: “the mms technology is very well integrated1195
with this phone, which you will enjoy.” A: “The1196
notification system is very well integrated with this1197
service, which you will enjoy.”1198

• laptop1199
– laptop (same as device→laptop)1200
– rest (same as device→rest)1201
– service(same as device→service)1202
– device1203

1. Query: “I love the operating system and the1204
preloaded software.” A: “I love the firmware and1205
the preloaded applications.”1206

2. Query: “And these are some reasons you should get1207
a macbook pro.” A: “And these are some reasons1208
you should get this device.”1209

3. Query: “I had something else go wrong. . . and1210
buy the warranty.” A: “I had something else go1211
wrong. . . and buy the service plan.”1212

• rest1213
– laptop1214

1. Query: “After really enjoying ourselves at the1215
bar. . . had dinner.” A: “After really enjoying our-1216
selves at the keyboard. . . continued working.”1217

2. Query: “Nice Family owned traditional restaurant.”1218
A: “Nice family-owned traditional laptop.”1219

3. Query: “The Dim Sum was so-so, but not spec-1220
tacular.” A: “The battery life was so-so, but not1221
spectacular.”1222

– device1223
1. Query: “After really enjoying ourselves at the1224

bar. . . had dinner.” A: “After really enjoying our-1225
selves with the speakers. . . continued using it.”1226

2. Query: “Nice Family owned traditional restaurant.”1227
A: “Nice family-owned traditional device.”1228

3. Query: “The Dim Sum was so-so, but not spec-1229
tacular.” A: “The sound quality was so-so, but not1230
spectacular.”1231

– service1232
1. Query: “After really enjoying ourselves at the1233

bar. . . had dinner.” A: “After really enjoying our-1234
selves at the reception. . . received the service.”1235

2. Query: “Nice Family owned traditional restaurant.”1236
A: “Nice family-owned traditional service.”1237

3. Query: “The Dim Sum was so-so, but not spectac-1238
ular.” A: “The customer support was so-so, but not1239

spectacular.” 1240
• service 1241

– laptop 1242
1. Query: “I love the idea of this site. . . MapQuest.” A: 1243

“I love the idea of this software. . . the latest updates.” 1244
2. Query: “I want to write about my inside view of 1245

E*Trade.” A: “I want to write about my inside view 1246
of this laptop model.” 1247

3. Query: “Egroups would be 5 stars to me.” A: “This 1248
laptop would be 5 stars to me.” 1249

– device 1250
1. Query: “I love the idea of this site. . . MapQuest.” A: 1251

“I love the idea of this device. . . its performance.” 1252
2. Query: “I want to write about my inside view of 1253

E*Trade.” A: “I want to write about my inside view 1254
of this gadget.” 1255

3. Query: “Egroups would be 5 stars to me.” A: “This 1256
device would be 5 stars to me.” 1257

– rest 1258
1. Query: “I love the idea of this site. . . MapQuest.” A: 1259

“I love the idea of this restaurant. . . the service.” 1260
2. Query: “I want to write about my inside view of 1261

E*Trade.” A: “I want to write about my inside view 1262
of this dining experience.” 1263

3. Query: “Egroups would be 5 stars to me.” A: “This 1264
restaurant would be 5 stars to me.” 1265
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Table 12: Manual error analysis on 200 randomly sampled LLM-generated instances.

Error Category Frequency Representative Example

Hallucinated content or
domain irrelevance

12% “The engine performance was outstanding” in
a restaurant review.

Sentiment mismatch 4% Labeling “The slow service was positive.”
Fluency issues 2% Fragmented syntax: “Food was good. But

service.”
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