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Abstract

Open-set Domain Adaptation (OSDA) aims to adapt a model from a labeled source domain
to an unlabeled target domain, where novel classes — also referred to as target-private un-
known classes — are present. Source-free Open-set Domain Adaptation (SF-OSDA) meth-
ods address OSDA without accessing labeled source data, making them particularly relevant
under privacy constraints. However, SF-OSDA presents significant challenges due to distri-
bution shifts and the introduction of novel classes. Existing SF-OSDA methods typically
rely on thresholding the prediction entropy of a sample to identify it as either a known or un-
known class but fail to explicitly learn discriminative features for the target-private unknown
classes. We propose Recall and Refine (RRDA), a novel SF-OSDA framework designed to
address these limitations by explicitly learning features for target-private unknown classes.
RRDA employs a two-step process. First, we enhance the model’s capacity to recognize
unknown classes by training a target classifier with an additional decision boundary, guided
by synthetic samples generated from target domain features. This enables the classifier to
effectively separate known and unknown classes. In the second step, we adapt the entire
model to the target domain, addressing both domain shifts and improving generalization
to unknown classes. Any off-the-shelf source-free domain adaptation method (e.g., SHOT,
AaD) can be seamlessly integrated into our framework at this stage. Extensive experiments
on three benchmark datasets demonstrate that RRDA significantly outperforms existing
SF-OSDA and OSDA methods. The source code will be made available.

1 Introduction

Unsupervised Domain Adaptation (UDA) (Ben-David et al., 2010; Ganin & Lempitsky, 2015; Long et al.,
2015) adapts a model from a labeled source domain to an unlabeled target domain (Oza et al., 2023), effec-
tively addressing the issue of domain shift where the source and target distributions differ. UDA strategies
typically align feature distributions between domains using metric learning techniques (Long et al., 2015;
Kang et al., 2019) or adversarial training (Ganin & Lempitsky, 2015; Tzeng et al., 2017; Luo et al., 2019),
and more recently, self-training approaches (Sun et al., 2022; Hoyer et al., 2023; Zhu et al., 2023). Despite
their success, most current domain adaptation approaches operate under the assumption of a shared label set
between the source and target domains (i.e., Cs = Ct), referred to as Closed-set Domain Adaptation (Saenko
et al., 2010). However, this assumption is often impractical in real-world scenarios.

In contrast, Open-set Domain Adaptation (OSDA) extends the target label space beyond that of the source
domain (i.e., Cs ⊂ Ct) (Saito et al., 2018; Liu et al., 2019), thereby adding complexity to the DA task.
OSDA aims to align target samples from known classes with those from the source domain while effectively
identifying target samples belonging to categories not observed in the source domain, referred to as unknown
classes (Panareda Busto & Gall, 2017; Bucci et al., 2020; Jang et al., 2022). Various criteria based on
instance-level predictions have been proposed, including entropy-based (Feng et al., 2021; Saito et al., 2020)
and confidence-based (Saito & Saenko, 2021; Fu et al., 2020) methods.

Additionally, privacy and legal considerations increasingly limit access to labeled source data for adaptation
purposes. To address this, source-free adaptation methods (Fang et al., 2024) have emerged, enabling
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adaptation without reliance on labeled source data (Kim et al., 2021; Kundu et al., 2020a; Li et al., 2020). In
this paper, we focus on Source-free Open-set Domain Adaptation (SF-OSDA), where only a pre-trained source
model is available for knowledge transfer, without access to labeled source data. Although some Source-
free Domain Adaptation (SF-DA) methods have demonstrated effectiveness in addressing SF-OSDA for
classification tasks (Liang et al., 2020; Yang et al., 2022; Wan et al., 2024), semantic segmentation (Choe et al.,
2024), and graph applications (Wang et al., 2024b), they primarily focus on the semantics of known classes
in the source domain, often overlooking the crucial aspect of novel-class semantics. These methods focus on
segregating target samples with low entropy, categorizing them as known classes, and subsequently optimizing
specific objectives such as entropy minimization or clustering. In this process, data points associated with
known classes are prioritized, while those with high entropy are typically excluded from training, leading to
a semantic disparity between the known and unknown classes.

To effectively adapt a pre-trained source model to a target domain facing both category and distribution
shifts, we propose Recall and Refine for Domain Adaptation (RRDA) for robust SF-OSDA. RRDA employs
a two-step strategy. First, we propose to leverage the semantics of the unknown classes by introducing a
novel target classifier with K + K ′ decision boundaries. These boundaries extend the K classes from the
source domain with K ′ additional classes for the unknown categories. To achieve this, synthetic samples
are generated in the feature space from target domain features. These synthetic points are optimized to
exhibit low entropy for known classes and high entropy for unknown classes, which are then clustered into
K ′ categories. The synthetic data are used to refine the decision boundaries of the source classifier, enabling
the target classifier to accommodate the unknown classes. In the second step, any off-the-shelf source-free
domain adaptation method (e.g., SHOT (Liang et al., 2020), AaD (Yang et al., 2022)) can be integrated
into our framework to adapt the entire model to the target domain. RRDA directly learns to classify target
unknown classes. The framework introduces K ′ as a hyper-parameter, which we set to K ′ = K for simplicity.
Sensitivity analysis shows that performance improves with higher values of K ′, though results remain robust
across a range of settings. Extensive experiments on three SF-OSDA benchmark datasets demonstrate the
effectiveness of our approach, significantly outperforming existing methods.

2 Related Work

Unsupervised Domain Adaptation (UDA) aims to adapt a model originally trained on a labeled source
domain to perform effectively in an unlabeled target domain. This adaptation process assumes access to
data from both the source and target domains during training (Oza et al., 2023). UDA strategies often align
feature distributions between domains using metric learning techniques (Long et al., 2015; Kang et al., 2019;
Nejjar et al., 2023) or adversarial training across various spaces, including image input space (Murez et al.,
2018; Pizzati et al., 2020), feature space (Ganin & Lempitsky, 2015), and output space (Luo et al., 2019; Vu
et al., 2019). Additionally, various techniques incorporate pseudo-labeling or self-training algorithms (Sun
et al., 2022; Dong et al., 2023; Yue et al., 2024), which generate pseudo-labels for unlabeled samples in the
target domain. However, existing approaches assume that label spaces are identical across both domains,
limiting their applicability in real-world scenarios.

Open-set Domain Adaptation (OSDA) addresses scenarios where the target domain may contain classes
not present in the source domain (Panareda Busto & Gall, 2017; Dong et al., 2024a;b; Li et al., 2021).
Various approaches have been proposed to tackle this challenge, including assigning target domain images to
source categories while discarding unrelated target domain images (Panareda Busto & Gall, 2017), and using
adversarial training to separate unknown target samples (Saito et al., 2018; Jang et al., 2022). Separate
to Adapt (STA) approach (Liu et al., 2019) progressively separates unknown and known class samples
using a coarse-to-fine weighting mechanism and proposes evaluating OSDA on diverse levels of openness.
Rotation-based Open Set (ROS) (Bucci et al., 2020) explores the use of self-supervised tasks such as rotation
recognition for unknown class detection. (Jing et al., 2021) project features to a hyperspherical latent space
to reject known samples based on angular distance. Adjustment and Alignment for Unbiased Open Set
Domain Adaptation (ANNA) (Li et al., 2023) addresses semantic-level bias in OSDA by designing Front-
Door Adjustment and Decoupled Causal Alignment modules. However, these approaches all assume the
availability of labeled source data, which can pose challenges due to privacy concerns in real applications.
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Source-free Domain Adaptation (SFDA) leverages only a source-trained model and unlabeled tar-
get data for adaptation to the target domain. SFDA approaches can be categorized into data-based and
model-based methods (Yu et al., 2023). One of the data-driven methods, SHOT, was introduced by Liang
et al. (Liang et al., 2020). It adapts a pre-trained source model via information maximization with self-
supervised pseudo-labeling to implicitly align target domain representations to the source hypothesis. Build-
ing on this approach, subsequent works(Chu et al., 2022; Lee et al., 2022; Qu et al., 2022) refine the adaptation
through self-training techniques. Other works explore different training procedures. For example, historical
Contrastive Learning (HCL) (Huang et al., 2021) compensates for the absence of source data by leveraging
historical models and contrasting current and historical embeddings of target samples. Some methods (Yang
et al., 2021; 2022) enforce consistency between local neighbors by considering local feature density, with
Attract and Disperse (AaD) (Yang et al., 2022) treating SFDA as an unsupervised clustering problem. Ad-
ditionally, Zhang et al. (2023) explore leveraging source model classifier weights as class prototypes to embed
class relationships into a similarity measure for a target sample.

Source-free Open-set Domain Adaptation (SF-OSDA) extends SFDA to scenarios where the target
domain contains novel classes not present in the source domain. While methods like SHOT (Liang et al.,
2020), AaD (Yang et al., 2022), and Uncertainty-guided Source-free Domain Adaptation (U-SFAN) (Roy
et al., 2022) have been adapted for SF-OSDA, they primarily focus on the known class semantics in the
source domain, which can lead to suboptimal handling of target-private unknown classes. Universal Domain
Adaptation (UniDA) aims to handle domain shifts and label set differences between source and target
domains, encompassing open, partial, and open-partial set scenarios (Liang et al., 2021; Qu et al., 2023;
2024). Recent SF-UniDA methods proposed one-vs-all clustering approaches (Qu et al., 2023) and subspace
decomposition (Qu et al., 2024) to separate and identify common and private target classes in a source-free
setup. Similarly, Progressive Graph Learning (Luo et al., 2023) decomposes the target hypothesis space into
shared and unknown subspaces for SF-OSDA. However, current methods either require specific training for
the source model to incorporate the unknown classes (Kundu et al., 2020b;c), which is usually impractical, or
rely on thresholding a metric to distinguish known classes from unknown ones during training and inference,
making the prediction sensitive to different thresholds.

3 Methodology

3.1 Preliminary

For SF-OSDA, we are given a source pre-trained model fs
θ and an unlabeled target domain with nt samples,

denoted as Dt = {(xt
i)}

nt
i=1, where xt

i ∈ X ⊂ RX . The target domain follows a distinct data distribution
(P t ̸= P s) from the source domain, reflecting both distribution and label shifts. Let Cs and Ct ⊂ Y represent
the label sets for the source and target domains, respectively, where Cs ⊂ Ct. Both domains share K common
classes referred to as known classes (Ct

k = Cs). Additionally, the target domain includes target-private novel
classes, jointly considered as a single unknown class (Ct

unk = Ct \ Cs).

The primary objective of SF-OSDA is to classify both unknown and known classes, relying exclusively on
the target domain data and a pre-trained source model. The pre-trained model can be decomposed as
fs

θ = hs
θ ◦ gs

θ, where hs
θ : RX → RD is a feature extractor and gs

θ : RD → RK is the source classifier. Unlike
previous works, which freeze the source classifier (e.g., SHOT) during adaptation, we propose training a new
target classifier gt

θ to explicitly account for target-private unknown classes.

One of the challenges in open-set scenarios is the ability to distinguish known from unknown classes in the
target domain. Different approaches have been proposed for distinguishing between known and unknown
classes, including hand-crafted thresholding criteria and clustering strategies. However, paradigms such as
vendor-to-client (Kundu et al., 2020c) are more effective, as they incorporate an auxiliary out-of-distribution
classifier during source training, enabling better handling of unknown classes in the target domain.

In this paper, we propose a novel approach to address this limitation by adapting the source classifier post
hoc to include new decision boundaries for unknown classes. Our method enables the seamless adaptation of
any off-the-shelf source pre-trained model to a target domain, even in the presence of novel classes. Motivated
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(1) Source Domain Pre-training

Source Domain

Target Domain

Unlabelled target domain (known

and unknown classes)

Synthetic data points

(2) Target adapation

(b) Optimisation of synthetic points to show
low/high entropy

(a) Projected Target feature on the source
classifier

(c) Train a new target classifier with the synthetic
points

Weight initlization

Figure 1: Overview of RRDA for Source-free Open-set Adaptation. Unlike conventional methods that
overlook unknown class semantics, RRDA explicitly incorporates this information by generating synthetic
points for both known and unknown classes from projected target features, enabling the training of a new
target classifier that captures the semantics of all classes. The adaptation is then achieved using standard
closed-set domain adaptation methods.

by the idea that learning from unknown class samples can improve performance in open-set scenarios, our
objective is to simplify adaptation and eliminate the dependency on threshold-based methods during inference.

3.2 RRDA

Our proposed Recall and Refine framework for SF-OSDA consists of three main steps:

1. Synthetic Data Generation: Referring to step (b) in Figure 1, synthetic feature points are gen-
erated for both known and unknown classes. This involves optimizing target feature representations
using entropy objectives.

2. Target Classifier Training: Referring to step (c) in Figure 1, the synthetic feature points are
used to train a new target classifier gt

θ with extended decision boundaries to accommodate unknown
classes.

3. Target Domain Adaptation: The entire model is adapted using any off-the-shelf source-free
domain adaptation methods (e.g., SHOT, AaD) on target domain data.

This allows the model to (1) learn the semantics of both known and unknown classes in the target domain,
(2) treat OSDA as a simple closed-set scenario, and (3) directly output predictions for unknown classes.

3.2.1 Synthetic Data Generation.

The first step of our proposed approach involves generating synthetic features for both known and unknown
classes using the source classifier gs

θ. Specifically, we optimize the target feature representation zt = hs
θ(xt)

to generate synthetic samples that exhibit low entropy for known classes and high entropy for the unknown
class. We denote these optimized synthetic features as z∗t

k and z∗t
unk. The unknown features are then clustered

in K ′ classes, and a new target classifier gt
θ is introduced with K + K ′ classes. In this section, we describe

the process for obtaining feature representations for both known and unknown classes. We use standard
gradient descent optimization to generate the desired feature representations.

Synthetic Unknown Classes Generation: To effectively identify points near the source classifier’s deci-
sion boundary, we aim to find z∗t

unk that maximizes entropy while ensuring diverse feature representations,
thereby reducing the risk of collapsing to a single-point representation. To prevent feature collapse, we
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introduce a variance regularization term in the form of a hinge function applied to the standard deviation of
features across the batch dimension. Specifically, we initialize the optimization with a noisy version of the
original features zt. This process is formulated as follows:

min
zt

−H(σ(gs
θ(zt))) + λ ·max(0, 1−

√
Var(zt)), (1)

where H(p) = −
∑K

k=1 pk log(pk) represents the entropy, and σ is the softmax activation function, and λ
was set to 1 for all the experiments. After optimization, only the points satisfying H(gs

θ(z)) > 0.75 · log(K)
(see Ablation section for threshold discussion) are considered as z∗t

unk. The selected features z∗t
unk are then

clustered into K ′ unknown classes using K-means. Each cluster is assigned a pseudo-label corresponding
to a new class index, ŷ∗t

unk ∈ {K + 1, ..., K + K ′}, representing the specific unknown class assigned to the
synthetic features. These synthetic features and their associated pseudo-labels (z∗t

unk, ŷ∗t
unk) will be used

in the subsequent training of the target classifier. This approach is motivated by the observation in the
literature (Lampert et al., 2009) that it is possible to generate meaningful semantics for novel classes using
known classes.

Synthetic Known Classes Generation: A similar optimization approach is employed to generate syn-
thetic data points for the known classes. The optimization is performed iteratively K times, once for each
known class k (where k ∈ [1, ..., K]). The objective is to minimize the cross-entropy for each class directly
from zt. The optimization problem for generating a sample for class k is defined as:

min
zt

LCE(gs
θ(zt), Ik) + λ ·max(0, 1−

√
Var(zt)), (2)

where Ik is the identity function for the k-th class (i.e., a one-hot vector), and λ controls the regularization
term, set to 1 in all experiments. After optimization, only the points satisfying LCE(gs

θ(z), Ik) < 0.25·log(K)
(see Ablation section for threshold discussion) are considered as z∗t

k . Each selected synthetic feature z∗t
k is

assigned the pseudo-label ŷ∗t
k = k, forming the pairs (z∗t

k ,ŷ∗t
k ). These synthetic data points and their

corresponding pseudo-labels are then used to train the target classifier. By iteratively generating feature
points for each known class, our method enhances the decision boundaries without requiring access to the
original source data or labels.
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(a) Unlabeled target domain pro-
jected onto the decision boundary
of the source classifier.
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(c) Unlabeled target domain pro-
jected onto the new decision
boundary of the target classifier.

Figure 2: Visualization of the synthetic data generation process and the resulting target classifier boundary
on a toy example with K = K ′ = 3 classes.

3.2.2 Target Classifier Training.

In the second step, we introduce a new target classifier gt
θ with K + K ′ classes, where K is the number

of known classes and K ′ is the number of unknown classes. The weights for the known classes gt
θ[1:K]

are
initialized using the source classifier’s weights gs

θ, while the weights for the unknown classes gt
θ[K+1:K+K′]

are
randomly initialized. The target classifier gt

θ is trained using the synthetic feature-label pairs for the known
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classes (z∗t
k ,ŷ∗t

k ) for k ∈ {1, ..., K}, and the unknown classes (z∗t
unk, ŷ∗t

unk). The supervised training objective
is defined as:

min
θ

LCE(gt
θ(z∗t), ŷ∗t), (3)

where z∗t represents the combined synthetic features for both known and unknown classes, and ŷ∗t represents
their corresponding labels. The results of the previous steps, including the refined decision boundaries
achieved by RRDA, are illustrated in Figure 2.

3.2.3 Target Domain Adaptation.

Any source-free unsupervised domain adaptation method (originally designed for closed-set scenarios) can
be integrated into our approach to address open-set scenarios, provided it incorporates a diversity loss or a
similar mechanism to facilitate self-learning of unknown classes. To empirically validate this hypothesis, we
consider SHOT (Liang et al., 2020) and AaD (Yang et al., 2022), using their respective training objectives
for adaptation. SHOT (Liang et al., 2020) employs information maximization and self-supervised pseudo-
labeling to adapt the source model to the target domain. Its objective function can be expressed as:

Lshot = −λent

nt

nt∑
i=1

K+K′∑
k=1

pk,i log pk,i + λdiv ·
K+K′∑

k=1
p̄k log p̄k + λps · Lpseudo, (4)

where p̄k = 1
nt

∑nt

i=1 pk(xi; θ), and Lpseudo is the pseudo-labeling loss function from Liang et al. (2020).
During adaptation, only the feature encoder is updated while the classifier remains frozen. AaD (Yang et al.,
2022) leverages local consistency and global dispersion. The objective function for feature i is formulated as:

LAaD,i = −
∑
j∈Ci

pT
i pj + λ

∑
m∈Bi

pT
i pm, (5)

where Ci represents the local neighborhood of feature i and Bi is the mini-batch feature not in Ci. Unlike
SHOT, AaD updates the entire model weights during adaptation.

4 Experiments

4.1 Experimental Setup

Datasets: Office-Home (Venkateswara et al., 2017) comprises 65 labeled image categories from four
distinct domains: Art (Ar), Clipart (Cl), Product (Pr), and Real World (Rw). We designate the first 25
alphabetically ordered categories as known classes, with the remaining 40 as unknown. Office-31 (Saenko
et al., 2010) consists of 31 classes across three domains: Amazon (A), Dslr (D), and Webcam (W). We assign
the first 10 as known and the last 10 classes as unknown. VisDA (Peng et al., 2017) have 12 categories across
two domains: Real (R) and Synthetic (S). The first 6 classes are categorized as known and the remaining 6
as unknown.

Evaluation Metrics: To assess model performance, we adopt standard evaluation metrics widely used
in previous OSDA studies (Bucci et al., 2020; Liu et al., 2019; Li et al., 2023). The Harmonic Open-set
(HOS) accuracy balances performance on known and unknown classes and can be calculated as HOS =
2×OS∗×UNK

OS∗+UNK , where OS∗ represents the accuracy of known classes, and UNK denotes the accuracy of
unknown classes. The HOS metric provides a comprehensive measure, by equally weighting the model’s
ability to classify known classes and detect unknown classes.

Implementation Details: All experiments are conducted on a single A100 GPU using PyTorch. For
synthetic data generation, we employ the Adam optimizer with a learning rate of 0.001 for 1000 steps, for
both known (z∗t

k ) and unknown (z∗t
unk) classes. In all main experiments, we set K ′ = K. To maintain class

balance, we cap the sample size at 1000 for known classes in Office-Home and Office-31, and 10, 000 for
VisDA. The target classifier is trained for 50 epochs using SGD with a learning rate of 0.01, momentum of
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0.9, weight decay of 0.001, and a fixed batch size of 128. During target model adaptation, we use SGD with
momentum 0.9, a batch size of 64, and train for 50 epochs. The learning rate is set to 0.001 for Office-31
and Office-Home, and 0.0001 for VisDA, when using Resnet-50 (He et al., 2016) as the backbone. When
using ViT-B (Wu et al., 2020) as the backbone, we set the learning rate to 0.0001 for all experiments. For
SHOT, we freeze the target classifier and train only the feature extractor and backbone. For AaD, all model
parameters are trained, with the feature extractor’s learning rate set to 10 times lower. During inference,
samples belonging to the new K ′ classes are considered unknown target samples. λps was set to 0.1, 0.3,
and 0.4 for Office-Home, Office-31, and VisDA respectively. The hyper-parameters λdiv and λ were set to 1
and λent was set to 0.5 in all our experiments.

During inference, samples assigned to any of the new K ′ classes are treated as unknown target samples.
Following the standard open-set protocol, predictions in the range [1, K] correspond to known classes, while
predictions in [K + 1, K + K ′] are aggregated into a single K + 1 class, representing the unknown class.

Baselines: We compare our method against open-set domain adaptation approaches, including both non-
source-free and source-free methods. The non-source-free methods include OSBP (Saito et al., 2018), CMU
(Fu et al., 2020), STA (Liu et al., 2019), DANCE (Saito et al., 2020), GATE (Chen et al., 2022), ANNA (Li
et al., 2023), and OSLPP (Wang et al., 2024a). For source-free methods, we consider UMAD (Liang et al.,
2021), GLC (Qu et al., 2023), SF-PGL (Luo et al., 2023), and LEAD (Qu et al., 2024).

4.2 Experimental Results

From Table 6 to 3, we compare our method against state-of-the-art (SOTA) OSDA methods in both source-
free and non-source-free setups. We include non-SF methods to provide a comprehensive performance bench-
mark, despite our focus on SF scenarios. We use RRDA alongside AaD and SHOT (vanilla methods for
closed-set scenarios), as well as their open-set variants denoted as AaD-O and SHOT-O that rely on entropy-
thresholding during training and inference. Results for comparison methods are sourced from (Qu et al.,
2024; Li et al., 2023), and the mean HOS is reported.

Office-31. Table 6 presents results on the Office-31 dataset, where RRDA demonstrates significant im-
provements over threshold-based methods. AaD+RRDA achieves an average HOS of 94.4%, which is an
8.0% increase over AaD-O. Similarly, SHOT+RRDA reaches 93.8%, representing a 5.6% improvement over
SHOT-O. These results surpass all compared source-free and non-source-free SOTA methods.

Table 1: HOS (%) results on Office-31 (ResNet-50). SF denotes source-free methods. AaD-O and SHOT-O
are the adapted open-set methods of AaD and SHOT. RRDA uses standard AaD and SHOT versions.

Methods SF Office-31
A2D A2W D2A D2W W2A W2D Avg

CMU ✗ 52.6 55.7 76.5 75.9 65.8 64.7 65.2
DANCE ✗ 84.9 78.8 79.1 78.8 68.3 78.8 79.8
OSLPP ✗ 91.5 89.0 79.3 92.3 78.7 9..6 87.4
GATE ✗ 88.4 86.5 84.2 95.0 86.1 96.7 89.5
ANNA ✗ 83.8 85.5 82.5 99.5 81.6 98.4 88.6
Source-only ✓ 78.2 72.1 44.2 82.2 52.1 88.8 69.6
UMAD ✓ 88.5 84.4 86.8 95.0 88.2 95.9 89.8
LEAD ✓ 84.9 85.1 90.9 94.8 90.3 96.5 90.3
GLC ✓ 82.6 74.6 92.6 96.0 91.8 96.1 89.0
AaD-O ✓ 82.3 79.0 84.3 93.1 84.8 95.0 86.4
AaD + RRDA ✓ 91.1 94.3 94.1 96.6 94.0 96.2 94.4

+8.8 +15.3 +9.8 +3.5 +9.2 +1.2 +8.0
SHOT-O ✓ 89.5 83.0 85.9 91.4 84.0 95.2 88.2
SHOT+ RRDA ✓ 90.0 92.2 92.6 98.2 91.6 98.2 93.8

+0.5 +9.2 +6.7 +6.8 +7.6 +3.0 +5.6
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Office-Home. On the Office-Home dataset (Table 2), RRDA consistently enhances the performance of
both AaD-O and SHOT-O across most domain adaptation tasks. AaD+RRDA and SHOT+RRDA show
average HOS improvements of +2.8% and +8.1% respectively. SHOT+RRDA achieves a competitive 70.0%
average HOS, outperforming most methods, including both source-free and non-source-free approaches, while
falling just slightly short of ANNA a non-source-free adaptation method. A similar observation can be made
when using ViT as a backbone, where RRDA consistently improves previous methods AaD+RRDA and
SHOT+RRDA show average HOS improvements of +7.3% and +2.7% respectively, and surpass the other
baselines.

Table 2: HOS (%) results on Office-Home (ResNet-50 and ViT). |Cs| = 25, |Ct| = 65. SF denotes source-free
methods.

Methods SF Office-Home
Ar2Cl Ar2Pr Ar2Rw Cl2Ar Cl2Pr Cl2Rw Pr2Ar Pr2Cl Pr2Rw Rw2Ar Rw2Cl Rw2Pr Avg

CMU ✗ 55.0 57.0 59.0 59.3 58.2 60.6 59.2 51.3 61.2 61.9 53.5 55.3 57.6

R
es

N
et

-5
0

DANCE ✗ 6.5 9.0 9.9 20.4 10.1 9.2 28.1 15.8 12.6 14.2 7.9 13.7 12.9
OSLPP ✗ 61.0 72.8 74.3 60.9 66.9 70.4 63.6 59.3 74.0 67.2 59.0 74.4 67.0
GATE ✗ 63.8 70.5 75.8 66.4 67.9 71.7 67.3 61.3 76.0 70.4 61.8 75.4 69.0
ANNA ✗ 69.0 73.7 76.8 64.7 68.6 73.0 66.5 63.1 76.6 71.3 65.7 78.7 70.7
Source-only ✓ 46.1 63.3 72.9 42.8 54.0 58.7 47.8 36.1 66.2 60.8 45.3 68.2 55.2
UMAD ✓ 59.2 71.8 76.6 63.5 69.0 71.9 62.5 54.6 72.8 66.5 57.9 70.7 66.4
LEAD ✓ 60.7 70.8 76.5 61.0 68.6 70.8 65.3 59.8 74.2 64.8 57.7 75.6 67.2
GLC ✓ 65.3 74.2 79.0 60.4 71.6 74.7 63.7 63.2 75.8 67.1 64.3 77.8 69.8
AaD-O ✓ 58.0 68.2 75.4 58.8 65.7 69.0 54.6 52.9 72.3 65.8 56.3 72.2 64.1
AaD + RRDA ✓ 61.7 72.8 73.5 59.0 74.9 69.9 59.5 58.3 71.2 64.5 64.8 73.2 66.9

+3.7 +4.6 -1.9 +0.2 +9.2 +0.9 +4.9 +5.4 -1.1 -1.3 +7.7 +1.0 +2.8
SHOT-O ✓ 57.2 65.4 69.9 58.1 62.6 64.3 60.5 52.8 71.1 64.4 53.5 40.6 61.9
SHOT + RRDA ✓ 64.6 74.2 77.2 63.1 71.4 71.3 67.7 59.1 76.7 70.2 67.4 76.7 70.0

+7.4 +8.8 +7.3 +5.0 +8.8 +7.0 +7.2 +6.3 +5.6 +5.8 +13.9 +36.1 +8.1

Source-only ✓ 57.1 69.5 79.9 50.2 62.5 66.0 52.2 45.7 75.1 69.3 56.4 73.7 63.1

V
iT

LEAD ✓ 58.6 74.7 82.7 58.9 74.6 74.3 59.0 47.1 78.3 71.9 58.7 77.4 68.0
AaD-O ✓ 57.8 74.9 82.7 53.9 68.6 70.8 52.5 45.8 76.8 70.6 58.2 77.7 65.9
AaD + RRDA ✓ 67.4 77.2 81.2 71.4 71.5 76.1 73.9 63.8 78.5 74.8 67.5 75.0 73.2

+9.6 +1.5 -1.5 +17.5 +2.9 +5.3 +21.4 +18.0 +1.7 +4.2 +9.3 -2.7 +7.3
SHOT-O ✓ 63.6 73.5 81.7 66.7 69.8 75.5 66.5 56.2 79.0 73.5 62.6 74.6 70.3
SHOT + RRDA ✓ 68.9 75.0 81.4 71.2 73.8 73.6 71.9 60.4 79.2 76.5 66.2 77.5 73.0

+5.3 +1.5 -0.3 +4.5 +4.0 -2.1 +5.4 +4.2 +0.2 +3.0 +3.6 +2.9 +2.7

VisDA. On the challenging VisDA dataset (Table 3), RRDA continues to demonstrate its effectiveness.
AaD+RRDA improves upon AaD-O by +6.0% in HOS, significantly improving unknown sample recogni-
tion and overall class accuracy. Significant improvements are observed in classes such as "Bus" (+15.9%)
and "Truck" (+20.4%). Similar improvements can be observed when applying RRDA to SHOT with an
improvement of +22.7% in HOS. We observe that both methods improve over the same class and degrade
the performances of the "car" and "motorcycles" classes.

These results demonstrate RRDA’s consistent superiority across various domain adaptation scenarios. Our
method significantly improves existing SF-OSDA techniques, as evidenced by the consistent performance
gains across all datasets. The key advantage of RRDA lies in its novel approach to handling unknown classes.
Unlike previous methods that rely on thresholding and discard unknown class data during adaptation, RRDA
actively learns the semantics of unknown classes through our adaptive target classifier, which evolves to
accommodate the unknown class distribution. Furthermore, the consistent performance gains with both AaD
and SHOT demonstrate RRDA’s versatility. These results underscore the importance of explicitly modeling
unknown classes in open-set domain adaptation, rather than treating them as outliers to be discarded.
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Table 3: Accuracy for each class (%) and HOS (%) results on VisDA (ResNet-50 and ViT), with |Cs| = 6,
|Ct| = 12.

Methods VisDA
Bic Bus Car Mot Tra Tru UNK HOS

OSBP 35.6 59.8 48.3 76.8 55.5 29.8 81.7 62.7

R
es

N
et

-5
0

STA 50.1 69.1 59.7 85.7 84.7 25.1 82.4 71.0
Source-only 16.3 7.9 24.9 48.0 6.1 0.0 72.7 27.9
LEAD 83.5 65.2 57.7 35.7 82.1 79.5 82.7 74.2
SF-PGL 91.5 90.1 74.1 90.3 81.9 74.8 72.0 77.4
AaD-O 86.8 69.8 51.5 38.7 84.3 26.0 65.5 62.4
AaD + RRDA 96.0 85.7 34.5 37.6 92.2 46.4 71.7 68.4

+9.2 +15.9 -17.0 -1.1 +7.9 +20.4 +6.2 +6.0
Shot-O 82.1 67.0 78.6 57.3 72.2 17.9 50.7 56.0
Shot + RRDA 88.6 82.2 66.8 47.3 87.2 74.3 83.5 78.7

+6.5 +15.2 -11.8 -10.0 +15.0 +56.4 +32.8 +22.7

Source-only 62.3 17.9 17.7 50.7 0.0 0.6 90.8 39.1

V
iT

LEAD 87.6 65.3 49.8 30.5 70.9 54.4 98.2 74.3
AaD-O 87.9 77.6 47.7 36.8 61.2 16.6 67.6 60.4
AaD + RRDA 98.2 91.1 84.8 39.4 94.2 97.5 81.7 82.9

+10.3 +13.5 +37.1 +2.6 +33.0 +80.9 +14.1 +22.5
Shot-O 96.7 77.0 80.4 75.9 3.0 4.7 80.1 66.1
Shot + RRDA 95.4 84.8 74.1 48.7 85.1 82.3 79.3 78.9

-1.3 +7.8 -6.3 -27.2 +82.1 +77.6 -0.8 + 12.8

5 Ablation Study and Sensitivity Analysis

Optimization Process. We conducted ablation studies on Office-31 with three different settings to train
the new classifier. The results are shown in Table 4. We compare the following scenarios: (1) selecting
target features based on entropy threshold without optimization, (2) optimizing entropy without hinge loss
for diversity, and (3) the full proposed method optimizing feature points based on entropy and diversity.
Our findings are as follows: (1) Using target features based on entropy directly to train the target classifier
leads to the worst results in terms of HOS. SHOT-O achieves an HOS of 88.2 %, while using features
directly without optimization achieves an HOS of 86.5%. (2) Optimizing the points significantly improves
performance. There is a slight additional improvement when using hinge loss during optimization to promote
diversity. (3) The full proposed method, which optimizes feature points based on both entropy and diversity,
yields the best performance. We used SHOT for adaptation in the experiment as it keeps the classifier frozen,
allowing for a direct performance comparison with the new classifier.

Table 4: Ablation on the optimization objective to generate synthetic points. Results using SHOT+RRDA
on Office-31.

Entropy Diversity OS* UNK HOS
95.6 79.8 86.5

✓ 95.0 91.8 93.4
✓ ✓ 95.8 91.9 93.8

Threshold Sensitivity Analysis. To further analyze the hyperparameter sensitivity and its impact on
performance, we examined the effect of varying the entropy threshold used for feature selection during the
optimization process. The thresholds were evaluated on the A2D task (ref Table 5).

We observe that the best-performing threshold on this task is T = 0.1. However, the HOS score remains
consistent across different thresholds. For larger datasets, such as VisDA, where the domain shifts are more

9
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Table 5: Ablation on the optimization objective to generate synthetic points. Results using SHOT+RRDA
on Office-31.

Methods 0.1/0.9 0.2/0.8 0.25/0.75 0.3/0.7 0.4/0.6 0.5/0.5
SHOT 93.3 91.3 91.1 91.1 91.1 91.9
AaD 90.9 89.5 90.0 89.7 90.1 90.0

significant, lower thresholds (e.g., T = 0.1) can result in highly imbalanced datasets, with some classes
being excluded entirely. For example, under such thresholds, a subset of classes may not meet the selection
criteria. To ensure consistency across all datasets while maintaining a balanced feature distribution, we
report results using T = 0.25 throughout the experiments. This threshold provides a balance between
maintaining sufficient class representation and achieving competitive performance, particularly in scenarios
with large domain shifts.

Varying Unknown Classes. We investigated the robustness of our framework against an increased number
of unknown private classes, which complicates the distinction between known and unknown classes. We
compared our method to LEAD, SHOT-O, and AaD-O on the Office-31 dataset. As shown in Figure 3a, our
RRDA method in combination with SHOT and AaD achieves stable results and consistently outperforms
existing approaches. For consistency with our main results, we kept K ′ fixed at 10.

Sensitivity to K′. Figure 3b shows adaptation performance for different K ′ values of the target classifier
on Office-31 dataset. The performance improves as K ′ increases, validating the benefit of inheriting class
separability knowledge, before eventually reaching a plateau. In fact, K ′ = 15 yields the best results. For
the main experiments, we reported Office-31 results using K ′ = K = 10.

Training Stability. Figure 3c illustrates the training curves for the A2W task on the Office-31 dataset.
Our method shows consistent HOS improvement on the test set, with steadily increasing before plateauing.
In contrast, AaD-O exhibits unstable training, with noticeable performance fluctuations throughout the
training process.
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Figure 3: Sensitivity analysis on Office-31. (a) Adaptation performance across different openness levels
(average across all transfer tasks). (b) Sensitivity to K ′ target classifier classes (average across all transfer
tasks). (c) HOS curves for the A2W task.

Feature Space Visualization. Figure 4 shows t-SNE embeddings of pre-classifier features for the source-
only model, AaD-O, and our method on the A2W task on the Office-31 dataset. The source-only model
(Figure 4a) exhibits well-separated known class clusters but mixes unknown samples with known classes.
AaD-O (Figure 4b) slightly improves known-unknown separation, but class overlap remains. Our method
(Figure 4c) achieves superior separation of known and unknown classes, maintaining tight, well-defined known
class clusters while isolating unknown samples. This demonstrates our method’s effectiveness in inheriting
class separability during adaptation.

10



Under review as submission to TMLR

(a) Source Only (b) AaD-O (c) AaD + RRDA (Ours)

Figure 4: T-SNE visualization of the pre-classifier feature space for the A2W task on Office-31 dataset.

6 Conclusion

In this work, we introduce Recall and Refine for Domain Adaptation (RRDA), a simple but effective
framework for SF-OSDA. RRDA enables the successful adaptation of off-the-shelf source pre-trained models
to target domains, effectively addressing both distribution and category shift problems. RRDA achieves this
by introducing a new target classifier that aids in classifying and learning the semantics of both known and
unknown classes. This approach enables the direct use of source-free adaptation methods designed for closed-
set scenarios in open-set contexts. Extensive experiments on three challenging benchmarks demonstrate that
RRDA significantly outperforms existing SF-OSDA methods and even surpasses OSDA methods that have
access to the source domain. Future work could explore its potential for continuous adaptation in the setup
where new classes appear over time.
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A Appendix

This supplementary material contains additional information and experiments to support our main paper
on open-set domain adaptation. Specifically, it includes the pseudo-code for Synthetic Data Generation and
an additional Ablation Study on the target classifier initialization.

B Pseudo code

We present the pseudo-code for our synthetic data generation algorithms used for training the target classifier:

Algorithm 1 Synthetic Known Classes Generation
Require: features, classifier, classDesired, numClass, numSteps

1: points ← Clone(features)
2: points.requiresGrad ← true
3: optimizer ← Adam([points], lr=0.001)
4: for step = 1 to numSteps do
5: scores ← classifier(points)
6: stdLoss ← Mean(ReLU(1 - sqrt(Var(points) + 1e-4)))
7: entropies ← CrossEntropyLoss(scores, classDesired)
8: loss ← Mean(entropies) + stdLoss
9: Backpropagate(loss) and Update(optimizer)

10: end for
11: idx ← FindIndices(entropies < 0.25 log(numClass))
12: return points[idx], classDesired

Algorithm 2 Synthetic Unknown Classes Generation
Require: features, classifier, numClass, kPrime, numSteps

1: points ← Clone(features)
2: points.requiresGrad ← true
3: optimizer ← Adam([points], lr=0.001)
4: for step = 1 to numSteps do
5: scores ← classifier(points)
6: stdLoss ← Mean(ReLU(1 - sqrt(Var(points) + 1e-3)))
7: probs ← Softmax(scores)
8: entropies ← -Sum(probs * log(probs + 1e-8))
9: loss ← -Mean(entropies) + stdLoss

10: Backpropagate(loss) and Update(optimizer)
11: end for
12: idx ← FindIndices(entropies > 0.75 log(numClass))
13: kmeans ← KMeans(nClusters=kPrime).fit(points[idx])
14: return points[idx], kmeans.labels + numClass

The Synthetic Known Classes Generation function optimizes synthetic data points to be confidently clas-
sified into known classes shared between source and target domains. It minimizes cross-entropy loss while
maintaining point diversity through a standard deviation loss term.

The Synthetic Unknown Classes Generation function creates synthetic data points for potential unknown
classes in the target domain. It maximizes entropy to generate points that are difficult for the classifier to
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Methods Target Classifier Office-31
A2D A2W D2A D2W W2A W2D Avg

SHOT-O 89.5 83.0 85.9 91.4 84.0 95.2 88.2
SHOT+ RRDA Random Initialization 90.0 91.5 92.4 98.0 89.0 98.4 93.2
SHOT+ RRDA Source Initialization 90.0 92.2 92.6 98.2 91.6 98.2 93.8

Table 6: HOS (%) results on Office-31 (ResNet-50). Comparison of the impact of the target classifier
initialization on the final performance.

categorize, simulating unknown classes. The function also uses k-means clustering to assign synthetic labels
to these unknown class points.

Both functions use gradient descent optimization to iteratively refine the synthetic points. The final selection
of points is based on entropy thresholds, ensuring that known class points have low entropy (high confidence)
and unknown class points have high entropy (low confidence).

C Ablation Study

We present an ablation study comparing the impact of known class initialization on the final performance
of RRDA on the Office-31 dataset.

In our approach, we first generate synthetic points for both known and unknown classes. These synthetic
points are then used to train the target classifier before performing the adaptation. Our main paper uses
source initialization for the known classes in the target classifier before this training process.

As shown in Table 6, source initialization of the known classes yields a consistent improvement over random
initialization. Importantly, both SHOT+RRDA variants (random and source initialization of the target
classifier) significantly outperform the baseline SHOT-O method, with average improvements of 5.0% and
5.6%, respectively.

These findings demonstrate that our synthetic data generation process is robust and effective. Even when
the target classifier is randomly initialized before training with the synthetic points, our method achieves
strong performance. This underscores the quality of the generated synthetic points for both known and
unknown classes.
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