
Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Changze Lv* 1 Jingwen Xu* 1 Yiyang Lu* 1 Xiaohua Wang 1 Zhenghua Wang 1 Zhibo Xu 1 Di Yu 2

Xin Du 2 Xiaoqing Zheng 1 Xuanjing Huang 1

Abstract
Backpropagation is the foundational algorithm
for training neural networks and a key driver of
deep learning’s success. However, its biological
plausibility has been challenged due to three
primary limitations: weight symmetry, reliance
on global error signals, and the dual-phase
nature of training, as highlighted by the existing
literature. Although various alternative learning
approaches have been proposed to address these
issues, most either fail to satisfy all three criteria
simultaneously or yield suboptimal results.
Inspired by the dynamics and plasticity of pyra-
midal neurons, we propose Dendritic Localized
Learning (DLL), a novel learning algorithm
designed to overcome these challenges. Extensive
empirical experiments demonstrate that DLL
satisfies all three criteria of biological plausibility
while achieving state-of-the-art performance
among algorithms that meet these requirements.
Furthermore, DLL exhibits strong generalization
across a range of architectures, including MLPs,
CNNs, and RNNs. These results, benchmarked
against existing biologically plausible learning
algorithms, offer valuable empirical insights for
future research. We hope this study can inspire
the development of new biologically plausible
algorithms for training multilayer networks
and advancing progress in both neuroscience
and machine learning. Our code is available
at https://github.com/Lvchangze/
Dendritic-Localized-Learning.

1. Introduction
Backpropagation (Rumelhart et al., 1986) has been instru-
mental in the rapid development of deep learning (LeCun

*Equal contribution 1School of Computer Science, Fudan Uni-
versity 2School of Software Technology, Zhejiang University. Cor-
respondence to: Xiaoqing Zheng <zhengxq@fudan.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2015), establishing itself as the standard approach for
training neural networks. Despite its undeniable success and
widespread adoption in various applications ranging from
image recognition (He et al., 2016; Dosovitskiy et al., 2020)
to natural language processing (Devlin et al., 2019; Brown
et al., 2020), the biological plausibility of backpropagation
remains a subject of intense debate among researchers in
both neuroscience and computational science (Bianchini
et al., 1997; Payeur et al., 2021; Zahid et al., 2023).

The primary criticisms of backpropagation’s biological plau-
sibility stem from several unrealistic requirements: the sym-
metry of weight updates in the forward and backward passes
(Stork, 1989), the computation of global errors that must be
propagated backward through all layers (Crick, 1989), and
the necessity of a dual-phase training process involving dis-
tinct forward and backward passes (Guerguiev et al., 2017;
Hinton, 2022). These features lack clear analogs in neurobi-
ological processes, which operate under the constraints of
local information processing. Recognizing these limitations,
the research community has made significant strides toward
developing alternative training algorithms that could poten-
tially align more closely with biological processes. Each of
these approaches offers a unique perspective on how synap-
tic changes might occur in a biologically plausible manner,
yet a consensus on an effective and biologically plausible
training method remains out of reach.

In this paper, we first assess existing biologically plausi-
ble learning algorithms systematically, including feedback
alignment (Lillicrap et al., 2016), local losses (Marblestone
et al., 2016), predictive coding (Rao & Ballard, 1999; Whit-
tington & Bogacz, 2017), perturbation learning (Williams,
1992; Werfel et al., 2003), target propagation (Bengio, 2014),
Hebbian learning (Hebb, 1949; Munakata & Pfaffly, 2004),
STDP (Song et al., 2000), the forward-forward algorithm
(Hinton, 2022), and energy-based learning (Hopfield, 1984;
Scellier & Bengio, 2017). From this review, we summarize
three criteria that any learning algorithm must meet to be
considered biologically plausible: C1. Asymmetry of For-
ward and Backward Weights – reflecting the inherent lack
of symmetry in real synaptic connections; C2. Local Er-
ror Representation – ensuring computations are localized,
without requiring a global error signal; C3. Non-two-stage
Training – enabling the simultaneous occurrence of infer-

1

https://github.com/Lvchangze/Dendritic-Localized-Learning
https://github.com/Lvchangze/Dendritic-Localized-Learning


Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Layer 4

Layer 3

Layer 2

Layer 1

(a) Backpropagation

𝐖 𝐖𝐓

…

(g) Hebbian Learning

𝐖 𝐖𝐓

Classifier

Last Layer 

Layer 1

…

Layer 2

(b) Feedback Alignment

𝐖 𝐖𝐫𝐚𝐧𝐝

Random 
Gradients

…

Layer 4

Layer 3

Layer 2

Layer 1

(f) Target Propagation

𝐖 𝐖

Calculate
target
from
last
layer

…

Layer 4

Layer 3

Layer 2

Layer 1

(d) Predictive Coding

𝐖 𝐖𝐓

Iteration 
until
local 
converge

…

Layer 4

Layer 3

Layer 2

Layer 1

(h) Forward-Forward

𝐖
Update 
𝐖
when 
forward

…

Layer 4

Layer 3

Layer 2

Layer 1

(e) Perturbation Learning

𝐖 𝐖′

Perturb 
𝐖 to 𝐖′

…

Layer 4

Layer 3

Layer 2

Layer 1

(c) Local Losses

𝐖 𝐖𝐜

classifiers

…

Layer 4

Layer 3

Layer 2

Layer 1

(i) Dendritic Localized Learning

𝐖

…
Θ

Local 
Error

ξ3Layer 3

ξ2Layer 2

ξ1Layer 1

Input

Output Target

ξLLayer L

Figure 1. Illustrations of biologically plausible learning algorithms. (a) Backpropagation; (b) In feedback alignment, the weight matrix W
is replaced with a random matrix during backpropagation; (c) In local losses, classic backpropagation is applied layer by layer; (d) In
predictive coding, the transposed weights WT are used iteratively for local convergence; (e) In perturbation learning, the weights W are
randomly perturbed after the forward pass, generating a new W′ for the next iteration; (f) In target propagation, two sets of weights are
used: forward weights W and backward weights Ŵ, with Ŵ used to calculate targets from the last layer; (g) In Hebbian learning, the
final classification layer is trained using gradients; (h) The forward-forward algorithm updates weights during the forward pass; (i) In
DLL, weights W and Θ are asymmetric and updated simultaneously, with local errors being computed within the layer.

ence and training stages. We then conduct experiments to
evaluate current algorithms across a variety of network archi-
tectures and real-world datasets to assess their performance
and biological plausibility. We observe that algorithms that
satisfy all three criteria tend to demonstrate significantly
lower performance compared to backpropagation on bench-
mark datasets. What’s worse, several algorithms may even
fail to converge on specific architectures and tasks.

These limitations drive our exploration into the development
of algorithms that both adhere to biological plausibility and
maintain high performance. Inspired by pyramidal neurons
(DeFelipe & Fariñas, 1992), which constitute approximately
70-85% of the total population of neurons in the cerebral
cortex, we propose Dendritic Localized Learning (DLL), a
novel learning algorithm that satisfies all three criteria and
maintains strong performance. First, we model the pyrami-
dal neuron as comprising three distinct compartments: the
soma, apical dendrite, and basal dendrite. Evidence (Sprus-
ton, 2008) suggests that the apical dendrites of pyramidal
neurons receive inputs from other cortical areas and non-
specific thalamic sources, while the basal and side branches
are primarily driven by inputs from lower-layer cells. Based
on this, we propose that sensory input is directed to the
basal dendrite, whereas the expected value is routed to the
apical dendrite. The local error is then computed within the
soma. Second, we propose the use of trainable backward
weights to replace the transposed forward weights during

the backward pass, thereby ensuring compliance with the
criterion of asymmetry weights. Lastly, in DLL, the infor-
mation can be separated in space within a cell, then the
two propagation phases, feedforward and feedback, do not
require strict temporal segregation and hence could occur
simultaneously. Through comprehensive experiments, we
demonstrate the effectiveness of DLL on various bench-
marks across diverse model architectures. Furthermore, we
implement our DLL algorithm on time-varying recurrent
neural networks (RNNs) and give a detailed derivation to
support its theoretical rationality. Ultimately, we aim to not
only highlight the current strengths and limitations of bio-
logically plausible learning algorithms but also to stimulate
further research and innovation in this vital area.

To conclude, our contributions can be summarized as:

• We review current biologically plausible learning algo-
rithms and summarize 3 criteria for biological plausibil-
ity that an ideal learning algorithm should satisfy. We
empirically benchmark these algorithms across diverse
network architectures and datasets.

• We propose Dendritic Localized Learning (DLL), a
learning algorithm satisfying all criteria of biological
plausibility, to train multilayer neural networks.

• We conduct extensive experiments on leveraging the
DLL algorithm to train MLPs, CNNs, and RNNs across
various tasks, including image recognition, text char-

2



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

acter prediction, and time-series forecasting, showing
comparable performance to backpropagation.

2. Criteria for Biological Plausibility
In this section, we first offer three criteria for biological
plausibility that an ideal learning algorithm should satisfy,
based on the methods reviewed. Secondly, we proceed to
assess the current biologically plausible learning algorithms.

2.1. Criteria

Summarized from existing literature, we propose three cri-
teria for evaluating the biological plausibility of learning
algorithms:

C1. Asymmetry of Forward and Backward Weights.
In conventional neural networks, forward-path neurons
transmit their synaptic weights to the feedback path through
a process known as weight transpose, which is considered
biologically implausible. Real neurons are unlikely to share
precise synaptic weights in this manner.

C2. Local Error Representation. Biological synapses
are thought to adjust their strength based solely on local
information, without relying on a global error signal. This
is in stark contrast to chain-rule-based optimization meth-
ods, which typically compute error gradients using global
information.

C3. Non-two-stage Training. Traditional training meth-
ods often involve distinct forward (inference) and backward
(updating) phases, a feature absent in biological learning.
However, the two propagation phases of a biological learn-
ing system, i.e., feedforward and backward, do not require
strict temporal segregation and can occur simultaneously.

2.2. Assessment on Learning Algorithms

We show the detailed illustrations of the mentioned existing
learning algorithms in Figure 1.

Feedback Alignment Feedback alignment (Lillicrap
et al., 2016; Nøkland, 2016) modifies backpropagation by
replacing the weight symmetry requirement with random
feedback weights, which the network adapts to align with
the true gradients over time. This approach demonstrates
that perfect symmetry is not a strict requirement for learn-
ing. The gradient update is given by ∂L

∂W = δ · xT , where
δ = B · ∂L∂a represents the fixed random feedback weights.
While this algorithm breaks the symmetry requirement of
backpropagation, it still relies on global error signals and a
two-stage training process.

Local Losses Local losses (Marblestone et al., 2016)
method enables decentralized learning by assigning specific
objectives to individual layers or regions of a network. The

local loss for layer l is Ll = ∥al − tl∥2, where al is the
activation, and tl is a local target. Each layer minimizes
its own loss independently: ∆Wl = η ∂Ll

∂Wl . This method
promotes scalability and modularity by avoiding reliance on
global error signals.

Predictive Coding Predictive coding (Rao & Ballard,
1999; Whittington & Bogacz, 2017; Millidge et al., 2023;
Salvatori et al., 2024) posits that the brain minimizes predic-
tion error by iteratively updating its internal model to better
predict incoming sensory inputs. This translates into hierar-
chical networks where each layer predicts the activity of the
layer below. The loss function is L =

∑
l ∥xl−1 − ul−1∥2,

where xl−1 = f l(ul; (Wl)T ) is the backpropagated activ-
ity of the lower layer. Weights are updated by backpropagat-
ing the prediction errors: ∆Wl = η ∂L

∂Wl . Similar to local
losses, although this method utilizes local error signals, it
fails to satisfy C1 and C3.

Perturbation Learning Perturbation learning (Williams,
1992) introduces random noise ξ to the network’s weights
or inputs and observes the resulting change in output. The
gradient is estimated using the finite difference method:
∆W = η∆L

ξ , where ∆L is the change in loss. If W are
perturbed by W+ ϵξ, the loss difference is: ∆L ≈ L(W+
ϵξ)− L(W). However, the algorithm’s reliance on distinct
forward and perturbation phases indicates a departure from
the simultaneous and seamless integration of inference and
learning processes.

Target Propagation Target propagation (Bengio, 2014)
addresses the biological implausibility of backpropaga-
tion by replacing error gradients with target activations.
Each layer learns to approximate a target output that min-
imizes the overall error. The local objective for layer l is
Ll = ∥al − tl∥2, where al is the current activation, and
tl is the computed target. The weight update minimizes
this local loss: Wl ←Wl − η ∂Ll

∂Wl . Although vanilla tar-
get propagation satisfies all the criteria, it faces significant
challenges in approximating the inverse function, leading to
instability in convergence. Difference Target Propagation
(Lee et al., 2014) is introduced to address this issue, but
it violates C3 because it requires the upper layers to prop-
agate two separate values at different times to update the
backward and forward weights.

Hebbian Learning and STDP Hebbian learning (Hebb,
1949) emphasizes strengthening the connection between
neurons that frequently activate together. It forms the basis
for synaptic plasticity in the brain. A more refined ver-
sion, spike-timing-dependent plasticity (STDP) (Song et al.,
2000), adjusts synaptic strengths based on the relative tim-
ing of pre and postsynaptic spikes. This mechanism allows
networks to capture temporal correlations and has inspired
algorithms for unsupervised learning and spiking neural

3



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

u1

x1

Θ1

ξ1

Layer 1

×M1

uL

xL

ξL
×ML

u2

x2

W1

ξ2

Layer 2

×M2

Input

Layer L

1

0

Pyramidal Neuron

 
 

0.05

0.07

0.70

0.12

0.03

0

0

0

 
 

apical
soma

basal

Θ2

ΘL-1

WL-1

W2

 

 

T
ra

in
in

g
 L

o
ss

Epoch

Loss Curves

Dendritic Localized Learning

Backpropagation

x : Prediction

u : Input

𝝃 : Local Error

w: Forward Weight

𝚯: Backward Weight

Target: Label

Output

(a) (b)

(c)

√

C1: Asymmetry of Forward 
and Backward Weights

C2: Local Error Representation

C3: Non-two-stage Training

—Trainable 𝐖 and 𝚯

—Local Error  𝝃 √

—No Separate Inference 

And Training Stages
√

Figure 2. (a) Overview of Dendritic Localized Learning. (b) Our DLL algorithm satisfied all 3 criteria. (c) Models trained by DLL
successfully converge and achieve comparable performance to those trained by backpropagation.

networks. The weight update in Hebbian learning is given
by ∆wij = ηxixj , where xi and xj are the activations of
neurons i and j. In STDP, the update depends on the spike
timing difference

∆wij =

{
A+e−∆t/τ+

, ∆t > 0,

A−e∆t/τ−
, ∆t ≤ 0,

(1)

where A+, A− are scaling factors, and τ+, τ− are time con-
stants. These methods lack the ability to utilize supervised
learning signals and coordinate weights across layers, with
STDP further constrained by its reliance on precise spike
timing.

Forward-Forward Forward-forward learning (Hinton,
2022) eliminates the need for backward error propagation,
training networks by separately optimizing for positive and
negative samples in a forward-only manner. The layer-wise
goodness function is defined as gl =

∑
i(a

l
i)

2, where ali is
the activation of neuron i in layer l. The network maximizes
gl for positive examples and minimizes it for negative ex-

amples: ∆Wl = η

(
∂gl

pos

∂Wl −
∂gl

neg

∂Wl

)
. This method imposes

significant constraints on input and processing, making it
challenging to extend to other architectures such as CNNs.

Energy-based Learning Energy-Based Learning defines
an energy function E(x,y;W), where x is the input, y is
the output, and W are the model parameters. The goal is to
minimize this energy such that desired outputs correspond
to low-energy states. The weight updates are computed as
∂L
∂W = ∂E(x,y;W)

∂W . Hopfield networks (Hopfield, 1984)
use an energy function to model neural dynamics, where

the network evolves to stable states corresponding to stored
patterns. Equilibrium Propagation (Scellier & Bengio, 2017)
trains networks by reaching an equilibrium under inputs and
then applying a small perturbation to the output. The loss
minimized in this method may not align with the primary
training objective, as reducing energy does not inherently
lead to a corresponding decrease in task-specific loss.

3. Dendritic Localized Learning
In this section, we will introduce our proposed dendritic
localized learning (DLL) and its detailed training procedure.
Guided by three criteria proposed in Section 2.1, we draw
inspiration from the pyramidal neuron (Spruston, 2008) and
aim to simulate its calculation mode.

3.1. Three-Compartment Neurons

Pyramidal neurons are a type of excitatory neuron com-
monly found in the cerebral cortex (DeFelipe & Fariñas,
1992), playing a crucial role in processes like learning, mem-
ory, and higher cognitive functions. We follow Sacramento
et al. (2018) to divide a pyramidal neuron into three com-
partments: soma, apical dendrite, and basal dendrite.

To satisfy criterion C2, i.e., local error representation, we
define the local error of an individual neuron as ξ = x− u,
where u is the sensory input of the neuron and x is the ex-
pected value, a.k.a, backpropagated activity, which is used
to compute the error locally within the neuron. Under our
setting, ξ is calculated in the soma, and u and x are stored
in the basal and apical dendrite, respectively. This division

4



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

aligns with the structure of pyramidal neurons, where dif-
ferent compartments are responsible for processing various
types of information, contributing to the local error com-
putation that facilitates learning. Therefore, for a neural
network consisting of pyramidal neurons, the error of layer
i can be computed as:

ξi = xi − ui, (2)

where xi is the backpropagated activity of layer i+ 1.

However, due to criterion C1 (asymmetry of forward and
backward weights), calculating the backpropagated activity
xi from layer i+ 1 becomes challenging, as the transpose
of the forward weights Wi+1 cannot be utilized. To address
this, we introduce a special trainable weight Θ to replace the
traditional forward weight W during updating parameters.

Regarding criterion C3 (non-two-stage training), we assume
that information can be spatially separated within a neuron,
allowing the two propagation phases to occur simultane-
ously without requiring strict temporal segregation. Addi-
tionally, we do not fix the forward weight W, and instead,
update both W and Θ simultaneously, with supervision
from the target label. The detailed training procedure will
be discussed in Section 3.2.

Neurons leverage local information to dynamically update
synaptic weights between adjacent layers, enabling the net-
work to iteratively refine its architecture and functionality.
Through this process, the output of each neuron gradually
aligns with the intended target, facilitating an efficient redis-
tribution of synaptic strength and embodying a biologically
plausible learning mechanism.

To help readers better understand the mechanism of our DLL
algorithm, we provide an illustration in Figure 2, assuming
the training of an L-layer multilayer perceptron (MLP).

3.2. Training Procedure

DLL can be applied to various network architectures, in-
cluding MLPs, CNNs, and RNNs. We use MLPs with MSE
loss as an example to describe our method, then the total
loss L of the whole neural network is:

L = −1

2

L∑
i=1

ξ2
i = −1

2

L∑
i=1

(xi − ui)
2, (3)

where ξi is the loss of all neurons in layer i, and L is the
number of layers.

At the first epoch, for all layers except the last layer, we will
initialize the expected value as the sensory input, written as:

ui+1 = f(Wiui), xi+1 = ui+1, (4)

where f denotes the non-linear activation function, ui+1 is
sensory input of layer i+ 1, xi+1 is the expected value of

layer i + 1, and Wi is layer i’s weight. For the last layer,
the x will be valued as the target label.

In the calculation of the backpropagated activity x, we use
the differentiation of loss L from xi to obtain ∆xi, which
is the direction of change for xi. xi depends solely on ξi
and ξi+1, as the parameter updates in the DLL algorithm
are localized. Consequently, to compute ∆xi, it is sufficient
to use the derivatives of xi with respect to ξi and ξi+1 from
L. ∆xi is defined as:

∆xi =
∂L
∂xi

=
∂(− 1

2
ξ2
i − 1

2
ξ2
i+1)

∂xi

= −ξi +
∂ui+1

∂xi
ξi+1

= −ξi +WT
i [ξi+1 ⊙ f ′(Wiui)].

(5)

Here, ⊙ denotes the Hadamard product. In our DLL algo-
rithm, x propagates along the apical of the pyramidal neu-
ron, specifically along the path defined by the parameters
Θ, independent of the parameters W used in the forward
pass. Therefore, the calculation formula for ∆xi is given by

∆xi = −ξi +ΘT
i [ξi+1 ⊙ f ′(Wiui)]. (6)

The updated value of xi is calculated using the formula
xi ← xi + ηx ∗ ∆xi, where ηx denotes the learning rate
of updating x. Ultimately, when xi approaches stability,
∆xi = 0, leading to the expression

ξi = ΘT
i [ξi+1 ⊙ f ′(Wiui)]. (7)

Finally, we will adjust Wi through Wi ← Wi + ηW ∗
∆Wi, where ηW is the learning rate for updating W, and
the update term ∆Wi is:

∆Wi =
∂L
∂Wi

=
∂(− 1

2
ξ2
i+1)

∂Wi

= −ξi+1(−
∂ui+1

∂Wi
)

= ξi+1 ⊙ f ′(Wiui)ui.

(8)

For Θi, we will update it using the following rule: Θi ←
Θi + ηΘ ∗∆Θi, where ηΘ is the learning rate for updating
Θ, and ∆Θi is the update term:

∆ΘT
i =

∂L
∂ΘT

i

=
∂L
∂ξi

∂ξi
∂ΘT

i

=
∂
(
− 1

2
ξ2
i

)
∂ξi

∂ΘT
i [ξi+1 ⊙ f ′(Wiui)]

∂ΘT
i

= −ξi[ξi+1 ⊙ f ′(Wiui)].

(9)

5



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Table 1. We show both the biological plausibility of various algorithms with the proposed criteria and the accuracy of image classification
achieved by various bio-plausible learning algorithms. Our proposed DLL achieves the highest performance among the algorithms
satisfying all criteria. “C1, C2, C3” stand for three criteria proposed in Section 2.1. All results are averaged across 4 random seeds.

Method C1 C2 C3 Model MNIST FashionMNIST SVHN CIFAR-10 Avg.

Backpropagation ✗ ✗ ✗
MLPs 98.62%±0.17% 88.54%±0.64% 60.91%±0.42% 48.74%±0.56% 74.20%
CNNs 99.56%±0.14% 92.68%±0.42% 95.35%±1.53% 75.10%±0.54% 90.67%

Feedback Alignment ✓ ✗ ✗
MLPs 91.87%±0.08% 82.16%±0.14% 54.91%±0.23% 48.46%±0.11% 69.35%
CNNs 97.00%±0.13% 89.74%±0.17% 92.66%±0.26% 59.60%±0.46% 84.75%

Local Losses ✗ ✓ ✗
MLPs 98.56%±0.19% 88.07%±0.38% 59.12%±0.27% 48.58%±0.35% 73.58%
CNNs 99.39%±0.06% 91.90%±0.26% 95.08%±0.25% 72.18%±0.10% 89.64%

Predictive Coding ✗ ✓ ✗
MLPs 98.42%±0.13% 88.72%±0.65% 59.05%±0.45% 47.34%±0.24% 73.38%
CNNs 99.41%±0.40% 92.03%±0.70% 94.53%±1.54% 72.94%±0.32% 89.72%

Perturbation Learning ✓ ✓ ✗
MLPs 91.44%±0.40% 68.90%±0.47% 48.15%±1.06% 31.07%±0.31% 59.89%
CNNs 92.61%±0.43% 75.79%±0.83% 57.69%±1.32% 39.72%±0.38% 66.45%

Difference Target Propagation ✓ ✓ ✗
MLPs 94.01%±0.12% 83.28%±0.31% 54.11%±0.09% 46.10%±0.10% 69.38%
CNNs 96.40%±0.05% 90.51%±0.18% 69.72%±0.32% 50.88%±0.07% 76.88%

Hebbian Learning ✓ ✓ ✓
MLPs 78.29%±0.07% 67.40%±0.69% 40.80%±0.44% 19.98%±0.23% 51.62%
CNNs 83.05%±0.12% 72.03%±0.48% 44.77%±0.33% 29.86%±0.13% 57.43%

R-STDP ✓ ✓ ✓
MLPs 77.18%±0.17% 70.03%±0.28% 41.76%±0.46% 22.68%±0.30% 52.91%
CNNs 91.67%±0.04% 74.29%±0.30% 50.02%±0.32% 33.19%±0.38% 62.29%

Forward Forward ✓ ✓ ✓
MLPs 96.99%±0.14% 80.51%±0.74% 47.52%±0.63% 39.48%±0.10% 66.12%
CNNs 15.66%±0.08% 10.00%±0.00% 6.70%±0.00% 10.32%±0.00% 10.67%

Equilibrium Propagation ✓ ✓ ✓
MLPs 93.81%±0.18% 75.65%±0.35% 22.62%±0.39% 16.93%±0.10% 52.25%
CNNs 26.73%±0.22% 30.26%±0.29% 6.70%±0.00% 10.32%±0.00% 18.50%
MLPs 97.57%±0.40% 87.50%±0.43% 56.60%±0.12% 45.87%±0.10% 71.89%DLL (Ours) ✓ ✓ ✓ CNNs 98.87%±0.30% 90.88%±0.40% 85.81%±0.17% 70.89%±0.58% 86.61%

We present our global algorithm in Appendix A, which
outlines the overall training procedure using DLL. Addition-
ally, to enhance clarity, we provide a detailed derivation for
training RNNs with DLL in Appendix B. This derivation
highlights its application to sequential tasks and addresses
the unique challenges introduced by temporal dependen-
cies. The convergence properties and guarantees will be
discussed in Appendix C.

4. Experiments
In this section, we first introduce the experimental settings,
including datasets and implementation details. Secondly,
we benchmark all biologically plausible learning algorithms,
including our proposed DLL, on image classification tasks.
Thirdly, we evaluate RNNs trained with DLL on text char-
acter prediction and time-series forecasting. Finally, we do
an ablation study and analyze its inner properties.

4.1. Experimental Settings

Image Classification We utilize several widely used
benchmark datasets for image recognition tasks: MNIST,
FashionMNIST, SVHN, and CIFAR-10. We take classifica-
tion accuracy as the metric.

Text Character Prediction We conduct next-character
prediction with RNNs on Harry Potter (Rowling, 2019). We
take Prediction Accuracy (Pred. Acc.) as the metric, which
measures the proportion of correctly predicted characters
among all predictions.

Time-Series Forecasting We employ RNNs with various
learning algorithms for real-world multivariate time-series
forecasting, including Electricity (Lai et al., 2018), Metr-la
(Li et al., 2017), and Pems-bay (Li et al., 2017).

To ensure fairness, we use the same model architecture
across all learning algorithms for MLPs, CNNs, and RNNs
under a certain dataset. Due to the difficulty of achieving
convergence with vanilla STDP in this setting, we replace
it with an improved version, reward-modulated STDP (R-
STDP) (Mozafari et al., 2018). For detailed dataset statistics,
metric explanations, and implementation of models, please
refer to Appendix D.

4.2. Image Recognition

We benchmark all previous bio-plausible algorithms and our
proposed DLL on image classification tasks in Table 1. As
shown in Table 1, we can conclude that:

Current biologically plausible algorithms, while offer-
ing valuable insights, often fall short of the high per-
formance achieved by traditional backpropagation, par-
ticularly on complex datasets like SVHN and CIFAR-10.
Algorithms meeting one criterion, including feedback align-
ment, local losses, and predictive coding, show competitive
performance on simple datasets like MNIST and Fashion-
MNIST, indicating their potential viability. However, their
reduced effectiveness on more challenging tasks, such as
CIFAR-10, highlights the need for further advancements in
this field. For paradigms that satisfy two criteria, we ob-

6



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Table 2. Performance of RNNs trained with various learning algorithms on text-character prediction and time-series forecasting. The best
results are formatted in bold font format. ↑ (↓) indicates the higher (lower) the better. All results are averaged across 3 random seeds.

Method Harry Potter Electricity Metr-la Pems-bay
Pred. Acc. ↑ MSE ↓ MAE ↓ MSE ↓ MAE ↓ MSE ↓ MAE ↓

Backpropagation 51.9%±1.0% 0.175±0.007 0.324±0.007 0.131±0.004 0.214±0.005 0.164±0.001 0.190±0.002

Predictive Coding 38.8%±1.8% 0.162±0.019 0.312±0.018 0.141±0.001 0.228±0.005 0.178±0.004 0.202±0.003

DLL (Ours) 33.7%±0.6% 0.172±0.018 0.321±0.013 0.155±0.005 0.264±0.001 0.178±0.005 0.224±0.004

serve a noticeable performance reduction compared to those
meeting only one criterion. Perturbation learning, which
does not require a backward procedure, struggles to achieve
adequate convergence.

Our proposed DLL successfully integrates biological
plausibility with high performance. Among algorithms
that meet all the criteria, MLPs or CNNs trained with DLL
converge successfully across all datasets, even achieving
performance comparable to backpropagation. This suggests
that it is possible to reconcile biological plausibility with
high performance. In contrast, methods like Hebbian learn-
ing, the forward-forward algorithm, and equilibrium prop-
agation struggle to guarantee convergence, especially on
more complex architectures (CNNs) or challenging datasets.
For instance, MLPs trained with the forward-forward algo-
rithm (Hinton, 2022) achieve comparable average accuracy
while CNNs trained with that fail to converge across all
benchmarks. In comparison, DLL consistently converges
quickly and delivers relatively satisfactory results. The
results of CIFAR-100 and Tiny-ImageNet are shown in Ap-
pendix E.

4.3. Sequential Tasks

Most biologically plausible learning paradigms mentioned
in Section 2.2, such as local losses and target propagation,
were primarily designed for discrimination tasks. Therefore,
to assess the versatility of our proposed DLL, we follow Mil-
lidge et al. (2022) to conduct experiments on training RNNs
with our DLL for sequential regression tasks, as shown in
Table 2. We compare DLL against several algorithms en-
abling model convergence, including backpropagation and
predictive coding. Methods that fail to converge are not
included in the table.

First, we evaluate RNNs trained with different algorithms
on a text-character prediction task to investigate their lan-
guage processing abilities. Backpropagation outperforms
other methods by a significant margin. While backpropa-
gation performs best, predictive coding and DLL emerge
as promising biologically plausible alternatives. Notably,
DLL is the only method that satisfies all the biological plau-
sibility criteria while still succeeding in converging during
training. Furthermore, we regard real-world multi-variant
time-series forecasting as an ideal regression task for eval-
uating a model’s ability to capture temporal dependencies.

This task offers insights into DLL’s ability to model the
internal dynamics of sequential data. Table 2 illustrates that
RNNs trained using DLL exhibit competitive performance
across a range of tasks, achieving results on par with or
surpassing those of backpropagation in several metrics, with
particularly strong performance on the Electricity dataset.
These results underscore DLL’s effectiveness in capturing
temporal dependencies while maintaining alignment with
biologically plausible learning mechanisms.

What’s more, we successfully employ our DLL method to
train TextCNNs (Kim, 2014) for text classification tasks.
We show the results on text classification in Appendix F.

4.4. Ablation Study

As mentioned in Section 3, we propose the weights Θ and
its updating rules based on local errors. Taking the feedback
alignment (FA) into consideration, we think it is necessary
to evaluate how the convergence or performance will be
influenced when Θ is a random and unchanged matrix. We
name this special method as “DLL-FA”, i.e., Θ will ini-
tialize randomly and not participate in the model updating
procedure.

Table 3. Ablation experiments on Θ. “DLL-FA” indicates Θ ini-
tializes randomly and will not be updated, combining our proposed
DLL and feedback alignment (FA). Numbers with ∗ indicate mod-
els fail to converge. ↑ (↓) indicates the higher (lower) the better.

Metric DLL DLL-FA
MLPs on MNIST Acc. ↑ 97.57% 97.37%
CNNs on CIFAR-10 70.89% 69.85%
RNNs on Harry Potter Acc. ↑ 33.70% 0.71%∗

RNNs on Electricity MSE ↓ 0.172 0.193
MAE ↓ 0.321 0.345

RNNs on Pems-bay MSE ↓ 0.178 0.198
MAE ↓ 0.224 0.251

We report the performance comparison between DLL and
DLL-FA in Table 3. The results indicate that DLL generally
outperforms DLL-FA across a wide range of tasks. On
simple datasets like MNIST, DLL achieves a marginally
higher accuracy (97.57%) compared to DLL-FA (97.37%),
suggesting that the benefits of DLL are modest in such
cases. However, on more complex datasets like CIFAR-
10, DLL consistently demonstrates superior performance,
with accuracy improvements of up to one percentage point.

7



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

5e-6 1e-5 5e-5 1e-4 5e-4 1e-3
Learning Rate 

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

MLPs with Different Learning Rate 
MNIST
FashionMNIST

(a)

5e-6 1e-5 5e-5 1e-4 5e-4 1e-3
Learning Rate 

55

60

65

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

CNNs with Different Learning Rate 
CIFAR-10
SVHN

(b)

0 25 50 75 100 125 150 175 200
Epoch

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Lo
ss

 V
al

ue

DLL - Loss across Sequences of Different Lengths

seq 16 DLL MSE
seq 16 DLL MAE
seq 32 DLL MSE
seq 32 DLL MAE
seq 64 DLL MSE
seq 64 DLL MAE

(c)

0 25 50 75 100 125 150 175 200
Epoch

0.175

0.200

0.225

0.250

0.275

0.300

0.325

Lo
ss

 V
al

ue

DLL - Loss across Different Learning Rates 

lr 1e-5 DLL MSE
lr 1e-5 DLL MAE
lr 3e-5 DLL MSE
lr 3e-5 DLL MAE
lr 3e-6 DLL MSE
lr 3e-6 DLL MAE

(d)

Figure 3. (a) MLPs trained with DLL by various learning rates. (b) CNNs trained with DLL by various learning rates. (c) Loss curves of
RNNs trained with DLL across different sequence lengths. (d) Loss curves of RNNs trained with DLL by different learning rates.

Notably, in sequence modeling tasks, such as RNNs-based
predictions on Harry Potter, DLL outperforms DLL-FA by a
significant margin, with DLL-FA failing to converge in both
cases. Furthermore, in time-series forecasting tasks, DLL
demonstrates consistent superiority over DLL-FA, achieving
lower MSE and MAE across the majority of datasets. These
results highlight the critical role of updating Θ in DLL,
which is essential for achieving better performance in both
classification and sequential modeling tasks.

4.5. Analysis

In this section, we perform a convergence and sensitivity
analysis for models trained with DLL. Since we update both
the weights W and the special parameters Θ simultane-
ously during training with DLL, the learning rate η plays a
critical role in maintaining a balance between the trainable
parameters during updates. Figures 3 (a) and (b) present the
performance of MLPs and CNNs trained with DLL across
various learning rates, respectively. We observe that the best
performance for most models occurs around η = 1× 10−4,
indicating an optimal learning rate for stable training. Fig-
ures 3 (c) and (d) were evaluated using the Metr-la dataset.
In Figure 3 (c), we plot the loss curves of RNNs trained
with DLL across different sequence lengths. This suggests
that excessively long or short sequence lengths may hinder
convergence, making the training process unstable. Finally,
Figure 3 (d) demonstrates how RNNs trained with DLL are
affected by the learning rate. We find that a learning rate of
1× 10−4 is too large, leading to suboptimal performance,
likely due to instability in gradient updates. This analysis
highlights the importance of carefully tuning the learning
rate for stable and effective training across different network
architectures and tasks. In Appendix G, we show the time
consumption and memory usage of the DLL in image clas-
sification tasks. In Appendix H, we evaluate the scalability
of our method.

5. Related Work
Backpropagation (Rumelhart et al., 1986) has inherent limi-
tations in terms of biological plausibility. It requires sym-

metric weight updates across layers, global error signals,
and two-stage training, which are not naturally present in bi-
ological neural circuits. Currently, many attempts have been
made to bridge this gap by exploring biologically plausible
learning algorithms that mimic brain mechanisms, as dis-
cussed in Section 2.2. While there have been reviews (Weed
& Hursting, 1998; Jiao et al., 2022; Millidge et al., 2022;
Li et al., 2024; Schmidgall et al., 2024) summarizing the
strengths, weaknesses, and differences between past learn-
ing algorithms, few have empirically benchmarked these
algorithms on real-world datasets. In contrast, our study em-
pirically evaluates these biologically plausible algorithms
across various network architectures and datasets, providing
a more comprehensive comparison.

While apical dendrites have been discussed in previous lit-
erature for credit assignment and have been utilized for
various purposes, our study takes advantage of their prop-
erties to design and implement more biologically plausible
learning algorithms, which differ significantly from exist-
ing approaches. Guerguiev et al. (2017) primarily aimed
to explain how deep learning can be achieved using segre-
gated dendritic compartments, but they did not propose a
specific learning algorithm. As for Bartunov et al. (2018),
while their proposed STDP improves upon DTP in perfor-
mance and biological plausibility, it fails to resolve the issue
of DTP requiring upper layers to propagate two separate
values at different times. Payeur et al. (2021) investigated
burst-dependent synaptic plasticity. While their work shares
conceptual similarities with ours in terms of apical den-
dritic processing, the primary objective of their study differs
from ours. Our proposed method not only satisfies all three
criteria but also achieves higher performance compared to
existing biologically plausible learning methods.

In addition, we aim for our proposed DLL to possess general
capabilities comparable to those of BP, including the ability
to perform both classification and regression tasks, handle
diverse modalities such as images and language, and support
multi-layer credit assignment. For example, in addition to
image recognition tasks, our DLL framework can also be ap-
plied to train RNNs for regression tasks (Appendix B), such

8



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

as next-character prediction and time-series forecasting. In
contrast, methods like BurstProp (Payeur et al., 2021) and
SoftHebb (Journé et al., 2023) may struggle with such tasks,
as their designs are not well-suited for recurrent architec-
tures. Counter-current Learning (Kao & Hariharan, 2024)
violates our third criterion, as it explicitly involves distinct
forward and backward phases.

6. Conclusion
In this paper, we reviewed the current biologically plausible
learning algorithms and summarized three criteria that an
ideal learning algorithm should satisfy. Meanwhile, we em-
pirically evaluate these algorithms across diverse network
architectures and datasets. Secondly, we introduced Den-
dritic Localized Learning (DLL), a novel learning algorithm
designed to meet these criteria while maintaining the effec-
tiveness of training MLPs, CNNs, and RNNs. Finally, to
validate its performance, we present extensive experimental
results across a range of tasks, including image recogni-
tion, text character prediction, and time-series forecasting,
utilizing MLPs, CNNs, and RNNs. By combining theoret-
ical rigor with practical applicability, our work paves the
way for future research into biologically plausible learning
paradigms, fostering deeper connections between neuro-
science and artificial intelligence. The limitations and future
directions are discussed in Appendix I.

Impact Statement
This work bridges the gap between neuroscience and arti-
ficial intelligence by introducing a biologically plausible
learning algorithm that achieves competitive performance
with backpropagation across diverse tasks. By fostering ad-
vancements in brain-inspired computing, our research opens
new pathways for developing bio-interpretable and scalable
machine learning models. We do not think our work will
negatively impact ethical aspects or future societal conse-
quences.

Acknowledgments
The authors would like to thank the anonymous reviewers
for their valuable comments. This work was supported
by the National Natural Science Foundation of China (No.
62076068).

References
Bartunov, S., Santoro, A., Richards, B. A., Hinton,

G. E., and Lillicrap, T. P. Assessing the scalability of
biologically-motivated deep learning algorithms and ar-
chitectures. In Neural Information Processing Systems,
2018.

Bengio, Y. How auto-encoders could provide credit as-
signment in deep networks via target propagation. arXiv
preprint arXiv:1407.7906, 2014.

Bianchini, M., Fanelli, S., Gori, M., and Maggini, M. Ter-
minal attractor algorithms: A critical analysis. Neurocom-
puting, 15(1):3–13, 1997.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Crick, F. The recent excitement about neural networks.
Nature, 337(6203):129–132, 1989.

DeFelipe, J. and Fariñas, I. The pyramidal neuron of the
cerebral cortex: morphological and chemical characteris-
tics of the synaptic inputs. Progress in neurobiology, 39
(6):563–607, 1992.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Guerguiev, J., Lillicrap, T. P., and Richards, B. A. Towards
deep learning with segregated dendrites. Elife, 6:e22901,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hebb. The organization of behavior. New York, 1949.

Hinton, G. The forward-forward algorithm: Some prelim-
inary investigations. arXiv preprint arXiv:2212.13345,
2022.

Hopfield, J. J. Neurons with graded response have collective
computational properties like those of two-state neurons.
Proceedings of the national academy of sciences, 81(10):
3088–3092, 1984.

Jiao, L., Yang, Y., Liu, F., Yang, S., and Hou, B. The new
generation brain-inspired sparse learning: A comprehen-
sive survey. IEEE Transactions on Artificial Intelligence,
3(6):887–907, 2022.

9



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Journé, A., Rodriguez, H. G., Guo, Q., and Moraitis, T.
Hebbian deep learning without feedback. In The Eleventh
International Conference on Learning Representations,
2023.

Kao, C. H. and Hariharan, B. Counter-current learning: A
biologically plausible dual network approach for deep
learning. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Kim, Y. Convolutional neural networks for sentence classi-
fication. In Conference on Empirical Methods in Natural
Language Processing, 2014.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling
long-and short-term temporal patterns with deep neural
networks. In The 41st international ACM SIGIR confer-
ence on research & development in information retrieval,
pp. 95–104, 2018.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. Differ-
ence target propagation. ECML/PKDD, Dec 2014.

Li, G., Deng, L., Tang, H., Pan, G., Tian, Y., Roy, K.,
and Maass, W. Brain-inspired computing: A systematic
survey and future trends. Proceedings of the IEEE, 2024.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con-
volutional recurrent neural network: Data-driven traffic
forecasting. arXiv preprint arXiv:1707.01926, 2017.

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman,
C. J. Random synaptic feedback weights support error
backpropagation for deep learning. Nature Communica-
tions, 7, 2016.

Maass, W. Networks of spiking neurons: the third gener-
ation of neural network models. Neural Networks, 14:
1659–1671, 1997.

Marblestone, A. H., Wayne, G., and Körding, K. P. To-
ward an integration of deep learning and neuroscience.
Frontiers Comput. Neurosci., 10:94, 2016.

Millidge, B., Tschantz, A., and Buckley, C. L. Predictive
coding approximates backprop along arbitrary compu-
tation graphs. Neural Computation, 34(6):1329–1368,
2022.

Millidge, B., Song, Y., Salvatori, T., Lukasiewicz, T., and
Bogacz, R. A theoretical framework for inference and
learning in predictive coding networks. In The Eleventh
International Conference on Learning Representations,
2023.

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzari-
Dalini, A., and Ganjtabesh, M. First-spike-based visual
categorization using reward-modulated stdp. IEEE trans-
actions on neural networks and learning systems, 29(12):
6178–6190, 2018.

Munakata, Y. and Pfaffly, J. Hebbian learning and develop-
ment. Developmental science, 7(2):141–148, 2004.

Nøkland, A. Direct feedback alignment provides learning
in deep neural networks. Advances in neural information
processing systems, 29, 2016.

Pang, B. and Lee, L. Seeing stars: Exploiting class relation-
ships for sentiment categorization with respect to rating
scales. In ACL, 2005.

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and
Naud, R. Burst-dependent synaptic plasticity can coordi-
nate learning in hierarchical circuits. Nature neuroscience,
24(7):1010–1019, 2021.

Rao, R. P. and Ballard, D. H. Predictive coding in the visual
cortex: a functional interpretation of some extra-classical
receptive-field effects. Nature neuroscience, 2(1):79–87,
1999.

Rowling, J. Harry potter. The 100 Greatest Literary Char-
acters, pp. 183, 2019.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation, parallel
distributed processing, explorations in the microstructure
of cognition, ed. de rumelhart and j. mcclelland. vol. 1.
1986. Biometrika, 71:599–607, 1986.

Sacramento, J., Ponte Costa, R., Bengio, Y., and Senn, W.
Dendritic cortical microcircuits approximate the back-
propagation algorithm. Advances in neural information
processing systems, 31, 2018.

Salvatori, T., Song, Y., Yordanov, Y., Millidge, B., Sha, L.,
Emde, C., Xu, Z., Bogacz, R., and Lukasiewicz, T. A
stable, fast, and fully automatic learning algorithm for
predictive coding networks. In The Twelfth International
Conference on Learning Representations, 2024.

Scellier, B. and Bengio, Y. Equilibrium propagation: Bridg-
ing the gap between energy-based models and backprop-
agation. Frontiers in computational neuroscience, 11:24,
2017.

Schmidgall, S., Ziaei, R., Achterberg, J., Kirsch, L., Ha-
jiseyedrazi, S., and Eshraghian, J. Brain-inspired learn-
ing in artificial neural networks: a review. APL Machine
Learning, 2(2), 2024.

10



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Song, S., Miller, K. D., and Abbott, L. F. Competitive heb-
bian learning through spike-timing-dependent synaptic
plasticity. Nature Neuroscience, 3:919–926, 2000.

Spruston, N. Pyramidal neurons: dendritic structure and
synaptic integration. Nature Reviews Neuroscience, 9(3):
206–221, 2008.

Stork. Is backpropagation biologically plausible? In Inter-
national 1989 Joint Conference on Neural Networks, pp.
241–246. IEEE, 1989.

Weed, D. L. and Hursting, S. D. Biologic plausibility in
causal inference: current method and practice. American
Journal of Epidemiology, 147(5), 1998.

Werfel, J., Xie, X., and Seung, H. S. Learning curves
for stochastic gradient descent in linear feedforward net-
works. In Advances in Neural Information Processing
Systems, pp. 1197–1204, 2003.

Whittington, J. C. and Bogacz, R. An approximation of the
error backpropagation algorithm in a predictive coding
network with local hebbian synaptic plasticity. Neural
computation, 29(5):1229–1262, 2017.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229–256, 1992.

Zahid, U., Guo, Q., and Fountas, Z. Predictive coding as
a neuromorphic alternative to backpropagation: A criti-
cal evaluation. Neural Computation, 35(12):1881–1909,
2023.

11



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

A. Global Algorithm of Dendritic Localized Learning
In this section, we show the global algorithm of dendritic localized learning in a pseudo-code style.

Algorithm 1 Algorithm of Dendritic Localized Learning
Input: data D, number of layers L, number of neurons per layer N , learning rate ηW, ηΘ
Initialize W, Θ randomly for all layers
for epoch = 0 to max_epochs do

for each batch B in D do
Forward Pass (when input stimuli are fed to the basal dendrite):
Assign the input values to the basal dendrites of the input layer neurons: u0 = B, and initialize x0 = u0

for i = 0 to L− 1 do
Compute forward pass ui+1 = fi(Wiui), where fi is the activation function for the i-th layer
Initialize xi+1 = ui+1

end for

Compute Local Errors (when apical dentrite receives the top-down feedback):
Assign the target values to the apical dendrites of the output layer neurons: xL = target
Compute output error ξL = −∇uL

L(uL,xL)
Compute input error ξ0 = x0 − u0

for i = L− 1 down to 1 do
Compute local error ξi = ΘT

i [ξi+1 ⊙ fi
′(Wiui)]

end for

Update Weights and Thetas Simultaneously:
for i = 0 to L− 1 do

if ξi+1 ̸= 0 then
Update Wi ←Wi + ηW · (ξi+1 ⊙ fi

′(Wiui)ui)

Update Θi ← Θi + ηΘ ·
{
−ξi

[
ξi+1 ⊙ fi

′(Wiui)
]}T

end if
end for

end for
end for

B. Training Recurrent Neural Networks with Dendritic Localized Learning
In the conventional Recurrent Neural Networks (RNNs) framework, the hidden layer consists of a single vector, denoted as
h. However, our DLL-RNNs model is inspired by the structure of pyramidal neurons, incorporating two distinct components
within the hidden layer. One component, hs, represents sensory input from the basal of the pyramidal neuron, while the other,
hp, denotes the backpropagated activity from the apical of the pyramidal neuron. Similar to the standard RNNs framework,
the DLL-RNNs operates across multiple time steps. At the i-th time step, the hidden state in RNNs is represented as hi,
whereas in the DLL-RNNs, it is split into two components: hs

i and hp
i . Specifically, at each time step, we first compute the

value of hs
i , which is then used to initialize hp

i as:

hp
i = hs

i = f(Whh
s
i−1 +Wxxi). (10)

Here, xi is the input at time step i for both the traditional RNNs and the DLL-RNNs. The computation involves multiplying
the weight matrix Wh by the sensory component of the hidden state from the previous time step, hs

i−1, and adding it to the
product of the weight matrix Wx and the input xi for the current time step in our DLL-RNNs. This sum is then processed
through the activation function f , resulting in the hidden state for the current time step, hs

i . We define the local error ξhi of
the hidden layer in the i-th time step as:

ξhi = hp
i − hs

i . (11)

We use ti to represent the expected output for the i-th time step, and use yi to denote the actual output for the i-th time step.

12



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

At time step i, the output of the DLL-RNNs is given by yi, which is obtained by multiplying the weight matrix Wy with
the hidden state hs

i , followed by the application of an activation function g (In our DLL-RNNs, the function g is a linear
function defined as g(x) = x), written as:

yi = g(Wyh
s
i ) = Wyh

s
i . (12)

And We define ξyi as the error for the output layer in the i-th time step.

ξyi = ti − yi. (13)

In our DLL-RNNs, we construct the Mean Squared Error (MSE) loss using the hidden layer and the output layer at each
time step i, denoted as ξhi and ξyi . The MSE loss is expressed as:

L = −1

2

n∑
i=1

[(ξhi )
2 + (ξyi )

2] = −1

2

n∑
i=1

[
(hp

i − hs
i )

2 + (ti − yi)
2
]
. (14)

To compute the backpropagated activity hp
i , we differentiate the loss L with respect to hp

i to derive ∆hp
i , which is the

direction of change for hp
i . We update hp

i through hp
i ← hp

i + ηh ·∆hp
i , where ηh represents the learning rate for updating

hp
i . For the time step i ∈ [1, n− 1], ∆hp

i is defined as:

∆hp
i =

∂L
∂hp

i

=
∂{− 1

2

∑n
j=i

[
(hp

j − hs
j)

2 + (tj − yj)
2
]
}

∂hp
i

=
∂
[
− 1

2 (h
p
i − hs

i )
2 − 1

2 (ti − yi)
2
]

∂hp
i

+
∂{− 1

2

∑n
j=i+1

[
(hp

j − hs
j)

2 + (tj − yj)
2
]
}

∂hp
i+1

∂hp
i+1

∂hp
i

= −ξhi +
∂L
∂yi

∂yi

∂hp
i

+
∂L

∂hp
i+1

∂hp
i+1

∂hp
i

= −ξhi +
∂
[
− 1

2 (ti − yi)
2
]

∂yi

∂g(Wyh
p
i )

∂hp
i

+∆hp
i+1

∂hp
i+1

∂hp
i

= −ξhi +WT
y [ξyi ⊙ g′(Wyh

s
n)] +WT

h

[
ξhi+1 ⊙ f ′(Whh

p
i +Wxxi+1)

]
= −ξhi +WT

y ξ
y
i +WT

h

[
ξhi+1 ⊙ f ′(Whh

p
i +Wxxi+1)

]
.

(15)

For time step i = n, the formula for ∆hp
n is given as:

∆hp
n =

∂L
∂hp

n

=
∂
[
− 1

2 (h
p
n − hs

n)
2 − 1

2 (tn − yn)
2
]

∂hp
n

= −(hp
n − hs

n)− (tn − yn)(−
∂yn

∂hp
n
)

= −ξhn +WT
y [ξyn ⊙ g′(Wyh

s
n)]

= −ξhn +WT
y ξ

y
n.

(16)

Here, ⊙ denotes the Hadamard product, and since g is a linear function defined as g(x) = x, its derivative is g′(x) = 1.
Thus, g′(Wyh

s
n) = 1. In our DLL-RNNs, similar to the DLL, we replace Wy with Θy and Wh with Θh. However, Wx

does not appear in the computation of ξhi , so there is no need for replacement in this context.

In our DLL-RNNs, we updates ∆hp
i as:

∆hp
i = −ξhi +ΘT

yξ
y
i +ΘT

h

[
ξhi+1 ⊙ f ′(Whh

p
i +Wxxi+1)

]
. (17)

As well, we update ∆hp
n as:

∆hp
n = −ξhn +ΘT

yξ
y
n. (18)

13



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

Similar to DLL-MLPs, we can directly assign the value of ξhi as:

ξhi = ΘT
yξ

y
i +ΘT

h [ξ
h
i+1 ⊙ f ′(Whh

s
i +Wxxi+1)]. (19)

And assign ξhn as:

ξhn = ΘT
yξ

y
n. (20)

Finally, we will adjust W through W←W + η ∗∆W. The symbol η denotes the learning rate for various instances of
the weight matrix W. Detailed update rules for the weight matrices ∆Wy are defined as:

∆Wy =
∂L

∂Wy

=

n∑
i=1

∂L
∂yi

∂yi

∂Wy

=

n∑
i=1

(ti − yi)(h
s
i )

T

=

n∑
i=1

ξyi (h
s
i )

T .

(21)

Then the Wy will be updated as:
Wy ←Wy + ηWy ∗∆Wy. (22)

For ∆Wx, we calculate as:

∆Wx =
∂L

∂Wx
=

n∑
i=1

∂L
∂hs

i

∂hs
i

∂Wx

=

n∑
i=1

[
∂L
∂hs

i

⊙ f ′(Whh
s
i−1 +Wxxi)]xi

=

n∑
i=1

[ξhi ⊙ f ′(Whh
s
i−1 +Wxxi)]xi.

(23)

Then the ∆Wx will be updated as:
Wx ←Wx + ηWx ∗∆Wx. (24)

And for ∆Wh, we update it as:

∆Wh =
∂L

∂Wh

=

n∑
i=1

∂L
∂hs

i

∂hs
i

∂Wh

=

n∑
i=1

[ξhi ⊙ f ′(Whh
s
i−1 +Wxxi)]h

s
i−1.

(25)

We update Wh as:
Wh ←Wh + ηWh

∗∆Wh. (26)

Similarly, the parameter vector Θ is updated using the following equation: Θ ← Θ + η ∗∆Θ. Here, η represents the
learning rate, which varies for different instances of the parameter vector Θ. The update term ∆Θ and the specific update

14



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

formula are defined as:

∆ΘT
y =

∂L
∂ΘT

y

=

n∑
i=1

∂L
∂ξhi

∂ξhi
∂ΘT

y

=

n∑
i=1

−ξhi [ξ
y
i ⊙ g′(Wyh

s
n)]

T

=

n∑
i=1

−ξhi (ξ
y
i )

T .

(27)

Then ΘT
y will be updated as:

Θy ← Θy + ηΘy ∗∆(ΘT
y )

T . (28)

For ∆ΘT
h , we calculate it as:

∆ΘT
h =

n−1∑
i=1

−ξhi [ξhi+1 ⊙ f ′(Whh
s
i +Wxxi+1)]

T . (29)

So the Θh will be:
Θh ← Θh + ηΘh

∗∆(ΘT
h )

T . (30)

C. Discussion on Convergence
The loss function (Equation (3)) is designed to minimize the discrepancy between the top-down predictions and bottom-up
outputs of each pyramidal neuron in the network. To achieve this, we employ local gradient descent–based learning rules
and neural plasticity mechanisms to update both forward and backward weights. During each iteration, the differences
between the network’s predictions and the ground truth propagate back through localized errors, effectively coordinating all
neurons in an orchestrated manner. As a result, neural responses collectively refine predictions over successive iterations,
gradually reducing local errors and driving the network toward convergence. While providing formal convergence proofs
remains challenging due to the network’s nonlinear operations, our empirical results consistently demonstrate a steady
decrease in loss throughout training, supporting the stability and effectiveness of our approach.

D. Experiment Settings
D.1. Statistics of Datasets

For the image classification task, we utilize several widely used image recognition datasets to evaluate our model’s
performance across different domains. These datasets include MNIST, FashionMNIST, SVHN, and CIFAR-10.

• MNIST. The MNIST dataset consists of 70,000 grayscale images of handwritten digits, each with a resolution of 28x28
pixels. It is a classic benchmark for evaluating the performance of machine learning models on digit classification
tasks, with 60,000 training images and 10,000 test images.

• FashionMNIST. FashionMNIST is a dataset similar to MNIST but consists of images of clothing items, such as shirts,
pants, and shoes. It contains 60,000 training images and 10,000 test images, each with a resolution of 28x28 pixels.
FashionMNIST serves as a more complex alternative to MNIST for testing models on multi-class image classification
tasks.

• Street View House Numbers (SVHN). SVHN is a dataset that consists of over 600,000 labeled digits extracted from
street-level images of house numbers. The dataset includes images of size 32x32 pixels in three color channels (RGB).
SVHN is designed for digit recognition in real-world, natural scene contexts, making it more challenging than MNIST.

15



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

• CIFAR-10. CIFAR-10 is a dataset comprising 60,000 32x32 color images in 10 different categories, with 6,000
images per category. The dataset is split into 50,000 training images and 10,000 test images, representing a range of
objects including airplanes, automobiles, and animals. CIFAR-10 is widely used for benchmarking models in object
recognition tasks.

For the text character prediction task, we utilize the Harry Potter Series to evaluate our model’s performance..

• Harry Potter Series. This dataset includes the entire text of the Harry Potter book series, providing a unique context for
text character prediction tasks. It is particularly useful for analyzing themes, character relationships, and genre-specific
language, allowing models to be evaluated on their ability to understand narrative structures and stylistic elements.

For the time-series forecasting task, we utilize the Electricity, Metr-la, and Pems-bay.

• Electricity. The dataset contains hourly electricity consumption data from 321 clients, covering three years from 2012
to 2014. It records 15-minute interval values in kilowatts, with no missing data. Each column represents a client, and
consumption is set to zero before a client’s start date.

• Metro Traffic Los Angeles (Metr-la). The Metr-la dataset consists of traffic speed data collected from 207 loop
detectors on the highways of Los Angeles. It provides measurements recorded every 5 minutes, capturing temporal
patterns in traffic dynamics.

• Pems-bay. The Pems-bay dataset is sourced from the Performance Measurement System (PeMS) maintained by
California Transportation Agencies (CalTrans). It includes traffic data collected from 325 sensors located in the Bay
Area. The dataset spans six months, from January 1, 2017, to May 31, 2017, providing a detailed temporal view of
traffic conditions.

D.2. Implementation Details

D.2.1. DLL-MLPS

Model Architecture Given the distinct input dimensions and varying levels of classification complexity across the four
experimental datasets, we designed tailored architectures for each dataset. Specifically, the MNIST and FashionMNIST
datasets consist of single-channel images with a size of 28×28 pixels, whereas the SVHN and CIFAR-10 datasets comprise
three-channel color images of 32×32 pixels. To address these differences, we adapted the model architectures to optimize
performance. For the MNIST and FashionMNIST tasks, we employed 5-layer DLL-MLPs with layer sizes of 784, 1024,
512, 256, and 10 neurons, respectively. The initial layer size of 784 corresponds to the flattened input vector from the 28×28
single-channel images, while the final layer of 10 neurons represents the output classes. In contrast, for the more complex
SVHN and CIFAR-10 datasets, we utilized a deeper 6-layer DLL-MLPs, with layer sizes of 3072, 4096, 2048, 1024, 256,
and 10 neurons. The first layer size of 3072 reflects the flattened input vector from the 32×32×3 three-channel images, and
the last layer also comprises 10 neurons for the classification outputs.

Training Hyper-parameters All models were optimized using the Adam optimizer, with a linear learning rate scheduler
for weight decay. The hyperbolic tangent activation function was employed in all layers except the output layer. Given
the varying sizes and complexities of the datasets, we tailored the hyperparameter configurations to achieve optimal
performance for each dataset. For the MNIST dataset, we set the learning rate to 1× 10−3 and used a batch size of 128. For
FashionMNIST, considering its increased complexity relative to MNIST, we adjusted the learning rate to 5× 10−4 and used
a batch size of 64 to better handle the more nuanced classification task. For the SVHN dataset, which presents a higher
level of complexity, we set the learning rate to 5× 10−5 and maintained a batch size of 64 to balance training stability and
convergence speed. Finally, for CIFAR-10, the most challenging dataset among the four, we set the learning rate to 8× 10−5

and also used a batch size of 64 to ensure robust training dynamics.

D.2.2. DLL-CNNS

Model Architecture Following the same rationale as in the DLL-MLPs model, we employed different architectures for
different datasets.

16



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

For the MNIST dataset, the first layer is a convolutional layer with 32 filters, a kernel size of 5, and no padding. The second
layer is a max-pooling layer. The third layer is a convolutional layer with 64 filters, a kernel size of 3, and no padding. The
fourth layer is another max-pooling layer. The fifth layer is a convolutional layer with 16 filters, a kernel size of 3, and no
padding. The sixth layer is a projection layer with an output size of 200. The seventh and final layer is the output layer, with
an output size of 10.

For the FashionMNIST dataset, the first layer is a convolutional layer with 64 filters, a kernel size of 5, and no padding.
The second layer is a max-pooling layer. The third layer is a convolutional layer with 128 filters, a kernel size of 3, and no
padding. The fourth layer is an average pooling layer. The fifth layer is a convolutional layer with 64 filters, a kernel size of
3, and no padding. The sixth layer is a projection layer with an output size of 128. The seventh and final layer is the output
layer, with an output size of 10.

For the SVHN dataset, the first layer is a convolutional layer with 64 filters, a kernel size of 3, and padding of 1. The second
layer is a max-pooling layer. The third layer is a convolutional layer with 128 filters, a kernel size of 3, and padding of 1.
The fourth layer is another max-pooling layer. The fifth layer is a convolutional layer with 64 filters, a kernel size of 3, and
padding of 1. The sixth layer is a projection layer with an output size of 256. The seventh and final layer is the output layer,
with an output size of 10.

For the CIFAR-10 dataset, the first layer is a convolutional layer with 64 filters, a kernel size of 3, and padding of 1. The
second layer is a max-pooling layer. The third layer is a convolutional layer with 128 filters, a kernel size of 3, and padding
of 1. The fourth layer is another max-pooling layer. The fifth layer is a convolutional layer with 64 filters, a kernel size of 3,
and padding of 1. The sixth layer is an average pooling layer. The seventh layer is a projection layer with an output size of
256. The eighth and final layer is the output layer, with an output size of 10.

Training Hyper-parameters All models were optimized using the Adam optimizer, with a linear learning rate scheduler
for weight decay. The hyperbolic tangent activation function was employed in all layers except the output layer. For
consistency across all datasets, we standardized the hyperparameters to a learning rate of 5× 10−5 and a batch size of 64.

D.2.3. DLL-RNNS

Model Architecture Recurrent Neural Networks (RNNs) are a class of neural networks designed to recognize patterns in
sequences of data, such as time series, natural language, or any other sequence data. Unlike traditional feedforward neural
networks, RNNs have connections that form directed cycles, allowing them to maintain a hidden state that can capture
information about previous time steps. In our DLL-RNNs architecture, the network consists of three layers:

• Input Layer: This layer accepts a one-dimensional tensor. The dimensionality of this tensor is determined by the data
format of different datasets.

• Hidden Layer: The hidden layer’s dimensionality is a tunable hyperparameter. We have implemented a DLL version
of the RNNs, where the hidden layer is divided into two parts: hs

i , responsible for forward output, and hp
i , responsible

for receiving error signals.

• Output Layer: This layer outputs a one-dimensional tensor, with its dimensionality also determined by the specific
dataset’s requirements.

In our DLL-RNNs model, during the output phase at time step i, the hs
i part of the hidden layer receives input x and the

input from the previous time step hs
i−1. It then outputs to the current time step yi and the next time step hs

i+1.

Evaluation Metrics We utilize character prediction accuracy to evaluate the performance of the DLL-RNNs model on
a text character prediction task. Given a character sequence of length n + 1, denoted as [0, n], the model is designed to
operate over n time steps. During each time step i, the model receives a one-hot encoded tensor corresponding to the i-th
character and predicts the one-hot encoded tensor for the (i+ 1)-th character. This process involves iteratively accepting
input and generating predictions. The evaluation metric is based on counting the number of correct predictions made at each
step, thereby measuring how well the model learns the sequential patterns and predicts subsequent characters accurately
throughout the sequence. We utilize the Mean Squared Error (MSE) loss and the Mean Absolute Error (MAE) loss to
evaluate the performance of the DLL-RNNs model in the context of time-series forecasting tasks. The Mean Squared Error

17



Dendritic Localized Learning: Toward Biologically Plausible Algorithm

(MSE) is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (31)

In this formula, n represents the total number of observations. The symbol yi denotes the true value of the i-th observation,
while ŷi stands for the backpropagated label of the i-th observation. The term (yi − ŷi)

2 is the squared difference between
the true and backpropagated labels for the i-th observation. The Mean Absolute Error (MAE) is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|. (32)

Here, n is the total number of observations. The variable yi indicates the true value of the i-th observation, and ŷi represents
the predicted value of the i-th observation. The expression |yi − ŷi| refers to the absolute difference between the true and
backpropagated labels for the i-th observation.

Training Hyper-parameters We conducted a grid search on each dataset to explore the optimal parameter configurations.
Specifically, we selected appropriate hidden layer sizes and learning rates tailored to different tasks to achieve the best
training outcomes. Additionally, we employed both cosine and linear schedulers to dynamically adjust the learning rate
based on the epoch. This approach ensures that the learning process adapts effectively throughout the training phases,
optimizing the model’s performance across various datasets and tasks. Ultimately, we configured the hidden layer sizes for
different datasets as follows: for the Harry Potter Series, the hidden layer size was set to 324; for the Electricity and Metr-la
dataset, it was set to 300; and for the Pems-bay dataset, the hidden layer size was set to 384.

E. Experimental Results on CIFAR-100 and Tiny-ImageNet
We trained CNNs with BP and DLL on CIFAR-100 and TinyImageNet. Consistent with previous work (Bartunov et al.,
2018), we report test accuracy for CIFAR-100 and test error rate for Tiny-ImageNet in Table 4.

Table 4. Performance of CNNs trained with BP and DLL on CIFAR-100 and Tiny-ImageNet. Test accuracy for CIFAR-100 and test error
rate for Tiny-ImageNet.

Method CIFAR-100 Tiny-ImageNet
BP_CNN 44.50% 78.60%

DLL_CNN 38.60% 82.90%

Note that we do not use any additional training techniques such as batch normalization or residual connections. Our CNN
architecture is similar to that in Bartunov et al. (2018). For CIFAR-100, the CNN consists of four convolutional layers with
channel configurations of 3-64-64-128-64, followed by two fully connected layers. For TinyImageNet, the CNN consists of
five convolutional layers with filter configurations of 3-64-64-128-128-64, followed by two fully connected layers.

F. Training TextCNN with DLL
In this section, we performed experiments on the text classification datasets Subj1 and Movie Review (MR) (Pang & Lee,
2005), with results summarized in Table 5.

Table 5. Performance of TextCNN on text classification tasks.
Method Subj MR

BP_TextCNN 88.50% 74.68%
DLL_TextCNN 84.40% 70.79%

The architecture is identical to the original TextCNN (Kim, 2014). The models trained with DLL achieve comparable
accuracy to those trained with BP on two datasets.

1
https://www.cs.cornell.edu/people/pabo/movie-review-data/

18

https://www.cs.cornell.edu/people/pabo/movie-review-data/


Dendritic Localized Learning: Toward Biologically Plausible Algorithm

G. Time Consumption and Memory Usage
We record the training time consumption and GPU memory usage when conducting experiments on image classification.
The time consumption and memory usage for these experiments are summarized in Table 6:

Table 6. Training time consumption and GPU memory usage of BP and DLL.

Method Training Time (s/Epoch) Memory Usage (MB)
BP_MLP 31.6 1286.4
BP_CNN 99.0 1272.9

DLL_MLP 44.7 1595.3
DLL_CNN 169.8 1306.9

To fairly compare time consumption across architectures, we used the CPU instead of the GPU. DLL requires more training
time and memory because both the forward weight W and backward weight Θ are updated simultaneously. Our design is
not driven by computational or memory efficiency; rather, we prioritize biological plausibility.

H. Scalability of DLL
In this section, we conduct scalability experiments and show the results in Table 7:

Table 7. Scalability of MLPs trained with DLL.

DLL-MLP Architecture Accuracy on MNIST
784-1024-10 71.15%

784-1024-512-10 89.61%
784-1024-512-256-10 97.57%

All MLPs are trained fairly, and the results show the scalability of DLL.

I. Limitations and Future Directions
I.1. Limitations.

Despite the promising contributions of Dendritic Localized Learning (DLL), several limitations remain. First, the implemen-
tation and evaluation of DLL have been restricted to conventional artificial neural networks (ANNs) architectures such as
MLPs, CNNs, and RNNs, leaving its applicability to spiking neural networks (SNNs) (Maass, 1997) unexplored. Given the
increasing interest in SNNs for energy-efficient and biologically realistic computing, this is a critical area for future work.
Second, while DLL achieves biological plausibility by satisfying the proposed criteria, its reliance on unsigned error signals
may present challenges in scenarios requiring precise error alignment or task-specific optimization. Addressing these issues
is essential for improving both the versatility and robustness of the algorithm.

I.2. Future directions.

Future research will focus on extending the DLL framework to SNNs, leveraging their potential for energy-efficient
computation and neuromorphic hardware compatibility. This extension will require adapting the DLL to handle the temporal
dynamics and discrete spike-based representations inherent in SNNs, further aligning the algorithm with biological principles.
Additionally, exploring hybrid architectures that integrate DLL with traditional learning mechanisms may enhance their
scalability and performance on more complex datasets and tasks. Another avenue involves addressing the challenges posed
by unsigned error signals, such as developing task-specific adjustments or augmenting the algorithm with mechanisms to
improve error precision. Finally, we envision applying DLL to real-world problems in areas like robotics, neuroscience, and
autonomous systems, validating its practical utility and impact across diverse domains.

19


