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ABSTRACT

Artificial intelligence has become a crucial tool in drug discovery, excelling in tasks
such as molecular property prediction. An activity cliff, which refers to a minor
structural modification to a molecule resulting in a large change in its biological
activity, poses a challenge in predictive modeling. The activity cliff depends on
the interaction between the target and the ligand, which is largely overlooked by
previous ligand-centric studies. However, the limited activity cliff data of target-
ligand 3D complex restrain the predictive power of modern deep learning models.
In this paper, we introduce DockedAC, a new dataset incorporating the protein
target and 3D complex structure information for studying the problem of activity
cliffs. By matching protein binding information and ligand bioactivity, we employ
molecular docking to generate the complex structure for each activity value. The
DockedAC dataset contains 82,836 activity data on 52 protein targets with activity
cliff annotations, which serves as the first step towards activity cliff research with
large-scale 3D complex structures. We benchmark the dataset with traditional
machine learning and deep learning approaches. Our data and benchmark platform
are available here.

1 INTRODUCTION

Artificial intelligence (AI) is revolutionizing the drug discovery process as it is capable of large-scale
data analysis, pattern recognition, and making accurate predictions (Vamathevan et al., 2019). One
important application of AI models is to predict the biological activity of candidate compounds,
thereby reducing labor-intensive tasks. A foundational concept in many AI algorithms is the similarity
principle, which states that similar objects are likely to share similar features and predictions. However,
in drug discovery, a phenomenon called activity cliffs defies this idea and poses a challenge for
AI models. An activity cliff (AC) is defined as structurally similar compounds exhibiting large
differences in their biological activity against the same target (Maggiora, 2006), as illustrated
in Figure 1 (a).

AC is crucial for drug discovery, as it complicates the process of optimizing drug candidates by con-
founding the human experts in the understanding of usual structure-activity relationships (SARs) (Vogt
et al., 2011). On the other hand, knowledge about ACs can be highly beneficial when designing or
optimizing compounds to enhance the bioactivity of a given target (Cruz-Monteagudo et al., 2014;
Stumpfe et al., 2014). For example, replacing a single atom or adding a methyl group can result in
more than 100-fold improvement in bioactivity (Leung et al., 2012; Pennington & Moustakas, 2017).
However, the mechanisms of ACs in individual drug development programs can be different, making
it challenging for humans to process such information and derive transferable experiences. Therefore,
various efforts have been made to computationally predict ACs (Stumpfe et al., 2019).

Compared to quantitative structure-activity relationship (QSAR) modeling for other molecular
properties, AC predictions are challenging due to the non-robustness that ACs introduce to the
models (Cruz-Monteagudo et al., 2016). Early attempts use machine learning methods such as
random forest (RF) and support vector machine (SVM) to predict the AC of a compound pair (Guha,
2012; Heikamp et al., 2012). To further improve AC predictions, matched molecular pair (MMP)
kernel (Tamura et al., 2021) and condensed graphs of reaction representations (Horvath et al., 2016)

1

https://anonymous.4open.science/r/DockedAC-ICLR


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Activity cliff (b) With 3D structures

PDB: 1H1Q
IC50=1000nM (  )

PDB: 1H1S
IC50=5.4nM (  )

N
H

N

N

O
H
N

N

PDB: 1H1Q
IC50=1000nM (  )

N
H

N

N

O
N

N
H

S
O

O

H2N

PDB: 1H1S
IC50=5.4nM (  )

Similarity: 0.93 

Figure 1: Illustration of activity cliffs. (a) An activity cliff example: two similar molecules with a
large difference in the bioactivity of the target. (b) From the 3D structure, the bioactivity of the ligand
on the right is improved due to the formation of two new hydrogen bonds (highlighted with pink
dashed lines).

have been integrated into various machine learning methods. More recently, algorithms based on
deep neural networks have been applied to predict ACs, such as convolutional neural networks (Iqbal
et al., 2021), graph neural networks (Park et al., 2022) and transformers (Chen et al., 2022).

In most previous works, the study of ACs has been ligand-centric and lacked 3D structure considera-
tion, failing to account for interactions between the ligand and the protein target (Husby et al., 2015;
Tamura et al., 2023). Many mechanisms of ACs can be analyzed from the structural perspective,
such as hydrogen bonding, ionic interactions, hydrophobic or aromatic group interactions (Hu et al.,
2012) (e.g. Figure 1 (b)). It is therefore natural to incorporate the information of structures into the
modeling of ACs. However, available structural data for ACs is very limited, with only 215 pairs of
AC ligands (Husby et al., 2015). Such data scarcity issue makes it challenging to train deep learning
models effectively.
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Figure 2: Settings of previous studies and our work about ACs. (a) Previous works mostly consider
AC prediction from a ligand-centric view and overlook the target information and 3D complex
structure. (b) We construct a dataset with target-ligand complex structures for AC prediction.

In this paper, we present DockedAC, a new dataset to tackle the problem of ACs from a structural
perspective, aiming at AC modeling with large data and modern AI algorithms. Unlike previous
studies, our dataset includes not only the information on protein targets but also the target-ligand
complex structures built using molecular docking (Figure 2). We collect the bioactivity data of
more than 80,000 ligands across over 50 protein targets. The protein targets are mapped to their
corresponding structures in the RCSB Protein Data Bank (PDB) (Berman et al., 2000), with the
ligand binding sites identified for docking. In addition, we also provide a framework to benchmark
the performance of traditional machine learning and deep learning methods on AC prediction and
study the effect of ACs on model performance. Our dataset would be beneficial to enhance model
interpretability, inspire the design of promising algorithms on ACs, and foster the development of
more effective 3D feature extraction methods.
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2 RELATED WORK

Previous works on AC prediction. As a crucial phenomenon in drug discovery, ACs are not only
popular in medicinal chemistry but also attract the attention of the computer science and intelligence
community. Various methods of machine learning and deep learning have been applied to the
prediction of ACs (Guha, 2012; Heikamp et al., 2012; Iqbal et al., 2021; Chen et al., 2022; Park et al.,
2022). In addition, recent research has explored ACs from several different perspectives, such as
QSAR modeling (Dablander et al., 2023), the complexity of the learning methods (Tamura et al.,
2023), and benchmarking of different approaches (van Tilborg et al., 2022). However, due to the
limited availability of data, almost all existing works focus on the ligand-centric view of ACs, where
the ligand is modeled with a 2D molecular graph or 1D SMILES sequence (Weininger, 1988), without
incorporating the 3D structure and the protein target information. The 3D activity cliff (3DAC)
database, used in a study on structure-based AC prediction, contains only 219 3DAC pairs (Hu et al.,
2012; Husby et al., 2015). This motivates us to construct a larger dataset for structure-based ACs.

Existing AC datasets. Although there are several works on AC prediction, few good benchmarking
datasets exist. Several works rely on self-collected datasets and are not well documented, or have
little information provided about the protein targets (Jiménez-Luna et al., 2022; Dablander et al.,
2023; Tamura et al., 2023). Two recent works on AC datasets both collect data from the ChEMBL
database (Mendez et al., 2019), either for the classification of a pair of AC ligands (Zhang et al.,
2023c) or the regression of the bioactivity value of individual AC ligands (van Tilborg et al., 2022).
These datasets do not consider modeling the 3D structure of the binding complex, rendering them
less appropriate for accurate AC prediction. In our work, we match the obtained bioactivity data to
the corresponding protein structures in PDB and generate target-ligand binding structures.

3D protein-ligand binding affinity prediction. In this work, we consider the regression problem
and train different models to predict the bioactivity in the presence of the AC. Given the target-ligand
complex structures, nearly all the models for binding affinity prediction use the PDBbind dataset,
including convolutional neural networks, graph neural networks, and attention-based models (Zhang
et al., 2023a; Jiang et al., 2021a; Jiménez et al., 2018; Tan et al., 2024). A comprehensive review
of the drug-target interaction prediction can be found in Zeng et al. (2024). In molecular property
prediction, activity cliffs can significantly impact model predictions (Deng et al., 2023). We evaluate
the performance of 3D target-ligand affinity prediction models with our dataset and compare them
with other machine learning or deep neural network models with ligand-only inputs.

3 THE DOCKEDAC DATASET

In summary, the construction of DockedAC involves several key steps: data collection, AC identi-
fication, target structure annotation, and target-ligand complex generation. The following section
provides a detailed explanation of each step in this process.

3.1 DATA COLLECTION

We first collect bioactivity data (Inhibitory Constant, Ki; Half-Maximal Effective Concentration,
EC50; Half-Maximal Inhibitory Concentration, IC50 in [nM]) of 64 protein targets from ChEMBL
v33 (Mendez et al., 2019) with the ChEMBL web resource client (Davies et al., 2015). To eliminate
significant sources of error, the obtained raw data is checked for validity and reliability. In particular,
a ligand is removed if (a) it fails the sanitization and standardization by RDkit (Bento et al., 2020); or
(b) it has a standard deviation larger than 10 in case of multiple entries. To ensure enough samples of
a target for model training, the targets with fewer than 500 ligands are dropped. Finally, the negative
logarithm p is applied to the bioactivity values as the regression target (denoted as pKi; pEC50;
pIC50 in [log units]) (Stewart & Watson, 1983). After this process, we have the CHEMBL id of
the target and the corresponding ligands with bioactivity values (the first step in Figure 3 (a)). The
resulting dataset has 54 protein targets.
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Figure 3: The whole process of building DockedAC with: (a) initial data collection from ChEMBL
(Sec. 3.1) and activity cliff identification (Sec. 3.2), (b) mapping targets to 3D structures and identify-
ing binding sites (Sec. 3.3), and (c) generation of target-ligand complex structures (Sec. 3.4).

3.2 ACTIVITY CLIFF IDENTIFICATION

An activity cliff is a pair of structurally similar compounds with a large difference in bioactivities
against a given target. To detect pairs of similar ligands, we take a consensus of three similarity
measures to define the activity cliff pairs following van Tilborg et al. (2022): (a) substructure
similarity, which is calculated via the Tanimoto coefficient on the extended connectivity fingerprint
(ECFP) (Tanimoto, 1958; Rogers & Hahn, 2010); (b) scaffold similarity, which is determined by the
Tanimoto coefficient on the ECFP of the generic Murcko scaffolds (Bemis & Murcko, 1996); (c)
SMILES similarity, computed as one minus the scaled Levenshtein distance between the canonical
SMILES (Levenshtein et al., 1966). If any of these three similarities is equal to or larger than 0.9, the
pair of ligands is checked for their difference in bioactivity. Currently, there are no widely accepted
quantitative definitions of ACs (Stumpfe et al., 2020). Following previous works (Jiménez-Luna
et al., 2022; Hu & Bajorath, 2012), a bioactivity difference larger than one order of magnitude (10×)
is used to identify activity cliffs (the second step in Figure 3 (a)).

3.3 TARGET AND STRUCTURE ANNOTATION

To generate the target-ligand complex, it is essential to identify the 3D structure of the target protein
and its binding site. This mapping process is illustrated in Figure 3 (b). Given a target CHEMBL
id, the first step is to map the target protein to its UniProt id (Consortium, 2023) and find all the
structures corresponding to the UniProt id in the PDB. We utilize the PDBbind database for initial
searching (Wang et al., 2004). If PDBbind does not include the target, we then search for it in the
whole PDB. The obtained structures with a small molecule ligand are chosen and aligned to check if
the ligands bind to the same site. If the binding site is not unique, the target is discarded (see Figure 9
(a)(b)). After alignment, ligands sharing the same binding site are extracted and compared with the
ligands that have activity labels from ChEMBL. Suppose there exists a pair of ligands, one from
the PDB database and one from the ChEMBL database, with a similarity (Tanimoto coefficient of
the fingerprints) larger than 0.99. In that case, the target structure and the binding site are used.
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Otherwise, the target is removed from the dataset. When multiple structures satisfy this condition,
the structure with the best resolution is selected. This procedure ensures the correspondence between
the bioactivity values and the target binding site. As a result of this structure mapping process, two
targets are removed, resulting in a final dataset of 52 protein targets.

3.4 COMPLEX STRUCTURE GENERATION

Next, molecular docking is employed to generate the target-ligand complex for each target, illustrated
in Figure 3 (c). The docking tool DSDP is used, which combines the pose sampling algorithm of
AutoDock Vina and GPU acceleration (Huang et al., 2023; Trott & Olson, 2010). Since the binding
site information of the target is already known, local docking is performed within the given binding
region of a 25 Å wide box. The docking results are reviewed to ensure the agreement between the
ligand bioactivity value and the binding conformation. A docking score (in kcal/mol) larger than zero
indicates an inaccurate docking conformation (e.g. Figure 9 (c)), and the corresponding ligand is
removed from the dataset.

3.5 DATASET SPLITTING

To prepare the dataset for benchmarking, the ligands of each target are split into a training and test set
using a double-stratified sampling strategy (van Tilborg et al., 2022). In particular, the ligands of each
target are first clustered into 5 groups based on their substructural similarity (Tanimoto similarity of
the ECFP). A two-stage stratified splitting (80%/20%) is then performed on the cluster label and the
AC label. This procedure ensures that the training and test set have similar ligand distributions.

3.6 DATASET DESCRIPTION

Table 1: Brief dataset statistics by the target type.

Target type # Targets Avg. # ligands %AC
G protein-coupled receptor 12 2091 41.7
Kinase 11 1234 27.5
Protease 8 1667 38.0
Nuclear receptor 8 1299 35.7
Phosphodiesterase 3 1328 34.1
Phosphatase 2 1581 18.0
Transporter 1 1051 25.3
Transferase 1 960 41.8
Oxidoreductase 1 739 38.0
Other membrane receptor 1 1328 38.2
Lyase 1 5796 42.2
Kinesin 1 719 43.2
Electrochemical transporter 1 1702 37.5
Chaperones 1 999 15.7

The final dataset contains 82,836
target-ligand activity values and
the corresponding generated com-
plex structures. Due to the page
limit, the detailed information on
each target can be found in Ap-
pendix Table 3. We give a brief
dataset description in Table 1.
The dataset contains popular tar-
get families in drug discovery (G-
protein-coupled receptors (GPCR),
kinases, proteases, and nuclear re-
ceptors) as well as targets with criti-
cal roles in biology (chaperone and
kinesin). In terms of size, the tar-
get Carbonic anhydrase II has the
most ligands with bioactivity values (5794 unique molecules). The target with the least ligands (533
unique molecules) is Matrix metalloproteinase 8. As an intensively studied drug target, the GPCR is
the target family with the most ligands on average. For all the targets, around 37% of the ligands are
annotated as ACs, with percentages ranging from 15.7% to 43.2%.

4 BENCHMARK

In addition to the DockedAC dataset, we also provide a framework to benchmark the performance of
various machine learning and deep learning methods on AC prediction. This section briefly introduces
our benchmark setup, followed by a detailed presentation of the experimental results and analyses in
the subsequent section (Sec. 5).

4.1 MODEL DESCRIPTIONS

In general, three types of learning models are included in our framework:
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• Four classic machine learning algorithms for structure-activity relationship prediction using
handcrafted molecular descriptors: K-nearest neighbor (KNN) (Cover & Hart, 1967), random
forest (RF) (Breiman, 1996), gradient boosting machine (GBM) (Friedman, 2001), and support
vector regression (SVM) (Hearst et al., 1998).

• Deep learning models that only leverage the 1D or 2D ligand information, including (1) three
1D sequential models: transformer (Vaswani et al., 2017), long short-term memory (LSTM)
networks (Hochreiter & Schmidhuber, 1997), and 1D CNN (Kimber et al., 2021), and (2) four 2D
structural graph neural network (GNN) models: message passing neural network (MPNN) (Gilmer
et al., 2017), graph convolutional network (GCN) (Kipf & Welling, 2016), graph attention network
(GAT) (Vaswani et al., 2017), and attentive fingerprint (AFP) (Xiong et al., 2019).

• Two 3D structural GNN models: IGN (Jiang et al., 2021a) and SS-GNN (Zhang et al., 2023a) are
included to study the effect of 3D structures, as our dataset contains 3D structural information.

4.2 FEATURE DESCRIPTIONS

For machine learning algorithms, following previous work van Tilborg et al. (2022), we consider four
types of molecule descriptors from several levels of complexity as follows. (1) Extended Connectivity
Fingerprints (ECFPs) (Rogers & Hahn, 2010): circular topological fingerprints used for molecular
characterization. (2) Molecular ACCess System (MACCS) keys (Durant et al., 2002): a set of
structural keys utilized for substructure searching and similarity analysis, encoding specific chemical
substructures or patterns. (3) Physicochemical (PhysChem) descriptors (Walters & Murcko, 2002):
11 properties indicative of drug-likeness. (4) Weighted Holistic Invariant Molecular (WHIM) descrip-
tors (Todeschini et al., 1998): capturing three-dimensional geometrical and electronic properties of
molecules, invariant to rotation and translation.

Deep learning methods eliminate the need for handcrafted descriptors, allowing direct learning
from “unstructured” data representations. For sequential methods, the Simplified Molecular Input
Line Entry System (SMILES) (Weininger, 1988) string is used, which is popular for its ability
to describe the structure of chemical species in text format that sequential methods can naturally
process. For 2D GNN models, we adopt molecular graphs, a representation of structural formula
where nodes represent atoms and edges represent bonds. For 3D GNN models, we employ the target-
ligands complexes we have processed that incorporate detailed 3D structure information. Detailed
descriptions of the features can be found in Appendix A.4.

4.3 METRICS AND IMPLEMENTATIONS

For each target, we train separate regression models on the bioactivity values (pKi/pEC50/pIC50

in [log units]). The regression setting makes it possible to compare the AC and non-AC tasks. The
root-mean-square error (RMSE) is employed as the evaluation metric to quantify the performance.
The RMSE represents the error calculated across all ligands, whereas RMSEcliff specifically denotes
the error computed for AC ligands. For model implementation, we conduct hyperparameter tuning
through grid search and report the results from five-fold cross-validation. Further details on these
methods and their implementations are provided in Appendix A.3 and A.5.

5 EXPERIMENTAL RESULTS AND ANALYSES

5.1 PERFORMANCE COMPARISON FOR GNN MODELS

To investigate the effect of 3D structure information, we first evaluate 2D GNN models and 3D GNN
models across 52 targets. To study AC, scatter plots with RMSE as the x-axis and RMSEcliff as the
y-axis are utilized, as shown in Figure 4 (a) to (f).

We have the following empirical observations: 1) The majority of the points are distributed above the
line RMSE = RMSEcliff , indicating higher prediction errors on ACs due to their unusual structure-
activity relationships. 2) Despite a general correlation between RMSE and RMSEcliff , notable outliers
are presented. This suggests that models with overall high prediction accuracy do not necessarily
perform well on ACs. Among these models, SS-GNN exhibits the closest distribution around line
RMSE = RMSEcliff , with only two targets deviating by more than 0.2 log units. 3) The distribution
of IGN is primarily clustered in the lower-left corner of the plots, indicating superior performance in
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Figure 4: Performance comparison for GNN models. (a)-(f) Comparison between RMSE and
RMSEcliff of GNN models across 52 targets. The 2D GNN models are colored in yellow , while
the 3D GNN models are colored in green . Gray nodes depict all nodes in these six subgraphs for a
clear comparison. Red solid lines show RMSE = RMSEcliff , while red dashed lines indicate a ± 0.2
log units difference. (g) Target-wise differences between overall RMSE and RMSEcliff for all GNN
models ordered by Pearson correlation r of RMSE and RMSEcliff .

both RMSE and RMSEcliff . This suggests that incorporating 3D structural information enhances the
prediction of ACs and improves the model’s understanding of standard structure-activity relationships.
4) Figure 4 (g) further presents the target-wise differences between RMSE and RMSEcliff for GNN
models, sorted by the Pearson correlation coefficient r of RMSE and RMSEcliff . 3D structure GNN
models ranked first and third in terms of r. SS-GNN exhibits the smallest difference between RMSE
and RMSEcliff , while IGN has the most concentrated distribution across targets. Its 5%-95% coverage
range is only 0.58 times that of MPNN and 0.71 times that of GAT. These findings demonstrate the
benefit of incorporating 3D structural information, which leads to a higher degree of correlation
between performance on overall ligands and AC ligands, ultimately improving the understanding of
structure-activity relationships and aiding in the prediction of ACs.

Table 2: The RMSEcliff evaluated using GNN models and machine learning algorithms with ECFP
featurization across the top four target families. For each method, the colors show the ranking of the
target, i.e., first , second , third , fourth .

Target type (#) MPNN GCN GAT AFP IGN SS-GNN KNN RF GBM SVM

GPCR (12) 0.927 0.995 1.018 0.907 0.877 0.977 0.814 0.785 0.791 0.752
Kinase (11) 0.902 0.942 0.970 0.917 0.865 0.896 0.802 0.765 0.747 0.707
Protease (8) 0.979 1.071 1.069 1.025 0.904 1.006 0.867 0.827 0.828 0.810
Nuclear receptor (8) 0.893 0.972 0.978 0.932 0.865 0.906 0.822 0.799 0.800 0.781

5.2 THE AC PREDICTION IS TARGET-DEPENDENT

The AC effect is determined by the interaction between the ligand and the target. We hypothesize
that the target type may also influence deep learning model performance. Table 2 shows the average
RMSEcliff of the top four target families that have the most targets in our dataset, i.e., GPCR, kinase,
protease, and nuclear receptor. The color means the ranking of the four targets for each method. It is
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easy to notice that performance rankings are quite consistent across both deep learning and machine
learning methods. Protease has the worst RMSEcliff for all the methods while kinase is the target
family with the best RMSEcliff for most methods. GPCR has a worse performance than nuclear
receptor in most deep learning methods, but machine learning methods perform better on GPCR.

It is also surprising to observe better performance for some machine learning models over deep
learning approaches. This can be attributed primarily to their use of handcrafted features, especially
ECFP. To validate this observation, we implement a hybrid approach combining the ECFP features
with the features extracted from the last layer of the 3D IGN model. These concatenated features
are then fed into an MLP for prediction (as illustrated in Appendix Figure 8). The promising results
across ten targets (see Appendix Table 6) demonstrate the effectiveness of ECFP in structure-activity
relationship learning. On the other hand, this experiment underscores the value of integrating
traditional cheminformatics techniques with advanced deep learning methods in molecular property
prediction tasks. Future research could explore optimizing this hybrid approach and investigating its
applicability to a broader range of molecular targets and properties.

5.3 THE PERCENTAGE OF AC MATTERS
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Figure 5: Relationship between the ratio of the AC
and RMSEcliff−RMSE of IGN.

In general, machine learning models tend to
perform better with more training data. Here
we study the factors influencing the AC pre-
diction. Surprisingly, we do not find that the
number of training samples produces a signif-
icant correlation with RMSE, RMSEcliff , or
their numerical difference, i.e., RMSEcliff−
RMSE (see Appendix Figure 11). However,
as shown in Figure 5 (also in Figure 10), the
ratio of AC ligands in the training set is a sig-
nificant factor affecting RMSEcliff− RMSE,
with a p-value of 1.0e-4. A higher percentage
of the AC in the training set means more in-
formation about AC, thus improving the AC
predictive power. Our finding indicates that the
knowledge about general bioactivity prediction
is different from the knowledge benefiting AC
prediction, underlining the importance of new datasets and methods tailored for AC prediction.

5.4 PERFORMANCE COMPARISON WITH MACHINE LEARNING ALGORITHMS

We benchmark the ability of all methods to predict bioactivity in the presence of the AC (measured
by RMSEcliff ), as shown in Figure 6 (detailed results in Appendix Figure 12). We have the following
empirical observations: 1) Significant performance differences can be observed among targets in
the handling of AC compounds, with RMSEcliff values spanning from 0.52 to 1.59 log units, which
is consistent with previous works (van Tilborg et al., 2022; Sheridan, 2012). This highlights the
challenges of AC prediction and the necessity for further development of advanced algorithms
and more effective feature extraction methods. 2) Among the four machine learning algorithms,
performance disparities primarily stem from the molecule descriptor rather than the learning methods.
Nonbinary descriptors such as WHIM and PhysChem significantly underperform compared to ECFP.
ECFPs are designed specifically for structure-activity modeling by encoding detailed information
about each atom’s local environment, yielding the lowest prediction error of all methods. Its strong
discriminative capability effectively differentiates molecules, even with minor structural differences.
This effectiveness is further corroborated by the promising results obtained when combining ECFP
with 3D graph models (as detailed in Appendix Figure 8 and Table 6). 3) For deep learning methods,
IGN coupled with 3D structure information achieves the best performance on ACs. This approach
benefits from the interaction information between the ligand and the protein target captured within
the 3D structure.

5.5 PERFORMANCE POSITIONING OF 3D GNN METHODS

8
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Figure 6: The RMSEcliff evaluated using different methods and features across 52 targets.
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Figure 7: MDS visualization of GNN-
based models and machine learning al-
gorithms with ECFP featurization on
RMSEcliff .

Our experimental results show that machine learning
methods significantly outperform deep learning meth-
ods, especially with the ECFP featurization. This finding
aligns with previous studies on molecular property pre-
diction (Jiang et al., 2021b; Janela & Bajorath, 2022). To
provide a global assessment of the methods and demon-
strate the effect of the target on 3D GNN methods, we
take the RSMEcliff values of the 52 targets as features
and compute the Pearson correlation between the meth-
ods. The correlation serves as a similarity measure in
multidimensional scaling (MDS) (Mead, 1992) to visu-
alize the methods in a 2D plane (Figure 7). We then
identify the direction that determines the performance
of the methods. Although the average performance of
SS-GNN and IGN does not surpass machine learning
methods, there exist specific targets that IGN and SS-
GNN outperform SVM. In contrast, GAT and GCN con-
sistently have larger RSMEcliff values than SVM across
all targets. Handcraft features, such as ECFP, have been
optimized for QSAR over decades. Our analysis indicates that the models with 3D structures can
offer insights that handcraft features do not capture. Therefore, in practice, models based on 3D
structures can be important complements to the machine learning methods.

The incorporation of 3D structural information also enables cross-target modeling capabilities. To
investigate this potential, we conduct additional experiments by combining Ki targets and training the
IGN model under two scenarios: (i) in-domain setting under all Ki targets, and (ii) out-of-distribution
(OOD) setting excluding Protease-type targets. Analysis of four Protease targets (Appendix Table 7)
reveals that the absence of Protease targets in training leads to performance degradation, with average
RMSEcliff increasing from 0.9 to 1.4. While multi-target training achieves comparable performance
to target-specific training across all targets (Appendix Figure 13), these results indicate that there is
still a long way to go to fully exploit the multi-target 3D data and make the model generalize to new
targets.

6 CONCLUSION

In this paper, we introduce DockedAC, a new dataset for ACs with 3D complex structures. The
dataset contains over 80k ligands from 52 protein targets, with the 3D structure of each target
annotated by a unique known binding site. Molecular docking is performed to generate the protein-
ligand complex structures for at least 500 ligands per target. We benchmark the dataset with various

9
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machine learning and deep learning methods, finding that for GNN-based methods, introducing
3D information can enhance AC prediction and reduce the gap between general and AC activity
prediction. Our experiments suggest that the absolute error of AC prediction is target-dependent,
and the ratio of AC ligands in the training set is an important factor influencing the difference
between general and AC activity prediction. In addition, deep learning methods cannot compete
with traditional machine learning methods using fingerprints, highlighting the need to develop new
3D QSAR algorithms. DockedAC serves as a first step in this direction from the perspective of 3D
complex structures and target-ligand interactions.

Limitations. While our dataset contains a variety of protein targets, the distribution of different
types of targets is imbalanced, with several popular drug targets dominating. Diversifying the target
types is beneficial to improve the generalization of successive models. Furthermore, the mapping
between the target and the unique binding site may introduce bias, as some targets have unknown
binding sites. We plan to conduct routine validity checks to update the dataset as more protein
structures are deposited into the PDB. Lastly, the complex structures generated by molecular docking
may be inaccurate, and more advanced approaches such as molecular simulation can be employed to
refine the complex structures.

Future Work. DockedAC provides the foundation for studying ACs from a structural perspective,
and we anticipate that it will inspire the development of novel 3D QSAR algorithms. Future research
could focus on designing deep learning architectures that effectively capture and utilize 3D structural
information to improve AC prediction accuracy. Additionally, the dataset could be expanded to
include more diverse targets and ligands, as well as refined complex structures, to further enhance its
value for AI-driven drug discovery. We believe that DockedAC dataset will foster the development
of innovative computational methods and contribute to the advancement of rational drug design.
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A APPENDIX

A DATASETS AND BASELINE MODELS

A.1 LICENSE AND AVAILABILITY

The code for benchmark is available here: https://anonymous.4open.science/r/
DockedAC-ICLR/README.md. The DockedAC dataset and its future updates can be found
here: https://doi.org/10.5281/zenodo.11485280.

The DockedAC dataet is licensed under Creative Commons Attribution-ShareAlike 4.0 Inter-
national License. For details, please see https://creativecommons.org/licenses/
by-sa/4.0/. The content of DockedAC uses data from RCSB PDB and ChEMBL. The PDB
archive are available under the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication (https:
//creativecommons.org/publicdomain/zero/1.0/). ChEMBL is provided under a
Creative Commons Attribution-ShareAlike 3.0 Unported license (https://creativecommons.
org/licenses/by-sa/3.0/).

A.2 DATASETS

Our introduced dataset DockedAC1 comprises 82,836 ligands from 52 protein targets, which is
meticulously curated to support various machine learning and deep learning studies related to activity
cliff (AC) prediction. Table 3 provides detailed statistics of DockedAC.

A.3 BASELINE MODELS

In this work, we integrate 13 recent baselines commonly used for structure-activity relationship
prediction, including four traditional machine learning algorithms: KNN, RF, GBM, and SVM; three
sequential models: LSTM, Transformer, and 1D CNN; four 2D GNN models: GCN, GAT, MPNN,
and AFP; and two 3D structure GNN models: IGN and SS-GNN. The detailed descriptions of these
approaches are listed in the following:

• KNN (Cover & Hart, 1967). K-Nearest Neighbor (KNN) is a simple, non-parametric method that
predicts the target molecule’s response by averaging the response of the k-nearest neighbors from
the training set.

• RF (Breiman, 1996). Random Forest (RF) is an ensemble method that combines the outputs of
multiple decision trees to improve accuracy and reduce over-fitting. Each decision tree is built upon
a subset of the training set, and the final prediction is obtained by averaging the results from these
individual trees.

• GBM (Friedman, 2001). Similar to RF, Gradient Boosting Machine (GBM) also combines the
predictions of multiple decision trees. However, in GBM, these trees are built sequentially, with
each subsequent tree specially designed to correct the errors of its predecessors.

• SVM (Hearst et al., 1998). Support Vector Machine (SVM) aims to identify a linear regression
plane in a higher-dimensional space created by applying a designated kernel function. In this work,
the Radial Basis Function (RBF) kernel is used.

• Transformer (Vaswani et al., 2017). The Transformer model leverages self-attention mechanisms
to capture dependencies across different positions in the input sequence. In our work, we employed
the pretrained ChemBERTa (Chithrananda et al., 2020) architecture, which has been trained on 10
million compounds.

• LSTM (Hochreiter & Schmidhuber, 1997). Long Short-Term Memory (LSTM) can capture
temporal dependencies and patterns in sequential data by maintaining long-term memory through
their gated structure. In this work, we employ SMILES strings as the input for the model.

• 1D CNN (Kimber et al., 2021). Convolutional Neural Network (CNN) uses convolutional filters to
aggregate spatial information from adjacent positions. For processing sequential SMILES string
data, we employ 1D CNNs that perform convolutional operations along a single dimension.

• MPNN (Gilmer et al., 2017). Message Passing Neural Network (MPNN) operates by iteratively
passing messages between nodes and updating their representations based on neighboring nodes.

1https://anonymous.4open.science/r/DockedAC-ICLR
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Table 3: Dataset overview. n (where ntrain/ntest, resp.) represents the total number of compounds,
divided into training and test sets. nAC (where nAC

train / nAC
test resp.) denotes the total number of activity

cliff compounds within the dataset, also divided into training and test sets.

Target Name ChEMBL ID PDB Type n (ntrain / ntest) nAC (nAC
train / nAC

test)

Androgen Receptor CHEMBL1871 2ama Ki 617 (492/125) 135 (109/26)
Cannabinoid CB1 receptor CHEMBL218 6kqi EC50 1004 (802/202) 369 (293/76)
Coagulation factor X CHEMBL244 2p93 Ki 3093 (2474/619) 1476 (1180/296)
Delta opioid receptor CHEMBL236 6pt3 Ki 2580 (2060/520) 1005 (802/203)
Dopamine D3 receptor CHEMBL234 3pbl_A Ki 3657 (2924/733) 1604 (1284/320)
Dopamine D4 receptor CHEMBL219 5wiu_A Ki 1865 (1491/374) 740 (592/148)
Dopamine transporter CHEMBL238 2q6h_A Ki 1051 (838/213) 266 (211/55)
Dual specificity protein kinase CLK4 CHEMBL4203 6fyv Ki 731 (582/149) 64 (51/13)
Bile acid receptor FXR CHEMBL2047 5q0u EC50 631 (503/128) 245 (195/50)
Ghrelin receptor CHEMBL4616 6ko5_A EC50 673 (534/139) 355 (282/73)
Glucocorticoid receptor CHEMBL2034 4lsj Ki 684 (551/133) 243 (194/49)
Glycogen synthase kinase-3 beta CHEMBL262 6hk3 Ki 855 (683/172) 160 (128/32)
Histamine H1 receptor CHEMBL231 3rze_A Ki 972 (776/196) 237 (189/48)
Histamine H3 receptor CHEMBL264 7f61_A Ki 2862 (2288/574) 1191 (952/239)
Tyrosine-protein kinase JAK1 CHEMBL2835 4k77 Ki 615 (489/126) 60 (47/13)
Tyrosine-protein kinase JAK2 CHEMBL2971 4jia Ki 976 (779/197) 162 (128/34)
Kappa opioid receptor CHEMBL237 4djh EC50 953 (761/192) 456 (365/91)
Kappa opioid receptor CHEMBL237 4djh Ki 2599 (2078/521) 1109 (887/222)
Orexin receptor 2 CHEMBL4792 5wqc Ki 1471 (1174/297) 794 (634/160)
Peroxisome proliferator-activated receptor alpha CHEMBL239 3kdu EC50 1721 (1374/347) 699 (558/141)
Peroxisome proliferator-activated receptor delta CHEMBL3979 5xmx EC50 1125 (899/226) 468 (374/94)
Peroxisome proliferator-activated receptor gamma CHEMBL235 2yfe EC50 2349 (1877/472) 885 (707/178)
PI3-kinase p110-alpha subunit CHEMBL4005 6gvf Ki 960 (767/193) 401 (320/81)
Serine/threonine-protein kinase PIM1 CHEMBL2147 2j2i Ki 1456 (1162/294) 572 (456/116)
Serotonin 1a (5-HT1a) receptor CHEMBL214 7e2x_R Ki 3317 (2651/666) 1222 (977/245)
Serotonin transporter CHEMBL228 6awo_A Ki 1702 (1362/340) 638 (511/127)
Sigma opioid receptor CHEMBL287 6dk1 Ki 1328 (1061/267) 507 (404/103)
Thrombin CHEMBL204 1mu8 Ki 2747 (2195/552) 1089 (870/219)
Tyrosine-protein kinase ABL CHEMBL1862 2hzi Ki 794 (633/161) 330 (263/67)
Mu opioid receptor CHEMBL233 8feo_R Ki 3141 (2511/630) 1294 (1035/259)
Cyclin-dependent kinase 2 CHEMBL301 1h1q IC50 1454 (1161/293) 350 (279/71)
Serine/threonine-protein kinase Chk1 CHEMBL4630 2brb IC50 1701 (1359/342) 826 (660/166)
3-phosphoinositide dependent protein kinase-1 CHEMBL2534 1uu3 IC50 705 (562/143) 282 (224/58)
Phosphodiesterase 5A CHEMBL1827 4ia0 IC50 1609 (1285/324) 667 (532/135)
Dihydrofolate reductase CHEMBL202 1u71 IC50 739 (590/149) 281 (223/58)
Urokinase-type plasminogen activator CHEMBL3286 1owe Ki 718 (572/146) 191 (151/40)
Carbonic anhydrase II CHEMBL205 5sz6 Ki 5796 (4636/1160) 2444 (1957/487)
Estrogen receptor alpha CHEMBL206 1qkt IC50 2094 (1674/420) 700 (559/141)
Heat shock protein HSP 90-alpha CHEMBL3880 4o0b IC50 999 (797/202) 157 (125/32)
Fructose-1,6-bisphosphatase CHEMBL3975 2jjk IC50 556 (443/113) 153 (122/31)
Protein-tyrosine phosphatase 1B CHEMBL335 1nny IC50 2607 (2084/523) 229 (183/46)
Matrix metalloproteinase 8 CHEMBL4588 3dng IC50 533 (425/108) 163 (130/33)
Dipeptidyl peptidase IV CHEMBL284 2ole IC50 2507 (2003/504) 691 (551/140)
Vascular endothelial growth factor receptor 2 CHEMBL279 3vhk Ki 780 (622/158) 135 (108/27)
Matrix metalloproteinase 13 CHEMBL280 4jpa IC50 2112 (1688/424) 976 (780/196)
Methionine aminopeptidase 2 CHEMBL3922 6qef IC50 565 (450/115) 193 (154/39)
Kinesin-like protein 1 CHEMBL4581 5zo8 IC50 719 (573/146) 311 (248/63)
Beta-secretase 1 CHEMBL4822 4h3j Ki 1061 (847/214) 549 (438/111)
Phosphodiesterase 4B CHEMBL275 3w5e IC50 1432 (1143/289) 535 (426/109)
Phosphodiesterase 4D CHEMBL288 2qyn IC50 942 (752/190) 220 (176/44)
MAP kinase p38 alpha CHEMBL260 2zbl IC50 3502 (2799/703) 1333 (1065/268)
Estrogen receptor beta CHEMBL242 lzaf IC50 1176 (937/239) 425 (337/88)

• GCN (Kipf & Welling, 2016). Graph Convolutional Network (GCN) performs convolution
operations on graphs.

• GAT (Vaswani et al., 2017). Graph Attention Network (GAT) introduces attention mechanisms to
GNN to weigh the importance of different neighbors.

• AFP (Xiong et al., 2019). Attentive Fingerprint (AFP) employs attention mechanisms at both the
atom and molecule levels to learn local and nonlocal properties, enabling it to capture substructural
details effectively.

• IGN (Jiang et al., 2021a). IGN models the molecular interactions in 3D space. In IGN, two
graph convolution modules are layered to learn intramolecular interactions and then sequentially
intermolecular interactions.

• SS-GNN (Zhang et al., 2023a). Like IGN, SS-GNN is also a 3D structure GNN model tailored
for affinity prediction. It constructs a 3D structure graph for protein-ligand interactions based on a
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distance threshold, reducing both the graph data scale and computational cost by omitting covalent
bonds in proteins.

A.4 MODEL FEATURES.

In addition to the molecular descriptor used for machine learning algorithms (introduced in Sec. 4.2),
we further delve into the featurization for deep learning models. Detailed information on all featur-
izations and the corresponding models used can be found in Table 4.

For sequential methods, SMILES strings were encoded as one-hot vectors, with truncation applied
to strings exceeding 200 characters. To enhance model robustness, tenfold data augmentation was
applied using up to nine additional noncanonical SMILES strings for each SMILES string in the
dataset, generated via RDKit (Landrum et al., 2013).

For 2D GNN methods, the node has the following features: atom type (one-hot), atomic vertex degree
(one-hot), orbital hybridization (one-hot), aromaticity (one-hot), atomic weight (float), formal charge
(integer), number of radical electrons (integer), and number of connected hydrogens (integer). For
MPNN and AFP, two one-hot bond features are used for the edges, i.e., the bond type and conjugation.

For SS-GNN, there are 11 node features, including atom type, formal charge, hybridization, atom
valence, atom degree, number of hydrogens, chirality, atomic mass, aromatic, atom coordinates, and
whether belonging to the protein. The edge features include covalent bond type, aromatic, bond
length, bond direction, bond stereochemistry, and edge type. The atom coordinates and bond length
are extracted from the 3D structures. Further details can be found in Zhang et al. (2023a).

For IGN, it uses similar 2D node and edge features. In addition, IGN uses four new edge features
from the 3D structures, including bond length, angle statistics, area statistics, and distance statistics.
For detailed descriptions of the features, see Jiang et al. (2021a).

Table 4: Featurization and corresponding baseline models.

Featurization Baseline Models Augmentation

ECFP Descriptor KNN, RF, GBM, SVM, ✘
MACCS Descriptor KNN, RF, GBM, SVM, ✘

PHYSCHEM Descriptor KNN, RF, GBM, SVM, ✘
WHIM Descriptor KNN, RF, GBM, SVM, ✘

SMILES string LSTM, Transformer, 1D CNN ✔ 10 times
2D GRAPH MPNN, GCN, GAT, AFP ✘
3D GRAPH IGN, SS-GNN ✘

A.5 ADDITIONAL EXPERIMENTAL DETAILS

Hardware Specifications. All our experiments were carried out on an NVIDIA RTX3090 GPU with
24G memory. The training time of a target for MPNN, GAT, GCN, and AFP is around 0.5 hours.
Training of one target takes around 1 hour and 4 hours for SS-GNN and IGN, respectively.

Implementation Details. Traditional machine learning algorithms including KNN, SVM, GBM, and
RF regression models were implemented using the Scikit-Learn library2.

Deep learning algorithms were trained for 500 epochs with early stopping, set with patience of 10
epochs. Four GNN models are implemented using the PyTorch Geometric package3. For the MPNN,
GCN, and GAT, global pooling was enabled using a graph multiset Transformer (Baek et al., 2021)
with eight attention heads, followed by a fully connected prediction head. Each of these models
utilized two graph layers. The Transformer model was based on the ChemBERTa (Chithrananda
et al., 2020) architecture, using weights derived from 10M compounds in PubChem. Fine-tuning
was conducted by freezing the original model weights and substituting the final pooling layer with a
regression head. Following van Tilborg et al. (2022), the LSTM model is pretrained on the SMILES

2https://scikit-learn.org/
3https://www.pyg.org/
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strings with the next token prediction objective. For the SS-GNN model, we conducted a pretraining
phase on the original dataset, PDBbind V2019 (Wang et al., 2004; 2005). In contrast, the IGN model
was not fine-tuned using the original dataset due to a mismatch in the model dimensions caused by the
varying types of atoms in the dataset. Consequently, we opted to train the IGN model from scratch.

Hyperparameter Optimization. Hyperparameter optimization was conducted through grid search.
Hyperparameter combinations were evaluated for all models using five-fold cross-validation. Table 5
shows the detailed hyperparameter search space.

Table 5: Hyperparameter search space.

Methods Hyperparameters Search Space

KNN The number of nearest neighbors, k k = [3, 5, 11, 21]
RF The number of trees, nt nt = [100, 250, 500, 1000]

GBM The number of boosting stages, nb nb = [100, 200, 400]
The maximum depth of the model, nd nd = [5, 6, 7]

SVM The regularization parameter, C C = [1, 10, 100, 1000, 10,000]
The kernel coefficient for rbf, γ γ = [1 ×10−5, 1 ×10−4, 1 ×10−3, 1 ×10−2, 1 ×10−1]

Shared hyperparameters for all deep learning models

Common
The learning rate, lr lr = [5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5]
The batch size, bs bs = [10, 32, 64, 128]
The epoch, γ γ = 500

Specific hyperparameters for each model

GCN
The dimension of hidden node features, hn hn = [64, 128, 256]
The dimension of hidden transformer nodes, ht ht = [64, 128, 256]
The dimension of predictor, hp hp = [128, 256, 512]

GAT
The dimension of hidden node features, hn hn = [64, 128, 256]
The dimension of hidden transformer nodes, ht ht = [64, 128, 256]
The dimension of predictor, hp hp = [128, 256, 512]

MPNN

The dimension of hidden node features, hn hn = [64, 128, 256]
The dimension of hidden edge features, he he = [64, 128, 256]
The dimension of hidden transformer nodes, ht ht = [64, 128, 256]

AFP The dimension of hidden node features, hn hn = [64, 128, 256]
The number of iterations for readout, nr nr = [1, 2, 3, 4, 5]

LSTM - pretrained - pretrained
Transformer - pretrained - pretrained

1D CNN The size of convolution kernel, hc hc = [4, 8, 10]
The dimension of hidden features, ht ht = [64, 128, 256, 512, 1024]

IGN The dimension of hidden features, ht ht = [64, 128, 256]
SS-GNN - pretrained - pretrained
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B ADDITIONAL RESULTS AND FIGURES

More dataset features. Figure 9 illustrates three examples of removed targets and ligands. Figure 14
analyzes the proportion of shared atoms between the AC pairs in the target CHEMBL218 EC50 using
Maximum Common Substructure (MCS). The average proportion of shared atoms (86.78%) in the
identified AC pairs confirms high structural similarity in common substructures.

Dataset split. We split the dataset using the Tanimoto similarity of the ECFP. To assess potential bias
from ECFP-based data splitting, Figure 16 evaluates ML methods using four molecular descriptors
on an alternative MACCS-based split. ECFP maintains superior performance, confirming its inherent
descriptive power.

Protein flexibility. Using DSDPFlex (Dong et al., 2024), we investigate protein flexibility by allowing
flexible side chains for 10 amino acids nearest to the crystal ligand. Figure 17 shows that performance
metrics on 8 Ki targets distribute evenly around the y = x line, suggesting comparable effectiveness
between fixed and flexible docking approaches.

Train cross-target models with 3D data. Table 7 explore the cross-target applicability of 3D models
on combined Ki targets under two settings: out-of-distribution (OOD) excluding Protease targets,
and in-domain, using all Ki targets. Figure 13 shows multi-target training performs comparable to
single-target training, complementing the analysis in § 5.4.

Combine the 3D information and ECFP features. To explore the integration of 3D structural
information with handcrafted ECFP features, we utilize a 3D model as a feature extractor and
combine its output with ECFP descriptors, followed by MLP for affinity prediction (architecture
shown Figure 8) The evaluation across ten targets (shown in Table 6) highlights two key findings.
First, models incorporating 3D information consistently outperform or match those without 3D
information across most targets, achieving notable improvements in overall RMSE and RMSEcliff .
Second, the integration of 3D features significantly enhances the model’s ability to handle activity
cliffs, as evidenced by greater improvements in RMSEcliff (avg. imp. of 5.61%) compared to overall
RMSE (avg. imp. of 3.48%).

Benchmarking the zero-shot ability of more 3D models. To explore the generalization ability of
recent 3D binding affinity prediction models, we evaluate six SOTA methods (PIGNet (Moon et al.,
2022), RTMScore (Shen et al., 2022), TANKBind (Lu et al., 2022), DSMBind (Jin et al., 2023),
KarmaDock (Zhang et al., 2023b), and EquiScore (Cao et al., 2024)) trained on PDBBind. Figure 15
presents their Pearson correlation on the complete dataset and activity cliff cases across each target.
All these methods perform worse on the AC samples, which is consistent with the result of our
benchmark. Additionally, these methods show decreased performance compared to the PDBBind
test set, with effectiveness correlating with the presence of homologous proteins in the PDBBind
training data. For instance, targets with numerous homologous samples in PDBBind demonstrate
superior results: CHEMBL2147 Ki achieves a Pearson correlation of 0.688 (DSMBind, PDB ID:
2j2i) with 103 homologous samples, while CHEMBL2971 Ki reaches 0.671 (DSMBind, PDB ID:
4jia) with 61 homologous samples in PDBBind. In contrast, targets lacking homologous proteins in
PDBBind (CHEMBL219 Ki, CHEMBL228 Ki, and CHEMBL233 Ki) show very small correlation
(DSMBind, Pearson=-0.021, -0.087, and 0.033 respectively).
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predict
handcrafted 
descriptor: 
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3D info IGN model

handcrafted 
descriptor: 

ECFP

concat predict

(a) The model illustration of MLP with ECFP descriptor (b) The model illustration of IGN combined with ECFP descriptor

Figure 8: The model illustration of MLP and IGN using the handcrafted molecule descriptor ECFP.

Table 6: The performance of MLP and IGN using the handcrafted molecule descriptor ECFP.

Model
CHEMBL205 Ki CHEMBL214 Ki CHEMBL233 Ki CHEMBL237 Ki CHEMBL264 Ki

RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff

MLP 0.795 0.929 0.683 0.770 0.846 0.917 0.720 0.767 0.669 0.730
IGN 0.781 0.904 0.683 0.792 0.814 0.878 0.728 0.764 0.637 0.691

Imp (%) 1.76 2.69 0.00 - 3.78 4.25 - 0.39 4.78 5.34

Model
CHEMBL287 Ki CHEMBL1871 Ki CHEMBL2047 EC50 CHEMBL3979 EC50 CHEMBL4203 Ki

RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff

MLP 0.746 0.855 0.730 0.991 0.673 0.714 0.664 0.729 0.943 0.988
IGN 0.759 0.855 0.686 0.860 0.594 0.599 0.667 0.723 0.880 0.857

Imp (%) - 0.00 6.03 13.22 11.74 16.11 - 0.82 6.68 13.26

Table 7: The results of Protease in the setting of training with in-domain and out-of-distribution
(OOD) targets.

Model
CHEMBL204 Ki CHEMBL244 Ki CHEMBL3286 Ki CHEMBL4822 Ki

RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff RMSE RMSEcliff

IGN 0.873 1.027 0.891 1.006 0.724 0.829 0.751 0.778
IGN OOD 1.612 1.788 1.647 1.643 1.183 1.149 1.153 1.197
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(a) (b)

(c)

Figure 9: Three examples of the removed targets and ligands. (a) The target structure has two ligand
binding sites (PDB: 5mvd). (b) Two structures of the same target have different binding sites (PDB:
2h8h and 1o4j). The two structures are aligned. (c) The ligand docking score is larger than zero
(Target: ChEMBL1871, PDB: 2ama, ligand: ChEMBL406027).
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Figure 10: Relationship between the ratio of the AC and RMSE − RMSEcliff of SVM and MPNN.
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Figure 11: Relationship between the number of training ligands and (a)-(c) RMSE, (d)-(f) RMSEcliff

and (g)-(i) their difference on SVM, MPNN, and IGN.
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(e) MACCS KNN
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(f) MACCS RF
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(g) MACCS GBM
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(h) MACCS SVM
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(i) PHYSCHEN KNN
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(j) PHYSCHEN RF
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(k) PHYSCHEN GBM
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(l) PHYSCHEN SVM
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(m) WHIM KNN
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(n) WHIM RF
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(o) WHIM GBM
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(p) WHIM SVM
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Figure 12: Performance comparison between RMSE and RMSEcliff for classic ML algorithms across
52 targets.
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Figure 13: The results of IGN on all the targets of Ki labels when trained separately on (a) each
target or (b) the data of multiple targets.

Figure 14: A histogram showing the proportion of the shared atoms between the AC data pairs with
Maximum Common Substructure (MCS) in the Target CHEMBL218 EC50.
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Figure 15: The Pearson and Pearsoncliff evaluated on our DockedAC benchmark across 52 targets
using PIGNet (Moon et al., 2022), RTMScore (Shen et al., 2022), TANKBind (Lu et al., 2022),
DSMBind (Jin et al., 2023), KarmaDock (Zhang et al., 2023b), and EquiScore (Cao et al., 2024), all
of which were trained on general binding affinity datasets.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Methods

RM
SE
cl
iff

KNN RF GBM SVM

ECFP MACCS PHYSCHEM WHIM

Figure 16: The RMSEcliff evaluated using ML methods under MACCS split across 52 targets.
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Figure 17: The (a) RMSE and (b) RMSEcliff metric on fixed docking v.s. flexible docking.
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