DOCKEDAC: EMPOWERING DEEP LEARNING MODELS WITH 3D PROTEIN-LIGAND DATA FOR ACTIVITY CLIFF ANALYSIS

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

027 028 029

030

Paper under double-blind review

Abstract

Artificial intelligence has become a crucial tool in drug discovery, excelling in tasks such as molecular property prediction. An activity cliff, which refers to a minor structural modification to a molecule resulting in a large change in its biological activity, poses a challenge in predictive modeling. The activity cliff depends on the interaction between the target and the ligand, which is largely overlooked by previous ligand-centric studies. However, the limited activity cliff data of targetligand 3D complex restrain the predictive power of modern deep learning models. In this paper, we introduce DockedAC, a new dataset incorporating the protein target and 3D complex structure information for studying the problem of activity cliffs. By matching protein binding information and ligand bioactivity, we employ molecular docking to generate the complex structure for each activity value. The DockedAC dataset contains 82,836 activity data on 52 protein targets with activity cliff annotations, which serves as the first step towards activity cliff research with large-scale 3D complex structures. We benchmark the dataset with traditional machine learning and deep learning approaches. Our data and benchmark platform are available here.

1 INTRODUCTION

031 Artificial intelligence (AI) is revolutionizing the drug discovery process as it is capable of large-scale 032 data analysis, pattern recognition, and making accurate predictions (Vamathevan et al., 2019). One 033 important application of AI models is to predict the biological activity of candidate compounds, 034 thereby reducing labor-intensive tasks. A foundational concept in many AI algorithms is the similarity principle, which states that similar objects are likely to share similar features and predictions. However, in drug discovery, a phenomenon called activity cliffs defies this idea and poses a challenge for 037 AI models. An activity cliff (AC) is defined as structurally similar compounds exhibiting large 038 differences in their biological activity against the same target (Maggiora, 2006), as illustrated in Figure 1 (a). 039

040 AC is crucial for drug discovery, as it complicates the process of optimizing drug candidates by con-041 founding the human experts in the understanding of usual structure-activity relationships (SARs) (Vogt 042 et al., 2011). On the other hand, knowledge about ACs can be highly beneficial when designing or 043 optimizing compounds to enhance the bioactivity of a given target (Cruz-Monteagudo et al., 2014; 044 Stumpfe et al., 2014). For example, replacing a single atom or adding a methyl group can result in more than 100-fold improvement in bioactivity (Leung et al., 2012; Pennington & Moustakas, 2017). However, the mechanisms of ACs in individual drug development programs can be different, making 046 it challenging for humans to process such information and derive transferable experiences. Therefore, 047 various efforts have been made to computationally predict ACs (Stumpfe et al., 2019). 048

Compared to quantitative structure-activity relationship (QSAR) modeling for other molecular
 properties, AC predictions are challenging due to the non-robustness that ACs introduce to the
 models (Cruz-Monteagudo et al., 2016). Early attempts use machine learning methods such as
 random forest (RF) and support vector machine (SVM) to predict the AC of a compound pair (Guha,
 2012; Heikamp et al., 2012). To further improve AC predictions, matched molecular pair (MMP)
 kernel (Tamura et al., 2021) and condensed graphs of reaction representations (Horvath et al., 2016)

Figure 1: Illustration of activity cliffs. (a) An activity cliff example: two similar molecules with a large difference in the bioactivity of the target. (b) From the 3D structure, the bioactivity of the ligand on the right is improved due to the formation of two new hydrogen bonds (highlighted with pink dashed lines).

have been integrated into various machine learning methods. More recently, algorithms based on deep neural networks have been applied to predict ACs, such as convolutional neural networks (Iqbal et al., 2021), graph neural networks (Park et al., 2022) and transformers (Chen et al., 2022).

In most previous works, the study of ACs has been ligand-centric and lacked 3D structure consideration, failing to account for interactions between the ligand and the protein target (Husby et al., 2015; Tamura et al., 2023). Many mechanisms of ACs can be analyzed from the structural perspective, such as hydrogen bonding, ionic interactions, hydrophobic or aromatic group interactions (Hu et al., 2012) (e.g. Figure 1 (b)). It is therefore natural to incorporate the information of structures into the modeling of ACs. However, available structural data for ACs is very limited, with only 215 pairs of AC ligands (Husby et al., 2015). Such data scarcity issue makes it challenging to train deep learning models effectively.

Figure 2: Settings of previous studies and our work about ACs. (a) Previous works mostly consider AC prediction from a ligand-centric view and overlook the target information and 3D complex structure. (b) We construct a dataset with target-ligand complex structures for AC prediction.

In this paper, we present DockedAC, a new dataset to tackle the problem of ACs from a structural perspective, aiming at AC modeling with large data and modern AI algorithms. Unlike previous studies, our dataset includes not only the information on protein targets but also the target-ligand complex structures built using molecular docking (Figure 2). We collect the bioactivity data of more than 80,000 ligands across over 50 protein targets. The protein targets are mapped to their corresponding structures in the RCSB Protein Data Bank (PDB) (Berman et al., 2000), with the ligand binding sites identified for docking. In addition, we also provide a framework to benchmark the performance of traditional machine learning and deep learning methods on AC prediction and study the effect of ACs on model performance. Our dataset would be beneficial to enhance model interpretability, inspire the design of promising algorithms on ACs, and foster the development of more effective 3D feature extraction methods.

108 2 RELATED WORK

109 110

Previous works on AC prediction. As a crucial phenomenon in drug discovery, ACs are not only 111 popular in medicinal chemistry but also attract the attention of the computer science and intelligence 112 community. Various methods of machine learning and deep learning have been applied to the 113 prediction of ACs (Guha, 2012; Heikamp et al., 2012; Iqbal et al., 2021; Chen et al., 2022; Park et al., 114 2022). In addition, recent research has explored ACs from several different perspectives, such as 115 QSAR modeling (Dablander et al., 2023), the complexity of the learning methods (Tamura et al., 116 2023), and benchmarking of different approaches (van Tilborg et al., 2022). However, due to the 117 limited availability of data, almost all existing works focus on the ligand-centric view of ACs, where 118 the ligand is modeled with a 2D molecular graph or 1D SMILES sequence (Weininger, 1988), without incorporating the 3D structure and the protein target information. The 3D activity cliff (3DAC) 119 database, used in a study on structure-based AC prediction, contains only 219 3DAC pairs (Hu et al., 120 2012; Husby et al., 2015). This motivates us to construct a larger dataset for structure-based ACs. 121

122

123 Existing AC datasets. Although there are several works on AC prediction, few good benchmarking 124 datasets exist. Several works rely on self-collected datasets and are not well documented, or have 125 little information provided about the protein targets (Jiménez-Luna et al., 2022; Dablander et al., 126 2023; Tamura et al., 2023). Two recent works on AC datasets both collect data from the ChEMBL 127 database (Mendez et al., 2019), either for the classification of a pair of AC ligands (Zhang et al., 2023c) or the regression of the bioactivity value of individual AC ligands (van Tilborg et al., 2022). 128 These datasets do not consider modeling the 3D structure of the binding complex, rendering them 129 less appropriate for accurate AC prediction. In our work, we match the obtained bioactivity data to 130 the corresponding protein structures in PDB and generate target-ligand binding structures. 131

132

133 **3D protein-ligand binding affinity prediction.** In this work, we consider the regression problem 134 and train different models to predict the bioactivity in the presence of the AC. Given the target-ligand 135 complex structures, nearly all the models for binding affinity prediction use the PDBbind dataset, 136 including convolutional neural networks, graph neural networks, and attention-based models (Zhang 137 et al., 2023a; Jiang et al., 2021a; Jiménez et al., 2018; Tan et al., 2024). A comprehensive review of the drug-target interaction prediction can be found in Zeng et al. (2024). In molecular property 138 prediction, activity cliffs can significantly impact model predictions (Deng et al., 2023). We evaluate 139 the performance of 3D target-ligand affinity prediction models with our dataset and compare them 140 with other machine learning or deep neural network models with ligand-only inputs.

141 142 143

144 145 146

3 THE DOCKEDAC DATASET

In summary, the construction of DockedAC involves several key steps: data collection, AC identification, target structure annotation, and target-ligand complex generation. The following section provides a detailed explanation of each step in this process.

148 149 150

151

147

3.1 DATA COLLECTION

152 We first collect bioactivity data (Inhibitory Constant, K_i ; Half-Maximal Effective Concentration, 153 EC_{50} ; Half-Maximal Inhibitory Concentration, IC_{50} in [nM]) of 64 protein targets from ChEMBL 154 v33 (Mendez et al., 2019) with the ChEMBL web resource client (Davies et al., 2015). To eliminate 155 significant sources of error, the obtained raw data is checked for validity and reliability. In particular, 156 a ligand is removed if (a) it fails the sanitization and standardization by RDkit (Bento et al., 2020); or 157 (b) it has a standard deviation larger than 10 in case of multiple entries. To ensure enough samples of 158 a target for model training, the targets with fewer than 500 ligands are dropped. Finally, the negative 159 logarithm p is applied to the bioactivity values as the regression target (denoted as pK_i ; pEC_{50} ; pIC_{50} in [log units]) (Stewart & Watson, 1983). After this process, we have the CHEMBL id of 160 the target and the corresponding ligands with bioactivity values (the first step in Figure 3 (a)). The 161 resulting dataset has 54 protein targets.

Figure 3: The whole process of building DockedAC with: (a) initial data collection from ChEMBL (Sec. 3.1) and activity cliff identification (Sec. 3.2), (b) mapping targets to 3D structures and identifying binding sites (Sec. 3.3), and (c) generation of target-ligand complex structures (Sec. 3.4).

3.2 ACTIVITY CLIFF IDENTIFICATION

An activity cliff is a pair of structurally similar compounds with a large difference in bioactivities against a given target. To detect pairs of similar ligands, we take a consensus of three similarity measures to define the activity cliff pairs following van Tilborg et al. (2022): (a) substructure similarity, which is calculated via the Tanimoto coefficient on the extended connectivity fingerprint (ECFP) (Tanimoto, 1958; Rogers & Hahn, 2010); (b) scaffold similarity, which is determined by the Tanimoto coefficient on the ECFP of the generic Murcko scaffolds (Bemis & Murcko, 1996); (c) SMILES similarity, computed as one minus the scaled Levenshtein distance between the canonical SMILES (Levenshtein et al., 1966). If any of these three similarities is equal to or larger than 0.9, the pair of ligands is checked for their difference in bioactivity. Currently, there are no widely accepted quantitative definitions of ACs (Stumpfe et al., 2020). Following previous works (Jiménez-Luna et al., 2022; Hu & Bajorath, 2012), a bioactivity difference larger than one order of magnitude $(10\times)$ is used to identify activity cliffs (the second step in Figure 3 (a)).

3.3 TARGET AND STRUCTURE ANNOTATION

To generate the target-ligand complex, it is essential to identify the 3D structure of the target protein and its binding site. This mapping process is illustrated in Figure 3 (b). Given a target CHEMBL id, the first step is to map the target protein to its UniProt id (Consortium, 2023) and find all the structures corresponding to the UniProt id in the PDB. We utilize the PDBbind database for initial searching (Wang et al., 2004). If PDBbind does not include the target, we then search for it in the whole PDB. The obtained structures with a small molecule ligand are chosen and aligned to check if the ligands bind to the same site. If the binding site is not unique, the target is discarded (see Figure 9 (a)(b)). After alignment, ligands sharing the same binding site are extracted and compared with the ligands that have activity labels from ChEMBL. Suppose there exists a pair of ligands, one from the PDB database and one from the ChEMBL database, with a similarity (Tanimoto coefficient of the fingerprints) larger than 0.99. In that case, the target structure and the binding site are used. Otherwise, the target is removed from the dataset. When multiple structures satisfy this condition,
 the structure with the best resolution is selected. This procedure ensures the correspondence between
 the bioactivity values and the target binding site. As a result of this structure mapping process, two
 targets are removed, resulting in a final dataset of 52 protein targets.

220 221

222

3.4 COMPLEX STRUCTURE GENERATION

223 Next, molecular docking is employed to generate the target-ligand complex for each target, illustrated 224 in Figure 3 (c). The docking tool DSDP is used, which combines the pose sampling algorithm of AutoDock Vina and GPU acceleration (Huang et al., 2023; Trott & Olson, 2010). Since the binding 225 site information of the target is already known, local docking is performed within the given binding 226 region of a 25 Å wide box. The docking results are reviewed to ensure the agreement between the 227 ligand bioactivity value and the binding conformation. A docking score (in kcal/mol) larger than zero 228 indicates an inaccurate docking conformation (e.g. Figure 9 (c)), and the corresponding ligand is 229 removed from the dataset. 230

3.5 DATASET SPLITTING

To prepare the dataset for benchmarking, the ligands of each target are split into a training and test set using a double-stratified sampling strategy (van Tilborg et al., 2022). In particular, the ligands of each target are first clustered into 5 groups based on their substructural similarity (Tanimoto similarity of the ECFP). A two-stage stratified splitting (80%/20%) is then performed on the cluster label and the AC label. This procedure ensures that the training and test set have similar ligand distributions.

238 239

240

231

232

3.6 DATASET DESCRIPTION

241 The final dataset contains 82,836 242 target-ligand activity values and the corresponding generated com-243 plex structures. Due to the page 244 limit, the detailed information on 245 each target can be found in Ap-246 pendix Table 3. We give a brief 247 dataset description in Table 1. 248 The dataset contains popular tar-249 get families in drug discovery (G-250 protein-coupled receptors (GPCR), 251 kinases, proteases, and nuclear re-252 ceptors) as well as targets with criti-253 cal roles in biology (chaperone and kinesin). In terms of size, the tar-254 get Carbonic anhydrase II has the 255

Table 1: Brief dataset statistics by the target type.

Target type	# Targets	Avg. # ligands	%AC
G protein-coupled receptor	12	2091	41.7
Kinase	11	1234	27.5
Protease	8	1667	38.0
Nuclear receptor	8	1299	35.7
Phosphodiesterase	3	1328	34.1
Phosphatase	2	1581	18.0
Transporter	1	1051	25.3
Transferase	1	960	41.8
Oxidoreductase	1	739	38.0
Other membrane receptor	1	1328	38.2
Lyase	1	5796	42.2
Kinesin	1	719	43.2
Electrochemical transporter	1	1702	37.5
Chaperones	1	999	15.7

most ligands with bioactivity values (5794 unique molecules). The target with the least ligands (533 unique molecules) is Matrix metalloproteinase 8. As an intensively studied drug target, the GPCR is the target family with the most ligands on average. For all the targets, around 37% of the ligands are annotated as ACs, with percentages ranging from 15.7% to 43.2%.

260 261

262

4 BENCHMARK

In addition to the DockedAC dataset, we also provide a framework to benchmark the performance of
 various machine learning and deep learning methods on AC prediction. This section briefly introduces
 our benchmark setup, followed by a detailed presentation of the experimental results and analyses in
 the subsequent section (Sec. 5).

4.1 MODEL DESCRIPTIONS

268 269

267

In general, three types of learning models are included in our framework:

Four classic machine learning algorithms for structure-activity relationship prediction using handcrafted molecular descriptors: K-nearest neighbor (KNN) (Cover & Hart, 1967), random forest (RF) (Breiman, 1996), gradient boosting machine (GBM) (Friedman, 2001), and support vector regression (SVM) (Hearst et al., 1998).

• Deep learning models that only leverage the 1D or 2D ligand information, including (1) three 1D sequential models: transformer (Vaswani et al., 2017), long short-term memory (LSTM) networks (Hochreiter & Schmidhuber, 1997), and 1D CNN (Kimber et al., 2021), and (2) four 2D structural graph neural network (GNN) models: message passing neural network (MPNN) (Gilmer et al., 2017), graph convolutional network (GCN) (Kipf & Welling, 2016), graph attention network (GAT) (Vaswani et al., 2017), and attentive fingerprint (AFP) (Xiong et al., 2019).

• Two 3D structural GNN models: IGN (Jiang et al., 2021a) and SS-GNN (Zhang et al., 2023a) are included to study the effect of 3D structures, as our dataset contains 3D structural information.

4.2 FEATURE DESCRIPTIONS

284 For machine learning algorithms, following previous work van Tilborg et al. (2022), we consider four 285 types of molecule descriptors from several levels of complexity as follows. (1) Extended Connectivity 286 Fingerprints (ECFPs) (Rogers & Hahn, 2010): circular topological fingerprints used for molecular 287 characterization. (2) Molecular ACCess System (MACCS) keys (Durant et al., 2002): a set of 288 structural keys utilized for substructure searching and similarity analysis, encoding specific chemical substructures or patterns. (3) Physicochemical (PhysChem) descriptors (Walters & Murcko, 2002): 289 11 properties indicative of drug-likeness. (4) Weighted Holistic Invariant Molecular (WHIM) descrip-290 tors (Todeschini et al., 1998): capturing three-dimensional geometrical and electronic properties of 291 molecules, invariant to rotation and translation. 292

293 Deep learning methods eliminate the need for handcrafted descriptors, allowing direct learning from "unstructured" data representations. For sequential methods, the Simplified Molecular Input 294 Line Entry System (SMILES) (Weininger, 1988) string is used, which is popular for its ability 295 to describe the structure of chemical species in text format that sequential methods can naturally 296 process. For 2D GNN models, we adopt molecular graphs, a representation of structural formula 297 where nodes represent atoms and edges represent bonds. For 3D GNN models, we employ the target-298 ligands complexes we have processed that incorporate detailed 3D structure information. Detailed 299 descriptions of the features can be found in Appendix A.4. 300

301 302

274

275

276

277

278

279

281

283

4.3 METRICS AND IMPLEMENTATIONS

For each target, we train separate regression models on the bioactivity values $(pK_i/pEC_{50}/pIC_{50})$ in [log units]). The regression setting makes it possible to compare the AC and non-AC tasks. The root-mean-square error (RMSE) is employed as the evaluation metric to quantify the performance. The RMSE represents the error calculated across all ligands, whereas RMSE_{cliff} specifically denotes the error computed for AC ligands. For model implementation, we conduct hyperparameter tuning through grid search and report the results from five-fold cross-validation. Further details on these methods and their implementations are provided in Appendix A.3 and A.5.

310 311

5 EXPERIMENTAL RESULTS AND ANALYSES

- 312
- 313 5.1 PERFORMANCE COMPARISON FOR GNN MODELS
 314

To investigate the effect of 3D structure information, we first evaluate 2D GNN models and 3D GNN models across 52 targets. To study AC, scatter plots with RMSE as the x-axis and RMSE_{cliff} as the y-axis are utilized, as shown in Figure 4 (a) to (f).

We have the following empirical observations: 1) The majority of the points are distributed above the line RMSE = RMSE_{cliff}, indicating higher prediction errors on ACs due to their unusual structureactivity relationships. 2) Despite a general correlation between RMSE and RMSE_{cliff}, notable outliers are presented. This suggests that models with overall high prediction accuracy do not necessarily perform well on ACs. Among these models, SS-GNN exhibits the closest distribution around line RMSE = RMSE_{cliff}, with only two targets deviating by more than 0.2 log units. 3) The distribution of IGN is primarily clustered in the lower-left corner of the plots, indicating superior performance in

Figure 4: Performance comparison for GNN models. (a)-(f) Comparison between RMSE and 345 RMSE_{cliff} of GNN models across 52 targets. The 2D GNN models are colored in yellow, while 346 the 3D GNN models are colored in green. Gray nodes depict all nodes in these six subgraphs for a 347 clear comparison. Red solid lines show $RMSE = RMSE_{cliff}$, while red dashed lines indicate a ± 0.2 348 log units difference. (g) Target-wise differences between overall RMSE and RMSE_{cliff} for all GNN models ordered by Pearson correlation r of RMSE and RMSE_{cliff}.

357

360

361 362

364

352 both RMSE and RMSE_{cliff}. This suggests that incorporating 3D structural information enhances the 353 prediction of ACs and improves the model's understanding of standard structure-activity relationships. 4) Figure 4 (g) further presents the target-wise differences between RMSE and RMSE_{cliff} for GNN 354 models, sorted by the Pearson correlation coefficient r of RMSE and RMSE_{cliff}. 3D structure GNN 355 models ranked first and third in terms of r. SS-GNN exhibits the smallest difference between RMSE 356 and $RMSE_{cliff}$, while IGN has the most concentrated distribution across targets. Its 5%-95% coverage range is only 0.58 times that of MPNN and 0.71 times that of GAT. These findings demonstrate the 358 benefit of incorporating 3D structural information, which leads to a higher degree of correlation 359 between performance on overall ligands and AC ligands, ultimately improving the understanding of structure-activity relationships and aiding in the prediction of ACs.

Table 2: The RMSE_{cliff} evaluated using GNN models and machine learning algorithms with ECFP featurization across the top four target families. For each method, the colors show the ranking of the target, i.e., first, second, third, fourth

Target type (#)	MPNN	GCN	GAT	AFP	IGN	SS-GNN	KNN	RF	GBM	SVM
GPCR (12)	0.927	0.995	1.018	0.907	0.877	0.977	0.814	0.785	0.791	0.752
Kinase (11)	0.902	0.942	0.970	0.917	0.865	0.896	0.802	0.765	0.747	0.707
Protease (8)	0.979	1.071	1.069	1.025	0.904	1.006	0.867	0.827	0.828	0.810
Nuclear receptor (8)	0.893	0.972	0.978	0.932	0.865	0.906	0.822	0.799	0.800	0.781

371 372 373

374

5.2 THE AC PREDICTION IS TARGET-DEPENDENT

375 The AC effect is determined by the interaction between the ligand and the target. We hypothesize that the target type may also influence deep learning model performance. Table 2 shows the average 376 RMSE_{cliff} of the top four target families that have the most targets in our dataset, i.e., GPCR, kinase, 377 protease, and nuclear receptor. The color means the ranking of the four targets for each method. It is

easy to notice that performance rankings are quite consistent across both deep learning and machine learning methods. Protease has the worst $RMSE_{cliff}$ for all the methods while kinase is the target family with the best $RMSE_{cliff}$ for most methods. GPCR has a worse performance than nuclear receptor in most deep learning methods, but machine learning methods perform better on GPCR.

382 It is also surprising to observe better performance for some machine learning models over deep learning approaches. This can be attributed primarily to their use of handcrafted features, especially 384 ECFP. To validate this observation, we implement a hybrid approach combining the ECFP features 385 with the features extracted from the last layer of the 3D IGN model. These concatenated features 386 are then fed into an MLP for prediction (as illustrated in Appendix Figure 8). The promising results 387 across ten targets (see Appendix Table 6) demonstrate the effectiveness of ECFP in structure-activity 388 relationship learning. On the other hand, this experiment underscores the value of integrating traditional cheminformatics techniques with advanced deep learning methods in molecular property 389 prediction tasks. Future research could explore optimizing this hybrid approach and investigating its 390 applicability to a broader range of molecular targets and properties. 391

392

394

393 5.3 The Percentage of AC Matters

In general, machine learning models tend to 395 perform better with more training data. Here 396 we study the factors influencing the AC pre-397 diction. Surprisingly, we do not find that the 398 number of training samples produces a signif-399 icant correlation with RMSE, RMSE_{cliff}, or 400 their numerical difference, i.e., RMSE_{cliff}-401 RMSE (see Appendix Figure 11). However, 402 as shown in Figure 5 (also in Figure 10), the 403 ratio of AC ligands in the training set is a sig-404 nificant factor affecting RMSE_{cliff} - RMSE, with a p-value of 1.0e-4. A higher percentage 405 of the AC in the training set means more in-406 formation about AC, thus improving the AC 407 predictive power. Our finding indicates that the 408 knowledge about general bioactivity prediction 409 is different from the knowledge benefiting AC 410

Figure 5: Relationship between the ratio of the AC and $RMSE_{cliff}$ – RMSE of IGN.

- 411
- 411 412 413

5.4 PERFORMANCE COMPARISON WITH MACHINE LEARNING ALGORITHMS

414 We benchmark the ability of all methods to predict bioactivity in the presence of the AC (measured 415 by RMSE_{cliff}), as shown in Figure 6 (detailed results in Appendix Figure 12). We have the following 416 empirical observations: 1) Significant performance differences can be observed among targets in 417 the handling of AC compounds, with RMSE_{cliff} values spanning from 0.52 to 1.59 log units, which 418 is consistent with previous works (van Tilborg et al., 2022; Sheridan, 2012). This highlights the challenges of AC prediction and the necessity for further development of advanced algorithms 419 and more effective feature extraction methods. 2) Among the four machine learning algorithms, 420 performance disparities primarily stem from the molecule descriptor rather than the learning methods. 421 Nonbinary descriptors such as WHIM and PhysChem significantly underperform compared to ECFP. 422 ECFPs are designed specifically for structure-activity modeling by encoding detailed information 423 about each atom's local environment, yielding the lowest prediction error of all methods. Its strong 424 discriminative capability effectively differentiates molecules, even with minor structural differences. 425 This effectiveness is further corroborated by the promising results obtained when combining ECFP 426 with 3D graph models (as detailed in Appendix Figure 8 and Table 6). 3) For deep learning methods, 427 IGN coupled with 3D structure information achieves the best performance on ACs. This approach 428 benefits from the interaction information between the ligand and the protein target captured within 429 the 3D structure.

prediction, underlining the importance of new datasets and methods tailored for AC prediction.

430 431

5.5 PERFORMANCE POSITIONING OF 3D GNN METHODS

Figure 6: The RMSE_{cliff} evaluated using different methods and features across 52 targets.

450 Our experimental results show that machine learning 451 methods significantly outperform deep learning meth-452 ods, especially with the ECFP featurization. This finding 453 aligns with previous studies on molecular property prediction (Jiang et al., 2021b; Janela & Bajorath, 2022). To 454 provide a global assessment of the methods and demon-455 strate the effect of the target on 3D GNN methods, we 456 take the RSME_{cliff} values of the 52 targets as features 457 and compute the Pearson correlation between the meth-458 ods. The correlation serves as a similarity measure in 459 multidimensional scaling (MDS) (Mead, 1992) to visu-460 alize the methods in a 2D plane (Figure 7). We then 461 identify the direction that determines the performance 462 of the methods. Although the average performance of 463 SS-GNN and IGN does not surpass machine learning methods, there exist specific targets that IGN and SS-464 GNN outperform SVM. In contrast, GAT and GCN con-465 sistently have larger $\text{RSME}_{\rm cliff}$ values than SVM across 466 all targets. Handcraft features, such as ECFP, have been 467

Figure 7: MDS visualization of GNNbased models and machine learning algorithms with ECFP featurization on RMSE_{cliff}.

optimized for QSAR over decades. Our analysis indicates that the models with 3D structures can
 offer insights that handcraft features do not capture. Therefore, in practice, models based on 3D
 structures can be important complements to the machine learning methods.

The incorporation of 3D structural information also enables cross-target modeling capabilities. To 471 investigate this potential, we conduct additional experiments by combining K_i targets and training the 472 IGN model under two scenarios: (i) in-domain setting under all K_i targets, and (ii) out-of-distribution 473 (OOD) setting excluding Protease-type targets. Analysis of four Protease targets (Appendix Table 7) 474 reveals that the absence of Protease targets in training leads to performance degradation, with average 475 RMSE_{cliff} increasing from 0.9 to 1.4. While multi-target training achieves comparable performance 476 to target-specific training across all targets (Appendix Figure 13), these results indicate that there is 477 still a long way to go to fully exploit the multi-target 3D data and make the model generalize to new 478 targets.

479 480

432

433

434

435 436

437

438 439

440

441 442

443

444

445

446 447

448 449

6 CONCLUSION

481 482

In this paper, we introduce DockedAC, a new dataset for ACs with 3D complex structures. The dataset contains over 80k ligands from 52 protein targets, with the 3D structure of each target annotated by a unique known binding site. Molecular docking is performed to generate the protein-ligand complex structures for at least 500 ligands per target. We benchmark the dataset with various

486 machine learning and deep learning methods, finding that for GNN-based methods, introducing 487 3D information can enhance AC prediction and reduce the gap between general and AC activity 488 prediction. Our experiments suggest that the absolute error of AC prediction is target-dependent, 489 and the ratio of AC ligands in the training set is an important factor influencing the difference 490 between general and AC activity prediction. In addition, deep learning methods cannot compete with traditional machine learning methods using fingerprints, highlighting the need to develop new 491 3D QSAR algorithms. DockedAC serves as a first step in this direction from the perspective of 3D 492 complex structures and target-ligand interactions. 493

494 **Limitations.** While our dataset contains a variety of protein targets, the distribution of different 495 types of targets is imbalanced, with several popular drug targets dominating. Diversifying the target 496 types is beneficial to improve the generalization of successive models. Furthermore, the mapping 497 between the target and the unique binding site may introduce bias, as some targets have unknown 498 binding sites. We plan to conduct routine validity checks to update the dataset as more protein 499 structures are deposited into the PDB. Lastly, the complex structures generated by molecular docking 500 may be inaccurate, and more advanced approaches such as molecular simulation can be employed to 501 refine the complex structures.

Future Work. DockedAC provides the foundation for studying ACs from a structural perspective, and we anticipate that it will inspire the development of novel 3D QSAR algorithms. Future research could focus on designing deep learning architectures that effectively capture and utilize 3D structural information to improve AC prediction accuracy. Additionally, the dataset could be expanded to include more diverse targets and ligands, as well as refined complex structures, to further enhance its value for AI-driven drug discovery. We believe that DockedAC dataset will foster the development of innovative computational methods and contribute to the advancement of rational drug design.

References

502

510

511 512

513

- Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with graph multiset pooling. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=JHcqXGaqiGn.
- 515
 516
 517
 518
 519
 519
 510
 510
 511
 511
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
 512
- A Patrícia Bento, Anne Hersey, Eloy Félix, Greg Landrum, Anna Gaulton, Francis Atkinson, Louisa J
 Bellis, Marleen De Veij, and Andrew R Leach. An open source chemical structure curation pipeline
 using RDKit. *Journal of Cheminformatics*, 12:1–16, 2020.
- Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic Acids Research*, 28(1): 235–242, 2000.
- Leo Breiman. Bagging predictors. *Machine Learning*, 24:123–140, 1996.
- Duanhua Cao, Geng Chen, Jiaxin Jiang, Jie Yu, Runze Zhang, Mingan Chen, Wei Zhang, Lifan Chen, Feisheng Zhong, Yingying Zhang, et al. Generic protein–ligand interaction scoring by integrating physical prior knowledge and data augmentation modelling. *Nature Machine Intelligence*, pp. 1–13, 2024.
- Hengwei Chen, Martin Vogt, and Jürgen Bajorath. DeepAC–conditional transformer-based chemical language model for the prediction of activity cliffs formed by bioactive compounds. *Digital Discovery*, 1(6):898–909, 2022.
- Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. ChemBERTa: large-scale self supervised pretraining for molecular property prediction. *arXiv preprint arXiv:2010.09885*, 2020.
- The UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1):D523–D531, 2023.
- 539 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. *IEEE Transactions on Information Theory*, 13(1):21–27, 1967.

540 Maykel Cruz-Monteagudo, José L Medina-Franco, Yunierkis Pérez-Castillo, Orazio Nicolotti, 541 M Natália DS Cordeiro, and Fernanda Borges. Activity cliffs in drug discovery: Dr Jekyll 542 or Mr Hyde? Drug Discovery Today, 19(8):1069-1080, 2014. 543 Maykel Cruz-Monteagudo, José L Medina-Franco, Yunier Perera-Sardiña, Fernanda Borges, Ed-544 uardo Tejera, Cesar Paz-y Mino, Yunierkis Pérez-Castillo, Aminael Sánchez-Rodríguez, Zuleidys Contreras-Posada, Natália DS Cordeiro, et al. Probing the hypothesis of sar continuity restoration 546 by the removal of activity cliffs generators in qsar. Current Pharmaceutical Design, 22(33): 547 5043-5056, 2016. 548 549 Markus Dablander, Thierry Hanser, Renaud Lambiotte, and Garrett M Morris. Exploring QSAR 550 models for activity-cliff prediction. Journal of Cheminformatics, 15(1):47, 2023. 551 Mark Davies, Michał Nowotka, George Papadatos, Nathan Dedman, Anna Gaulton, Francis Atkinson, 552 Louisa Bellis, and John P Overington. ChEMBL web services: streamlining access to drug 553 discovery data and utilities. Nucleic Acids Research, 43(W1):W612-W620, 2015. 554 555 Jianyuan Deng, Zhibo Yang, Hehe Wang, Iwao Ojima, Dimitris Samaras, and Fusheng Wang. A systematic study of key elements underlying molecular property prediction. Nature Communications, 556 14(1):6395, 2023. Chengwei Dong, Yu-Peng Huang, Xiaohan Lin, Hong Zhang, and Yi Qin Gao. Dsdpflex: Flexible-559 receptor docking with gpu acceleration. Journal of Chemical Information and Modeling, 2024. 560 561 Joseph L Durant, Burton A Leland, Douglas R Henry, and James G Nourse. Reoptimization of MDL keys for use in drug discovery. Journal of Chemical Information and Computer Sciences, 42(6): 562 1273-1280, 2002. 563 564 Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of 565 Statistics, pp. 1189–1232, 2001. 566 567 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural 568 message passing for quantum chemistry. In International Conference on Machine Learning, pp. 569 1263-1272. PMLR, 2017. 570 Rajarshi Guha. Exploring uncharted territories: Predicting activity cliffs in structure-activity land-571 scapes. Journal of Chemical Information and Modeling, 52(8):2181–2191, 2012. 572 573 Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector 574 machines. *IEEE Intelligent Systems and their Applications*, 13(4):18–28, 1998. 575 Kathrin Heikamp, Xiaoying Hu, Aixia Yan, and Jürgen Bajorath. Prediction of activity cliffs using 576 support vector machines. Journal of Chemical Information and Modeling, 52(9):2354–2365, 2012. 577 578 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8): 1735–1780, 1997. 579 580 Dragos Horvath, Gilles Marcou, Alexandre Varnek, Shilva Kayastha, Antonio de la Vega de León, and 581 Jürgen Bajorath. Prediction of activity cliffs using condensed graphs of reaction representations, 582 descriptor recombination, support vector machine classification, and support vector regression. 583 Journal of Chemical Information and Modeling, 56(9):1631–1640, 2016. 584 Ye Hu and Jürgen Bajorath. Exploration of 3d activity cliffs on the basis of compound binding 585 modes and comparison of 2d and 3d cliffs. Journal of Chemical Information and Modeling, 52(3): 586 670-677, 2012. 588 Ye Hu, Norbert Furtmann, Michael Gütschow, and Jürgen Bajorath. Systematic identification and classification of three-dimensional activity cliffs. Journal of Chemical Information and Modeling, 590 52(6):1490–1498, 2012. 591 YuPeng Huang, Hong Zhang, Siyuan Jiang, Dajiong Yue, Xiaohan Lin, Jun Zhang, and Yi Qin Gao. 592 DSDP: A blind docking strategy accelerated by GPUs. Journal of Chemical Information and Modeling, 63(14):4355-4363, 2023.

594	Jarmila Husby, Giovanni Bottegoni, Irina Kufareya, Ruben Abagyan, and Andrea Cavalli, Structure-
595	based predictions of activity cliffs. <i>Journal of Chemical Information and Modeling</i> , 55(5):1062–
596	1076. 2015.
597	

- Javed Iqbal, Martin Vogt, and Jürgen Bajorath. Prediction of activity cliffs on the basis of images
 using convolutional neural networks. *Journal of Computer-Aided Molecular Design*, pp. 1–8, 2021.
- Tiago Janela and Jürgen Bajorath. Simple nearest-neighbour analysis meets the accuracy of compound
 potency predictions using complex machine learning modelsf. *Nature Machine Intelligence*, 4(12):
 1246–1255, 2022.
- Dejun Jiang, Chang-Yu Hsieh, Zhenxing Wu, Yu Kang, Jike Wang, Ercheng Wang, Ben Liao, Chao
 Shen, Lei Xu, Jian Wu, et al. InteractionGraphNet: A novel and efficient deep graph representation
 learning framework for accurate protein–ligand interaction predictions. *Journal of Medicinal Chemistry*, 64(24):18209–18232, 2021a.
- Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. *Journal of Cheminformatics*, 13:1–23, 2021b.
- José Jiménez, Miha Skalic, Gerard Martinez-Rosell, and Gianni De Fabritiis. K deep: protein–ligand
 absolute binding affinity prediction via 3d-convolutional neural networks. *Journal of Chemical Information and Modeling*, 58(2):287–296, 2018.
- José Jiménez-Luna, Miha Skalic, and Nils Weskamp. Benchmarking molecular feature attribution
 methods with activity cliffs. *Journal of Chemical Information and Modeling*, 62(2):274–283, 2022.
- Wengong Jin, Caroline Uhler, and Nir Hacohen. Se (3) denoising score matching for unsupervised
 binding energy prediction and nanobody design. In *NeurIPS 2023 Generative AI and Biology* (*GenBio*) Workshop, 2023.
- Talia B Kimber, Maxime Gagnebin, and Andrea Volkamer. Maxsmi: maximizing molecular property
 prediction performance with confidence estimation using smiles augmentation and deep learning.
 Artificial Intelligence in the Life Sciences, 1:100014, 2021.
- Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 arXiv preprint arXiv:1609.02907, 2016.
- 628 Greg Landrum et al. RDKit: A software suite for cheminformatics, computational chemistry, and 629 predictive modeling. *Greg Landrum*, 8(31.10):5281, 2013.
- Cheryl S Leung, Siegfried SF Leung, Julian Tirado-Rives, and William L Jorgensen. Methyl effects on protein–ligand binding. *Journal of Medicinal Chemistry*, 55(9):4489–4500, 2012.
- Vladimir I Levenshtein et al. Binary codes capable of correcting deletions, insertions, and reversals.
 In *Soviet physics doklady*, volume 10, pp. 707–710. Soviet Union, 1966.
- Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. Tankbind:
 Trigonometry-aware neural networks for drug-protein binding structure prediction. *Advances in neural information processing systems*, 35:7236–7249, 2022.
- Gerald M Maggiora. On outliers and activity cliffs why QSAR often disappoints, 2006.
- Al Mead. Review of the development of multidimensional scaling methods. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 41(1):27–39, 1992.
- David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy Félix, María Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, et al. ChEMBL: towards direct deposition of bioassay data. *Nucleic Acids Research*, 47(D1):D930–D940, 2019.
- Seokhyun Moon, Wonho Zhung, Soojung Yang, Jaechang Lim, and Woo Youn Kim. Pignet: a physics-informed deep learning model toward generalized drug-target interaction predictions. *Chemical Science*, 13(13):3661–3673, 2022.

648 649 650	Junhui Park, Gaeun Sung, SeungHyun Lee, SeungHo Kang, and ChunKyun Park. ACGCN: graph convolutional networks for activity cliff prediction between matched molecular pairs. <i>Journal of Chemical Information and Modeling</i> , 62(10):2341–2351, 2022.
651 652 653	Lewis D Pennington and Demetri T Moustakas. The necessary nitrogen atom: a versatile high- impact design element for multiparameter optimization. <i>Journal of Medicinal Chemistry</i> , 60(9): 3552–3579, 2017.
654 655 656	David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical Informa- tion and Modeling, 50(5):742–754, 2010.
658 659 660 661	Chao Shen, Xujun Zhang, Yafeng Deng, Junbo Gao, Dong Wang, Lei Xu, Peichen Pan, Tingjun Hou, and Yu Kang. Boosting protein–ligand binding pose prediction and virtual screening based on residue–atom distance likelihood potential and graph transformer. <i>Journal of Medicinal Chemistry</i> , 65(15):10691–10706, 2022.
662 663	Robert P Sheridan. Three useful dimensions for domain applicability in QSAR models using random forest. <i>Journal of Chemical Information and Modeling</i> , 52(3):814–823, 2012.
664 665 666	MJ Stewart and ID Watson. Standard units for expressing drug concentrations in biological fluids. <i>British Journal of Clinical Pharmacology</i> , 16(1):3, 1983.
667 668 669	Dagmar Stumpfe, Ye Hu, Dilyana Dimova, and Jürgen Bajorath. Recent progress in understanding activity cliffs and their utility in medicinal chemistry: miniperspective. <i>Journal of medicinal chemistry</i> , 57(1):18–28, 2014.
670 671 672	Dagmar Stumpfe, Huabin Hu, and Jürgen Bajorath. Evolving concept of activity cliffs. <i>Acs Omega</i> , 4(11):14360–14368, 2019.
673 674	Dagmar Stumpfe, Huabin Hu, and Jürgen Bajorath. Advances in exploring activity cliffs. <i>Journal of Computer-Aided Molecular Design</i> , 34:929–942, 2020.
675 676 677	Shunsuke Tamura, Swarit Jasial, Tomoyuki Miyao, and Kimito Funatsu. Interpretation of ligand- based activity cliff prediction models using the matched molecular pair kernel. <i>Molecules</i> , 26(16): 4916, 2021.
678 679 680 681	Shunsuke Tamura, Tomoyuki Miyao, and Jürgen Bajorath. Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity. <i>Journal of Cheminformatics</i> , 15(1):4, 2023.
682 683 684	Huishuang Tan, Zhixin Wang, and Guang Hu. GAABind: a geometry-aware attention-based network for accurate protein–ligand binding pose and binding affinity prediction. <i>Briefings in Bioinformatics</i> , 25(1):bbad462, 2024.
685 686	Taffee T Tanimoto. Elementary mathematical theory of classification and prediction. 1958.
687 688	Roberto Todeschini, Paola Gramatica, et al. New 3D molecular descriptors: the WHIM theory and QSAR applications. <i>Perspectives in Drug Discovery and Design</i> , 9(0):355–380, 1998.
690 691 692	Oleg Trott and Arthur J Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. <i>Journal of Computational Chemistry</i> , 31(2):455–461, 2010.
693 694 695	Jessica Vamathevan, Dominic Clark, Paul Czodrowski, Ian Dunham, Edgardo Ferran, George Lee, Bin Li, Anant Madabhushi, Parantu Shah, Michaela Spitzer, et al. Applications of machine learning in drug discovery and development. <i>Nature Reviews Drug Discovery</i> , 18(6):463–477, 2019.
696 697 698 699	Derek van Tilborg, Alisa Alenicheva, and Francesca Grisoni. Exposing the limitations of molecular machine learning with activity cliffs. <i>Journal of Chemical Information and Modeling</i> , 62(23): 5938–5951, 2022.
700 701	Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. <i>Advances in Neural Information Processing Systems</i> , 30, 2017.

702 703 704	Martin Vogt, Yun Huang, and Jürgen Bajorath. From activity cliffs to activity ridges: informative data structures for sar analysis. <i>Journal of Chemical Information and Modeling</i> , 51(8):1848–1856, 2011.
705 706 707	W Patrick Walters and Mark A Murcko. Prediction of 'drug-likeness'. <i>Advanced Drug Delivery</i> <i>Reviews</i> , 54(3):255–271, 2002.
708 709 710	Renxiao Wang, Xueliang Fang, Yipin Lu, and Shaomeng Wang. The PDBbind database: Collection of binding affinities for protein-ligand complexes with known three-dimensional structures. <i>Journal of Medicinal Chemistry</i> , 47(12):2977–2980, 2004.
711 712 713	Renxiao Wang, Xueliang Fang, Yipin Lu, Chao-Yie Yang, and Shaomeng Wang. The pdbbind database: methodologies and updates. <i>Journal of medicinal chemistry</i> , 48(12):4111–4119, 2005.
714 715 716	David Weininger. SMILES, a chemical language and information system. 1. Introduction to method- ology and encoding rules. <i>Journal of Chemical Information and Computer Sciences</i> , 28(1):31–36, 1988.
717 718 719 720 721	Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. <i>Journal of Medicinal Chemistry</i> , 63(16):8749–8760, 2019.
722 723 724	Xin Zeng, Shu-Juan Li, Shuang-Qing Lv, Meng-Liang Wen, and Yi Li. A comprehensive review of the recent advances on predicting drug-target affinity based on deep learning. <i>Frontiers in Pharmacology</i> , 15:1375522, 2024.
725 726 727 728	Shuke Zhang, Yanzhao Jin, Tianmeng Liu, Qi Wang, Zhaohui Zhang, Shuliang Zhao, and Bo Shan. SS-GNN: a simple-structured graph neural network for affinity prediction. <i>ACS Omega</i> , 8(25): 22496–22507, 2023a.
729 730 731	Xujun Zhang, Odin Zhang, Chao Shen, Wanglin Qu, Shicheng Chen, Hanqun Cao, Yu Kang, Zhe Wang, Ercheng Wang, Jintu Zhang, et al. Efficient and accurate large library ligand docking with karmadock. <i>Nature Computational Science</i> , 3(9):789–804, 2023b.
732 733 734	Ziqiao Zhang, Bangyi Zhao, Ailin Xie, Yatao Bian, and Shuigeng Zhou. Activity cliff prediction: Dataset and benchmark. <i>arXiv preprint arXiv:2302.07541</i> , 2023c.
735 736 737	
738 739	
740 741	
742 743 744	
745 746	
747 748	
749 750 751	
752 753	
754 755	

756 APPENDIX А 757

758

759

DATASETS AND BASELINE MODELS А

760 A.1 LICENSE AND AVAILABILITY 761

762 The code for benchmark is available here: https://anonymous.4open.science/r/ 763 DockedAC-ICLR/README.md. The DockedAC dataset and its future updates can be found 764 here: https://doi.org/10.5281/zenodo.11485280.

765 The DockedAC dataet is licensed under Creative Commons Attribution-ShareAlike 4.0 Inter-766 national License. For details, please see https://creativecommons.org/licenses/ 767 by-sa/4.0/. The content of DockedAC uses data from RCSB PDB and ChEMBL. The PDB 768 archive are available under the CC0 1.0 Universal (CC0 1.0) Public Domain Dedication (https: 769 //creativecommons.org/publicdomain/zero/1.0/). ChEMBL is provided under a 770 Creative Commons Attribution-ShareAlike 3.0 Unported license (https://creativecommons. 771 org/licenses/by-sa/3.0/). 772

773 A.2 DATASETS 774

Our introduced dataset DockedAC¹ comprises 82,836 ligands from 52 protein targets, which is 775 meticulously curated to support various machine learning and deep learning studies related to activity 776 cliff (AC) prediction. Table 3 provides detailed statistics of DockedAC. 777

778 A.3 BASELINE MODELS 779

In this work, we integrate 13 recent baselines commonly used for structure-activity relationship 781 prediction, including four traditional machine learning algorithms: KNN, RF, GBM, and SVM; three 782 sequential models: LSTM, Transformer, and 1D CNN; four 2D GNN models: GCN, GAT, MPNN, 783 and AFP; and two 3D structure GNN models: IGN and SS-GNN. The detailed descriptions of these 784 approaches are listed in the following:

785 786

787

788

• KNN (Cover & Hart, 1967). K-Nearest Neighbor (KNN) is a simple, non-parametric method that predicts the target molecule's response by averaging the response of the k-nearest neighbors from the training set.

- RF (Breiman, 1996). Random Forest (RF) is an ensemble method that combines the outputs of 789 multiple decision trees to improve accuracy and reduce over-fitting. Each decision tree is built upon 790 a subset of the training set, and the final prediction is obtained by averaging the results from these 791 individual trees. 792
- GBM (Friedman, 2001). Similar to RF, Gradient Boosting Machine (GBM) also combines the 793 predictions of multiple decision trees. However, in GBM, these trees are built sequentially, with 794 each subsequent tree specially designed to correct the errors of its predecessors.
- SVM (Hearst et al., 1998). Support Vector Machine (SVM) aims to identify a linear regression 796 plane in a higher-dimensional space created by applying a designated kernel function. In this work, 797 the Radial Basis Function (RBF) kernel is used.
- 798 • Transformer (Vaswani et al., 2017). The Transformer model leverages self-attention mechanisms to capture dependencies across different positions in the input sequence. In our work, we employed 799 the pretrained ChemBERTa (Chithrananda et al., 2020) architecture, which has been trained on 10 800 million compounds. 801
- LSTM (Hochreiter & Schmidhuber, 1997). Long Short-Term Memory (LSTM) can capture 802 temporal dependencies and patterns in sequential data by maintaining long-term memory through 803 their gated structure. In this work, we employ SMILES strings as the input for the model.
- 804 • 1D CNN (Kimber et al., 2021). Convolutional Neural Network (CNN) uses convolutional filters to 805 aggregate spatial information from adjacent positions. For processing sequential SMILES string 806 data, we employ 1D CNNs that perform convolutional operations along a single dimension.
- 807 • MPNN (Gilmer et al., 2017). Message Passing Neural Network (MPNN) operates by iteratively 808 passing messages between nodes and updating their representations based on neighboring nodes.

Table 3: Dataset overview. n (where n_{train}/n_{test} , *resp.*) represents the total number of compounds, divided into training and test sets. n^{AC} (where $n_{train}^{AC} / n_{test}^{AC}$ *resp.*) denotes the total number of activity cliff compounds within the dataset, also divided into training and test sets.

$ \begin{array}{c} \text{Here} & \text{Her} & \text{He} & \text$	814	Target Name	ChEMBL ID	PDB	Type	n (n _{train} / n _{tost})	n^{AC} (n^{AC} / n^{AC})
Anarogen Receptor CHEMBL 16 / 1 2 min Λ_1 Λ_1 $(\Lambda_1 = 20)^2$ $(\Lambda_2 = 20)^2$ <th< td=""><td>815</td><td>Andre an Decenter</td><td>CHEMPL 1971</td><td>2</td><td>V</td><td>(17 (402/125)</td><td>125 (100/26)</td></th<>	815	Andre an Decenter	CHEMPL 1971	2	V	(17 (402/125)	125 (100/26)
	816	Androgen Receptor	CHEMBL18/1	Zama	r_{i}	1004 (802/123)	155 (109/20)
817 Congunation laction A CHEMBL2-34 CHEMBL2-34 Constant (1) Constant (1) <td>010</td> <td>Camilabiliou CBT receptor</td> <td>CHEMPL216</td> <td>2m02</td> <td>LC_{50}</td> <td>1004(802/202) 2002(2474/610)</td> <td>309 (293/70) 1476 (1180/206)</td>	010	Camilabiliou CBT receptor	CHEMPL216	2m02	LC_{50}	1004(802/202) 2002(2474/610)	309 (293/70) 1476 (1180/206)
Berna upon receptor CHEMBL23 Appl. A Ki 350 (2007) (2024) (2024) Bits Dopamine D4 receptor CHEMBL23 Appl. A Ki 355 (2024) (2034) (2034) 100 (40224) (2034) Bits Dopamine transporter CHEMBL23 Appl. A Ki 105 (8324) (2034) (2034) 100 (40224) (2034) Bits Carl and receptor CHEMBL203 Opt. Ki 653 (149) (2034) (2034) 653 (2012) (2034) (203	817	Dalta onioid recentor	CHEMPL 226	2p95	K K	2580 (2060/520)	1470 (1160/290)
	818	Denamina D2 receptor	CHEMPL230	3pbl A	K K	2580 (2000/520)	1003(802/203) 1604(1284/320)
$ \begin{array}{cccccc} CHEMBL233 & 246LA K_1 & 1051 (832/213) & 266 (211/55) \\ Dual specificity protein kinase CLK4 & CHEMBL203 & 6 fiv K_1 & 1051 (832/213) & 266 (211/55) \\ Dual specificity protein kinase CLK4 & CHEMBL203 & 6 fiv K_1 & 1051 (832/213) & 266 (211/55) \\ CHEMBL203 & 5 fuv K_1 & 684 (511/33) & 451 (195/50) \\ CHEMBL203 & 4 kig K_1 & 684 (511/33) & 451 (194/49) \\ CHEMBL203 & 4 kig K_1 & 684 (511/33) & 451 (194/49) \\ CHEMBL203 & 4 kig K_1 & 684 (511/33) & 451 (194/49) \\ CHEMBL203 & 4 kig K_1 & 684 (511/33) & 451 (194/49) \\ CHEMBL203 & 4 kig K_1 & 685 (683/172) & 166 (128/32) \\ Histamine H1 receptor & CHEMBL203 & 4kig K_1 & 654 (489/126) & 60 (128/32) \\ Histamine H3 receptor & CHEMBL203 & 76 (779/197) & 62 (128/44) \\ Histamine H3 receptor & CHEMBL237 & 4djh K_1 & C_{56} & 953 (761/92) & 455 (656/91) \\ Tyrosine-protein kinase JAK2 & CHEMBL237 & 4djh K_1 & 2599 (2078/52) & 1109 (887/22) \\ Tyrosine-protein kinase JAK2 & CHEMBL237 & 4djh K_1 & 2599 (2078/52) & 1109 (887/22) \\ Crexin receptor & CHEMBL237 & 4djh K_1 & 127 (137/347) & 699 (558/141) \\ Crexin receptor 2 & CHEMBL237 & 246 (187/1472) & 789 (178/147) & 699 (558/141) \\ Peroxisome proliferator-activated receptor adla \\ Peroxisome proliferator-activated receptor adla \\ Peroxisome proliferator-activated receptor adla \\ Proxisome proliferator-activated receptor adla \\ Proxisome proliferator-activated receptor adla \\ Proxisome proliferator-activated receptor C CHEMBL237 & 276 (K i 190 (167/193) & 401 (32081) \\ Sertotinn tang50 + Ceptor & CHEMBL247 & 221 (137/347/2) & 885 (170/178) \\ Sertotinn transporter & CHEMBL247 & 221 (K i 1450 (116/294) & 721 (456/116) \\ Sertotinn tang50 + Ceptor & CHEMBL247 & 224 (K i 133) (265/1666) (122 (977/245) \\ Sertotinn tang50 + Ceptor & CHEMBL247 & 124 (127/34) & 393 (263/67) \\ Mu poiod receptor & CHEMBL238 & 106 (K K i 122 (106/167) & 507 (404/103) \\ Trosine-protein kinase 2 & CHEMBL246 & 104 (K i 123 (133/1647) & 599 (673/146) & 110 (133/347) \\ Sertonin tang50 + 000 (150/143) & 303 (263/67) \\ Cyclin-dependent kinase 2 & CHEMBL235 $	010	Dopamine D4 receptor	CHEMBL234 CHEMBL 219	5win A	K_{i}	1865 (1491/374)	740 (592/148)
820 Dual specificity protein kinase CLK4 CHEMBL4203 $6\dot{fy}_{y}$ K_{z} 731 (582/149) 64 (51/13) 821 Bite acid receptor FXR CHEMBL4616 $6ko5, A$ EC_{z0} 631 (534/139) 355 (282/73) 822 Glucocorticoid receptor CHEMBL2014 $4\dot{k}_{j}$ K_{z} 655 (683/172) 243 (194/49) 823 Glycogen synthase kinase-3 beta CHEMBL2014 $4\dot{k}_{j}$ K_{z} 952 (651/133) 243 (194/49) 824 Histamine H receptor CHEMBL201 $3re_z - A$ K_{z} 972 (776/196) 257 (189/48) 825 Tyrosine-protein kinase JAK1 CHEMBL237 4djh K_{z} 972 (779/197) 162 (128/34) 826 Kappa opioid receptor CHEMBL237 4djh K_{z} 259 (278/521) 1109 (887/222) 827 Kappa opioid receptor CHEMBL237 4djh K_{z} 259 (278/521) 1109 (887/22) 828 Peroxisome proliferator-activated receptor agama CHEMBL237 4djh K_{z} 259 (278/52) 1109 (885 (707/178)	819	Dopamine D4 receptor	CHEMBL238	2a6h A	K_i	1003 (14) 1/3/4)	266 (211/55)
Bile acid receptor FXRCHENBL2047 $\hat{sq0}u$ EC_{60} 631 (503/128) 245 (195/50)822Glucocorticoid receptorCHENBL2034 $4lsj$ K_i 635 (583/172) 160 (128/32)823Glycogen synthase kinase-3 betaCHENBL202 $6hk3$ K_i 855 (683/172) 160 (128/32)824Histamine H1 receptorCHENBL201 $3rze_A$ K_i 972 (776/196) 237 (189/48)824Histamine H1 receptorCHENBL231 $3rze_A$ K_i 972 (776/196) 237 (189/48)825Tyrosine-protein kinase JAK1CHENBL237 $4jln$ K_i 976 (779/197) 162 (128/34)826Tyrosine-protein kinase JAK2CHENBL237 $4djh$ EC_{50} 953 (76/192) 456 (365/91)827Kappa opioid receptorCHENBL237 $4djh$ EC_{50} 953 (76/192) 456 (365/91)828Peroxisome proliferator-activated receptor dalphaCHENBL237 $4djh$ K_i 259 (207/8/51) 1109 (887/22)828Peroxisome proliferator-activated receptor dalphaCHENBL2979 xxx EC_{50} 125 (171/174) 996 (558/141)829Peroxisome proliferator-activated receptor dalphaCHENBL2147 $2jz$ K_i 1471 (174/27) 885 (077/178)831Sernotnin Ia (5-HT1a) protein kinase PIM1CHENBL2147 $2jz$ K_i 1471 (136/240/6) 572 (456/116)832Serotonin TarabporterCHENBL2147 $2jz$ K_i 1471 (136/240/6) 572 (456/116) <td>820</td> <td>Dual specificity protein kinase CLK4</td> <td>CHEMBL4203</td> <td>6fyv</td> <td>K_{i}</td> <td>731 (582/149)</td> <td>64 (51/13)</td>	820	Dual specificity protein kinase CLK4	CHEMBL4203	6fyv	K_{i}	731 (582/149)	64 (51/13)
Chrelin receptor CHEMBL4616 $\delta k_0 S_A$ $E C_A$ 67.4 67.6 77.1 77.4 $63.471.60$ 77.4 67.4 67.9 77.1 77.4 $63.471.60$ 79.4 $63.471.60$ 79.4 $63.471.60$ 79.4 $63.471.60$ 79.4 $63.471.60$ 79.4 $63.471.60$ 79.4 <th< td=""><td>821</td><td>Bile acid receptor FXR</td><td>CHEMBL2047</td><td>5q0u</td><td>$\dot{EC_{50}}$</td><td>631 (503/128)</td><td>245 (195/50)</td></th<>	821	Bile acid receptor FXR	CHEMBL2047	5q0u	$\dot{EC_{50}}$	631 (503/128)	245 (195/50)
GL2 Glucocorticoid receptor CHEMBL203 4lsj K_i 684 (551/133) 243 (194/49) 623 Glycogen synthase kinase-3 beta CHEMBL261 K_i 855 (683/17.2) 160 (128/32) 624 Histamine H1 receptor CHEMBL231 $3re_A$ K_i 972 (776/196) 237 (189/48) 625 Tyrosine-protein kinase JAK1 CHEMBL237 $4ija$ K_i 961 (283/4) 109 (497/13) 626 Kappa opioid receptor CHEMBL2371 $4ijh$ K_i 267 (779/197) 162 (128/34) 627 Grexin receptor 2 CHEMBL237 $4ijh$ K_i 259 (2078/521) 1109 (887/222) 628 Peroxisome proliferator-activated receptor gamma CHEMBL237 $4gih$ K_i 123 (899/26) 488 (371/494) 639 PErxisarse proliferator-activated receptor gamma CHEMBL204 $fgev K_i$ K_i 137 (2651/666) (222 (977/245) 631 Serino/Inronin-protein kinase PM1 CHEMBL204 $frex R_i$ $137 (2651/666) (122 (977/245) 488 (51/127) 632 Serino in transporter $	000	Ghrelin receptor	CHEMBL4616	6ko5_A	EC_{50}	673 (534/139)	355 (282/73)
B223Glycogen synthase kinase-35 betaCHEMBL220 $5nc_2$ $6hk_1$ hk_1 855 (68.3) (172)160 (128/32)B24Histamine H3 receptorCHEMBL236 $7fc1_A$ K_1 257 (776/196) 237 (189/48)B25Tyrosine-protein kinase JAK1CHEMBL2364 $7fc1_A$ K_1 262 (2288/574) 1191 (952/239)B26Kappa opioid receptorCHEMBL2371 $4ijn$ K_1 2593 (2078/521) 1109 (887/222)B27Kappa opioid receptorCHEMBL2371 $4djh$ K_1 2599 (2078/521) 1109 (887/222)D7exin receptor 2Orexin receptor 2CHEMBL239 $3kdu$ EC_{50} 1123 (899/226) 468 (374/94)B29Peroxisome proliferator-activated receptor deltaCHEMBL2397 $5xmx$ EC_{50} 1123 (899/226) 468 (374/94)B30P12-kinase p110-alpha subunitCHEMBL2405 $5gvf$ K_1 1060 (177/178) 851 (707/178)B31Seried/theonine-protein kinase PM1CHEMBL2147 $2ix$ K_1 1060 (172/193) 401 (320/81)B32Serotonin tansporterCHEMBL2147 $2ix$ K_1 1330 (263/67)B33Sigma opioid receptorCHEMBL236 $4kx_1$ 1122 (1374/34) 592 (558/116)B33Sigma opioid receptorCHEMBL244 $1mu8$ K_1 1323 (1061/267) 507 (104/1103)B34Cyrosine-protein kinase ABLCHEMBL245 k_1 102 (135/259) 1089 (870/219)B35Cyrolin-dependent kinase 2CHEMBL	822	Glucocorticoid receptor	CHEMBL2034	4lsj	K_{i}	684 (551/133)	243 (194/49)
Histamine H1 receptorCHEMBL231 $3re_{\rm A}$ K_i 972 (776/196) 237 (189/48)825Tyrosine-protein kinase JAK1CHEMBL235 $4k77$ K_i 615 (489/126) 60 (47/13)826Kappa opioid receptorCHEMBL237 $4ijh$ K_i 976 (779/197) 162 (128/34)827Kappa opioid receptorCHEMBL237 $4djh$ K_i 2796 (278/87/11) 192 (28/34)828Peroxisome proliferator-activated receptor alphaCHEMBL237 $4djh$ K_i 1279 (2776/197) 794 (63/41/60)829Peroxisome proliferator-activated receptor alphaCHEMBL329Sxmx EC_{50} 123 (137/43/47) 699 (558/14)820Peroxisome proliferator-activated receptor duelCHEMBL235Symx EC_{50} 1234 (137/43/37) 699 (558/14)831Serine/threonine-protein kinase PIM1CHEMBL2147 221 K_i 1456 (1162/294) 572 (456/116)832Serotonin 1a (5-HT1a) receptorCHEMBL2147 $722_{\rm x}$ K_i 1317 (265/1666) 1222 (977/245)833Sigma opioid receptorCHEMBL247 $76k1$ 724 (219/55/25) 1089 (870/219)834Tyrosine-protein kinase ABLCHEMBL248 $76k1$ 142 (115/129) 330 (263/67)835Sigma opioid receptorCHEMBL247 721 K_i 330 (263/67)836Opioid receptorCHEMBL248 $6k1$ K_i 1328 (106/12/67) 507 (404/103)837Sigma opioid receptorCHEMBL248	823	Glycogen synthase kinase-3 beta	CHEMBL262	6hk3	K_{i}	855 (683/172)	160 (128/32)
624 Histamine H3 receptor CHEMBL264 7761_A K_i $2862 (228)(574)$ $1191 (952239)$ 625 Tyrosine-protein kinase JAK1 CHEMBL237 $4ijn$ K_i $976 (779/197)$ $162 (128/34)$ 626 Kappa opioid receptor CHEMBL237 $4djh$ E_C_{50} $953 (761/192)$ $456 (365/91)$ 627 Grexin receptor 2 CHEMBL237 $4djh$ E_C_{50} $953 (761/192)$ $466 (365/91)$ 628 Peroxisome proliferator-activated receptor delta CHEMBL237 $4djh$ E_C_{50} $1121 (1374/347)$ $699 (558/141)$ 630 Peroxisome proliferator-activated receptor gamma CHEMBL239 (25 4/6 (27 4/74)) $850 (77/178)$ $860 (77/174)$ $885 (707/178)$ 631 Serinchreonine -protein kinase PIM1 CHEMBL214 72_{22} K_i $317 (261/666)$ $1222 (977/45)$ 632 Serotonin transporter CHEMBL224 $6aw_0 A$ K_i $3128 (1061/267)$ $507 (404/103)$ 633 Sigma opioid receptor CHEMBL224 faw A_i K_i $124 (103/2529)$ $77 (453/101 - 330 (25/67)$ $707 (404/103)$ $707 (404/103)$ $702 (10$	004	Histamine H1 receptor	CHEMBL231	3rze_A	$K_{\rm i}$	972 (776/196)	237 (189/48)
825 Tyrosine-protein kinase IAK1 CHEMBL2835 4K77 Ki 615 (489)(26) 60 (47/13) 826 Kappa opioid receptor CHEMBL237 4djh K_i 976 (779)(79) 162 (128)(34) 827 Kappa opioid receptor CHEMBL237 4djh K_i 2599 (2078)(21) 1109 (887)(22) 828 Peroxisome proliferator-activated receptor alpha CHEMBL379 Statu 1125 (899)(22) 456 (3659)(11) 829 Peroxisome proliferator-activated receptor gamma CHEMBL335 Symc K_i 125 (89)(22) 648 (3714)4) 829 Peroxisome proliferator-activated receptor gamma CHEMBL325 Symc K_i 1471 (1174/29) 794 (634/16) 821 Serine/threonine-protein kinase PIM1 CHEMBL214 $7e_2x_JR$ K_i 1317 (2651/66) 1222 (977/245) 833 Sigma opioid receptor CHEMBL287 64k1 K_i 1328 (1061/267) 507 (404/103) 834 Tyrosine-protein kinase ABL CHEMBL287 64k1 K_i 1341 (2511/66) 1222 (977/14) 835 Mu opioid receptor CHEMBL301 Inug I_{570} (1630) (1294 (105	824	Histamine H3 receptor	CHEMBL264	7f61_A	$K_{\rm i}$	2862 (2288/574)	1191 (952/239)
Tyrosine-protein kinase JAK2CHEMBL29714jia K_1 976 (779/197) 162 (128/34)826Kappa opioid receptorCHEMBL2374djh EC_50 953 (761/192) 456 (3557)1)827Orexin receptor 2CHEMBL2374djh K_1 2599 (2078/521) 1109 (887/222)828Peroxisome proliferator-activated receptor alphaCHEMBL239 $3kdu$ EC_{50} 1121 (1174/347) 699 (558/141)829Peroxisome proliferator-activated receptor gammaCHEMBL239 $3kdu$ EC_{50} 1123 (899/226) 468 (374/94)830P13-kinase p110-alpha subunitCHEMBL2147 $2yi$ K_1 990 (76/7193) 401 (320/81)831Serine/threonine-protein kinase PIN1CHEMBL2147 $72z$ K_1 1356 (116/2/294) 572 (456/116)832Serotonin ta (5-HT1a) receptorCHEMBL2147 $72z$ K_1 1350 (162/275) 077 (40/103)833Sigma opioid receptorCHEMBL228 $6awo_A K_1$ 1702 (136/2340) 638 (511/127)834ThrombinCHEMBL233 $8feo_R K_1$ 1142 (2511/630) 1294 (1035/259)835Cyclin-dependent kinase ABLCHEMBL234 $1uai$ K_1 2144 (633/161) 330 (263/67)836Cyclin-dependent kinase Chk1CHEMBL253 $1uai$ IC_{50} 1794 (633/161) 330 (263/67)8373-phosphoinositide dependent protein kinase-1CHEMBL254 $1uai$ IC_{50} 1796 (153/342) 822 (2660/166)838Dihydrofol	825	Tyrosine-protein kinase JAK1	CHEMBL2835	4k77	$K_{\rm i}$	615 (489/126)	60 (47/13)
CCC Kappa opioid receptor CHEMBL237 4djh EC_{50} 953 (761/192) 456 (365/91) 827 Kappa opioid receptor CHEMBL237 4djh K_1 2599 (2078/521) 1100 (887/222) 0rexin receptor 2 CHEMBL239 3kdu EC_{50} 1721 (1374/347) 699 (558/141) 829 Peroxisome proliferator-activated receptor agmma CHEMBL235 2yfe EC_{50} 123 (899/226) 468 (374/94) 810 Pl3-kinase p110-alpha subunit CHEMBL235 2yfe EC_{50} 234 (1877/472) 885 (707/178) 821 Serionin 1a (5-HT1a) arceptor CHEMBL214 722,2 K_1 1317 (2651/666) 122 (2777/245) 823 Serotonin 1ansporter CHEMBL287 6dw1 K_1 1328 (1061/267) 507 (404/103) 834 Tyrosine-protein kinase ABL CHEMBL233 86awo_A K_1 724 (2195/552) 1089 (870/219) 837 -phosphoinositide dependent protein kinase-1 CHEMBL233 870, R 1314 (2511/630) 1294 (1035/259) 837 -phosphoinositide depend	000	Tyrosine-protein kinase JAK2	CHEMBL2971	4jia	K_{i}	976 (779/197)	162 (128/34)
827 828 829 829 828 829Kappa opioid receptor 920CHEMBL237 920 9200441 940 92001109 (887/222) 9200 92001109 (887/222) 	020	Kappa opioid receptor	CHEMBL237	4djh	EC_{50}	953 (761/192)	456 (365/91)
Orexin receptor 2CHEMBL4792Swqc K_1 1471 (1174/297)794 (634/160)829Peroxisome proliferator-activated receptor alphaCHEMBL2393kdu EC_{50} 1721 (1374/347)699 (558/141)830Pl3-kinase J 10-alpha subunitCHEMBL235 2349 (1877/472)885 (707/178)831Serine/threonine-protein kinase PIM1CHEMBL205 $2yt$ EC_{50} 721 (2651/666)1222 (977/245)832Sertonin Ia (5-HT1a) receptorCHEMBL247 $2j2i$ K_i 1456 (1162/294)572 (456/116)833Sigma opioid receptorCHEMBL247 $2j2i$ K_i 1702 (1362/340)502 (436/116)834Tyrosine-protein kinase ABLCHEMBL246awwo, A K_i 1702 (1362/340)1089 (370/219)834Tyrosine-protein kinase ABLCHEMBL24764k1 K_i 1328 (1061/267)507 (404/103)835Mu opioid receptorCHEMBL2368fco.R K_i 3141 (2511/630)1294 (1035/259)836Cyclin-dependent kinase 2CHEMBL231luai IC_{50} 1454 (1161/293)350 (279/71)8373-phosphoniositide dependent protein kinase-1CHEMBL2321403 IC_{50} 739 (590/149)281 (223/88)838Urokinase-type plasminogen activatorCHEMBL236lowe K_i 718 (572/146)2444 (1957/487)840Estrogen receptor alphaCHEMBL236lowe K_i 718 (572/146)2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL236lowe $K_$	827	Kappa opioid receptor	CHEMBL237	4djh	$K_{\rm i}$	2599 (2078/521)	1109 (887/222)
CEC Peroxisome proliferator-activated receptor delta CHEMBL239 3kdu EC_{50} 112 (1374/347) 699 (558/141) 829 Peroxisome proliferator-activated receptor delta CHEMBL237 Sumx EC_{50} 123 (1899/226) 468 (374/94) 830 P13-kinase p110-alpha subunit CHEMBL2405 62yf K_i 960 (767/193) 401 (320/81) 831 Serine/threonine-protein kinase PIM1 CHEMBL2147 2j2i K_i 1456 (116) 292 (977/245) 832 Serotonin tansporter CHEMBL224 6awo_A K_i 1328 (1061/267) 507 (404/103) 833 Sigma opioid receptor CHEMBL234 fawo_A K_i 1328 (1061/267) 507 (404/103) 834 Thrombin CHEMBL233 8feo_R K_i 3141 (2511/630) 1294 (1035/259) 835 Mu opioid receptor CHEMBL233 8feo_R K_i 3141 (2511/630) 1294 (1035/259) 836 Spino-dependent kinase ABL CHEMBL233 8feo_R K_i 3141 (2511/630) 1294 (1035/259) 837 <td>000</td> <td>Orexin receptor 2</td> <td>CHEMBL4792</td> <td>5wqc</td> <td>K_{i}</td> <td>1471 (1174/297)</td> <td>794 (634/160)</td>	000	Orexin receptor 2	CHEMBL4792	5wqc	K_{i}	1471 (1174/297)	794 (634/160)
829Peroxisome proliferator-activated receptor deltaCHEMBL3979Sxmx EC_{50} 1125 (899/226)468 (374/94)830Peroxisome proliferator-activated receptor gammaCHEMBL2352yfe EC_{50} 2049 (1877/472)885 (707/178)831Serioncin Ia (5-HT1a) receptorCHEMBL21472j2i K_i 1456 (116/2294)572 (456/116)832Serotonin Ia (5-HT1a) receptorCHEMBL2147 $7e2x_R$ K_i 1371 (2651/666)1222 (977/245)833Sigma opioid receptorCHEMBL2876dk1 K_i 1372 (651/666)1222 (977/245)834ThrombinCHEMBL2876dk1 K_i 1374 (219/5522)1088 (870/219)835Mu opioid receptorCHEMBL2338feo_R K_i 3141 (2511/630)1294 (1035/259)836Cyclin-dependent kinase ABLCHEMBL2338feo_R K_i 3141 (2511/630)1294 (1035/259)837S-phosphonoistide dependent protein kinase-1CHEMBL2341uu3 IC_{50} 1454 (1161/293)350 (279/71)836Dihydrofolate reductaseCHEMBL2341uu3 IC_{50} 1454 (1161/293)282 (660/166)8373-phosphonoistide dependent protein kinase-1CHEMBL2341uu3 IC_{50} 1059 (128/324)667 (532/135)836Dihydrofolate reductaseCHEMBL2341uu3 IC_{50} 1059 (143)282 (24/58)836Urokinase-type plasminogen activatorCHEMBL2361owe K_i 518 (426/104)105 (124/38)841Heat shock protei	020	Peroxisome proliferator-activated receptor alpha	CHEMBL239	3kdu	EC_{50}	1721 (1374/347)	699 (558/141)
Peroxisome proliferator-activated receptor gammaCHEMBL235 $2y_{16}$ EC_{50} 2349 (1877/472)885 (707/178)831Pil3-kinase p110-alpha subunitCHEMBL2147 $2j_{21}$ K_i 960 (767/193)401 (320/81)831Serine/Ihreonine-protein kinase PIM1CHEMBL2147 $2j_{21}$ K_i 1456 (1162/294)572 (456/116)832Sertotini transporterCHEMBL228 $6aw_0 A$ K_i 1702 (1362/340)638 (51/1127)833Sigma opioid receptorCHEMBL2876dk1 K_i 1328 (1061/267)507 (404/103)834Tyrosine-protein kinase ABLCHEMBL2876dk1 K_i 1328 (1061/267)507 (404/103)835Mu opioid receptorCHEMBL18622hzi K_i 794 (633/161)330 (263/67)836Cyclin-dependent kinase ABLCHEMBL2338feo_R K_i 3141 (2511/630)1294 (1035/259)836Diposphoinositid edpendent protein kinase-1CHEMBL2341101 (1500)1294 (1035/259)826 (660/166)8373-phosphodiesterase 5ACHEMBL2341010 (1550)1609 (1285/324)667 (532/135)838Urokinase-type plasminogen activatorCHEMBL2874iu0 (C_{50} 056 (463/61)2444 (1957/487)840Estrogen receptor alphaCHEMBL206lqt (L_{50} 2094 (1674420)700 (559/141)841Heat shock protein HSP 90-alphaCHEMBL380400b C_{50} 2094 (1674420)700 (559/141)842Fructose-1, 6-bisphosphatase 1BCHEMBL287lang <t< td=""><td>829</td><td>Peroxisome proliferator-activated receptor delta</td><td>CHEMBL3979</td><td>5xmx</td><td>EC_{50}</td><td>1125 (899/226)</td><td>468 (374/94)</td></t<>	829	Peroxisome proliferator-activated receptor delta	CHEMBL3979	5xmx	EC_{50}	1125 (899/226)	468 (374/94)
Citc PI3-kinase p110-alpha subunit CHEMBL4005 Gyr K_i 960 (767/193) 401 (320/81) 831 Serine/threonine-protein kinase PIM1 CHEMBL2147 2/21 K_i 1456 (116/2294) 572 (456/116) 832 Serotonin 1a (5-HT1a) receptor CHEMBL214 7e2x_R K_i 137 (2651/666) 1222 (977/245) 833 Sigma opioid receptor CHEMBL287 6dk1 K_i 1328 (1061/267) 507 (404/103) 834 Thrombin CHEMBL233 8fco_R K_i 794 (633/161) 330 (263/67) 835 Mu opioid receptor CHEMBL330 8fco_R K_i 794 (633/161) 330 (263/67) 836 Cyclin-dependent kinase 2 CHEMBL301 1h1q IC_{50} 1454 (1161/293) 350 (279/71) 837 3-phosphoinositide dependent protein kinase-1 CHEMBL234 luu3 IC_{50} 1701 (1359/342) 826 (660/166) 839 Urokinase-type plasminogen activator CHEMBL202 lua3 IC_{50} 739 (590/143) 282 (224/58) 840 Carbonic anhydrase II CHEMBL205 Sscd K_i 718 (572/146) <td>020</td> <td>Peroxisome proliferator-activated receptor gamma</td> <td>CHEMBL235</td> <td>2yfe</td> <td>EC_{50}</td> <td>2349 (1877/472)</td> <td>885 (707/178)</td>	020	Peroxisome proliferator-activated receptor gamma	CHEMBL235	2yfe	EC_{50}	2349 (1877/472)	885 (707/178)
831Serine/threonine-protein kinase PIM1CHEMBL214 72_{21i} K_i 1456 (1162/294) 572 (456/116)832Serotonin transporterCHEMBL214 $7e2_X_R$ K_i 3317 (2651/666)1222 (977/245)833Sigma opioid receptorCHEMBL286awo_A K_i 1328 (1061/267)507 (404/103)834ThrombinCHEMBL2876dk1 K_i 1328 (1061/267)507 (404/103)835Mu opioid receptorCHEMBL204Inuw K_i 2747 (219/5552)1089 (870/219)836Cyclin-dependent kinase ABLCHEMBL301Ih1q IC_{50} 1454 (1161/293)1294 (1035/259)836Serine/threonine-protein kinase Chk1CHEMBL301Ih1q IC_{50} 1454 (1161/293)282 (224/58)8373-phosphoinositide dependent protein kinase-1CHEMBL2841uu3 IC_{50} 1700 (1359/342)826 (660/166)8373-phosphoinositide dependent protein kinase-1CHEMBL2021ur1 IC_{50} 1700 (1359/342)826 (660/166)838Dihydrofolate reductaseCHEMBL2021ur1 IC_{50} 739 (590/149)281 (223/58)839Urokinase-type plasminogen activatorCHEMBL2055zc K_i 718 (572/146)191 (151/40)840Carbonic anhydrase IICHEMBL2061qkt IC_{50} 209 (97/702)157 (125/32)842Protein-tyrosine phosphatase 1BCHEMBL375 Z_1k IC_{50} 556 (443/113)153 (122/31)844Dipeptidyl peptidase IVCHEMBL375	030	PI3-kinase p110-alpha subunit	CHEMBL4005	6gvf	K_{i}	960 (767/193)	401 (320/81)
Seriotonin Ia (5-HT1a) receptorCHEMBL214 $7e2x_R$ K_i 3317 (2651/666) 1222 (97/7245)833Sigma opioid receptorCHEMBL2286dk1 K_i 1702 (1362/340)638 (511/127)834ThrombinCHEMBL2876dk1 K_i 1328 (1061/267)507 (404/103)834ThrombinCHEMBL204Inuu8 K_i 2747 (2195/552)1089 (870/219)835Mu opioid receptorCHEMBL233Sfeo_R K_i 3141 (2511/630)1294 (1035/259)836Serine/threonine-protein kinase 2CHEMBL301Ih1q IC_{50} 1454 (1161/293)350 (279/71)836Serine/threonine-protein kinase Chk1CHEMBL233Sfeo_R K_i 3141 (2511/630)1294 (1035/259)8373-phosphoinositide dependent protein kinase-1CHEMBL234luu3 IC_{50} 1505 (562/143)282 (224/58)838Dihydrofolate reductaseCHEMBL202lu71 IC_{50} 705 (562/143)282 (224/58)839Urokinase-type plasminogen activatorCHEMBL306lowe K_i 718 (572/146)191 (151/40)840Carbonic anhydrase IICHEMBL205Ssz6 K_i 5796 (4636/1160)2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL308doub IC_{50} 2909 (177/202)157 (1253/2)842Fructose-1,6-bisphosphataseCHEMBL3972jjk IC_{50} 556 (443/113)153 (122/31)843Matrix metalloproteinase 83CHEMBL3972jk IC_{50} 556 (4	831	Serine/threonine-protein kinase PIM1	CHEMBL2147	2j2i	K_{i}	1456 (1162/294)	572 (456/116)
Sericonin transporterCHEMBL228 $6awo_A$ K_i $i702$ (1362/340) 638 (511/127)833Sigma opioid receptorCHEMBL287 $6dk1$ K_i 1328 (1061/267) 507 (404/103)834ThrombinCHEMBL204Inuu8 K_i 2747 (2195/552) 1089 (870/219)835Mu opioid receptorCHEMBL233 $8fo_R$ K_i 3141 (2511/630) 1294 (1035/259)836Cyclin-dependent kinase 2CHEMBL331 Rio_R K_i 3141 (2511/630) 1294 (1035/259)8373-phosphoinositide dependent protein kinase-1CHEMBL331 Rio_50 1701 (1359/342) 826 (660/166)8373-phosphoinositide dependent protein kinase-1CHEMBL2324 $1uu3$ IC_{50} 150 (1694 (1614/29) 350 (279/71)838Dihydrofolate reductaseCHEMBL202 $1u71$ IC_{50} 160 (1285/324) 667 (532/135)839Urokinase-type plasminogen activatorCHEMBL205 $5x6$ K_i 5796 (4636/1160) 2444 (1957/487)840Estrogen receptor alphaCHEMBL205 $5x6$ K_i 5796 (4636/1160) 2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL335 $1ny$ IC_{50} 299 (97/7202) 157 (125/32)842Protein-tyrosine phosphatase 1BCHEMBL284 $20e$ IC_{50} 556 (443/113) 153 (122/31)843Matrix metalloproteinase 8CHEMBL284 $20e$ IC_{50} 2507 (2003/523) 229 (183/46)844Opeptidyl pe	832	Serotonin 1a (5-HT1a) receptor	CHEMBL214	7e2x_R	K_{i}	3317 (2651/666)	1222 (977/245)
833Sigma opioid receptorCHEMBL2876dk1 K_i 1328 (1061/267)507 (404/103)834ThrombinCHEMBL204Imu8 K_i 2747 (2195/552)1089 (870/219)835Mu opioid receptorCHEMBL2338feo_R K_i 3141 (2511/630)1294 (1035/259)836Serine/thronoine-protein kinase Chk1CHEMBL23011h1q IC_{50} 1454 (1161/293)350 (279/71)8373-phosphoinositide dependent protein kinase-1CHEMBL25341uu3 IC_{50} 705 (562/143)282 (224/58)838Phospholicesterase 5ACHEMBL25341uu3 IC_{50} 705 (562/143)282 (224/58)839Urokinase-type plasminogen activatorCHEMBL205Sz6 K_i 718 (572/146)191 (151/40)840Estrogen receptor alphaCHEMBL205Sz6 K_i 718 (572/146)191 (151/40)841Heat shock protein HSP 90-alphaCHEMBL205Sz6 K_i 718 (572/146)191 (151/40)842Fructose-1,6-bisphosphatase 1BCHEMBL205Sz6 K_i 707 (2084/523)229 (183/46)843Matrix metalloproteinase 8CHEMBL235Inny IC_{50} 2507 (2003/504)663 (130/33)844Dipeptidyl peptidase IVCHEMBL2842ole IC_{50} 2507 (2003/504)691 (551/140)845Matrix metalloproteinase 13CHEMBL2812x08 I_{50} 156 (443/113)115 (128/32)846Matrix metalloproteinase 13CHEMBL2842ole IC_{50} 2507 (200	052	Serotonin transporter	CHEMBL228	6awo_A	K_{i}	1702 (1362/340)	638 (511/127)
834InrombinCHEMBL204Imus K_i $2/4/(219)/522$ $1089(8/0/219)$ 835Mu opioid receptorCHEMBL1862 $2hzi$ K_i $794(633/161)$ $330(263/67)$ 835Mu opioid receptorCHEMBL233 $8fe_{-}R$ K_i $3141(2511/630)$ $1294(1035/259)$ 836Serine/threonine-protein kinase 2CHEMBL430 $1h1q$ IC_{50} $1454(1161/293)$ $350(279/71)$ 8373-phosphoinositide dependent protein kinase-1CHEMBL4630 $2brb$ IC_{50} $1701(1359/342)$ $826(660/166)$ 8373-phosphoinositide dependent protein kinase-1CHEMBL2534 $1uu3$ IC_{50} $1609(1285/324)$ $667(532/135)$ 838Dihydrofolate reductaseCHEMBL202 $1u71$ IC_{50} $1609(1285/324)$ $667(532/135)$ 839Urokinase-type plasminogen activatorCHEMBL202 $1u71$ IC_{50} $739(590/149)$ $281(223/58)$ 840Estrogen receptor alphaCHEMBL206 $1qkt$ IC_{50} $299(179/722)$ $157(125/32)$ 842Fructose-1,6-bisphosphataseCHEMBL385 $400b$ IC_{50} $556(443/113)$ $153(122/31)$ 843Matrix metalloproteinase 8CHEMBL235 $1nny$ IC_{50} $533(425/108)$ $163(130/33)$ 844Viapetidae IVVCHEMBL284 $3dng$ IC_{50} $556(435/115)$ $153(108/27)$ 845Matrix metalloproteinase 13CHEMBL284 $2dei$ IC_{50} $556(450/115)$ $163(130/33)$ 844Viapetidae IV </td <td>833</td> <td>Sigma opioid receptor</td> <td>CHEMBL287</td> <td>6dk1</td> <td>K_i</td> <td>1328 (1061/267)</td> <td>507 (404/103)</td>	833	Sigma opioid receptor	CHEMBL287	6dk1	K_i	1328 (1061/267)	507 (404/103)
Tyrosine-protein kinase ABLCHEMBL1862 $2hz_1$ K_1 794 (633/161) 330 (253/67)835Mu opioid receptorCHEMBL233 $8feo_R$ K_1 3141 (2511/630) 1294 (1035/259)836Serine/threonine-protein kinase Chk1CHEMBL4630 $2brb$ IC_{50} 1454 (1161/293) 350 (279/71)8373-phosphoinositide dependent protein kinase-1CHEMBL234 $1uu_3$ IC_{50} 705 (562/143) 282 (224/58)838Dihydrofolate reductaseCHEMBL202 $1u71$ IC_{50} 1609 (1285/324) 667 (532/135)839Urokinase-type plasminogen activatorCHEMBL202 $1u71$ IC_{50} 739 (590/149) 281 (223/58)840Estrogen receptor alphaCHEMBL205 $5sz6$ K_1 718 (572/146) 191 (151/40)841Heat shock protein HSP 90-alphaCHEMBL205 $5sz6$ K_1 576 (4636/1160) 2444 (1957/487)842Fructose-1.6-bisphosphataseCHEMBL380400b IC_{50} 2094 (1674/420) 700 (559/141)843Matrix metalloproteinase 8CHEMBL335 $1nny$ IC_{50} 556 (443/113) 153 (122/31)844Dipeptidyl peptidase IVCHEMBL2842ole IC_{50} 2507 (2003/504) 691 (551/140)844Dipeptidase IVCHEMBL2842ole IC_{50} 5507 (450/115) 193 (154/39)845Matrix metalloproteinase 13CHEMBL2842ole IC_{50} 517 (126/33) $108/277$)846Methonine	834	Thrombin	CHEMBL204	1mu8	Ki	2/4/ (2195/552)	1089 (870/219)
835Mu optiol receptorCHEMBL2338460_R K_1 3141 (2511/630)1294 (1037/259)836Cyclin-dependent kinase 2CHEMBL2338160_R K_1 350 (279/71)8373-phosphoinositide dependent protein kinase-1CHEMBL46302brb IC_{50} 1701 (1359/342)826 (660/166)8373-phosphoinositide dependent protein kinase-1CHEMBL18274ia0 IC_{50} 705 (562/143)282 (224/58)838Dihydrofolate reductaseCHEMBL18274ia0 IC_{50} 739 (590/149)281 (223/58)839Urokinase-type plasminogen activatorCHEMBL2055sz6 K_1 718 (572/146)191 (151/40)840Carbonic anhydrase IICHEMBL2055sz6 K_1 5796 (4636/1160)2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL2055sz6 K_1 5796 (4636/1160)2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL3752jjk IC_{50} 599 (797/202)157 (125/32)842Fructose-1,6-bisphosphataseCHEMBL3351nny IC_{50} 556 (443/113)153 (122/31)843Matrix metalloproteinase 8CHEMBL4883dg IC_{50} 550 (443/113)153 (122/31)844Dipeptidyl peptidase IVCHEMBL2804jpa IC_{50} 556 (443/113)153 (122/31)845Matrix metalloproteinase 13CHEMBL2804jpa IC_{50} 556 (443/113)153 (122/31)846Methionine aminopeptidase 2CHEMBL2804jpa I	004	Tyrosine-protein kinase ABL	CHEMBL1862	2hzi	K_i	794 (633/161)	330 (263/67)
836Cyclin-dependent kinase 2CHEMBL301Ihiq IC_{50} 1434 (1161/293)350 (279/11)8373-phosphoinositide dependent protein kinase-1CHEMBL46302brb IC_{50} 1701 (1359/342)826 (660/166)8373-phosphoinositide dependent protein kinase-1CHEMBL2534luu3 IC_{50} 1609 (1285/324)667 (532/135)838Dihydrofolate reductaseCHEMBL202luv1 IC_{50} 739 (590/149)281 (223/58)839Urokinase-type plasminogen activatorCHEMBL206logk K_i 778 (572/146)191 (151/40)840Eatrogen receptor alphaCHEMBL206lqkt IC_{50} 2094 (1674/420)700 (559/141)841Heat shock protein HSP 90-alphaCHEMBL3880400b IC_{50} 299 (797/202)157 (125/32)842Fructose-1,6-bisphosphataseCHEMBL39752jjk IC_{50} 556 (443/113)153 (122/31)843Matrix metalloproteinase 8CHEMBL45883dng IC_{50} 5507 (2003/504)691 (551/140)844Dipeptidyl peptidase IVCHEMBL2842ole IC_{50} 550 (420/115)193 (158/27)845Matrix metalloproteinase 13CHEMBL392Gape IC_{50} 550 (2003/504)691 (551/140)846Methionine aminopeptidase 2CHEMBL392Gape IC_{50} 550 (71003)/504)691 (551/140)846Methionine aminopeptidase 2CHEMBL392Gape IC_{50} 550 (71003)/504)691 (551/140)847Beta-secretase 1	835	Mu opioid receptor	CHEMBL233	8feo_R	Ki	3141 (2511/630)	1294 (1035/259)
Serine/threonine-protein kinase Chk1CHEMBL46302brb IC_{50} $I/O1$ $(1359/342)$ 826 $(660/166)$ 8373-phosphoinositide dependent protein kinase-1CHEMBL25341uu3 IC_{50} $I609$ $(1285/324)$ 667 $(532/143)$ 282 $(224/58)$ 838Dihydrofolate reductaseCHEMBL202 $1u71$ IC_{50} $I609$ $(1285/324)$ 667 $(532/135)$ 839Urokinase-type plasminogen activatorCHEMBL202 $1u71$ IC_{50} 739 $(590/149)$ 281 $(223/58)$ 840Carbonic anhydrase IICHEMBL206 $1qkt$ IC_{50} 2094 $(1674/420)$ 700 $(559/141)$ 841Heat shock protein HSP 90-alphaCHEMBL380 $400b$ IC_{50} 2094 $(1674/420)$ 700 $(559/141)$ 842Fructose-1,6-bisphosphataseCHEMBL3975 $2jik$ IC_{50} 556 $(43/113)$ 153 $(122/31)$ 843Matrix metalloproteinase 8CHEMBL284 $20le$ IC_{50} 2507 $(203/504)$ 691 $(551/140)$ 844Dipeptidyl petidase IVCHEMBL284 $20le$ IC_{50} 2507 $(203/504)$ 691 $(551/140)$ 845Matrix metalloproteinase 13CHEMBL284 $4jpa$ IC_{50} 510 $(130/33)$ $(154/39)$ 846Methonine aminopeptidase 2CHEMBL4581 $5xo8$ IC_{50} 510 $(132/146)$ 311 $(248/63)$ 847Beta-secretase 1CHEMBL282 4	836	Cyclin-dependent kinase 2	CHEMBL301	lhlq	IC_{50}	1454 (1161/293)	350 (2/9//1)
8373-phosphoinositide dependent protein kinase-1CHEMBL253 Iu_{3} IC_{50} IOS (562/143) 282 (224/58)838Phosphodiesterase 5ACHEMBL18274ia0 IC_{50} IOS (569/143) 282 (224/58)839Urokinase-type plasminogen activatorCHEMBL202 $Iu71$ IC_{50} 739 (590/149) 281 (223/58)840Eatrogen receptor alphaCHEMBL205 $5sz6$ K_i 778 (64636/1160) 2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL3880400b IC_{50} 299 (1674/420) 700 (559/141)842Fructose-1,6-bisphosphataseCHEMBL3875 $2jjk$ IC_{50} 256 (443/113) 153 (122/31)843Matrix metalloproteinase 8CHEMBL385 $1nny$ IC_{50} 2507 (2003/504) 691 (551/140)844Dipeptidyl peptidase IVCHEMBL284 $2ole$ IC_{50} 2507 (2003/504) 691 (551/140)845Matrix metalloproteinase 13CHEMBL284 $2ole$ IC_{50} 2507 (2003/504) 691 (551/140)846Methionine aminopeptidase 2CHEMBL3922 $6qef$ IC_{50} 750 (453/115) 193 (154/39)847Beta-secretase 1CHEMBL4821 $4n3j$ K_i 1061 (847/214) 549 (438/111)848Phosphodiesterase 4BCHEMBL285 $3x5e$ IC_{50} 3502 (2799/703) 1333 (1065/268)849MAP kinase p38 alphaCHEMBL262 $2zblIC_{50}3502 (2799/703)1333 (1065/268)8$		Serine/threonine-protein kinase Chk1	CHEMBL4630	2brb	IC_{50}	1/01 (1359/342)	826 (660/166)
838Phosphodiesterase 5ACHEMBL182/ CHEMBL2024ia0 IC_{50} 1609 (1285/324)66/ (532/135)839Dibydrofolate reductaseCHEMBL2021u71 IC_{50} 739 (590/149)281 (223/58)839Urokinase-type plasminogen activatorCHEMBL3286Iowe K_i 718 (572/146)191 (151/40)840Carbonic anhydrase IICHEMBL2055sz6 K_i 5796 (4636/1160)2444 (1957/487)841Heat shock protein HSP 90-alphaCHEMBL2061qkt IC_{50} 2094 (1674/420)700 (559/141)841Heat shock protein HSP 90-alphaCHEMBL380400b IC_{50} 256 (443/113)153 (122/31)842Fructose-1,6-bisphosphataseCHEMBL335Inny IC_{50} 2607 (2084/523)229 (183/46)843Matrix metalloproteinase 8CHEMBL28420le IC_{50} 2507 (2003/504)691 (551/140)844Dipeptidyl peptidase IVCHEMBL28420le IC_{50} 2507 (2003/504)691 (551/140)845Matrix metalloproteinase 13CHEMBL2804jpa IC_{50} 2507 (2003/504)691 (551/140)846Methionine aminopeptidase 2CHEMBL3926qef IC_{50} 565 (450/115)193 (154/39)847Beta-secretase 1CHEMBL4824h3j K_i 1061 (847/214)549 (438/111)848Phosphodiesterase 4BCHEMBL2753v5e IC_{50} 3502 (2799/703)133 (1065/268)849MAP kinase p38 alphaCHEMBL2602zbl IC_{50} <	837	3-phosphoinositide dependent protein kinase-1	CHEMBL2534	Tuu3	IC_{50}	705 (562/143)	282 (224/58)
CHEMBL202 II/I IC_{50} $I39(590/149)$ $281(223/58)$ 839Urokinase-type plasminogen activatorCHEMBL2286lowe K_i $718(572/146)$ 191(151/40)840Carbonic anhydrase IICHEMBL205 $5sz6$ K_i $5796(4636/1160)$ $2444(1957/487)$ 841Heat shock protein HSP 90-alphaCHEMBL2061qkt IC_{50} $2094(1674/420)$ $700(559/141)$ 841Heat shock protein HSP 90-alphaCHEMBL3880 $400b$ IC_{50} $999(797/202)$ $157(125/32)$ 842Fructose-1,6-bisphosphatase 1BCHEMBL3751my IC_{50} $556(443/113)$ $153(122/31)$ 843Matrix metalloproteinase 8CHEMBL3751my IC_{50} $507(2084/523)$ $229(183/46)$ 844Dipeptidyl peptidase IVCHEMBL2842ole IC_{50} $2507(2003/504)$ $691(551/140)$ 845Matrix metalloproteinase 13CHEMBL2804jpa IC_{50} $250(43/115)$ $193(154/39)$ 846Methionine aminopeptidase 2CHEMBL2804jpa IC_{50} $565(450/115)$ $193(154/39)$ 847Beta-secretase 1CHEMBL4822 $4h3j$ K_i $1061(847/214)$ $549(438/111)$ 848Phosphodiesterase 4BCHEMBL275 $3w5e$ IC_{50} $350(2799/703)$ $333(1065/268)$ 849MAP kinase p38 alphaCHEMBL262 $2zhI$ IC_{50} $350(2799/707)$ $333(1065/268)$ 850Estrogen receptor betaCHEMBL262 $2zhI$ IC_{50} $176(937/239)$ <td>838</td> <td>Phosphodiesterase 5A</td> <td>CHEMBL182/</td> <td>41a0</td> <td>IC_{50}</td> <td>1609 (1285/324)</td> <td>007 (532/135)</td>	838	Phosphodiesterase 5A	CHEMBL182/	41a0	IC_{50}	1609 (1285/324)	007 (532/135)
839Orokinase-type plasminogen activatorCHEMBL326010We K_1 178 (5)2/146)191 (15)1/40)840Carbonic anhydrase IICHEMBL2055sz6 K_1 5796 (4636/1160)2444 (1957)487)841Heat shock protein HSP 90-alphaCHEMBL206lqkt IC_{50} 2094 (1674/420)700 (559)141)841Heat shock protein HSP 90-alphaCHEMBL3880400b IC_{50} 999 (797/202)157 (125/32)842Fructose-1,6-bisphosphataseCHEMBL39752jjk IC_{50} 556 (443/113)153 (122/31)843Matrix metalloproteinase 8CHEMBL45883dng IC_{50} 2507 (2003/504)691 (551/140)844Dipeptidyl peptidase IVCHEMBL2793vhk K_1 780 (622/158)135 (108/27)845Matrix metalloproteinase 13CHEMBL2842ole IC_{50} 2507 (2003/504)691 (551/140)846Methionine aminopeptidase 2CHEMBL292def IC_{50} 505 (450/115)193 (154/39)847Beta-secretase 1CHEMBL45815zo8 IC_{50} 719 (573/146)311 (248/63)848Phosphodiesterase 4BCHEMBL2753w5e IC_{50} 1061 (847/214)549 (438/111)848Phosphodiesterase 4DCHEMBL2822pin IC_{50} 350 (2799/703)333 (1065/268)850Estrogen receptor betaCHEMBL2422zbl IC_{50} 116 (937/239)425 (337/88)	000	Dinydrofolate reductase	CHEMBL202	10/1	$1C_{50}$	739 (590/149)	281 (223/58)
840Carbonic aninyutase nCHEMBL205 $1_{\rm Ki}$ 3759 K_i 3759 100 2444 $(195)7/487$ 841Heat shock protein HSP 90-alphaCHEMBL206 $1_{\rm Qkt}$ IC_{50} 2094 $(1674/420)$ 700 $(559)141$ 842Fructose-1,6-bisphosphataseCHEMBL380 $400b$ IC_{50} 556 $(443/113)$ 153 $(122/31)$ 843Matrix metalloproteinase 8CHEMBL3851nny IC_{50} 2567 $(2084/523)$ 229 $(183/46)$ 844Dipeptidyl peptidase IVCHEMBL2842ole IC_{50} 2507 $(2084/523)$ 229 $(183/46)$ 844Matrix metalloproteinase 13CHEMBL2842ole IC_{50} 2507 $(2003/504)$ 691 $(551/140)$ 845Matrix metalloproteinase 13CHEMBL2842ole IC_{50} 2507 $(203/504)$ 691 $(551/140)$ 846Methonine aminopeptidase 2CHEMBL2804jpa IC_{50} 516 $(450/115)$ 193 $(154/39)$ 847Beta-secretase 1CHEMBL4581 $5xo8$ IC_{50} 719 $(573/146)$ 311 $(248/63)$ 848Phosphodiesterase 4BCHEMBL275 $3w5e$ IC_{50} 1432 $(143/289)$ 535 $(426/109)$ 849MAP kinase p38 alphaCHEMBL2602zbl IC_{50} 3502 $(279/7003)$ 3333 $(105/268)$ 850Estrogen receptor betaCHEMBL242 Izf IC_{50} 1176 $(937$	839	Carbonia anhydrosa II	CHEMBL3280	Towe	K K	/18 (3/2/140) 5706 (4626/1160)	191(151/40) 2444(1057/497)
Bettogen receptor apinaCHEMBL200rught IC_{50} 2094 ($16/4/420$) 100 (399141)841Heat shock protein HSP 90-alphaCHEMBL200 $IQkt$ IC_{50} 2094 ($16/4/420$) 100 (399141)842Fructose-1,6-bisphosphataseCHEMBL3880 $400b$ IC_{50} 999 ($797/202$) 157 ($125/32$)842Protein-tyrosine phosphatase 1BCHEMBL3975 $2ijk$ IC_{50} 256 ($443/113$) 153 ($122/31$)843Matrix metalloproteinase 8CHEMBL4588 $3dng$ IC_{50} 533 ($425/108$) 163 ($130/33$)844Dipeptidyl peptidase IVCHEMBL284 $2ole$ IC_{50} 2507 ($2003/504$) 691 ($551/140$)845Matrix metalloproteinase 13CHEMBL280 $4jpa$ IC_{50} 2112 ($1688/424$) 976 ($780/196$)846Methionine aminopeptidase 2CHEMBL280 $4jpa$ IC_{50} 2112 ($1688/424$) 976 ($780/196$)847Beta-secretase 1CHEMBL481 $5zo8$ IC_{50} 719 ($573/146$) 311 ($248/63$)848Phosphodiesterase 4BCHEMBL275 $3w5e$ IC_{50} 432 ($1143/289$) 535 ($426/109$)849MAP kinase p38 alphaCHEMBL260 $2zbl$ IC_{50} 3502 ($2799/703$) 1333 ($1065/268$)850Estrogen receptor betaCHEMBL242 $Izaf$ IC_{50} 176 ($937/239$) 425 ($337/88$)	840	Estrogen recentor alpha	CHEMBL203	JSZ0		3790(4030/1100) 2004(1674/420)	2444 (1937/467)
641Inclusing for the formation of the formation	0/11	Heat shock protein HSP 00 alpha	CHEMBL200 CHEMBL3880	1qKt 400b	IC_{50}	2094(10747420) 000(7077202)	157 (125/32)
842IntrodeCHEMBL233IntrolIC502507 (2084/523)229 (183/46)843Matrix metalloproteinase 18CHEMBL335Inny IC_{50} 530 (425/108)163 (130/33)844Dipeptidyl peptidase IVCHEMBL28420le IC_{50} 2507 (2003/504)691 (551/140)845Matrix metalloproteinase 13CHEMBL28420le IC_{50} 2507 (2003/504)691 (551/140)846Methionine aminopeptidase 2CHEMBL2804jpa IC_{50} 2112 (1688/424)976 (780/196)846Kinesin-like protein 1CHEMBL4815zo8 IC_{50} 756 (450/115)193 (154/39)847Beta-secretase 1CHEMBL48224h3j K_i 1061 (847/214)549 (438/111)848Phosphodiesterase 4BCHEMBL2753w5e IC_{50} 1432 (1143/289)535 (426/109)Phosphodiesterase 4DCHEMBL2882qyn IC_{50} 942 (752/190)220 (176/44)849MAP kinase p38 alphaCHEMBL2602zbl IC_{50} 3502 (2799/703)1333 (1065/268)850Estrogen receptor betaCHEMBL242Izaf IC_{50} 1176 (937/239)425 (337/88)	041	Fructose 1.6 hisphosphatase	CHEMBL 3075	2111	IC_{50}	556 (1371202)	157(125/52) 153(122/31)
843Matrix metalloproteinase 8CHEMBL45883dng IC_{50}^{-} 533 (425/108)163 (130/33)844Dipeptidyl peptidase IVCHEMBL2842ole IC_{50}^{-} 2507 (2003/504)691 (551/140)844Vascular endothelial growth factor receptor 2CHEMBL2793vhk K_1 780 (622/158)135 (108/27)845Matrix metalloproteinase 13CHEMBL2804jpa IC_{50}^{-} 2517 (2003/504)691 (551/140)846Methionine aminopeptidase 2CHEMBL39226qef IC_{50}^{-} 565 (450/115)193 (154/39)847Beta-secretase 1CHEMBL48224h3j K_1 1061 (847/214)549 (438/111)848Phosphodiesterase 4BCHEMBL2753w5e IC_{50}^{-} 1432 (1143/289)535 (426/109)Phosphodiesterase 4DCHEMBL2882qyn IC_{50}^{-} 3502 (2799/703)1333 (1065/268)849MAP kinase p38 alphaCHEMBL2602zbl IC_{50}^{-} 3502 (2799/703)1333 (1065/268)850Estrogen receptor betaCHEMBL242Izaf IC_{50}^{-} 1176 (937/239)425 (337/88)	842	Protein-tyrosine phosphatase 1B	CHEMBL335	1nnv	IC_{50} IC_{50}	2607 (2084/523)	229 (183/46)
B44Dipeptidyl peptidase IV Vascular endothelial growth factor receptor 2CHEMBL2842ole IC_{50} 2507 (2003/504)691 (551/140)844Vascular endothelial growth factor receptor 2CHEMBL2793vhk K_1 780 (622/158)135 (108/27)845Matrix metalloproteinase 13CHEMBL2804jpa IC_{50} 2112 (1688/424)976 (780/196)846Methionine aminopeptidase 2CHEMBL39226qef IC_{50} 565 (450/115)193 (154/39)847Beta-secretase 1CHEMBL45815zo8 IC_{50} 719 (573/146)311 (248/63)848Phosphodiesterase 4BCHEMBL2753w5e IC_{50} 1432 (1143/289)535 (426/109)9Phosphodiesterase 4DCHEMBL2882qyn IC_{50} 350 (2799/703)1333 (1065/268)849MAP kinase p38 alphaCHEMBL2602zbl IC_{50} 350 (2799/703)425 (337/88)850Estrogen receptor betaCHEMBL242Izaf IC_{50} 1176 (937/239)425 (337/88)	843	Matrix metalloproteinase 8	CHEMBL4588	3dng	IC_{50}	533 (425/108)	163 (130/33)
844Vascular endothelial growth factor receptor 2CHEMBL279 $3vhk$ K_i 780 (622/158)135 (108/27)845Matrix metalloproteinase 13CHEMBL280 $4jpa$ IC_{50} 2112 (1688/424)976 (780/196)846Methionine aminopeptidase 2CHEMBL3922 $6qef$ IC_{50} 555 (450/115)193 (154/39)847Beta-secretase 1CHEMBL4581 $5zo8$ IC_{50} 719 (573/146) 311 (248/63)848Phosphodiesterase 4BCHEMBL282 $4hjj$ K_i 1061 (847/214)549 (438/111)848Phosphodiesterase 4DCHEMBL288 $2qyn$ IC_{50} 942 (752/190)220 (176/44)849MAP kinase p38 alphaCHEMBL260 $2zhl$ IC_{50} 3502 (2799/703) 1333 (1065/268)850Estrogen receptor betaCHEMBL242 $Izaf$ IC_{50} 176 (937/239) 425 (337/88)	0.4.4	Dipeptidyl peptidase IV	CHEMBL284	2ole	IC_{50}	2507 (2003/504)	691 (551/140)
845Matrix metalloproteinase 13CHEMBL2804jpa IC_{50} 2112 (1688/424)976 (780/196)846Methionine aminopeptidase 2CHEMBL39226qef IC_{50} 565 (450/115)193 (154/39)847Beta-secretase 1CHEMBL45815zo8 IC_{50} 719 (573/146)311 (248/63)848Phosphodiesterase 4BCHEMBL2824h3j K_i 1061 (847/214)549 (438/111)848Phosphodiesterase 4DCHEMBL2753w5e IC_{50} 942 (752/190)220 (176/44)849MAP kinase p38 alphaCHEMBL2602zbl IC_{50} 3502 (2799/703)1333 (1065/268)850Estrogen receptor betaCHEMBL242Izaf IC_{50} 1176 (937/239)425 (337/88)	844	Vascular endothelial growth factor receptor 2	CHEMBL279	3vhk	$K_{i}^{\circ\circ}$	780 (622/158)	135 (108/27)
846Methionine aminopeptidase 2CHEMBL39226qef IC_{50} 565 (450/115)193 (154/39)847Beta-secretase 1CHEMBL45815zo8 IC_{50} 719 (573/146)311 (248/63)848Phosphodiesterase 4BCHEMBL2753w5e IC_{50} 1432 (1143/289)535 (426/109)849MAP kinase p38 alphaCHEMBL2822qyn IC_{50} 392 (2799/703)1333 (1065/268)850Estrogen receptor betaCHEMBL242Izaf IC_{50} 1176 (937/239)425 (337/88)	845	Matrix metalloproteinase 13	CHEMBL280	4jpa	IC_{50}	2112 (1688/424)	976 (780/196)
Kinesin-like protein lCHEMBL4581 $5zo8$ IC_{50} 719 ($573/146$) 311 ($248/63$)847Beta-secretase lCHEMBL422 $4h3j$ K_i 1061 ($847/214$) 549 ($438/111$)848Phosphodiesterase 4BCHEMBL275 $3w5e$ IC_{50} 1432 ($1143/289$) 535 ($426/109$)Phosphodiesterase 4DCHEMBL288 $2qyn$ IC_{50} 942 ($752/190$) 220 ($176/44$)849MAP kinase p38 alphaCHEMBL260 $2zbl$ IC_{50} 3502 ($2799/703$) 1333 ($1065/268$)850Estrogen receptor betaCHEMBL242 $Izaf$ IC_{50} 1176 ($937/239$) 425 ($337/88$)	846	Methionine aminopeptidase 2	CHEMBL3922	6qef	IC_{50}	565 (450/115)	193 (154/39)
847 Beta-secretase 1 CHEMBL4822 4h3j K_1 1061 (847/214) 549 (438/111) 848 Phosphodiesterase 4B CHEMBL275 3w5e IC_{50} 1432 (1143/289) 535 (426/109) 849 MAP kinase p38 alpha CHEMBL260 22bl IC_{50} 3502 (2799/703) 1333 (1065/268) 850 Estrogen receptor beta CHEMBL242 Izaf IC_{50} 1176 (937/239) 425 (337/88)		Kinesin-like protein 1	CHEMBL4581	5zo8	IC_{50}	719 (573/146)	311 (248/63)
848 Phosphodiesterase 4B CHEMBL2/5 50% Poisson IC_{50} 1432 (1143/289) 535 (426/109) Phosphodiesterase 4D CHEMBL288 2qyn IC_{50} 942 (752/190) 220 (176/44) 849 MAP kinase p38 alpha CHEMBL260 2zbl IC_{50} 3502 (2799/703) 1333 (1065/268) 850 Estrogen receptor beta CHEMBL242 Izaf IC_{50} 1176 (937/239) 425 (337/88)	847	Beta-secretase 1	CHEMBL4822	4h3j	Ki	1061 (847/214)	549 (438/111)
849 MAP kinase p3 alpha CHEMBL260 $22bl$ IC_{50} 532 (2797/703) 1333 (1065/268) 850 Estrogen receptor beta CHEMBL242 Izaf IC_{50} 150 (937/239) 425 (337/88)	848	Phosphodiesterase 4B Phosphodiesterase 4D	CHEMBL275 CHEMBI 288	3w5e 2avn	IC_{50}	1432 (1143/289) 942 (752/190)	535 (426/109) 220 (176/44)
Estrogen receptor beta $CHEMBL242$ lzaf IC_{50} 1176 (937/239) 425 (337/88)	849	MAP kinase p38 alpha	CHEMBL200	2qyn 2zbl	IC_{50} IC_{50}	3502 (2799/703)	1333 (1065/268)
	850	Estrogen receptor beta	CHEMBL242	lzaf	IC_{50}	1176 (937/239)	425 (337/88)

- GCN (Kipf & Welling, 2016). Graph Convolutional Network (GCN) performs convolution operations on graphs.
- **GAT** (Vaswani et al., 2017). Graph Attention Network (GAT) introduces attention mechanisms to GNN to weigh the importance of different neighbors.
- AFP (Xiong et al., 2019). Attentive Fingerprint (AFP) employs attention mechanisms at both the atom and molecule levels to learn local and nonlocal properties, enabling it to capture substructural details effectively.

• **IGN** (Jiang et al., 2021a). IGN models the molecular interactions in 3D space. In IGN, two graph convolution modules are layered to learn intramolecular interactions and then sequentially intermolecular interactions.

• SS-GNN (Zhang et al., 2023a). Like IGN, SS-GNN is also a 3D structure GNN model tailored for affinity prediction. It constructs a 3D structure graph for protein-ligand interactions based on a

864 distance threshold, reducing both the graph data scale and computational cost by omitting covalent bonds in proteins. 866

867 A.4 MODEL FEATURES.

868

889

899 900 901

902

907

917

In addition to the molecular descriptor used for machine learning algorithms (introduced in Sec. 4.2), 870 we further delve into the featurization for deep learning models. Detailed information on all featurizations and the corresponding models used can be found in Table 4. 871

872 For sequential methods, SMILES strings were encoded as one-hot vectors, with truncation applied 873 to strings exceeding 200 characters. To enhance model robustness, tenfold data augmentation was 874 applied using up to nine additional noncanonical SMILES strings for each SMILES string in the 875 dataset, generated via RDKit (Landrum et al., 2013).

876 For 2D GNN methods, the node has the following features: atom type (one-hot), atomic vertex degree 877 (one-hot), orbital hybridization (one-hot), aromaticity (one-hot), atomic weight (float), formal charge 878 (integer), number of radical electrons (integer), and number of connected hydrogens (integer). For 879 MPNN and AFP, two one-hot bond features are used for the edges, i.e., the bond type and conjugation.

880 For SS-GNN, there are 11 node features, including atom type, formal charge, hybridization, atom 881 valence, atom degree, number of hydrogens, chirality, atomic mass, aromatic, atom coordinates, and 882 whether belonging to the protein. The edge features include covalent bond type, aromatic, bond 883 length, bond direction, bond stereochemistry, and edge type. The atom coordinates and bond length 884 are extracted from the 3D structures. Further details can be found in Zhang et al. (2023a). 885

For IGN, it uses similar 2D node and edge features. In addition, IGN uses four new edge features 886 from the 3D structures, including bond length, angle statistics, area statistics, and distance statistics. 887 For detailed descriptions of the features, see Jiang et al. (2021a).

Table 4: Featurization and corresponding baseline models.

Featurization	Baseline Models	Augmentation
ECFP Descriptor	KNN, RF, GBM, SVM,	×
MACCS Descriptor	KNN, RF, GBM, SVM,	×
PHYSCHEM Descriptor	KNN, RF, GBM, SVM,	×
WHIM Descriptor	KNN, RF, GBM, SVM,	×
SMILES string	LSTM, Transformer, 1D CNN	✓ 10 times
2D GRAPH	MPNN, GCN, GAT, AFP	×
3D GRAPH	IGN, SS-GNN	×

A.5 ADDITIONAL EXPERIMENTAL DETAILS

903 Hardware Specifications. All our experiments were carried out on an NVIDIA RTX3090 GPU with 904 24G memory. The training time of a target for MPNN, GAT, GCN, and AFP is around 0.5 hours. 905 Training of one target takes around 1 hour and 4 hours for SS-GNN and IGN, respectively.

906 Implementation Details. Traditional machine learning algorithms including KNN, SVM, GBM, and RF regression models were implemented using the Scikit-Learn library². 908

Deep learning algorithms were trained for 500 epochs with early stopping, set with patience of 10 909 epochs. Four GNN models are implemented using the PyTorch Geometric package³. For the MPNN, 910 GCN, and GAT, global pooling was enabled using a graph multiset Transformer (Baek et al., 2021) 911 with eight attention heads, followed by a fully connected prediction head. Each of these models 912 utilized two graph layers. The Transformer model was based on the ChemBERTa (Chithrananda 913 et al., 2020) architecture, using weights derived from 10M compounds in PubChem. Fine-tuning 914 was conducted by freezing the original model weights and substituting the final pooling layer with a 915 regression head. Following van Tilborg et al. (2022), the LSTM model is pretrained on the SMILES 916

²https://scikit-learn.org/

3https://www.pyg.org/

strings with the next token prediction objective. For the SS-GNN model, we conducted a pretraining phase on the original dataset, PDBbind V2019 (Wang et al., 2004; 2005). In contrast, the IGN model was not fine-tuned using the original dataset due to a mismatch in the model dimensions caused by the varying types of atoms in the dataset. Consequently, we opted to train the IGN model from scratch.

Hyperparameter Optimization. Hyperparameter optimization was conducted through grid search. Hyperparameter combinations were evaluated for all models using five-fold cross-validation. Table 5 shows the detailed hyperparameter search space.

Methods	Hyperparameters	Search Space
KNN	The number of nearest neighbors, k	k = [3, 5, 11, 21]
RF	The number of trees, n_t	$n_t = [100, 250, 500, 1000]$
GBM	The number of boosting stages, n_b The maximum depth of the model, n_d	$n_b = [100, 200, 400]$ $n_d = [5, 6, 7]$
SVM	The regularization parameter, C The kernel coefficient for <i>rbf</i> , γ	$\begin{split} C = [1, 10, 100, 1000, 10,000] \\ \gamma = [1 \times 10^{-5}, 1 \times 10^{-4}, 1 \times 10^{-3}, 1 \times 10^{-2}, 1 \times 10^{-2}] \end{split}$
Shared hyper	rparameters for all deep learning models	
Common	The learning rate, lr The batch size, bs The epoch, γ	$lr = [5 \times 10^{-4}, 1 \times 10^{-4}, 5 \times 10^{-5}, 1 \times 10^{-5}]$ bs = [10, 32, 64, 128] $\gamma = 500$
Specific hype	erparameters for each model	
GCN	The dimension of hidden node features, h_n The dimension of hidden transformer nodes, h_t The dimension of predictor, h_p	$\begin{array}{l} h_n = [64, 128, 256] \\ h_t = [64, 128, 256] \\ h_p = [128, 256, 512] \end{array}$
GAT	The dimension of hidden node features, h_n The dimension of hidden transformer nodes, h_t The dimension of predictor, h_p	$ \begin{array}{c} \bar{h}_n = [64, 128, 256] \\ \bar{h}_t = [64, 128, 256] \\ \bar{h}_p = [128, 256, 512] \end{array} $
MPNN	The dimension of hidden node features, h_n The dimension of hidden edge features, h_e The dimension of hidden transformer nodes, h_t	$ \begin{array}{c} h_n = [64, 128, 256] \\ h_e = [64, 128, 256] \\ h_t = [64, 128, 256] \\ h_t = [64, 128, 256] \end{array} $
AFP	The dimension of hidden node features, h_n The number of iterations for readout, n_r	$\bar{h}_n = [64, 128, 256]$ $n_r = [1, 2, 3, 4, 5]$
LSTM	- pretrained	- pretrained
Transformer	- pretrained	- pretrained
1D CNN	The size of convolution kernel, h_c The dimension of hidden features, h_t	$h_c = [4, 8, 10]$ $h_t = [64, 128, 256, 512, 1024]$
IGN	The dimension of hidden features, h_t	$h_t = [64, 128, 256]$
SS-GNN	- pretrained	

Table 5: Hyperparameter search space.

972 В Additional Results and Figures

973 974

More dataset features. Figure 9 illustrates three examples of removed targets and ligands. Figure 14 975 analyzes the proportion of shared atoms between the AC pairs in the target CHEMBL218 EC_{50} using 976 Maximum Common Substructure (MCS). The average proportion of shared atoms (86.78%) in the 977 identified AC pairs confirms high structural similarity in common substructures.

978 **Dataset split.** We split the dataset using the Tanimoto similarity of the ECFP. To assess potential bias 979 from ECFP-based data splitting, Figure 16 evaluates ML methods using four molecular descriptors 980 on an alternative MACCS-based split. ECFP maintains superior performance, confirming its inherent 981 descriptive power. 982

Protein flexibility. Using DSDPFlex (Dong et al., 2024), we investigate protein flexibility by allowing 983 flexible side chains for 10 amino acids nearest to the crystal ligand. Figure 17 shows that performance 984 metrics on 8 K_i targets distribute evenly around the y = x line, suggesting comparable effectiveness 985 between fixed and flexible docking approaches. 986

Train cross-target models with 3D data. Table 7 explore the cross-target applicability of 3D models 987 on combined K_i targets under two settings: out-of-distribution (OOD) excluding Protease targets, 988 and in-domain, using all K_i targets. Figure 13 shows multi-target training performs comparable to 989 single-target training, complementing the analysis in § 5.4. 990

991 Combine the 3D information and ECFP features. To explore the integration of 3D structural information with handcrafted ECFP features, we utilize a 3D model as a feature extractor and 992 combine its output with ECFP descriptors, followed by MLP for affinity prediction (architecture 993 shown Figure 8) The evaluation across ten targets (shown in Table 6) highlights two key findings. 994 First, models incorporating 3D information consistently outperform or match those without 3D 995 information across most targets, achieving notable improvements in overall RMSE and RMSEcliff. 996 Second, the integration of 3D features significantly enhances the model's ability to handle activity 997 cliffs, as evidenced by greater improvements in RMSEcliff (avg. imp. of 5.61%) compared to overall 998 RMSE (avg. imp. of 3.48%). 999

Benchmarking the zero-shot ability of more 3D models. To explore the generalization ability of 1000 recent 3D binding affinity prediction models, we evaluate six SOTA methods (PIGNet (Moon et al., 1001 2022), RTMScore (Shen et al., 2022), TANKBind (Lu et al., 2022), DSMBind (Jin et al., 2023), 1002 KarmaDock (Zhang et al., 2023b), and EquiScore (Cao et al., 2024)) trained on PDBBind. Figure 15 1003 presents their Pearson correlation on the complete dataset and activity cliff cases across each target. 1004 All these methods perform worse on the AC samples, which is consistent with the result of our 1005 benchmark. Additionally, these methods show decreased performance compared to the PDBBind 1006 test set, with effectiveness correlating with the presence of homologous proteins in the PDBBind 1007 training data. For instance, targets with numerous homologous samples in PDBBind demonstrate superior results: CHEMBL2147 K_i achieves a Pearson correlation of 0.688 (DSMBind, PDB ID: 1008 2j2i) with 103 homologous samples, while CHEMBL2971 K_i reaches 0.671 (DSMBind, PDB ID: 1009 4jia) with 61 homologous samples in PDBBind. In contrast, targets lacking homologous proteins in 1010 PDBBind (CHEMBL219 K_i , CHEMBL228 K_i , and CHEMBL233 K_i) show very small correlation 1011 (DSMBind, Pearson=-0.021, -0.087, and 0.033 respectively). 1012

- 1013 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1023 1024
- 1025

(a) The model illustration of MLP with ECFP descriptor (b) The model illustration of IGN combined with ECFP descriptor

Figure 8: The model illustration of MLP and IGN using the handcrafted molecule descriptor ECFP.

Table 6: The performance of MLP and IGN using the handcrafted molecule descriptor ECFP.

Model	CHEMBL205 K _i CHEMBL214 I		BL214 K_i	CHEM	IBL233 K_i	CHEMBL237 K_i		CHEMBL264 K_i		
litoder	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\text{cliff}}$	RMSE	RMSE _{cl}
MLP IGN	0.795 0.781	0.929 0.904	0.683 0.683	0.770 0.792	0.846 0.814	0.917 0.878	0.720 0.728	0.767 0.764	0.669 0.637	0.730 0.691
Imp (%)	1.76	2.69	0.00	-	3.78	4.25	-	0.39	4.78	5.34
Model	CHEM	IBL287 K_i	CHEM	BL1871 K _i	CHEMB	BL2047 EC50	CHEMB	L3979 EC50	CHEM	BL4203
moder	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\text{cliff}}$	RMSE	RMSE
MLP IGN	0.746 0.759	0.855 0.855	0.730 0.686	0.991 0.860	0.673 0.594	0.714 0.599	0.664 0.667	0.729 0.723	0.943 0.880	0.988 0.85 7
-										

Table 7: The results of Protease in the setting of training with in-domain and out-of-distribution (OOD) targets.

Model	CHEM	IBL204 Ki	CHEM	IBL244 Ki	CHEM	BL3286 Ki	CHEM	BL4822 Ki
in out	RMSE	$\text{RMSE}_{\text{cliff}}$	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$\text{RMSE}_{\rm cliff}$	RMSE	$RMSE_{cliff}$
IGN	0.873	1.027	0.891	1.006	0.724	0.829	0.751	0.778
IGN OOD	1.612	1.788	1.647	1.643	1.183	1.149	1.153	1.197

Figure 11: Relationship between the number of training ligands and (a)-(c) RMSE, (d)-(f) RMSE_{cliff} and (g)-(i) their difference on SVM, MPNN, and IGN.

Figure 12: Performance comparison between RMSE and $RMSE_{cliff}$ for classic ML algorithms across 52 targets.

