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Abstract. Affine image registration plays a key role in diagnosis, sur-
gical planning and in data-processing pipelines for research as both an
essential initialization for subsequent non-rigid registration or as an inde-
pendent step. Uncertainty quantification in deep learning (DL) based im-
age registration models is critical for determining confidence intervals re-
quired for surgical guidance, and for reliable assessment of differences be-
tween the registered images. We introduce AIR-SGLD - a non-parametric
fully Bayesian framework for Affine image registration. We use Stochastic
gradient Langevin dynamics (SGLD) during the training phase to charac-
terize the posterior distribution of the network weights. We demonstrated
the added-value of AIR-SGLD on the brain MRI (MGH10) dataset in
comparison to the baseline AIR DL-based Affine image registration frame-
work using 300 pairs of images generated from the MGH10 dataset. Our
experiments show that AIR-SGLD outperforms AIR by means of cross-
correlation between the images (0.91 vs. 0.87, p < 0.01). Further, AIR-
SGLD provides an estimate of the registration uncertainty that correlates
with both registration error (Pearson correlation coefficient of R = 0.769)
and the presence of out-of-distribution data (R = 0.796). AIR-SGLD has
the potential to provide reliable and more accurate registration for clini-
cal diagnosis, surgical planning, and automatic data processing pipelines.
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1 Introduction

Registration is the process of mapping a pair of images (e.g MR images acquired
from different subjects) onto one coordinate system [18]. It is a fundamental
task needed in a wide-range of medical and neuro-science applications including
diagnosis, response to therapy assessment, surgical planning and in automatic
imaging data-processing pipelines.

Specifically, Affine registration plays a key role either as the main task or as
an essential initialization for deformable image registration [14, 11].

Classical methods tackle the registration task by formulation of an optimiza-
tion problem over the transformation parameters and solve it iteratively [12, 7,
13]. In these approaches, a similarity metric, which is measured between the two
images to be registered, is optimized. However, these conventional algorithms
are computationally demanding, which in turn, makes the registration of a new
pair of images a computationally expensive process.
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In light of the success of DL-based methods in numerous computer vision
tasks, several studies aimed to propose more efficient and less time-consuming
registration approaches based on DL models [5, 2, 17, 15, 3]. These techniques
predict the registration model either through a supervised learning framework
(i.e with the help of provided reference deformation fields) [17] or in an unsu-
pervised manner [2, 1, 15].

However, such DL-based image registration methods lack computational mech-
anisms for quantifying the risks of failure in their predictions. Quantification of
the registration error and providing uncertainty measures about the transforma-
tion model has significant practical utilization in medical and research applica-
tions for which confidence intervals assessment is required.

Bayesian DL-based models have the potential to enable safer utilization in
medical imaging, improve generalization, and assess the uncertainty of the pre-
dictions by characterizing the entire posterior distribution of the network param-
eters. Recently, two main methods were proposed to assess the uncertainty in
DL-based methods for medical image registration [1, 17]. The approaches include
inference-time dropout [8] and variational encoder-decoder models [9]. These ap-
proaches, however, are limited to specific DL architectures. In addition, the latter
assumes a parametric distribution of the latent space in the form of a Gaussian
distribution which may represent an oversimplification of the unknown true un-
derlying distribution.

In this paper, we develop AIR-SGLD - a new, non-parametric, Bayesian DL-
based approach for Affine registration of brain MRI images. The proposed DL-
based system predicts the posterior distribution of the transformation parame-
ters. We achieve this by adopting the strategy of Stochastic gradient Langevin
dynamics (SGLD) [16] to sample from the posterior distribution of the network
weights [4]. The posterior distribution of the transformation parameters of the
Affine matrix is then used to provide an uncertainty assessment of the prediction.

Our registration system’s backbone is based on the architecture of the AIR-
Net Affine registration model [3]. Specifically, we inject Gaussian noise to the
loss gradients during the training phase of our framework, and keep all weights
obtained after the “burn-in” iteration in which the training loss curve exhibits
only small variations around its steady-state. At inference time, we estimate
the statistics of the predicted 3D Affine transformation by averaging predictions
obtained by the model with the saved weights.

Our experiments were performed on 300 image pairs generated from brain
MRI images belonging to the MGH10 database [10]. We demonstrate that AIR-
SGLD outperforms the baseline AIRNet by means of registration error (means-
square-error MSE of 0.0016 vs. 0.002, p < 0.01). Further, AIR-SGLD measure-
ments of uncertainty correlated with both registration error (Pearson correlation
coefficient of R = 0.769) and presence of out-of-distribution data (R = 0.796).

Our non-parametric Bayesian approach implemented in AIR-SGLD does not
make any prior assumptions about the underlying distribution and can be ap-
plied to any DNN architecture. Further, it can be adjoined to most DNN training
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schemes, either supervised or unsupervised. Thus, it has the potential to enable
a safer utilization of DNN-based methods in safety-critical applications.

2 Background: Deep-learning based Affine Registration

In this work, we address Affine image registration. The main task is to predict
a 3D Affine matrix to parameterize the transformation that maps the pair of
input images.

Let IM and IF be the 3D moving and fixed input images, respectively. a is
the twelve-dimensional vector to flatten rows of the Affine matrix A. The Affine
registration task can be formulated as a prediction by a trained model:

a = fθ(IM , IF ) (1)

where θ are the parameters of the network that are obtained after training the
model, by optimizing the following:

θ̂ = argmin
θ

L(IF , IM ◦ ΦA) (2)

where IM ◦ ΦA denotes the result of warping the moving image with the Affine
transformation parameterized by A, ΦA. L is a dissimilarity term, which quanti-
fies the resemblance between the warped and the fixed input images. The afore-
mentioned kind of optimization provides the best point-estimate of network pa-
rameters, which is the solution of Maximum Likelihood Estimation (MLE) rather
than characterizing the entire posterior distribution of the network parameters.

3 Proposed Approach

3.1 Non-parametric Bayesian Affine image registration

Our goal is to characterize the posterior distribution of the Affine transformation
parameters:

θ̂ ∼ P (θ|IF , IM ) ∝ P (IF , IM |θ)P (θ) (3)

Since direct integration of the posterior distribution is intractable, we efficiently
sample the actual posterior distribution of the model weights using an adaptive
SGLD mechanism. We treat the network weights as random variables and aim
to sample the posterior distribution of the model prediction. To this end, we
incorporate a noise scheduler that injects a time-dependent Gaussian noise to the
gradients of the loss during the optimization process. At every training iteration,
we add Gaussian noise to the loss gradients. Then, the weights are updated in
the next iteration according to the ”noisy” gradients. This noise schedule can
be performed with any stochastic optimization algorithm during the training
procedure. In this work we focused on the formulation of the method for the
Adam optimizer.
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Fig. 1: Block diagram of the proposed registration system. Moving and fixed
images, IM and IF , are concatenated to be a two-channel input that is fed to
the encoder block. Spatial features encoded by the encoder are then flattened
and used as an input to the regression unit. The regression block predicts the
parameters of the Affine matrix. Lastly, the moving image is sampled with the
corresponding Affine transformation, which is parameterized by the predicted
matrix, to yield the resulting registered image as an output.

Let L(IM , IF , fθ(IM , IF )) denote the overall registration loss, described in
(2). We denote the loss gradients by:

gt
△
= ∇θL

t(IM , IF , fθ(IM , IF )) (4)

where t is the training iteration (epoch). At each training iteration, a Gaussian
noise is added to g:

g̃t ← gt +N (5)

where Nt ∼ N (0, s), s is a user-selected parameter that controls the noise vari-
ance (can be time-decaying or a constant).

Lastly, we save the weights of the network that were obtained in iterations
t ∈ [tb, N ], where tb is a pre-determined parameter of the SGLD-based method
and N is the overall number of iterations. It is essential to select a tb larger than
the cut-off point of the burn-in phase. One should sample weights obtained in
the last tb, .., N iterations, where the loss curve has converged.

3.2 Network Architecture

Fig. 1 describes the Architecture of our system. Our main building-block is
a convolutional network (CNN) similar to the AIRNet model [3]. The pair of
fixed and moving images, IF and IM , respectively, are concatenated to be a two-
channel input. The model is composed from a CNN-based encoder and regression
block. The encoder extracts spatial features from each input image, IF and IM ,
which are flattened and then used as an input to the regression block to estimate
the Affine transformation A. Then, the spatial Affine transformation, ΦA, is
calculated from A and used to warp IM .
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The encoder includes 4 CNN-based blocks. The first block is comprised from
a 3D convolutional layer with feature size of 32 (Conv3D 32) followed by ReLu
activation, a Batch normalization (BN) layer and another 3D convolutional layer
with feature size of 64 (Conv3D 32). The three later blocks each include a 3D
convolutional layer with feature size of 64 (Conv3D 32) followed by ReLu acti-
vation, a Batch normalization (BN) layer and max pooling of size 2. Kernel size
of all convolutional layers is 3× 3× 3 and a stride of 2 is used.

The regression block is comprised from two fully connected layers of features
sizes 64 and 12, where the first is followed by the ReLu activation function.
The last layer has 12 neurons since it predicts the 12 elements of A, which
parameterize the corresponding Affine transformation.

3.3 Inference

Having the network trained, and its weights during training saved, we exploit
only the outputs of the network with weights obtained after the burn-in phase,
i.e. in the last tb, .., N iterations.

We sample a set of predictions {At = fθt(IM , IF )}
N
tb
, obtained by feed-forwarding

the pairs IM , IF to DNN-based registration models with weights that were ob-
tained in the last t ∈ [tb, N ] iterations. Then, when we have a new pair for
alignment, we estimate the averaged posterior Affine matrix

A =

∑N
t=tb

At

N − tb
(6)

In addition, we quantify the variance of the Affine matrix, which is used to
characterize the uncertainty of registration. Lastly, we register the moving im-
age by resampling its coordinate system with the Affine spatial transform ΦA,
characterized by the averaged matrix A.

4 Experiments and Results

Dataset In our experiments we used the MGH10 brain MRI [10] database. The
MGH10 dataset consists of brain MRI scans of 10 subjects with provided seg-
mentations into 74 regions. MRI images were Affine-registered according to the
MNI152 template [6], and preprocessed by inhomogeneity-correction. All scans
are of size 182× 218× 182 and uniform spacing grid of 1mm in each dimension.
All images in the dataset were resampled to a uniform size of 128 × 128 × 128.
We generated 300 pairs of fixed and moving images by resampling each moving
image in the dataset with 30 random Affine matrices, which were generated to
construct the corresponding 300 fixed images. Then, we randomly split the pairs
of moving and fixed images to training and test sets, which includes 270 and 30
pairs, respectively.



6 Anonymous Authors

4.1 Evaluation methodology

To conduct a quantitative comparison, we trained two models, which have the
same architecture described in section 3.1 and used Normalized Cross Corre-
lation (NCC) as the training loss. Both models were trained with the same
settings, but the first is based on SGLD, i.e. with incorporation of noise to the
gradient, whereas the latter is trained without adding noise. In our experiments,
we selected a fixed standard deviation, s = 0.001 for the injected noise variance.
The network parameters are then updated according to the Adam update rule.
We used the Adam optimizer with learning rate of 0.0001 for both models. Hence
and henceforth, we refer to the first model as AIR-SGLD and the second as
AIR-Adam. In both models, the network weights were initialized randomly, ex-
cept for the regression layers, which were initialized by zero weights and identity
transform bias.

For each pair of images in the test set we sampled predictions of the AIR-
SGLD network with weights obtained at the last 10 iterations. We then calcu-
lated the average Affine matrix, which was used to resample the moving image
to yield the resulting registered image. In addition, we estimated the variance of
the Affine matrix from the 10 samples, which was used to assess the uncertainty
of the registration.

We assessed the accuracy of the registration models by calculating the mean
square error (MSE) between the estimated Affine matrix and the ground truth,
which is predetermined and used to generate the fixed image, for our AIR-SGLD
method and the benchmark AIR-Adam. Further, to quantify the similarity be-
tween the resulting registered image and the fixed one, we calculated the cross
correlation (CC) metric between the registered image and the fixed image for all
pairs of images in the test set.

We evaluated the correlation between the uncertainty measures produced by
AIR-SGLD and 1) the presence of out-of-distribution data, and 2) registration
error as follows. We generated out-of-distribution images by adding Gaussian
noise with increasing standard deviations, σn, to the pair of input images. We
calculated the variance of each parameter in the transformation and averaged
over the transformation parameters to get a scalar value representing the overall
uncertainty in the transformation estimation (denoted later by V̂ar(A)).

4.2 Results

Fig. 2 presents examples of registration results of both our proposed AIR-SGLD
and AIR-Adam models.

Registration accuracy Table 1 presents the mean MSE and NCC, calculated over
the whole test set, for both models. We observed, AIR-SGLD achieved signifi-
cant improvements over AIR-Adam in terms of MSE and CC (0.00165, 7e−4 vs.
0.0022, 0.0016, with paired t-tests of p = 0.0082, p = 0.00056 for MSE and 0.917
vs. 0.878 with p-value of 1.820e−7 for CC).
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Fig. 2: Registration results. from left to right: IF , the resulting registered image,
obtained by our method AIR-SGLD,ISGLD, by AIR-Adam,IAdam, IM and the
Affine matrix used in resampling IM to generate IF . Cross correlation (CC)
calculated between If and the registered images obtained AIR-SGLD and AIR-
Adam, ISGLD and IAdam, for the three examples are: 0.89 vs. 0.86, 0.926 vs.
0.920 and 0.924 vs. 0.846, respectively.

Table 1: Registration Accuracy. Mean and std values of MSE and CC for both
AIR-SGLD and AIR-Adam methods. Mean values of MSE, between the pre-
dicted and ground truth matrix, are calculated for the entries of the linear matrix
(first three columns) and the translation vector (last column) independently.

MSE
CC

Linear Translation

AIR-SGLD 0.00165± 0.0011 7e−4 ± 8e−4 0.9178± 0.031

AIR-Adam 0.0022± 0.0015 0.0016± 0.0015 0.8783± 0.041

As one can infer, the CC of AIR-SGLD is higher, which indicates the resulting
warped image obtained by our method is more similar than that of AIR-Adam
to the fixed image.

Uncertainty Assessment The correlation between V̂ar(A) and the level of data
corruption by noise and registration error are depicted in Fig. 3. Pearson corre-
lation coefficient calculated between the measure of uncertainty and each one of
the MSE and noise levels are: R = 0.769 and R = 0.796. This, in turn, indicates
the ability of the uncertainty measure to detect out-of-distribution data that
would result in unreliable registration performance.
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(a) V̂ar(A) vs. σn (b) V̂ar(A) vs. MSE

Fig. 3: Uncertainty Assessment. (a) and (b) Scatter plots of the mean value of

variance estimate of A, V̂ar(A), versus the amount of noise added to the input
images and the MSE, calculated between Ā and the ground truth A, respectively.

5 Conclusion

In this paper we developed AIR-SGLD, a non-parametric Bayesian DNN-based
method for Affine registration of brain MRI images. Specifically, we used noise
injection for the training loss gradients to efficiently sample the true posterior
distribution of the network weights. In this work, our training relies on an Adam

optimizer, however, it can be directly extended to other optimization techniques
as well. In this work, AIR network was used as a baseline to illustrate the effec-
tiveness of training with SGLD and its ability to produce a clinically significant
uncertainty measure. However, the proposed technique is not limited to a specific
architecture and can be incorporated to any existing network. The conducted
experiments showed that AIR-SGLD improves the registration accuracy, mea-
sured by the MSE between the predicted and the ground truth Affine matrix,
compared to training the system without noise incorporation. Further, it en-
ables uncertainty quantification, where the measured uncertainty of AIR-SGLD
correlates with registration error and out-of-distribution data.
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