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Neural Networks as Dynamical Systems of Stochastic Fields
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Abstract

We develop a framework for over-parametrised neural networks as dynamical systems of
stochastic fields. With it, we derive a revised covariance function with squared exponential
activations. More importantly, we highlight the first variation covariance function with
a given set weight initialisation variances as the determinant of covariance function flow
in deep neural networks for wide classes of activation functions. We explain the so-called
edge-of-chaos observations and pathological amends in the literature in this framework.
Lastly, we derive some conditions on the end-behaviour of activation functions for discrete
flow convergence.

Keywords: neural tangent kernel, edge of chaos, dynamical systems, stochastic process,
deep neural networks

1. Introduction

The research for machine learning in neural networks is usually divided into two categories:
the typical application research and theoretical research. Application research ranges from
speech recognition and synthesis to computer vision, and theoretical research usually seeks
to explain why certain network arrangements work. One fundamental kind of arrangement
is the deep, fully-connected neural network, which is composed of the more fundamental
single hidden layer neural network. It is well-known that in the limit of infinite neurons
said network approaches a gaussian process given a prior distribution weights and biases
(Rasmussen and Williams (2006)). Cho and Saul (2009) extended that perspective, often
categorised as mean field theory, to deep networks with rectified polynomial unit (RePu) ac-
tivation functions. Using compositions of kernels, however, is simply used, but not proven or
justified (de G. Mathews et al. (2018))(Cho and Saul (2009))(Garriga-Alonso et al. (2019)).
The study of deep gaussian processes is assumed as a model for the theory of deep neural
networks, as Duvenaud et al. (2014) stated and analysed.

In light of this, Poole et al. (2016) and Schoenholz et al. (2017) delivered an analysis
of weight initialisation and trainability from the weight perspective, replacing stochastic
processes for random variables. We augment that work with covariance functions and
explain why their results hold although the analysis does not. It will also be shown how the
covariance function composition in Cho and Saul (2009) and Duvenaud et al. (2014) holds
with an explicit, non-circular proof, unlike in section C of the appendix of Lee et al. (2018).

Later, we explain their results in the context of deep stochastic processes, simultaneously
expanding work in that field by analysing stationary and non-stationary processes by means
of the processes’ covariance functions and their first variation.
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2. From Fixed Points to Fixed Functions

We first establish that even a finite-activation neural network with each wij` ∼ N (0, σ2
w)

being an independently and identically distributed random variable defines a stochastic pro-
cess with modest requirements for the activation function. In the limit of infinite activation
functions, the network becomes a Gaussian process irrespective of the prior distribution of
the weights (Hahn (1977)). Its covariance function is determined by the network inputs,
activation function, and the prior distribution over the weights. In order for an activation
function, α, to generate a valid covariance function, α ∈ L2

µ (Ω) for the measure µ with the
support Ω.

Each activation output is a sample function of the underlying process for a specified
layer upon computation. As such, each layer has its own covariance function defining
its corresponding process. Specifically, the layer is a vector of random processes, or a
random field, and each layer with the given weight realizations is a sample of the random
field. Because the vector entries are independently and identically distributed stochastic
processes, their covariance function is repeated along the multivariable covariance matrix
diagonal, simplifying the analysis by reducing the analysis from N covariance functions to
one.

Given the previous discussion, a single variance or correlation statistic at each layer does
not describe the underlying process, especially when describing of the smoothness of the
samples. As a result, we study the convergence of covariance functions, not fixed points.
We first indicate some inconsistencies regarding fixed point analysis in the machine learning
literature.

2.1 Fixed Variance and Correlation Inconsistencies

Firstly, it is important to mention that because each entry in the random field is indepen-
dent, their covariance function will be zero everywhere (the converse is not true). Meaning,
that if there were a constant correlation statistic between activation outputs, it would be
zero. If one takes the sample view of network outputs, then the variance between them
constructs a covariance function. This covariance function can, admittedly, be constant.
However, it is so only after several layers, not after the first or second layer, as having a
single correlation statistic for all layers implies. Therefore, the only reason the correlation
statistic might not be zero over all layers is because of the equivocation between random
processes and random variables.

Having established that, assume for the moment that such a statistic is relevant. Con-
tinued composition of this correlation map can be analysed as follows: find the critical
points of the map and determine whether said points attract or repel points near them.
Here we designate fixed points as critical points that attract points near them. Their
existence and uniqueness in a local region near the point is guaranteed by the Banach
fixed point theorem. One can analyse critical points under function composition using
Schröder and Poisson equations. A Taylor approximation is not necessary to analyse func-
tion composition dynamics if one makes the following known observations (cite func comp):
define the map F = {f : x → f(x)}. By definition and with some additional terminol-
ogy, we put xc = f(xc) as a critical point of order one. A critical point of order two
would be xc = f(f(xc)), for example. Taking the derivative of f as df/dx = f ′(x) and
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of Schröder’s equation Ψ(f(x)) = sΨ(x)) as Ψ′(f(x))f ′(x) = sΨ′(x) where Ψ(x) is invert-
ible, and therefore one-to-one in the region near the critical point, we insert the latter as
Ψ′(f(xc))f

′(xc) = sΨ′(xc). Because f(xc) = xc, the Ψ′ cancel and f ′(xc) = s. Due to the
invertibility of Ψ, the `th composition of f is f`(x) = Ψ−1(s`Ψ(x)). The generally nonlinear
function Ψ is found by solving Poisson’s equation Ψ−1(sx) = f(Ψ−1(x)), which is often an
interesting puzzle. Too often, however, the literature dubs the constant f ′(xc) = s = elog(s)

as the Lyapunov exponent claiming that if s < 1, xc is a fixed point −a stable critical point
−and if s > 1, the map is chaotic −often meaning strongly, or topologically mixing (Katok
and Hasselblatt (1995)). When the parameter s > 1, it means that points in the neighbor-
hood of xc are repelled, often to region boundaries or regions of other critical points. Such
is the case for the correlation map in Poole et al. (2016), where the critical point at one
repels points near it to the region of another that attracts. As a consequence, all s ≤ 1
for the correlation map, attracting to correlations less than one. Even if the correlation
map were a mixing map, that would mean that the correlation of the outputs itself −not
the underlying variables it describes −oscillates erratically from one layer to the next, mak-
ing the correlation of one probable, thereby contradicting the implication that non-unitary
correlations define a chaotic region.

This means that random processes −not random variables −constitute the adequate
tool to analyse neural networks. Consequently, covariance functions deliver the necessary
descriptive heft to acquire meaningful conclusions. We now show how the literature on co-
variance function composition also equivocates two important concepts in stochastic process
theory, namely activation functions and basis functions. Clarifying that leads to a proof of
covariance function composition.

3. From Covariance Function Composition to Operations on
Eigenfunctions and Back

Covariance function composition by insertion of a so-called feature vector pair into the
pair of arguments of the covariance function is predicated on two main assumptions: that
the feature vector represents the set of basis function of a process and that the resulting
kernel is also the covariance function of the process. We will show the two assumptions
are indeed what happens in deep neural networks. The embedding of arbitrary functions
into covariance functions is pointed out in MacKay (1998), but proving what function to
embed and what the resulting covariance function describes remains open. In particular,
equating activations with basis functions hampered the proof. We end with an illustrative
example using the squared-exponential activation function used in Duvenaud et al. (2014)
and replicate their results but prove the attribution of the theory presented here. We
also derive another covariance function on the basis of the proof. First, we review some
stochastic process theory.

3.1 Random Fields

Alluding to Williams (1998), the covariance function for one neuron output process follows

kα (x1,x2) =
(

(2π)d+1 |Σw|
)−1/2

∫
Ω
α
(
wTx1

)
α
(
wTx2

)
e−

1
2
wTΣ−1

w w dw , (1)
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where x1,2 ∈ Rd+1 is an augmented deterministic input where d entries are actual inputs and
one entry is one to account for the bias weight. The vector w ∈ Rd+1 has wi ∼ N (0, σ2

w), i ∈
[1, d] are i.i.d random variables and wd+1 = b ∼ N (0, σ2

b ). The matrix Σw is the covariance
matrix with diagonal entries σ2

w up to the dth entry and the (d+ 1)th entry is σ2
b . The bars

| · | indicate the determinant of the matrix. The function α(·) is the activation function of
the layer.

It is known that as d→∞, the dot product wTx(t)→ ft ∼ GP(0, σ2
wk(t, s)) approaches

a gaussian process with appropriately scaled weights. Also, we parameterise the inputs as
x1 = x(t) and x2 = x(s) to emphasise that operations with the input vector entail the
same vector at different instances. From this point onward, said gaussian process will be
decomposed into its Karhunen-Loève expansion as

ft =
∞∑
i=1

ξiφi(t) . (2)

As usual, ξi ∼ N (0, 1) and φi(t) are the eigenfunctions, i.e. basis functions, of the process.
We shortly prove that wTx is a gaussian process by means of characteristic functions.

ϕft(r) = E
[
ejrw

Tx(t)
]

= (2π |Σw|)−d/2
∫
e−

1
2
wTΣ−1

w w+jrwTx(t) dw

= (2π |Σw|)−d/2 e
− 1

2σ2w

∑d
i=1 w

2
i+jr

∑d
i=1 wixi(t) dw

=
d∏
i=1

1√
2πσw

∫
e
− w2

i
2σ2w

+jrwixi(t)
dwi

= e−
σ2w
2
r2
∑d
i=1 xi(t)xi(s) .

(3)

As one can see by equation (3), any number of deterministic inputs with gaussian weights
results in a Gaussian process with covariance function

kft(t, s) = σ2
w

d∑
i=1

xi(t)xi(s) . (4)

If the weights−or inputs−are scaled by 1/
√
d and d→∞, that would also yield a covariance

function. For example, if the inputs in the first layer are numerous and activation functions
saturate, then scaling the inputs prevents their premature saturation. Nevertheless, the
central limit theorem for stochastic processes is not necessary with deterministic inputs
if the prior over the weights is gaussian. Note also that with the characteristic function
approach in (3), the embedding theorem for deterministic functions in MacKay (1998) is
proven.

For subsequent layers however, because nonlinear activation functions on a gaussian
process do not produce, in general, another gaussian process, the layer width must tend to
be large, or d→∞ with 1/

√
d weight scaling in order for the central limit theorem to apply

(Hahn (1977)). Replicating the procedure in (3) for a stochastic process would complicate
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the procedure to find the covariance function in the sense that the Karhunen-Loève random
weights will not be gaussian or that one would have to contend with doubly infinite integrals.
In both cases, it is not clear what distribution the Karhunen-Loève random weights should
have for a given activation function. As such one may simply invoke the central limit
theorem so that gt = limd→∞wTα/

√
d, where α is the stochastic process α(wTx) replicated

independently d times. In other words, α is a random field and gt ∼ GP(0, σ2
wkα(t, s)).

3.2 Activation Functions and Basis Functions

Now is the time to address the equivocation between activation functions and basis func-
tions. As we discussed, α(wTx(t)) is a stochastic process whose samples can approximate
the covariance function of the underlying stochastic process. For any stationary stochastic
process,

kα(t, s) = lim
d→∞

1

d

d∑
i=1

αi(t)αi(s) . (5)

With basis functions,

kα(t, s) =
∞∑
i=1

φi(t)φi(s) (6)

and

λi =

∫
T
φ2
i (t) dt , (7)

where λi are the eigenvalues, or L2
t (T ) squared norms, of the basis functions. Although

equations (5) and (6) seem similar due to their infinite dot product structure, the difference
lies in that the scaling for the approximation in equation (5) is not a function of the indices,
whereas for equation (6) they are. Furthermore, in order for equation (6) to converge, it is
sufficient that

∞∑
i=1

λi <∞ , (8)

implying that λi decay. In fact, the speed of decay determines the smoothness of the samples
of α. These are known facts of operator theory.

Another difference between equations (5) and (6) is that the basis functions φi are not
samples of a stochastic process, but completely deterministic. That leads to the topic of
function spaces. Since (8) holds, each λi < ∞ and therefore each φi(t) ∈ L2

t (T ). However,
because αi(t) in equation (5) are samples whose random aspect is the random vector w, it
is actually an approximation of the integral (1), and therefore the process α(t) ∈ L2

µ(Ω),
where µ is the probability measure. Not only are φi and αi different functions, they are
also defined on different function spaces that are distinguished by having different measures
defined over different parameter spaces.

A common criterion in random networks to analyse activation functions α is that they
be bounded. The convergence of equation (5) motivates said criterion, but since αi act on
an underlying random process dictated by the prior over the weights, one may loosen the
boundedness requirement. In fact, α must simply satisfy α(t) ∈ L2

µ(Ω). From a computa-
tional perspective with a gaussian prior over the weights, for example, the requirement also
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makes sense: although α might be unbounded away from the mean of w, the probability of
drawing samples of w with values far away from the mean nears zero. Due to their scarcity
compared to the number of samples, d, their contribution to the estimate (5) is relatively
negligible.

3.3 Implications on the Composition of Covariance Functions

Having clarified the difference between activation functions, basis functions, and the equa-
tions relating them to the covariance function of a process, we now proceed to propagate
that analysis to previous work on the composition of covariance functions, i.e. models for
wide and deep networks.

We begin by taking the activation function to be the squared exponential function and
have it act on weighted inputs as α(wTx(t)). We can construct the covariance function,
kα, from equation (1), but we do not know whether the process is gaussian. To assure
that, we construct a random field from that one stochastic process, α(t), and perform
wTα(t)/

√
d where w ∈ Rd and take d → ∞ to ensure that the process is gaussian with

covariance function σ2
wkα. Said process has a Karhunen-Loève decomposition as in equation

(2). We would then be ready to pass that gaussian process through the squared exponential
activation function again, ad infinitum, as in deep neural networks.

Since each covariance function has different layer dynamics depending on the inputs, we
first consider the case where the inputs are in R2 and read as x(θ) = [cos θ, sin θ]T. The
covariance function of the inputs is therefore

k0(θ1, θ2) = σ2
w cos (θ1 − θ2) + σ2

b . (9)

We define the activation function explicitly as

α(x) = σex
2/`2 . (10)

Using equation (1) with d = 2 because of the inputs and setting σb = 0,

kα(θ1, θ2) =
(
2πσ2

w

)−d/2 ∫
Ωw

α
(
wTx(θ1)

)
α
(
wTx(θ2)

)
e−w

Tw/2σ2
w dw

=
σ2

2πσ2
w

∫
R2

e−((w1 cos θ1+w2 sin θ1)2+(w1 cos θ2+w2 sin θ2)2)/`2−(w2
1+w2

2)/2σ2
w dw

=
σ2

2πσ2
w

∫
R2

e−w
T(I+Σθ)w/2σ2

w dw

= σ2
∣∣I + Σθ1,2

∣∣−1/2

= σ2

(
1 +

4σ2
w

`2

(
1 +

σ2
w

`2
sin2 (θ1 − θ2)

))−1/2

,

(11)

where

Σθ1,2 =
2σ2

w

`2

[
cos2 θ1 + cos2 θ2

1
2 (sin 2θ1 + sin 2θ2)

1
2 (sin 2θ1 + sin 2θ2) sin2 θ1 + sin2 θ2

]
. (12)

We put k1(θ1, θ2) = σ2
wkα(θ1, θ2) as the covariance function of the stationary gaussian

process of the output of the first layer. To find the covariance function of the stochastic
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process after applying (10) to the process delineated by k1, we perform the variance operator
over all the Karhunen-Loève random variables. Proceeding with the infinite integrals,

k2(θ1, θ2) =
σ2
wσ

2

√
2π

. . .
1√
2π

∫
Ωξ

α
(
ξTφ(θ1)

)
α
(
ξTφ(θ2)

)
e−ξ

Tξ/2 dξ

=
σ2
wσ

2

√
2π

. . .
1√
2π

∫
Ωξ

e
−
(
(
∑∞
i=1 ξiφi(θ1))

2
+(
∑∞
i=1 ξiφi(θ2))

2
)
/`2

dµ(ξ)

=
σ2
wσ

2

√
2π

. . .
1√
2π

∫
R∞

e−ξ
T(I+Σθ)ξ/2 dξ

= σ2
wσ

2
∣∣I + Σθ1,2

∣∣−1/2

= σ2
wσ

2

(
1 +

4

`2

(
k1(0) +

1

`2
(
k2

1(0)− k2
1(θ1, θ2)

)))−1/2

.

(13)

For layers ν ≥ 1 and σb 6= 0, covariance function composition applies as

kν+1 (θ1, θ2) = σ2
wσ

2

(
1 +

4

`2

(
kν(0) +

1

`2
(
k2
ν(0)− k2

ν(θ1, θ2)
)))−1/2

+ σ2
b , (14)

and the initial condition, so to speak, is k1 as in k1(θ1, θ2) = σ2
wkα(θ1, θ2) + σ2

b . The
accuracy for this stationary covariance function recurrence is explored in Figure 1(b) over
various weight variances. For a general non-stationary process, the covariance function is

kν+1 (x1,x2) = σ2
wσ

2

(
1 +

2

`2

(
kν,1,1 + kν,2,2 +

2

`2
(
kν,1,1kν,2,2 − k2

ν,1,2

)))−1/2

+ σ2
b , (15)

where kν,i,j means kν (xi,xj) and i, j ∈ {1, 2}.
With (14), one may use function composition theory to analyse the covariance function

behaviour in the limit of infinite layers, or ν → ∞. Specifically, because the process is
stationary, we analyse the stationary covariance function along θ1 = −θ2 := ϑ to acquire
k0(ϑ) = σ2

w cos (2ϑ) + σ2
b . Upon taking the derivative with respect to kν ,

∂kν+1(ϑ)

∂kν(ϑ)
=

4σ2
wσ

2

`4
kν(ϑ)

(
1 +

4

`2

(
kν(0) +

1

`2
(
k2
ν(0)− k2

ν(ϑ)
)))−3/2

, (16)

which is the first variation and is valid for non-stationary process covariance functions
as well. Whether the composition will converge to a covariance function whose values
are the same everywhere in the limit depends on whether the absolute value of equation
(16) is less than one for all regions of ϑ. In the case with σw = σ = ` = 1, the fixed
function is a finite constant (about 0.56 with a Lyapunov exponent of about −0.96), thereby
replicating Duvenaud’s pathology −also known as the ordered region in weight variance
space −albeit with explicit and rigorous formulations for the covariance functions. In fact,
we can approximate the equation of the boundary dividing the ordered and stochastic
regions with σ = ` = 1 for the propagated circle as

σw ≈
1

2
√

1 + σ2
b

(
1 + 4

(
1 + σ2

b

))3/4
. (17)
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(a) (b)

Figure 1: Deep neural network prior with squared exponential activation function described
by equations (9), (10), (14), and parameters ` = σ = 1. (a) Analytical large layer behaviour,
L = 100. The criterion for ordered region is max(k)/min(k)− 1 ≤ 0.001. (b) Mean squared
error (%) between the numerical and analytical covariance functions. L = 50, repeated four
times, each layer has 10, 000 neurons. Simulated points are black dots.

The actual boundary involves cubic roots, making it too convoluted for this document.
We further note that, contrary to the much-cited Rasmussen and Williams (2006), the

covariance function of an infinitely-wide network with squared exponential activation func-
tions is not a squared exponential, even when properly scaling the weights, as equation (13)
shows. It is either a non-stationary covariance function without scaling or zero everywhere
with scaled weights with Rasmussen and Williams (2006)’s construction. Luckily, that con-
struction only defines offsets as non-unitary, and the weights are actually all one. Equation
(13) is more general, accounting for both non-unitary weights and offsets. This shows that
if there is a covariance function formula and the next layer’s covariance function is to be
found, the arguments passed must be the set of basis functions, i.e. eigenfunctions, of the
process. If one passes the activation functions, then one must use equation (5) with the
appropriate weight variance operations to approximate kν . This example also highlights
the difference between activation functions and basis functions: the activations are squared
exponentials and the basis functions are Chebyshev-like polynomials.
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Figure 2: Stationary covariance function layer dynamics for α(·) = exp(−(·)2) with the
circle over different weight variances. L = 1 (blue, red), L = 5 (gold, purple), L = 50
(green, cyan). Dots are numerical k averaged over 1000 draws and lines are analytical k.
(a) σw = 2, σb = 0. (b) σw = 2.5, σb = 1.5. (c) σw = 1.5, σb = 2.5. (d) σw = 0.8, σb = 1.5.

3.4 Another Deep Pathology

Although another deep pathology can be shown to occur for the squared exponential acti-
vation by simply increasing σ and σw as Figure 1(a) shows, we take the procedure implied
in the previous section and apply it to a deep neural net with α(·) = erf(·) and the k0 in
equation (9) with σb = 0. According to Williams (1998), the covariance function is

kα(θ1, θ2) =
2

π
arcsin

(
2σ2

w cos(θ1 − θ2)

1 + 2σ2
w

)
, (18)

and k1 = σ2
wkα. The derivation of the covariance function also lends itself to replace the

inputs with the basis functions. Recalling equation (7) and that the basis functions are
sinusoids in this case, the recursive covariance function is

kν+1(θ1, θ2) =
2σ2

w

π
arcsin

(
2kν(θ1, θ2)

1 + 2kν(0)

)
+ σ2

b . (19)
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(a) (b)

Figure 3: Deep neural network prior with error function activation function described by
equations (9), (19). (a) Analytical large layer behaviour, L = 700. The criterion for ordered
region is max(k)/min(k) − 1 ≤ 0.001. (b) Mean squared error (%) between the numerical
and analytical covariance functions. L = 50, 1000 draws, each layer has 200 neurons.
Simulated points are black dots.

Its derivative is
∂kν+1(ϑ)

∂kν(ϑ)
=

4σ2
w

π
√

(1 + 2kν(0))2 − 4k2
∞(ν)

. (20)

This covariance function lends itself to a more manageable boundary equation than the
squared exponential’s covariance function and is shown in equation (21).

σb =

(
1

4

(
16σ4

w

π2
− 1

)
− 2σ2

w

π
arcsin

(
16σ4

w
π2 − 1

16σ4
w

π2 + 1

))1/2

(21)

The covariance function (19), like the squared exponential in equation (14), can also
display another kind of pathology hinted in Poole et al. (2016) and Schoenholz et al. (2017).
Although there the activation function α(·) = tanh(·) was used, it is sufficiently close to
the α(·) = erf(·) activation function in L2(R+) that the conclusions drawn for erf(·) apply
to tanh(·) up to a dilation, 1 + ε. Finding the dilation analytically in the chosen function
space is easier done numerically, yielding ε∗ = 0.2028..., where

ε∗ = min
ε>0
‖tanh ((1 + ε)x)− erf(x)‖L2([0,∞]) . (22)

However, because both functions are odd functions with the same end-behaviour, one may
approximate equation (22) by finding the ε that solves∫ ∞

0
tanh ((1 + ε)x)− erf(x) dx = 0 . (23)

Equation (23) is tractable and ε =
√
π log 2−1 ≈ 0.2286..., which has about 13% error from

ε∗. The error between the dilations themselves is just about 2%. If one wishes to dilate the
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Figure 4: Stationary covariance function layer dynamics for erf(◦) with the circle over
different weight variances. L = 1 (blue, red), L = 5 (gold, purple), L = 50 (green, cyan).
Dots are numerical k with 11 draws and lines are analytical k. (a) σw = 2, σb = 0. (b)
σw = 2.5, σb = 1.5. (c) σw = 1.5, σb = 2.5. (d) σw = 0.8, σb = 1.5.

erf(·) function instead, ε ≈ −0.186 and ε∗ ≈ −0.168, which have a relative error of 11% and
the dilations have an error of about 2.2%. The minimum L2 error between the activation
functions corresponding to the latter ε∗ is 0.0231.... The covariance function error is about
0.021% with a gaussian prior over the weights. One may also seek a dilation minimising the
covariance function error, but that dilation is nearly the same as 1 + ε∗ and would not be
independent of the prior distribution over the weights. Lastly, any tanh-like function has
an 1 + ε∗ dilation that minimises the L2 error and nearly minimises the covariance function
error because of similar end-behaviour and because said functions can be approximated by
lines near the origin. Similar procedures can be constructed for any other known covariance
function-activation function pair, reducing the need to estimate the covariance function
numerically.

Having established the erf equivalence class, we refer to Figure 4 to signal that covariance
functions in the stochastic region contain peaks in the infinite layer limit. These peaks
correspond to the process sampling gaussian noise: the other pathology. For limit covariance
functions centered at zero, the samples are also centered at zero. For limit covariance
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(a) (b)

Figure 5: Samples of a deep neural network with erf(·) activations in the (a) ordered region
with σw = 1.5, σb = 2.5 and (b) stochastic region with σw = 2.5, σb = 1.5. Dashed lines
show the local standard deviation and dotted lines show the standard deviation of the mean
of the samples. L = 50, 200 neurons.

functions not centered at zero, as in Figure 4 (b), the samples are gaussian noise with a
mean whose variance is the covariance function offset. Figure 5 shows sample functions
from the arcsin(·) covariance function demonstrating both pathologies.

3.5 Analysis of Duvenaud’s Amend

Using the procedures from the previous sections we explain why input feedforward amends
both pathologies. The recurrent covariance function is

kν+1(x1,x2) = η (kν(x1,x2)) + k0(x1,x2) . (24)

Because k′0 = k0,
∂kν+1

∂kν
= η′(kν) + k0 , (25)

which changes the criterion for the ordered region to read as

η′(kν) + k0 < 1 . (26)

For the stationary squared exponential kernel, η′(kν) = kν+1, whose maximum is one. This
reduces the requirement to k0 < 0 for all regions. Since k0 is the dot product of the
inputs, we know that when x1 = x2 that dot product will be positive, and the criterion
is not met. Therefore the stationary squared exponential kernel with input feed-forward
avoids the constant covariance function pathology and the entire weight variance plane is
the stochastic region, but with modified smoothness regions for a network implementation.
We performed Duvenaud’s kernel implementation in equations (24)-(26) so σ2

w ≡ 1 and
kα = η. We will explain the calculus used in this section in section 5. We lastly note that in
this case, because the recurrence reads as kν+1 = exp

(
−1− ‖x1 − x2‖2 + kν

)
, and because
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the limiting kernel satisfies kν+1 = kν , solving for k indeed has no closed form, but can be
written in terms of the product log function, κ(·):

k∞ = −κ
(

exp

(
−1− 1

2
‖x1 − x2‖2

))
. (27)

4. Defining Expressivity

Since Adler (1977), and earlier for the one-dimensional parameter and scalar Brownian
motion, it is known that certain Gaussian processes have infinite graph lengths over finite
intervals. In other words, the dimension of the Rd+1 embedding of the Wiener process, the
Hausdorff dimension, is greater than d with some dependencies on the parameter dimension
(Adler (1977)). For example, the 2-graph of the d = 1 Brownian motion with its parameter
t ∈ R has a dimension of 1.5. Furthermore, Rasmussen and Williams (2006) state that mean
square differentiability of the process is determined by the differentiability of the covariance
function. Connecting this to an infinite arc-length over a finite interval of a stationary
process is straight-forward. Given that a process ft =

∑∞
i=1 ξiφi(t),

E

∫ 1

0

√
1 +

(
dft
dt

)2

dt

= E

∫ 1

0

√√√√1 +
∞∑
i=1

ξ2
i

dφi(t)

dt

dφi(s)

ds
+ 2

∑
i 6=j

ξiξj
dφi(t)

dt

dφj(s)

ds
dt

≥ E

∫ 1

0
1 +

∞∑
i=1

ξ2
i

dφi(t)

dt

dφi(s)

ds
+ 2

∑
i 6=j

ξiξj
dφi(t)

dt

dφj(s)

ds
dt

= 1 +

∫ 1

0

∂2k(0)

∂t∂s
dt .

(28)

Equation (28) shows that if the covariance function is not differentiable at 0, then the inte-
gral explodes, and therefore the expected arc-length of the process ft explodes as well. From
a numerical perspective, the covariance derivative might appear infinite due to the finite
resolution of the inputs, but from an analytical perspective it is simply large but finite,
which renders the arc-length finite. One may therefore instantly create the illusion of a
chaotic process by reducing the length parameter of the covariance function to be less than
an input increment. Somewhat conversely, if data resolution remains coarse and the covari-
ance function is not differentiable but has a large distance parameter, the sample functions
seem as if they were drawn from a deep network in the ordered region. Furthermore, some
processes with non-differentiable covariance functions, like the Ornstein-Uhlenbeck process,
have samples that do not appear as if they have infinite arc-length for finite interval when
indeed they do. Therefore the appearance of mixing, or chaos, is not an indicator of large,
let alone infinite, distances over finite intervals. Since a single-layer neural network has a
Gaussian process representation in the limit of infinite activation functions, said processes
could have sample functions with infinite graph lengths over finite intervals depending on
the covariance function −and therefore depending on the activation function, the prior dis-
tribution over the weights, and the inputs. Moreover, any deep network has a covariance
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function representation, which can be partitioned into basis functions representing a trun-
cated Gaussian field, which in turn is, by definition, a single-layer network. Considering
the previous discussion on the ‘compressibility’ of deep networks and on the relationship
between covariance function length scales and input resolution, it does not aid a practi-
tioner to think about the expressivity of networks. Rather, one should consider which prior
adheres best to the data (Kimeldorf and Wahba (1970)); even then, one can maximize the
information extracted from the data by changing hyperparameters, e.g. the length scales
on covariance functions, after Bayesian updates (Rasmussen and Williams (2006)).

5. Covariance Function Flow

According to Rasmussen and Williams (2006) and Kimeldorf and Wahba (1970), the Bayesian
update of the prior distribution with the data constitutes ‘training’ a network with respect
to a cost (also objective) function with a quadratic error term and a regression term that
penalises high-order derivatives, i.e. complexity in the form of modality. The mean of the
posterior is the maximum a priori estimate if the conditional distribution of the data has
an exponential convex form (Rasmussen and Williams (2006)). Since gaussian process pri-
ors and conditionals have a closed form in terms of covariance functions, one might also
approach the gradient explosion and implosion issue by analysing the derivatives of the
covariance function over the layers. Duvenaud et al. (2014) hinted at this analysis by ex-
ploring the evolution of the tangent space (Jacobian) of each layer, but did not connect it
to the gradient explosion and implosion issue explicitly. We now proceed with that analysis
here.

5.1 Kernel Calculus

One can expect that the covariance function of the process α′
(
wTx

)
will have a relation to

the recurrence derivative of equations (20) and (16) as shown in equation (29).

E
[
∇wνα(wT

ν αν,1) · ∇wνα(wT
ν αν,2)

]
=

1

dν
E
[
αT
ν,1E

[
α′(wT

ν αν,1)α′(wT
ν αν,2)

]
αν,2

]
=

1

dν
E
[
α′(wT

ν αν,1)α′(wT
ν αν,2)

]
E
[
αT
ν,1Iαν,2

]
=

1

dν
E
[
α′ν,1α

′
ν,2

]
E

( dν∑
i=1

αν,1,i

) dν∑
i=j

αν,2,j


=

1

dν
E
[
α′ν,1α

′
ν,2

]
E

[
dν∑
i=1

αν,1,iαν,2,i

]

= E
[
α′ν,1α

′
ν,2

] 1

dν

dν∑
i=1

E [αν,1,iαν,2,i]

= Eξ
[
α′(wT

ν αν,1)α′(wT
ν αν,2)

]
kα,ν(x1,x2),

(29)

where we assumed thatαν is a random field process whose entries are independent stochastic
processes to allow for recursion. The subscript ξ is written to emphasize that the dot
product between the random vector w and the random field αν is a gaussian process with
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a Karhunen-Loève decomposition and that the expectation operator is taken in the sense
of equation (13). Next we define gν as

gν := σ2
wEξ

[
α′(wT

ν αν,1)α′(wT
ν αν,1)

]
. (30)

Notice that the covariance function of the gradient of the (ν + 1)th layer in equation (29) is
defined in terms of variables in the νth layer. Moreover, the quantity gν modulates the dot
product in the νth layer’s random field, acting as a metric for a change of coordinates into
the tangent space of the (ν + 1)th field. It consequently functions as a derivative operator
on covariance functions between layers. In the literature, equation (29) is referred to as the
neural tangent kernel (NTK) (Jacot et al. (2018)) but here the quantity of importance is
gν , or the first variation covariance function. In previous sections we therefore meant the
following:

∂kν+1

∂kν
= σ2

wk
′
α(kν) = η′(kν) = gν . (31)

Scalar dynamical systems theory sheds some light into what happens: we know that if
gν < 1 for all inputs x1 and x2, then the limiting function is reduced to a constant point
c = k∞ = Ψ−1(0), where Ψ is a diffeomorphism over x1,2. This implies that if any gν > 1
over x1 and x2, k∞ 6= c. The problem in more dimensions becomes choosing what value of
gν over the inputs determines the dynamics because gν : M ×M → R where M ⊆ Rd0 is
the input manifold.

5.2 Random Variable Connection

Now we can clarify why the results in Poole et al. (2016) and Schoenholz et al. (2017)
could predict Duvenaud’s pathology and extend it to weight initialisation: their random
variable approach reduces the functions gν and kν to one parameter over all of the input
space. The two cases when x1 = x2 and when x1 6= x2 for kν are taken as the variance
and covariance, respectively. Then they normalise the covariance with the variance to
construct the correlation parameter. In the limit, the stochastic region kν has two values
at those cases, with kν(x1 = x2) > kν(x1 6= x2), giving a correlation number less than
one. Since kν is a constant in the ordered region, the variance and covariance are equal
and the correlation is one. They found that gν(x1 = x2) = 1, or the correlation dynamics,
determines the boundary between the regions and not the variance dynamics because the
covariance function determines the layer dynamics of the actual system, as shown here. As
such, we expect similar dynamics regarding the gradient explosion and implosion.

5.3 Kernel Layer Dynamics

We also do not attribute the conditions on gν as conditions for strong mixing of the underly-
ing samples, but on the layer dynamics of the kernel which in turn describes the underlying
process. Now it is the time to answer why the kernel coalesces to roughly a Dirac delta or
a constant plane, where scalar analysis reaches its explanatory limits. Scalar composition
theory sheds light on what happens in the ordered region, but does not explain why the
kernel becomes what it does in the stochastic region. We propose

∂2kν+1

∂x1∂x2
=

ν∏
i=1

gν+1−i (32)
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and therefore along x1 = x2

∇2kν+1 =

ν∏
i=1

gν+1−i , (33)

which does not describe a difference equation in discrete-time (here, the layers) with delay
1 where log gν determines the dynamics layer after layer. That is due to that xj represent
the inputs of the network, so that differentiation must take place up to that input layer. If
differentiation is done according to the previous random field, then the ’curvature’ of the
(ν + 1)th layer is simply gν . Nevertheless, if gν < 1, ∇2k → 0, which means that k∞ is
flat; if gν > 1, ∇2k → ∞, which implies singular curvature at U = {(x1,x2) : x1 = x2}.
It should be noted that equation (33) holds for any x1, x2, so for regions gν(x1 6= x2) < 1
despite gν(x1 = x2) > 1, k∞ will be flat where V = {(x1,x2) : x1 6= x2}.

We assumed that the sets U and V remain non-empty throughout the layer dynamics,
meaning that parts of the regions that started with gν < 1 or gν > 1 stay less than one or
greater than one throughout the layers, but there is no reason to believe that should be the
case. Furthermore, the mean-field approximation merely extended the question as to why
gν(x1 = x2) determines the layer dynamics of the covariance function in the first place. For
all of the previous analysis to hold, one has to show that at least subsets of the regions of
gν remain in their respective regions of attraction or repulsion throughout the layers. As
we will see, the layer dynamics of the kernel itself can also be viewed relative to the input
space instead of defining operators over the weight space. From there, the properties we
have observed follow.

5.3.1 Kernel Flow

We start by defining some components, starting by distinguishing the kernel function from
the kernel being fed into it. Let η : R2 → R be the kernel function, or map, and k : R2d → R
the kernel, where ω = (x,y) ∈ A and A ⊆ R2d. If the inputs are augmented the dimension
is simply 2(d + 1) instead. We also dropped the subscript notation for the inputs and
used two different variables for clarity, so x = x1 and y = x2. With this construction,
η ◦ k : R2d → R because η = η(k(ω), k(x,x)) formulaically. It turns out that in general,
one may consider η : R → R so η = η(k(ω)) only since k(x,x) ∈ k(ω), even when taking
its first variation.

From general gradient flow we know that critical points, or proto-local extrema, of η are
fixed points, collected as Fix(η ◦ k) = {ω∗,i} (Katok and Hasselblatt (1995)). To see this,
one can represent the flow of points parametrised with t as dω/dt = G−1∇η, but since the
metric of A is G = I, the equation becomes dω/dt = ∂η/∂k∇k. The gradient flow for each
layer has equilibria for points which satisfy ∇kp = 0. Extending the analysis to the νth

layer, and noticing that ∂η/∂k = g,

dω

dt
=

ν∏
i=1

gν−i+1(ω)∇ωk(ω) , (34)

suggesting that the critical points of k determine the fixed points of the gradient flow per
layer. This does not mean, however, that kν(ω∗) for ∇kν(ω∗) = 0 does not change under
the iterative map; it just means that those critical points stay critical points throughout the
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iterations, and that the values kν(ω∗) that do remain static or are eventually static over the
layers happen on one or more of the critical points. This is an alternative but equivalent
approach to Katok and Hasselblatt (1995)’s method of transverse tangent spaces.

We still have not shown the persistence of the values of gν in subsets of U = {ω : x = y}
and V = {ω : x 6= y} throughout the layers. Since gν is a per-layer operator, it is bounded
loosely as

max
ω∈A

gν(ω) ≤ σ2
w max
ζ∈Ω

α′(ζ)2 (35)

per layer. Likewise, max kν ≤ σ2
w maxζ∈Ω α(ζ)2, so that given enough samples of the random

field, max gν is attained somewhere in A per layer. Because it is a covariance function, said
maximum always happens somewhere or everywhere along the diagonal x = y for each
layer. That shows that for every layer, because the activation functions α are the same
and given a large enough random field, max gν is the same for every ν > νc and happens
near the same location in the diagonal. This means that U is non-empty throughout the
layers. It is sufficient to analyse U and not V because the maximum of gν determines the
inter-layer dynamics in terms of dividing the ordered and stochastic regions. Figures (6)
and (7) show the operator gν for different initialisation regions.

Now consider the case for which ĝν := max gν is a constant 1 < c <∞ for every ω ∈ A1

and kν has quadratically unbounded end-behaviour on A1 ⊂ A and therefore no critical
points that also function as a global maximum in A1. Then every point in A1 does not
have a limit under iterations. A covariance function with such linear end-behaviour in A is
ReLu. Its stochastic region never converges to a deep kernel and is flat in A in its ordered
region. Say conversely, that limζ→∞ α

′(ζ) = 0, then because inequality (35) also holds for
non-maximal points, lim|ω|→∞ |gν | = 0, meaning, by the intermediate value theorem, that
there must be a critical point of gν in some B ⊂ A that is a maximum of |gν | if gν is not
zero and the iterations converge to some k∞.

For convergence to a kernel in its stochastic region, therefore, α′(·) < O(1) in general.
The activation function end-behaviour determines convergence to a deep kernel, k∞. This
can be seen by analysing log g from α(ζ) ∼ O(ζa) so that α′(ζ) ∼ O(aζa−1) whence log g ∼
O(2 log a+ 2(a− 1) log ζ) < 0 for ζ → ∞. The requirement that log g < 0 comes from the
exponential map for iterations. The result is a < 1 for convergence in A, which means that
α(·) need not be bounded, just that limζ→∞ α

′(ζ) = 0. This is significant because one may
construct non-local activation functions resulting in non-local kernels whose convergence to
a k∞ is guaranteed based on the end-behaviour of α(·).

The continuous kernel flow can be modelled as follows. Recall that kν+1 = η(kν) ≈
η(kν−1) + η′(kν−1)(kν − kν−1). Setting ϕν := kν − kν−1 and subtracting kν from the first
approximation of kν+1 = η(kν) results in

ϕν+1 ≈ gν−1ϕν

log

(
ϕν+1

ϕν

)
≈ log(gν−1)∫

dϕ

ϕ
≈
∫ ν+1

ν
β(ϕ(t))dt

ϕ̇ ≈ β(ϕ)ϕ

∂tϕ = β(ϕ)ϕ ,

(36)
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Figure 6: Stationary first variation layer dynamics for α(·) = exp(−(·)2) with the circle over
different weight variances. L = 1 (blue, red), L = 5 (gold, purple), L = 50 (green, cyan).
Dots are numerical k with 1000 draws and lines are analytical k. (a) σw = 2, σb = 0. (b)
σw = 2.5, σb = 1.5. (c) σw = 1.5, σb = 2.5. (d) σw = 0.8, σb = 1.5.

where we claim that if we can find a β(ϕ(t)) satisfying the time integral between layers
ν and ν + 1 that reads

∫
β(ϕ)dt = log gν−1, the flow will be determined. Also, because

of the latter equation, β(ϕ) also determines the flow of g. Notice that if β is constant we
recover the time-one map, which is why log gν determines the interlayer dynamics up to
the critical points of η. Another candidate flow based on equation (34) and the maximum-
preserving property is ∂tη = |∇η|2 with ∇2η = 0 except at ω = 0, with maxima converging
exponentially according to (36) and the rest of the points as O(1/t).

As a final comment, for η-maps whose k∞ exists, it is known that such systems are
stable, meaning that the previous definition of classes of η-maps based on dilations of
known activation functions will converge to kernels near the originals (Katok and Hasselblatt
(1995)).
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Figure 7: Stationary first variation layer dynamics for α(·) = erf(·) with the circle over
different weight variances. L = 1 (blue, red), L = 5 (gold, purple), L = 50 (green, cyan).
Dots are numerical k with 1000 draws and lines are analytical k. (a) σw = 2, σb = 0. (b)
σw = 2.5, σb = 1.5. (c) σw = 1.5, σb = 2.5. (d) σw = 0.8, σb = 1.5.

6. Conclusion

We have reviewed how the difference between activation and basis functions leads to a
proof of covariance function composition if deep neural networks are modelled as dynamical
systems of stochastic fields. This, in turn resulted in defining a derivative of covariance
functions, whose maximum determines the convergence properties of the covariance function
under iterations with itself given a parameter initialisation variance pair. We established
that the initial deep network behaviour of a few analytical cases can be extended to other
cases where the covariance function of a particular activation function is unknown. This
reproduced the results of previous work on random network initialisation within this paper’s
framework and explained why they occur. We gave some conditions for the convergence of
the covariance function and showed that ReLu does not converge. Also, the evolution of the
covariance function and its first variation can be explained by kernel flow and is determined
by an operation β(ϕ). Future work will involve characterising covariance function flow even
for thin networks.
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