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ABSTRACT

Object-centric actions cause changes in object states, including their visual ap-
pearance and their immediate context. We propose a computational framework
that uses only two object states, start and end, and learns to recognize the under-
lying actions. Our approach has two modules that learn subtle changes induced
by the action and suppress spurious correlations. We demonstrate that only two
object states are sufficient to recognize object-centric actions. Our framework per-
forms better than approaches that use multiple frames and a relatively large model.
Moreover, our method generalizes to unseen objects and unseen video datasets.

1 INTRODUCTION

Objects in real world exists in different color, shape and structure. For instance, an apple can be red
or green, cut or peeled, raw or riped. Growing interest in object state transformations is still limited
to image based datasets such as Isola et al. (2015) and Yu & Grauman (2014), which study a set of
object-state transformations for edible objects and shoes. However, using objects states for videos
is still uncommon. In Fathi & Rehg (2013), actions are detected based on changes in object states.
Similar to Fathi & Rehg (2013), we hypothesize that most object-centric actions induce specific
changes in object states, where state includes object’s appearance and immediate context. Humans
are adept at identifying such actions simply based on the state transformations. In the commonsense
reasoning literature, this notion of state transformation is also known as fluent of an object Liu et al.
(2017); Fire & Zhu (2015); Mueller (2006), defined as the status of an object which varies over time.
For instance, a lemon’s fluent changes from whole→pieces over time, associated with cut action.

In this work, we propose a computational model that embodies the intuition of leveraging object
state transformations, or fluent of an object, to reveal the underlying action being performed. In
fact, we limit our focus to the question: Can we infer actions just from emphtwo distinct object
states – start and end? Note that we do not claim that more intermediate states will not be beneficial
for modeling transformations (e.g, see Wang et al. (2016b)). However, for object-centric actions,
we show that only using two states can outperform standard approaches using many more frames.
Moreover, prior works in action recognition domain Zhou et al. (2018a); Simonyan & Zisserman
(2014); Yang et al. (2020a) use training and test splits based on actions, i.e, for label cut apple,
few videos are part of train and some are testing videos. However, we focus to learn the action or
transformation of any object. Hence, we create dataset splits where for an action, objects are split
up as seen and unseen objects as training and test set respectively.

Firstly, our proposed method selects two bounding boxes, representing start and end states, and
then extracts their representations. Our manipulation module uses these representations and learns
a fluent representation used to classify actions. We use cooking video datasets: EpicKitchen55
Damen et al. (2018), YouCook2 Zhou et al. (2018b), and EpicKitchens100 Damen et al. (2020),
and firstly train on just EpicKitchen55 and show that our model can generalize to YouCook2 and
EpicKitches100. Second, we hold out several unseen objects for all actions while training and
generalize to transformations of these unseen objects in test set. We show that our approach is
able to improve performance for both object-manipulating and context-manipulating actions. To
summarize, our contributions are as follows: (a) developing a manipulation module with object
and context modules, that can understand object state changes, (b) demonstrating that amplifying
relevant information from just two states is enough to outperform architectures that use several
frames, and (c) demonstrating the generalization of our approach to unseen objects datasets.
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Figure 1: Our framework extracts start and end object states from the video. We use ResNet50 He
et al. (2016) pre-trained on ImageNet Deng et al. (2009) as our backbone network. We introduce
a novel framework to model object-transforming and context-transforming actions separately. The
context module learns the subtle changes and similarities in the object environment, i.e, context. The
object module focuses on the object states, rather than the context.

2 APPROACH

In this work, our goal is to recognize object-centric actions using start→end object state changes.
A state manipulation can correspond to object-manipulating actions that change object’s visual ap-
pearance and context-manipulating actions that change its context. Our approach is inspired by
attention correlation between labels and images Xu et al. (2021). Our Manipulation Module shown
in Figure 1 are designed to amplify similarity between these states to suppress spurious signals and
amplify the differences to leverage subtle changes between start and end states.

Currently, no video dataset exists with specific object states before and after an action. Hence, as
a pre-processing step, we first extract object states, or regions of the object in two distinct frames
before and after the action has been performed. More details of are in provided in the appendix A.
Once two distinct object states are captured, we propose our method using Manipulation Module,
as shown in Figure 1. Hence, the input to our model are the start (Is) and end (It) states. We use a
pre-trained deep neural network to extract features fs and ft (fs, ft ∈ Rn; n = 2048) from Is and
It, respectively. We then pass fs and ft through an FC layer with ReLU non-linearity to obtain gs
and gt (gs, gt ∈ Rn). The features gs and gt are then passed through the Manipulation Module for
further processing.

Our hypothesis is that the similarities and differences between deep features gs and gt capture the
manipulation in objects and its context. Hence, our manipulation module consists of -– Context
Module and Object Module. The object module captures and difference in object states, whereas
context module learns to amplify the subtle similarity between object’s context or environment that
can be used for classification. Both module take gs and gt as input to produce representations fc and
fo respectively. The two features fc and fo are then fused to produce the final representation. We de-
scribe one of the modules (the context module) in detail below and the other module is implemented
in a similar fashion with minor changes.

Context Module captures the similarity between the start and end states. We first take the outer
product of gs and gt denoted as O = gs ⊗ gt (O ∈ Rn×n). Element oi,j represents the similarity
between ith element of gs with jth element of gt. Moreover, let oi∗ and o∗j represent the ith row and
jth column of O respectively. Then, oi∗ captures the similarity of all the elements in gt with respect
to ith element of gs. To know the most similar element among gt with respect to ith element of gs,
we can take a row-wise softmax over O. Similarly, for jth element of gt, column o∗j represents
the similarity with all the elements of gs. Using a column-wise softmax, we can interpret the
most similar and least similar element of gs with respect to jth element of gt. Therefore, by applying
column-wise and row-wise softmax, we get two matrices, A and A′ (A,A′ ∈ Rn×n, n = 2048).

A[i, :] =
eγoi∗∑d
j=1 e

γoij
and A′[:, j] =

eγo∗j∑d
i=1 e

γoij
,
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Table 1: Quantitative results on Unseen Objects. This table summarizes results for actions on
objects not seen during training. (test set). All values are shown as mean with confidence interval
(95%) over 5 splits. In the table we highlight the best and second best result in bold+underline and
underline respectively.

Network
Input Method

All Actions Object Transforming Actions Context Transforming Actions
Acc. Mean Acc. Acc. Mean Acc. Acc. Mean Acc.

8 Frames
TRN Zhou et al. (2018a) 31.49 ± 2.2 7.16 ± 1.5 18.89 ± 6.0 7.24 ± 1.6 44.87 ± 7.1 7.07 ± 1.6
TPN Yang et al. (2020a) 35.60 ± 4.1 8.78 ± 1.3 28.61 ± 9.4 8.59 ± 2.1 41.36 ± 8.7 7.42 ± 2.5

3 Frames
TRN Zhou et al. (2018a) 29.78 ± 2.5 7.38 ± 2.8 16.26 ± 6.7 6.26 ± 2.1 44.16 ± 7.7 8.50 ± 4.0
TPN Yang et al. (2020a) 30.59 ± 0.7 7.16 ± 1.5 18.83 ± 9.2 7.44 ± 2.4 41.14 ± 12.2 6.86 ± 1.5

8 Objects
TRN Zhou et al. (2018a) 28.75 ± 2.5 7.53 ± 1.6 15.34 ± 5.9 6.35 ± 1.7 42.91 ± 7.0 8.71 ± 2.3
TPN Yang et al. (2020a) 34.92 ± 2.6 9.22 ± 2.7 27.65 ± 6.8 8.51 ± 2.3 41.98 ± 5.6 7.93 ± 3.3

3 Objects
TRN Zhou et al. (2018a) 27.86 ± 3.2 7.83 ± 2.5 16.70 ± 4.7 7.35 ± 1.6 39.68 ± 7.8 8.31 ± 3.5
TPN Yang et al. (2020a) 28.84 ± 3.8 6.58 ± 2.5 12.30 ± 9.8 5.65 ± 4.0 45.95 ± 14.9 7.50 ± 1.6

2 Objects

Fathi et al. Fathi & Rehg (2013) 30.59 ± 1.1 8.17 ± 1.7 26.97 ± 2.6 8.81 ± 1.1 34.00 ± 3.5 7.53 ± 2.3
MaxpoolResFeats 28.37 ± 4.1 9.70 ± 1.7 18.88 ± 2.1 8.56 ± 1.8 38.47 ± 9.3 9.19 ± 2.9
ConcatResFeats 35.71 ± 0.7 9.83 ± 1.3 27.30 ± 4.5 7.40 ± 2.7 42.56 ± 6.6 8.37 ± 1.0
Ours 38.83 ± 1.4 10.08 ± 1.6 29.29 ± 8.0 8.96 ± 2.9 47.70 ± 7.7 10.79 ± 1.4

where γ is the inverse temperature parameter. We compute row and column sum for A and A′

respectively, to get raw state masks, mt and ms in Eq.1 To get the final masks, we normalize with
ReLU (Eq.2). We compute the final representation fc of the context module in Eq. 3, where ⊙ is
the elementwise multiplication and W ∈ R2n×n and b ∈ Rn.

m̂t
j =

d∑
i=1

Aij and m̂s
i =

d∑
j=1

A′
ij . (1)

ms = ReLU(m̂s − E[m̂s]) and mt = ReLU(m̂t − E[m̂t]) (2)

fc = WT ([ms ⊙ gs;mt ⊙ gt]) + b (3)

Similarly, we can get the object representation fo, except instead of using similarity between states
(A and A′), use distance measure (D and D′) computed as

D = 1./A and D′ = 1./A′

where 1./∗ is the element-wise inversion of matrices. The final representation is the output of max-
pooling of fc and fo. We train using a linear classifier in an end-to-end fashion using softmax
Cross-Entropy loss function.

3 EXPERIMENTS AND RESULTS

3.1 DATASET AND EVALUATION

We use Epic-kitchens-55 (EK-55) Damen et al. (2018) which has kitchen activities captured with
an egocentric camera. Among all actions, only 13 actions are object-transforming and 30 actions
are context-transforming. In total, we use 7342 videos, 2120 for object-transforming and 5222 for
context-transforming actions. We create five train/val/test splits of the dataset and report the mean
performance across splits. Each split has all 13 object-transforming actions and randomly chosen
13 context-transforming actions. Note that the test set, referred to as ‘unseen object-actions’ in each
split contains actions involving objects unseen during training. We report overall accuracy and Mean
accuracy. More details are provided in appendix A.

3.2 QUANTITATIVE RESULTS

We compare our model with two types of action recognition models:
Spation-temporal Baselines. Our setup is RGB based, hence we compare with the best RGB-only
model for action recognition Yang et al. (2020a); Zhou et al. (2018a). TPN Yang et al. (2020a)
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Figure 2: We show qualitative results for (a) Epic-Kitchen 100 Damen et al. (2020) and (b)
Youcook2. We show top 5 predictions for object manipulating actions: empty, fill, open, peel,
cut, close, and context manipulating actions: fold, wash, mix, add.

shows state-of-the-art results on multiple datasets, including EK-55. TPN Yang et al. (2020a) cap-
tures visual temporal scales of different actions. TRN Zhou et al. (2018a) accounts for relationship
between frames at multiple scale (2,3,4 and 8). Both models use minimum of 3 frames, and finally
consolidate the relationships between all frames. We use 3 and 8 frames for these models, with
TSN Wang et al. (2016a) based sampling frames. We also train these baselines for with 3 and 8
object states, to compare with our 2 objects states setup.
Object States Baselines. We compare with three other baselines which use exactly as input as ours,
i.e, 2 object states. Fathi et al. Fathi & Rehg (2013). detect changing regions in video and train
SVMs for each action. We use our implementation for Fathi & Rehg (2013), with deep features
for regions to replicate the results. We propose two more object states baselines: MaxpoolResFeats
uses maxpool(fs,ft) and ConcatResFeats uses concatenation(fs, ft) for action classification.
Note that we follow the notation explained in section 2, where fs and ft are ResNet features for
start and end states. For a fair comparison, these object states baseline models have around the
same number of trainable parameters as our model.

To keep it consistent with TPN Yang et al. (2020a) and TRN Zhou et al. (2018a), we use
ResNet50 He et al. (2016) as our backbone network and all setups follow three-crop testing eval-
uation protocol. The results are reported in Table 1 for unseen object actions (test set). For 5
different splits for action classes, we denote the final accuracy as mean and confidence interval with
95% confidence, for object-transforming and context-transforming actions separately as well. Our
model outperforms all the baselines for 3 and 8 frames and bounding boxes setup, not only on ma-
jority classes but also performs better for minority classes (Table 1). We show the of our object
and context modules for capturing the similarity and dissimilarity, to significantly improve object-
transforming actions, as compared to using max of ResNet features (MaxpoolResFeats baseline) and
concatenation baseline.

3.3 ABLATION STUDIES

We also do an ablation study on one of the validation set split (Seen object actions), to justify our
architectural choices Table 2.
Object Baselines: Using only ResNet features for action recognition, either maxpool (Maxpool-
ResFeats in Table 2) or concatenation (ConcatResFeats) of object states, also performs better than 3
and 8 frames models.
(start→end) Attention: This is akin to using a single module between start and end states. We use
a non-spatial attention block, inspired by Wang et al. (2018); He et al. (2020). More details on how
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Table 2: Ablation analysis on Seen Objects. We show how our amplifiers and separate modeling
of object-transforming and context-transforming actions help in object-centric action recognition.
All the experiments are done on split1. In the table we highlight the best and second best result in
bold+underline and underline respectively.

All Actions Object Transforming Context Transforming
Acc. Mean Acc. Acc. Mean Acc. Acc. Mean Acc.

ConcatResFeats 65.9 23.23 72.4 27.56 48.89 18.49
MaxPoolResFeats 51.86 22.75 56.80 30.78 42.39 18.12
(start→end) Attention Wang et al. (2018) 58.17 20.95 65.60 23.69 39.39 16.22
Module Alternate 60.74 24.06 64.01 29.62 48.52 18.12
Our Approach 68.77 25.39 76.40 33.21 49.49 18.96

this attention is different than our method are in appendix. This setup shows we need different ways
to amplify context and object features between start and end states.
Module Alternative: For understanding the significance of our proposed Manipulation Module,
we model object manipulating actions as difference between features for object states and mean of
features for context transforming actions. Fusion of the two is done in the same way with maxpool.
This experiment shows need for two separate object and context modules.

3.4 QUALITATIVE RESULTS

We show qualitatively how our method performs on out-of-domain data, such as Epic Kitchens-
100 Damen et al. (2020) and YouCook2 Zhou et al. (2018b). Although, our state detector only finds
a limited set of seen objects for these datasets, we achieve, 65.60% Top1 accuracy and 90.10% Top5
accuracy for Epic Kitchens-100, for unseen and seen actions. Some examples of correctly classified
actions are shown in Figure 2. Note that these samples are classified correctly by our model among
top 5 predictions.

4 CONCLUSION

We presented a framework for recognizing object-centric actions using object states. We show
that by leveraging object states object-manipulating and context-manipulating actions can be learnt.
We propose a novel manipulation module, with object and context blocks, that capture the subtle
similarities and differences between object states. We also show generalization to unseen objects
and out-of-domain datasets. In future work, we intend to extend object states for procedure planning
and action segmentation.
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A APPENDIX

A.1 RELATED WORK

The study of object states and how they transform from one to the other has recently garnered interest
in the computer vision community Isola et al. (2015); Yu & Grauman (2014); Nagarajan & Grauman
(2018); Chen et al. (2020); Nan et al. (2019); Atzmon et al. (2020); Yang et al. (2020b); Misra et al.
(2017); Wei et al. (2019); Bertasius & Torresani (2020); Liu et al. (2017); Fire & Zhu (2015); Zhou
& Berg (2016). Understanding these states could enable an object recognition system to generalize
better to unseen states, as studied in Bertasius & Torresani (2020); Misra et al. (2017). However,
most studies have focused on image-based datasets Isola et al. (2015); Yu & Grauman (2014); Misra
et al. (2017), where the goal is to capture the underlying distribution of states (e.g, different sizes
of heels in shoes, old and new laptops). Some of these states are just attributes of objects (e.g,
red car and blue car) and are generally static over time; whereas other states are transformations of
objects over time (e.g, raw→ripe, whole→pieces, on table→on plate). These different types of states
provide very different information. In this work, we leverage the state transformations that happen
over time for understanding transforming actions. For the rest of this paper, we will refer to changes
in object states (including visual appearance and context) over time as object state transformations.

For action recognition, most modern approaches can be grouped into two categories: (a) models
utilizing temporal and spatial convolutions over videos to classify the actions Girdhar et al. (2017);
Simonyan & Zisserman (2014); Feichtenhofer et al. (2016); Karpathy et al. (2014); Lin et al. (2019);
Wang et al. (2016a); Yang et al. (2020a); Zhou et al. (2018a), and (b) models which rely on human-
object interactions over time to recognize actions Gupta et al. (2009); Khan et al. (2012); Shen et al.
(2018); Wu et al. (2019); Tan et al. (2019); Xiao et al. (2019). In both categories, the focus is
generally to leverage as much temporal information as possible; this is evident with the focus on
recent works to utilize as many frames as computationally feasible to understand actions.

Similar to our approach, Bakr et al. (2019); McCandless & Grauman (2013); Fathi & Rehg (2013)
propose using state transformations for action recognition; e.g, Bakr et al. (2019) uses five key-
frames for modeling transformations for action recognition. Closest to our approach is the work of
Fathi and Rehg Fathi & Rehg (2013), which also uses two object bounding boxes as states for action
recognition. However, our approach explicitly amplifies affinity and differential signals between
states to extract fluent representations, which are used for action recognition.

A.2 DATASET SPLITS EXTENSION

We use Epic-kitchens-55 (EK-55) Damen et al. (2018) as our primary dataset. EK-55 has kitchen
activities captured with an egocentric camera. In total, it has 352 sparsely annotated bounding boxes
for objects and 125 actions. Among all actions, only 13 actions are object-transforming and 30
actions are context-transforming. We choose these actions such that each action has atleast 40 videos
in total. Our subset is also impacted by pre-processing step (object bounding boxes detection), since
we require two bounding boxes of the object of interest either from the detector or the ground truth.
This drastically reduces the number of videos with a long-tailed distribution over the classes. In
total, we use 7342 videos, 2120 for object-transforming and 5222 for context-transforming actions.

Due to imbalanced number of object-manipulating and context-manipulating actions, we create five
train/val/test splits of the dataset and report the mean performance across splits. Each split has all
13 object-transforming actions and randomly chosen 13 context-transforming actions. The test set
in each split contains actions involving objects unseen during training. This is different from the
typical test set provided for EK-55 Damen et al. (2018). We argue that using those splits do not
provide evaluation of the model learning actions or latching onto object features. Therefore, by
having different objects in train and test set inspired by Nagarajan & Grauman (2018), we ensure
that the model learns the action, and does not rely only on object visual features. We refer to test set
as “unseen object-actions” and validation set as “seen object-actions” set.

A.3 PREPROCESSING: EXTRACTING OBJECT STATES

As discussed above, analyzing object state provides useful information for inferring actions. For
this purpose, we first identify two frames in a video, one before and the other after the action has
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Table 3: Quantitative results on Seen Objects. This table summarizes results for seen object
actions (validation set). All values are mean with confidence interval (95%). In the table we highlight
the best and second best result in bold+underline and underline respectively.

Network
Input Method

All Actions Object Transforming Actions Context Transforming Actions
Acc. Mean Acc. Acc. Mean Acc. Acc. Mean Acc.

8 Frames
TRN Zhou et al. (2018a) 48.20 ± 2.0 11.68 ± 1.6 47.20 ± 7.0 14.18 ± 1.9 48.20 ± 7.1 9.07 ± 2.1
TPN Yang et al. (2020a) 56.13 ± 5.2 14.11 ± 1.8 13.01 ± 11.4 18.42 ± 3.2 49.67 ± 9.4 9.60 ± 3.2

3 Frames
TRN Zhou et al. (2018a) 45.68 ± 5.4 12.27 ± 4.8 44.16 ± 8.3 13.90 ± 3.7 47.50 ± 8.3 10.62 ± 6.2
TPN Yang et al. (2020a) 35.70 ± 2.0 8.63 ± 1.0 32.64 ± 7.0 11.05 ± 3.0 39.52 ± 10.1 6.09 ± 1.0

8 Objects
TRN Zhou et al. (2018a) 57.50 ± 1.6 17.90 ± 2.9 56.16 ± 2.8 20.77 ± 2.5 59.26 ± 3.0 14.76 ± 3.7
TPN Yang et al. (2020a) 59.92 ± 2.9 17.00 ± 4.8 65.28 ± 4.6 21.90 ± 4.6 50.84 ± 5.6 11.58 ± 5.4

3 Objects
TRN Zhou et al. (2018a) 45.95 ± 3.8 13.62 ± 3.8 44.88 ± 8.9 15.36 ± 5.3 46.29 ± 6.4 11.86 ± 5.5
TPN Yang et al. (2020a) 34.48 ± 6.3 8.57 ± 3.5 23.28 ± 15.1 8.97 ± 6.1 50.31 ± 8.0 8.38 ± 1.6

2 Objects

Fathi et al. Fathi & Rehg (2013) 55.93 ± 0.9 15.34 ± 3.1 61.12 ± 1.7 20.15 ± 4.8 46.30 ± 3.4 10.26 ± 1.6
MaxpoolResFeats 56.80 ± 1.0 18.47 ± 8.2 56.48 ± 2.4 21.35 ± 9.9 56.57 ± 5.9 14.40 ± 7.0
ConcatResFeats 66.08 ± 0.9 18.80 ± 2.5 70.30 ± 1.5 22.96 ± 4.1 57.87 ± 4.3 15.26 ± 2.5
Ours 68.36 ± 1.5 20.50 ± 2.8 71.84 ± 2.4 24.91 ± 2.1 61.36 ± 7.0 16.00 ± 3.9

been performed, corresponding to different states of the object. We choose the highest confidence
bounding box, extracted using an object detector, of the object of interest from each frame as the
inputs to our model. We refer to these two regions as start and end states.

In particular, we leverage the temporal annotations provided with the video to identify clips where
the action is performed. We extract bounding boxes using an object detector on the first N frames
of the first clip and the last N frames from the last clip, and choose the box with highest class
confidence score for the object under consideration as start and end states, respectively.

A.4 IMPLEMENTATION DETAILS

We use ego-centric kitchen video dataset, Epic-Kitchen-55 (EK-55) Damen et al. (2018) for training.
This dataset provides temporal action localization labels and has object-centric actions. Each video
can have multiple clips of same object-action pair. We consider first and last clip for the same object-
action in proximity, so that accurate start and end states are captured for objects. After merging the
first and last clips from the video, we use one merged clip for each object-action pair from a video.

For extracting object states, use a Faster-RCNN Ren et al. (2015) detector, pre-trained on EK-
55 Damen et al. (2018), which has sparsely annotated ground truth bounding boxes for 295 object
classes. We apply it on two sets of images from an object-action clip with 30fps: first and last 20
frames. From each set, the object’s bounding box with the highest confidence is chosen, which
should be higher than 65%. This gives use start and end object states. Features are extracted using
ResNet50 He et al. (2016) pretrained on ImageNet Deng et al. (2009) from the penultimate layer,
and are of dimensions 1 × 2048. Extracted features are then passed through our fluent Attention
module, and classified for all actions. For our model, we use learning rate 1e-5, Adam optimizer
and ReLU activation. Since our dataset follows long-tail distribution, we use weighted cross-entropy
loss over the actions. We empirically choose a temperature value as 100. We use L2-normalization
on output of both context and object, before fusion.

A.5 RESULTS AND ABLATION

We also show results on seen object in Table 3. Similar to unseen objects, our model outperforms
previous models with a margin for all categories.

(start→end) Attention: We use a non-spatial attention block, inspired by Wang et al. (2018); He
et al. (2020). Given an input feature (start/end state, denoted as gs/gt), three linear projections are
applied to compute query (q) with respect for before state gs, and key (k) and value (v) with respect
to after state gt. The attention (a) is weighted sum of value representation, where the weight (M ) is
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dot product between the query and the corresponding key, followed by a softmax normalization as

M = softmax
(

qkT

λ

)
a = Mv
o = gs +BatchNorm(a)

where o represents attention output for start state with respect to end state, and λ is the temperature
parameter. Note that gs, q, k, v, o, a ∈ Rn;M ∈ Rn×n, where n = 2048. This experiment shows
we need different ways to amplify similarities and differences between start and end states.
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