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Abstract

Learning from human preference data has emerged as the dominant paradigm
for fine-tuning large language models (LLMs). The two most common families
of techniques – online reinforcement learning (RL) such as Proximal Policy
Optimization (PPO) and offline contrastive methods such as Direct Preference
Optimization (DPO) – were positioned as equivalent in prior work due to the
fact that both have to start from the same offline preference dataset. To further
expand our theoretical understanding of the similarities and differences between
online and offline techniques for preference fine-tuning, we conduct a rigorous
analysis through the lens of dataset coverage, a concept that captures how the
training data covers the test distribution and is widely used in RL. We prove that
a global coverage condition is both necessary and sufficient for offline contrastive
methods to converge to the optimal policy, but a weaker partial coverage condition
suffices for online RL methods. This separation provides one explanation of why
online RL methods can perform better than offline methods, especially when the
offline preference data is not diverse enough. Finally, motivated by our preceding
theoretical observations, we derive a hybrid preference optimization (HyPO)
algorithm that uses offline data for contrastive-based preference optimization and
online unlabeled data for KL regularization. Theoretically and empirically, we
demonstrate that HyPO is more performant than its pure offline counterpart DPO,
while still preserving its computation and memory efficiency.

1 Introduction
Due to the difficulty of manually specifying reward functions for complex tasks [7], preference-based
learning has emerged as a critical component in the fine-tuning procedure for large language models
(LLMs) [40, 30, 45, 44]. There are two predominant flavors of preference learning for LLMs: online
reinforcement learning (RL) methods such as PPO [11, 30] and offline contrastive methods like
Direct Preference Optimization (DPO) [33] and Identity Preference Optimization (IPO) [3].

Online RL methods usually follow the two-stage procedure prescribed in [30]: one first trains a
reward model (classifier) on a fixed offline preference dataset before using it to provide reward labels
for on-policy generations, which are then fed to a downstream RL algorithm like Proximal Policy
Optimization (PPO) [36]. Since the reward model is learned from static offline preference data, to
avoid over-optimizing the reward model [17], one typically adds a reverse KL penalty to encourage
the model to stay close to some reference policy. We will refer to this procedure as reinforcement
learning from human feedback (RLHF) in this paper. While empirically performant, RLHF requires
repeated querying of the reward model (which is often itself an LLM) as well as sampling from
the current policy. In response to the computational expense and relatively complex nature of this
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procedure, purely offline methods like DPO [33] and IPO [3] have been proposed as alternative
methods for preference fine-tuning. These methods do not need to fit separate reward models, instead
opting to simply train the policy directly on the offline preference dataset via a ranking loss.

Offline contrastive methods like DPO are usually derived via applying a reparameterization trick
to the closed-form solution of the minimum relative entropy problem [63] that RLHF techniques
attempt to approximate. Thus, several authors have described these methods as equivalent (at least
in theory) to the standard RLHF procedure [33, 3]. However, recent (mostly empirical) work has
contradicted this perspective: [43] find that online methods out-perform offline methods and attribute
this fundamentally to on-policy sampling, [55] argues that the online RL methods produce an often
desirable subset of the possible DPO loss minimizers, and [42] provide empirical support for the
claim that online and contrastive training provide orthogonal benefits. However, a rigorous theoretical
separation is still lacking in the pre-existing literature, which motivates our key questions:

What is the statistical separation between the online RLHF method and offline
contrastive methods? What causes this separation and what does it imply?

To answer these questions, we focus on the coverage of the preference dataset, a key concept that
is widely used in RL [22, 28, 58] for analyzing the impact of offline or exploratory data distributions.
Through the lens of coverage of the offline preference dataset, we make the following contributions:

• We prove that the global coverage condition [28], the strongest possible coverage condition in RL, is
necessary for offline contrastive algorithms like DPO to converge to the optimal policy. In contrast,
we identify a weaker local coverage condition that is sufficient for online RLHF algorithms, thus
provably separating the two types of algorithms. The separation is due to the difference in reward
modeling and on/offline regularization – in short, there is no free lunch from bypassing explicit
reward learning and online rollouts. As global coverage might sometimes be violated in practice, our
separation result can perhaps explain why RLHF works better than offline methods [42, 43, 56].

• Although offline contrastive methods are derived from a reverse-KL objective, we prove that the
policies trained via offline methods can still have infinite reverse-KL in the partial coverage setting.
In contrast, we show that RLHF can always control the reverse KL via directly optimizing reverse
KL using online samples. This means that on realistic problems, RLHF has stronger guarantees for
remaining close to the reference policy than offline contrastive methods.

• We propose Hybrid Preference Optimization (HyPO) to address the deficiencies of offline contrastive
methods while maintaining some of their computational simplicity. HyPO is a hybrid RL algorithm
[51, 39] where offline data is used for the DPO objective while online samples are used to explicitly
control the reverse KL divergence to the reference policy. We empirically demonstrate that HyPO
outperforms DPO, on the TL;DR summarization task [40] on all metrics including both the GPT4
win-rate and the reverse KL divergence to the reference policy, and on general chat benchmarks such
as AlpacaEval 2.0 [15], trained with the UltraFeedback dataset [14]. In addition, HyPO also mitigates
the overfitting issues observed in the offline constrastive based methods [43].

• We provide an explanation of why RLHF and offline contrastive methods decrease the probability
of both preferred and rejected responses during training. In particular, under our function
approximation-based global coverage condition, we show that such behavior is actually desirable
for DPO and RLHF policies to extrapolate and generalize to optimal actions that do not appear
in the training dataset. However, without function approximation, algorithms like DPO can
mistakenly increase the likelihood of sub-optimal actions. This establishes the importance of function
approximation for the success of the algorithms such as DPO.

Taken together, our results establish the critical role coverage plays in terms of convergence properties
of preference learning algorithms as well as in the design of new, performant empirical approaches.

2 Related Work
Preference Fine-Tuning (PFT). As discussed in the introduction of our work, there are two major
paradigms for preference fine-tuning of LLMs. The first one, online RL methods [30], proposes
to first train a reward model (classifier) to predict human preferences, followed by running an RL
method to optimize this learned reward function. While PPO [36] is the most popular RL algorithm
used in the online RLHF framework by far [40, 30, 45], more recent work by [1] shows that simpler
online RL algorithms like REINFORCE [48] also work well. The second class of methods, offline
contrastive techniques [60, 33, 3], avoid explicit reward modeling and directly optimize their
objective on the offline preference dataset. Recently there are hybrid methods that combine offline
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preference data with online preference labels [52, 19, 35, 3] – we leave extending our analysis to this
setting to future work. Throughout our paper, we assume for simplicity of analysis that preferences
are generated by an underlying utility function and therefore contain no intransitivities [29, 41].

Understanding PFT. Prior work has studied different parts of the standard RLHF recipe [17, 23,
38, 16] and the impact of preference data quality [37]. In our work, we instead take a converge-based
perspective on the relationship between online RL methods and offline contrastive methods. Although
derived from the same minimum relative entropy objective [63] and perceived as equivalent by some
early work [33, 3], more recent work has started to unravel the distinctions between these two classes
of methods. [43] repeatedly observe better performance from online rather than offline methods and
after rigorously validating a variety of hypotheses, conclude that on-policy sampling is indispensable
for ensuring a high quality policy. [42] perform an in-depth study of the effects of preference data,
contrastive losses, and on-policy sampling and conclude that a combination of contrastive losses and
interactive training is most preferable in practice. [55] also observe better performance from online
PPO than from offline DPO and argue this is because the former is able to eliminate a larger set of
policies that are undesirable from the perspective of the later. We supplement these mostly empirical
observations with a rigorous theoretical explanation for the observed behavior through the lens of
dataset coverage, as well as designing an algorithm that addresses the key weaknesses of offline
contrastive approaches.

We defer additional related works to Appendix A.

3 Preliminaries
Following a wide range of recent works [33, 3], we consider the RLHF problem in the contextual
bandit formulation [25]. This is a reasonable simplification, as one can consider the generated
sequence of tokens as one single action, due to the fact that the states are the generated tokens,
and the dynamics are deterministic. We denote the context (prompt) space as X , and the action
(response) space as Y . Note that due to the finiteness of the possible tokens, the action space is
finite but combinatorially large. We use ρ ∈ ∆(X ) to denote the distribution of the prompts, and
π : X → ∆(Y) as policies (LLMs) that map prompts to a distribution of responses. We also consider
the reward function class R : X × Y → R, which assigns a reward to each context-response pair.

We assume access to a reference policy πref , which is usually referred to as the policy learned using
supervised data when training the LLM, that needs to be further fine-tuned to align with human
values. An offline preference dataset is collected in the format of D = {x, y+, y−} triplets: given
context x ∼ ρ, the preference policy samples two responses y1, y2 ∼ µ(· | x), where µ is the offline
response distribution. Previous works assume either µ to be the same distribution as πref [33] or
different offline distribution [3, 35, 18]. Then, y1 is labelled as y+ (thus y2 as y−) with probability
p∗(y1 ≻ y2 | x), where p∗ is defined by the Bradley-Terry model [6]:

p∗(y1 ≻ y2 | x) = exp(r∗(x, y1))

exp(r∗(x, y1)) + exp(r∗(x, y2))
,

where r∗ is the human’s implicit reward function. Note that this rules out intransitive preferences
[41, 29]. Throughout the paper, we will make the following assumption on the reward function:
Assumption 3.1 (Boundedness of the reward). ∥r∗∥∞ ≤ R.

In many previous works, this formulation has been the canonical way to model the preference data in
the RLHF literature [11, 33, 3]. The goal is to learn a policy π to maximize the objective J(π), where

J(π) = Ex∼ρ

[
Ey∼π(·|x)[r

∗(x, y)]− βKL(π(· | x)||πref(· | x))
]
, (1)

i.e., we want to both maximize the human implicit reward, and not deviate too much from
the reference policy. We denote the optimal policy π∗ ∈ argmaxπ∈Π J(π). Here we call
KL(π(· | x)||πref(· | x)) reverse KL because π – the policy to be optimized, appears first. We will
call KL(πref(· | x)||π(· | x)) forward KL. By the definition of KL, we have

Definition of reverse KL: KL(π(· | x)||πref(· | x)) := Ey∼π(·|x)[ln(π(y|x)/πref(y|x))]. (2)

Note that the expectation in reverse KL is under π, indicating that evaluating and optimizing reverse
KL requires drawing online samples from π. In contrast, evaluating forward KL only requires offline
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samples drawn from πref . As we will show, this key difference between reverse KL and forward
KL plays an important role of separating online RLHF and offline contrastive methods such as
DPO. In this paper, we consider two types of algorithms: online RL-based algorithms, and offline
contrastive-based algorithms.

Online RLHF Algorithms. We consider algorithms such as [11, 1] as the online RL based methods.
We abstract these algorithms as the following procedure: the algorithm performs the following two-
stage procedure: one first trains a reward model r̂ that minimizes the Bradley-Terry loss 1

r̂ ∈ argmax
r∈R

Êx,y+,y−∼D

[
log

(
exp(r(x, y+))

exp(r(x, y+)) + exp(r(x, y−))

)]
, (3)

and perform policy optimization (such as PPO [36]) to optimize the policy with the reward model r̂:

πrlhf ∈ argmax
π

Êx∼D
[
Ey∼π(·|x)[r̂(x, y)]− βKL(π(· | x)||πref(· | x))

]
.

However, this policy optimization step requires extensive online sampling, and possibly training an
additional critic model (e.g., PPO), in addition to the reward model and policy.

Offline Contrastive Algorithms. To circumvent the above-mentioned computational burden,
several purely offline contrastive-based methods (i.e., without RL) have been proposed. In this
paper, we focus on the following two most representative methods. The first is Direct Preference
Optimization (DPO) [33], where the objective is πdpo ∈ argmaxπ ℓdpo(π) with

ℓdpo(π) = Êx,y+,y−∼D

log
 exp

(
β log

(
π(y+|x)
πref(y+|x)

))
exp
(
β log

(
π(y+|x)
πref(y+|x)

))
+ exp

(
β log

(
π(y−|x)
πref(y−|x)

))
. (4)

Another offline contrastive method we will discuss in our paper is Identity Preference Optimization
[3], but we will defer its technical details to the appendix.

4 Offline Contrastive Methods Require a Stronger Coverage Condition than
Online RL Methods

We start by introducing the mathematical formulation of the coverage framework. The strongest
coverage condition is the following global coverage condition [28]: we say any offline distribution µ

covers a policy π if we have maxx,y:ρ(x)>0
π(y|x)
µ(y|x) ≤ Cglo. Throughout this section, we will adopt the

setting where µ = πref [33]. Formally, we assume the following condition:
Assumption 4.1 (Global Coverage). For all π, we have

max
x,y:ρ(x)>0

π(y | x)
πref(y | x)

≤ Cglo.

For the coverage terms, we always adopt the convention that 0
0 = 0. Note that one sufficient condition

for this assumption is that, for any prompt x, and any token sequence y, we have πref(y | x) ≥ 1/Cglo.

As has been recognized in the offline RL literature, global coverage is a strong assumption, and
efforts have been made to circumvent this assumption with more relaxed coverage conditions
[46, 10, 58]. In this paper, we will consider the following partial coverage assumption that is weaker
than Assumption 4.1:
Assumption 4.2 (Local KL-ball Coverage). For all εkl < ∞ and all policy π such that
Ex∼ρ[KL(π(· | x)||πref(· | x))] ≤ εkl, we have

max
x,y:ρ(x)>0

π(y | x)
πref(y | x)

≤ Cεkl .

Note that Cεkl depends on εkl. This coverage notion is relatively new in the RL literature and only
appeared in previous analysis of RLHF algorithms [9]. We call this local coverage condition since
it only requires πref to cover the policies that is within some KL-divergence ball centered at πref .
The intuition of this assumption is, for any algorithm that can control the reverse KL of the output
policy, we can leverage the coverage condition to relate the error under the output policy to its error
under the offline distribution, and thus guarantee its performance. Finally, we note that since the
policies with bounded KL is a subset of all policies, for a fixed πref , we always have Cεkl ≤ Cglo.

1We use Ê to denote the empirical expectation over the dataset.
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Remark 4.1. Taking a closer look at Assumption 4.2, we can see that this assumption is always
true in the sense that for any policy with εkl < ∞, maxx,y:ρ(x)>0

π(y|x)
πref(y|x) < ∞, i.e., Cεkl < ∞, for

any εkl. However, while being bounded, Cεkl can be large. Indeed a simple calculation can show
that maxx,y:ρ(x)>0

π(y|x)
πref(y|x) can be as large as maxx,y:π(y|x)>0 exp

(
εkl

π(y|x)

)
. This can be undesirable

because this suggests bounded reverse KL itself is not enough to guarantee optimality: the error can
have an exponential amplification when switching from πref to π. Thus this motivates Assumption
4.2, which assumes that Cεkl is reasonably small.

In what follows, we will show that the global coverage assumption (Assumption 4.1) is necessary for
offline contrastive-based algorithms such as DPO and IPO, but partial coverage assumption such as
Assumption 4.2 is sufficient for online RL based algorithms. This establishes a separation between
the two types of algorithms. We emphasize this theoretical separation explains why in practice online
methods is less prone to problems such as reward hacking and producing out-of-distribution responses
that are due to dataset with insufficient coverage.

4.1 Global Coverage is Necessary for Offline Contrastive Algorithms

Failure of DPO Under Partial Coverage. Now we show that if the strong coverage Assumption
4.1 breaks, then DPO can not guarantee any performance with respect to the objective function Eq.
(1). The intuition is based on a rather common observation of the DPO algorithm: the DPO policy
πdpo may generate out of distribution responses, while in contrast, RLHF does not generate responses
outside of the support of πref due to online reverse-KL constraint. For example, [55] provides a
construction where πdpo chooses a response where RLHF policy assigns 0 mass, thus proving that
RLHF policies are a subset of DPO policies.

However, such construction assumes that the reward learning procedure of DPO makes arbitrarily
large errors. Also, previous constructions assume deterministic preference, which is only true if the
underlying reward function is unbounded. This violates the natural assumption of Assumption 3.1. In
the following, we relax these constraints and thus show that DPO fails to guarantee any performance in
a rather strong sense. Concretely, DPO constructs the following implicit reward class with the policy
class Π: Rdpo =

{
β log

(
π(y|x)

πref(y|x)Z(x)

)
| π ∈ Π

}
, where Z(x) is a partition function that maps con-

text to a real number and is independent of y. Plugging this formulation into the BT loss (Eq. (3)) re-
covers exactly the DPO loss (Eq. (4)) as the partition functions are canceled. Now we can characterize
the returned policy by DPO as exactly whose corresponding reward function is accurate in distribution:

Assumption 4.3 (In Distribution Reward Learning). We assume the DPO policy πdpo satisfies that:

Ex,y∼ρ◦πref

[(
β log

(
πdpo(y | x)

πref(y | x)Z(x)

)
− r∗(x, y)

)2
]
≤ εdpo.

Note that this is a rather strong assumption for BT loss – by Lemma B.2, at best one can only hope:
for any learned reward function r̂, for each context x, there exists a constant c(x) such that

Ex,y∼ρ◦πref

[
(r̂(x, y)− r∗(x, y)− c(x))

2
]
≤ ε, (5)

i.e., the reward model predicts the human reward up to a gap that is independent of y. This is due to the
fact that BT loss only requires the reward function to capture the relative difference, or in other word,
any constant shift (with respect to context) in the reward will be canceled in the BT loss. However,
for the rest of the section, we will make the stronger learning assumption that the gap c(x) = 0 (such
as in the case of Assumption 4.3). Previous counterexamples analysis violates this assumption, but
we will show that even under this strong assumption, DPO still can not guarantee any performance.

Proposition 4.1. Denote πref as any reference policy such that Assumption 4.1 breaks. Let Πdpo be
the set of DPO returned policies such that Assumption 4.3 holds. Then there exists policy π ∈ Πdpo
such that J(π) = −∞.

Proof sketch. Without loss of generality, we consider a promptless setting, and assume that the
response space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref only covers y1
and y2, and thus Assumption 4.1 breaks. We assume partition function Z = 1 for all π but we will be
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rigorous in the formal proof. Then consider the following policy π such that

β log

(
π(y1)

πref(y1)

)
= r∗(y1)−

√
εdpo, and β log

(
π(y2)

πref(y2)

)
= r∗(y2)−

√
εdpo,

One can check π satisfies Assumption 4.3. Now consider the optimal policy π∗(yi) =

πref(yi) exp
(

1
β r

∗(yi)
)

, for i ∈ {1, 2}, and π∗(y3) = 0. Since π∗(y1) + π∗(y2) = 1, combining ev-
erything we get π(y3) > 0, which implies KL(π||πref) is unbounded, thus we complete the proof.

One can first relate the above construction to the parital coverage assumption Assumption 4.2: since
the policy π considered in the proof has unbounded reverse KL with respect to πref , thus it is not in
the KL-ball of εkl around πref , which implies that Assumption 4.2 is not sufficient for DPO. Next we
show that global coverage is necessary for the IPO algorithm.

Failure of IPO Under Partial Coverage. To show that the global coverage is necessary for IPO,
we can even assume a stronger in-distribution learning guarantee, that is, the returned policy achieves
the smallest error on its population loss in distribution.
Proposition 4.2 (Informal). Denote πref as any reference policy such that Assumption 4.1 breaks.
Let Πipo be the set of IPO returned policies such that it is the minimizer of in-distribution error on its
population loss. Then there exists policy π ∈ Πipo such that J(π) = −∞.

We defer the detailed setup and formal version to Appendix D, but the construction for the above
proofs share the same intuition: the reverse KL term in the objective function can be unbounded. For
offline contrastive-based algorithms, the KL regularization is only enforced under the data distribution,
and thus the algorithm can not guarantee bounded reverse KL if the reference policy does not cover
the response space well. Although we only showed counterexamples for DPO and IPO, we conjecture
that the same intuition holds for other offline contrastive-based algorithms. One natural question at
this point would be: how about the forward KL? Not surprisingly, the forward KL for DPO (but we
conjecture for other offline constructive-based methods as well) is vacuously large, and we formalize
this result in Appendix C.2.
Remark 4.2. The folklore that DPO is equivalent to RLHF is often based on some assumption
that is much stronger than Assumption 4.3: it requires that the learned policy has a point-wise
accuracy guarantee β ln(πdpo(y|x)/πref(y|x)) = r∗(x, y) for all x, y. Such a point-wise guarantee is
unrealistic in reality and does not hold in general in the supervised learning sense. The in-distribution
style guarantee in Assumption 4.3 is the best one could hope for from a supervised learning algorithm.

4.2 Global Coverage is Sufficient for Offline Contrastive Algorithms

After showing that global coverage is necessary for DPO to guarantee any performance, we now
show that it is sufficient for the performance guarantee.
Theorem 4.1. Let πref be any reference policy such that Assumption 4.1 holds. For any policy πdpo

such that the event in Assumption 4.3 holds, we have that

J(π∗)− J(πdpo) = O(Cglo
√
εdpo).

Proof. By Lemma B.1, we have

J(π∗)− J(πdpo) ≤ Ex∼ρEy1∼π∗(·|x),y2∼πdpo(·|x)
[
r∗(x, y1)− r̂dpo(x, y

1)− r∗(x, y2) + r̂dpo(x, y
2)
]

≤
√
Ex∼ρEy1∼π∗(·|x),y2∼πdpo(·|x)

[
(r∗(x, y1)− r̂dpo(x, y1)− r∗(x, y2) + r̂dpo(x, y2))

2
]

≤
√
C2

gloEx∼ρEy1,y2∼πref(·|x)

[
(r∗(x, y1)− r̂dpo(x, y1)− r∗(x, y2) + r̂dpo(x, y2))

2
]
,

and we can complete the proof by plugging in the error guarantee from Assumption 4.3.

Note that as the proof suggests, the result holds with the more general reward learning guarantee as in
Lemma B.2 – one only needs to be accurate in predicting the relative rewards between response pairs.
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4.3 Online RL Method Under Partial Coverage

Finally, we contrast the previous negative results in Section 4.1 for offline contrastive-based algorithms
to a positive result for online RL-based algorithms, under the partial coverage setting. We will show
that in general global coverage is not necessary for RLHF, i.e., it can guarantee performance under
partial coverage. In fact, one might still be able to show an impossibility result for RLHF under
partial coverage, by reusing the same counterexample as in the previous section (c.r., Proposition 4.1).
Concretely, as long as the learned reward r̂(y3) → ∞, πrlhf(y3) will be 1 and thus the reverse KL will
be unbounded. However, this is a rather unrealistic scenario, as the construction requires a reward
model (e.g., a neural network) to output an unbounded value. Thus this motivates the following
assumption:

Assumption 4.4. For all learned reward model r̂ from the reward model class, we have that
∥r̂∥∞ ≤ R′.

At this point, one might ask why a similar assumption is missing for the offline contrastive-based anal-
ysis, since in Remark 4.2 we argued that a point-wise learning guarantee is unrealistic but Assumption
4.4 is indeed also a point-wise boundedness assumption. The reason lies in the different construction
of the model class r̂ for those algorithms: for DPO and IPO, the reward model is constructed as
r̂dpo = β log

(
π

πref ·Z

)
, and there is no natural function class for π such that point-wise assumptions

such as the one in Remark 4.2 or Assumption 4.4 holds. In contrast, post-processing such as clipping,
offline normalization and on-the-fly normalization of rewards is standard in practice, which means
the policy will always witness bounded rewards [8, 9, 18, 1] during online RL training (e.g., PPO).
As we will show in the following, the difference in the reward function (which is tied to the offline
vs. online nature of the algorithms) can explain the different coverage requirement of the algorithms.
Note that we use the same in-distribution reward learning assumption for both types of methods.

To relate to Assumption 4.2, we first show that the reverse KL divergence of the RLHF policy is
always bounded under Assumption 4.4.

Lemma 4.1. Suppose that Assumption 4.4 holds. Then for any RLHF policy πrlhf , we have that

KL(πrlhf ||πref) := Ex∼ρ

[
Ey∼πrlhf(·|x)

[
log

(
πrlhf(y | x)
πref(y | x)

)]]
≤ 2R′

β
.

Then we can show that the RLHF algorithm can guarantee performance under partial coverage:

Theorem 4.2. Suppose that Assumption 4.4 holds. Then for any reference policy πref for which
Assumption 4.2 holds with εkl =

2R′

β , and any RLHF policy πrlhf with r̂ such that (c.r. Assumption

4.3) Ex,y∼ρ◦πref

[
(r∗(x, y)− r̂(x, y))

2
]
≤ εreward, we have

J(π∗)− J(πrlhf) ≤ O(Cεkl

√
εreward).

Conditioned on Lemma 4.1, the proof of this theorem is similar to that of Theorem 4.1 so we defer it to
Appendix D. Similar to Theorem 4.1, we note that Theorem 4.2 holds under a weaker reward learning
guarantee as in Lemma B.2. We also remark that as long as εkl is finite, Cεkl is finite, so the bound
is never vacuous. Since Cεkl ≤ Cglo for all εkl, it indicates the regret bound of RLHF is never worse
and can be much better than the regret bound of DPO. Combining Theorem 4.1 and Theorem 4.2,
we complete the separation result between offline contrastive methods and online RL methods.

A natural question at this point could be: can we further relax the local KL-ball cover-
age condition in Assumption 4.2 to a single-policy coverage condition, i.e., just assuming
maxx,y π

∗(y|x)/πref(y|x) ≤ C? Prior work [59] shows that with explicit pessimism, it is pos-
sible. However, using pessimism makes the algorithm from [59] not computationally tractable and
hard to scale to LLM experiments. Our conjecture is that for the RLHF policy πrlhf , it is not possible
to achieve meaningful regret under the single policy coverage condition, due to KL not being strong
enough to induce pessimism (i.e., bounded KL between π and πref can still imply exponentially large
density ratio π/πref). Developing a lower bound for πrlhf under single policy coverage in this case
can be an interesting future work.
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Algorithm 1 Hybrid Preference Optimization (HyPO)
require Pretrained LLM πθ0 , reference policy πref , offline data D, learning rate α, KL coefficient λ.

1: for t = 1, . . . , T do
2: Sample a minibatch of offline data Doff := {x, y+, y−} ∼ D.

3: Compute DPO loss ℓdpo :=
∑

x,y+,y−∈Doff
log

(
σ

(
β log

(
πθt−1

(y+|x)
πref(y+|x)

)
− β log

(
πθt−1

(y−|x)
πref(y−|x)

)))
.

4: Sample (unlabeled) online data Don := {x, y} where x ∼ D, y ∼ πθt−1(x).

5: Compute ℓkl :=
∑

x,y∈Don
log(πθt−1

(y|x)) · sg
(
log
(

(πθt−1
(y|x))

(πref(y|x))

))
.

6: Update θt = θt−1 + α · ∇θt−1
(ℓdpo − λℓkl).

return πT .

5 Hybrid Preference Optimization: Regularizing Offline Learning with
Unlabeled Online Samples

In this section, we will provide a practical algorithm that bridges the gap between the offline
contrastive-based algorithms and the online RL-based algorithms. As we see in the previous sections,
the difference between the two types of algorithms is their reward model parametrization, and whether
to perform online rollouts. In the following, we will show that these two properties are in fact tightly
intervened with each other.

Here we will focus on the DPO algorithm. One way to fix the issue of the unbounded reverse KL
of DPO (which is caused by the unbounded reward model class) is to consider the following ideal
procedure: at the beginning of the algorithm, we first go through the policy class Π, and then we
filter out all the policies such that KL(π||πref) ≥ 2R′

β , where R′ is the boundedness of the reward
function class for RLHF. Now applying the same analysis of Theorem 4.2, we can show that this
revised DPO algorithm can guarantee performance under the partial coverage assumption, because
now the Lemma 4.1, a sufficient condition for Theorem 4.2, is explicitly enforced by the constraints.
We defer the detailed statement and analysis to Appendix F.1.

However, such a filtering procedure is not possible in practice, but we can instead consider the follow-
ing constrained optimization problem: we call the definition of DPO loss in Eq. (4), we want to solve

max
π

ℓdpo(π) s.t. KL(π||πref) ≤
2R′

β
, (6)

using the KKT conditions, we can show that the following Lagrangian form is equivalent to Eq. (6):

max
π

ℓdpo(π)− λKL(π||πref), (7)

where λ is the Lagrange multiplier. However, in reality, since we do not know the exact value of R′,
we can consider setting λ to be a hyperparameter. We present the pseudocode in Algorithm 1. Note
that due to the reverse KL term, the Hybrid Preference Optimization (HyPO) algorithm optimizes
Eq. (7) via both offline and online samples where the offline samples are used for constructing and
optimizing ℓdpo (here σ denotes the sigmoid function), and the online samples y ∼ π(· | x) are for KL
(i.e., ℓkl). Note that regularizing with reverse KL via online samples is widely used in online RLHF
(e.g., PPO [40], APA [62], REBEL [18]). Here sg refers to the stop gradient operation, which is a
common practice in optimizing reverse KL in the LLM fine-tuning setting [30, 47]. Finally, previous
iterative RLHF methods [53] can be interpreted as hybrid methods as well, but they require labeling
online samples from an additional reward model while HyPO only requires unlabeled online samples.

Summarization. Our first experiment is on the TL;DR dataset [40]. Our experiment setup mostly
follows [18]: we use a maximum context length of 512 and a maximum generation length of 53.
We use Pythia 1.4B and Pythia 2.8B [5] as the pre-trained model. For the supervised fine-tuning
(SFT) model, we train it over 1 epoch of the dataset with human reference responses as labels. We
train the reward model on top of the SFT over 1 epoch of preference data. Both HyPO and DPO
are trained over 1 epoch of preference data with Low-rank Adaptation (LoRA) [21]. We defer more
experiment details in Appendix F.
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Table 1: Results on TL;DR dataset. Winrate is evaluated by GPT4 and RM score is from the trained re-
ward model. Experiments are repeated for 3 random seeds. Mean and standard deviation are reported.

Model size Algorithm Winrate (↑) RM score (↑) KL(π||πref)(↓)

1.4B DPO 42.17% (2.5%) 0.16 (0.05) 44.90 (1.29)
HyPO 46.44% (2.39%) 0.37 (0.05) 27.07 (2.34)

2.8B DPO 44.39% (0.4%) 2.43 (0.10) 68.95 (3.08)
HyPO 50.50% (1.89%) 2.51 (0.13) 48.98 (4.23)

Table 2: Results on general chat benchmarks. We evaluate the base model (Meta-Llama-3-8B-
Instruct), DPO-fine-tuned model, and HyPO-fine-tuned model.

Model MT-Bench AlpacaEval 2.0
1st Turn 2nd Turn Average LC Win Rate Win Rate

Meta-Llama-3-8B-Instruct [27] 8.31 7.89 8.10 26.0 25.3
DPO-Llama-3 8.08 7.41 7.75 28.4 30.9

HyPO-Llama-3 8.43 7.75 8.09 30.7 32.2
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Figure 1: Mean valida-
tion reverse KL to the ref-
erence policy when DPO
and HyPO are trained for 5
epoch on the TL;DR dataset.
We repeat the experiment for
3 random seeds and plot the
median and the shaded areas
denote the min and max over
the 3 repetitions.

We summarize the results in Table 1: HyPO outperforms DPO in
terms of GPT4 win-rage and reverse KL. Particularly, the significant
reduction in reverse KL implies the impact of including a reverse KL
term explicitly into the DPO objective. While comparing with PPO
(e.g., Table 1 in [18]), HyPO’s performance is still lower in winrate,
HyPO does preserve the key advantages of DPO over PPO: we avoid
training additional reward model and a value network.

General Chat. In the general chat setting, the model is required
to produce a response y given user instruction x. We again follow
the experiment setup in [18], where we finetune the Meta-Llama-3-
8B-Instruct [27] model on the ultrafeedback dataset [14]. Due to the
computation constrain, we follow the setup in [18] where we only train
the last 4 layers of the network for both HyPO and DPO.

For evaluation, we use the common metrics including AlpacaEval 2.0
[15], MT-bench [61] and Open LLM leaderboard tasks: MMLU [20],
GSM8K [13], Arc [12], TruthfulQA [26] and HellaSwag [57]. We
provide the results for AlpacaEval and MT-bench in Table 2, and the
the results of the remaining tasks can be found in Table 3.
HyPO Mitigates Overfitting in Contrastive Methods. Since the offline contrastive based methods
only work with a static offline dataset, the overfitting issue has been observed [43]. In our last
experiment, we show that HyPO can effectively address the overfitting issue by leveraging the
unlabeled online data. We follow the setup of the summarization task with Pythia-2.8B base model.
We train DPO and HyPO for 5 epochs respectively, and evaluate on the first 300 data in the validation
dataset. We plot the validation KL in Figure 1: we observe that HyPO is better at preventing the
deviation from the reference policy caused by overfitting from training on excessive epochs, even
though the methods theoretically both have KL regularization to the reference policy.

6 Function Approximation Coverage: Can Fine-tuned Policies Extrapolate?
Our final result is a theoretical explanation of the extrapolation behavior of preference fine-tuning
algorithms under the global coverage assumption in the function approximation (FA) setting. The
extrapolation behavior refers to the phenomenon of RLHF algorithms (e.g., DPO) can improve SFT
models despite the fact that during training the policies assign decreasing likelihood to both the
preferred and rejected responses (i.e., they must increase the likelihood of responses outside of the
training data) [31].

A previous attempt [32] to explain this behavior is based on the assumption that the responses from
the reference policy have the same distribution as the preferred responses from the dataset, i.e.,
y+ ∼ µ

d
= y ∼ πref . However, as mentioned in Section 3, more realistically, one should assume that

9



Table 3: Results on Open LLM leaderboard. We evaluate the base model (Meta-Llama-3-8B-Instruct),
DPO-fine-tuned model, and HyPO-fine-tuned model.

Model MMLU
(5-shot)

GSM8K
(5-shot)

Arc
(25-shot)

TruthfulQA
(0-shot)

HellaSwag
(10-shot) Average

Meta-Llama-3-8B-Instruct
[27] 65.68 74.91 62.12 43.88 78.76 65.07

DPO-Llama-3 65.82 73.62 63.14 45.02 79.1 65.34
HyPO-Llama-3 65.74 73.84 62.71 45.55 79.74 65.51

y ∼ µ
d
= y ∼ πref since it is more natural to use the reference policy to generate pairs of responses to

collect labels; or even more generally by considering supp(D) ⊂ supp(πref). The latter is common in
practice, for example, the dataset is often precollected, or the reference policy might have a small mass
on some responses, so with a high probability they are not sampled during the data collection process.

In the following, we illustrate this behavior using linear function approximation:
Definition 6.1 (Linear function approximation). Consider the promptless setting with response
space Y . For all y ∈ Y , the ground truth reward r∗(y) = w⊤ϕ(y), where w ∈ Rd is a universal
linear weight vector and ϕ : Y → Rd is a d-dimensional feature map. In addition, all policies are
parametrized as softmax linear policies, i.e., π(y) ∝ exp(w⊤

π ϕ(y)). The feature map ϕ is known to
the learner, and w is unknown. Finally, let y∗ = argmaxy∈Y r∗(y) be the optimal action.

In general, we should not expect the offline dataset to contain the optimal action y∗ under all situations.
We show that thanks to the linear function approximation and the dataset coverage, DPO has hope to
extrapolate correctly, i.e., it can increase the model’s likelihood of the optimal action while decreasing
the likelihood of both the preferred and rejected actions from the offline data:
Proposition 6.1. Under linear function approximation (Definition 6.1), there exists dataset collected
from distribution µ that does not cover y∗, i.e., µ(y∗) = 0, but has global coverage in the linear
function approximation setting [54]: let Σµ = Ey∼µϕ(y)ϕ(y)

⊤, then for all π, Ey∼π∥ϕ(y)∥2Σ−1
µ

≤
Cπ. Then DPO will return a policy πdpo such that πdpo(y

∗) > 0, but πdpo(y) ≤ πref(y) for all y in
the offline data support, i.e., µ(y) > 0.

We defer the proof to Appendix D.3. The above result shows when the training dataset together with
the function approximation allow the learned function to generalize (e.g., learn a function that can
predict well on test examples beyond the training data — a property supervised learning can have),
algorithms like DPO can extrapolate correctly, i.e., they can push up the likelihood of the optimal
responses outside of the training data while pushing down the likelihood of all the responses in the
training data. Although it is not possible to show that extrapolation is guaranteed to always happen:
suppose in the offline dataset, there is an action y′ whose feature ϕ(y′) is almost identical to ϕ(y∗),
then in the finite sample case, with small learning error the final policy might increase the probability
of y′ instead of extrapolate to y∗, but in this case the policy is still near optimal. That said, our
construction in the proof is general enough to explain non-edge-cases under function approximation.

To validate our theory result, in Appendix E we perform a synthetic experiment on global coverage
with linear function approximation.

7 Discussion
There are a few limitations of our work: 1) our theoretical analysis only considers the statistical
perspective of each algorithm, but we believe our result is complementary to the other work that
considers the optimization perspectives [42]. 2) we only conduct experiments on limited models and
benchmarks. 3) The experiment result shows that HyPO’s performance is still below the one of online
RLHF: this might suggest that our theory does not fully explain the benefit of all the components
of online RLHF. For example, one hypothesis is that the learn reward function may have better
generalization ability. 4) It is not clear that the KL-ball coverage is necessary for online RL-based
methods. However, as we discussed, since a bounded reverse KL might still induce exponential error
amplification, we conjecture that at least the single policy coverage [58] is not sufficient for online
RLHF-based methods that use reverse KL. We believe these limitations lead to several interesting
further directions. Finally, our method may not explicitly address the potential hallucinations or toxic
behavior of LLMs, which is a common shortcoming of general-purpose fine-tuning algorithms.
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A Additional Related Works

Extrapolation Behavior of PFT. Recent work [56, 31, 32] has observed an interesting effect of the
DPO procedure: a simultaneous decrease in the likelihood of both preferred and rejected responses.
This behavior is surprising at first glance because one would expect that DPO will increase the
likelihood of preferred responses and decrease the likelihood of rejected responses. We provide a
rigorous statistical explanation of this behavior and show that this behavior is natural when the offline
preference data only contains sub-optimal responses but the function approximation allows DPO
to extrapolate and generalize to the correct optimal responses. This highlights the role of function
approximation in the success of offline contrastive based methods.

Coverage. We analyze online RLHF and offline contrastive-based methods via the concept of
coverage. Coverage measures how well an offline (data) distribution covers the support of the policy of
interest, which has been the key technical tool in offline RL [28, 49, 46, 58], offline-online RL [34, 51,
39, 2] and online RL [22, 4, 50]. The data coverage plays an important role in our analysis since both
online RLHF and offline contrastive-based methods rely on an offline preference dataset for learning.

B Auxiliary Lemmas

Lemma B.1 (Objective decomposition). Let J(π) be the objective function defined in (1), and for
reward function r̂, we let

π̂ ∈ argmax
π

Ex∼ρ

[
Ey∼π(·|x)[r̂(x, y)]− βKL(π(· | x)||πref(· | x))

]
, (8)

then we have

J(π∗)− J(π̂) ≤ Ex∼ρ

[
Ey1∼π∗(·|x),y2∼π̂(·|x)

[
r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2)

]]
.

Proof. We have

J(π∗)− J(π̂)

=Ex∼ρ

[
Ey∼π∗(·|x)[r

∗(x, y)]− βKL(π∗(· | x)||πref(· | x))
]
− Ex∼ρ

[
Ey∼π̂(·|x)[r

∗(x, y)] + βKL(π̂(· | x)||πref(· | x))
]

=Ex∼ρ

[
Ey∼π∗(·|x)[r

∗(x, y)]− βKL(π∗(· | x)||πref(· | x))
]
−
(
Ex∼ρ

[
Ey∼π̂(·|x)[r

∗(x, y)]− βKL(π̂(· | x)||πref(· | x))
])

+ Ex∼ρ

[
Ey∼π̂(·|x)[r̂(x, y)]− βKL(π̂(· | x)||πref(· | x))

]
−
(
Ex∼ρ

[
Ey∼π̂(·|x)[r̂(x, y)]− βKL(π̂(· | x)||πref(· | x))

])
≤Ex∼ρ

[
Ey∼π∗(·|x)[r

∗(x, y)]− βKL(π∗(· | x)||πref(· | x))
]
−
(
Ex∼ρ

[
Ey∼π∗(·|x)[r̂(x, y)]− βKL(π∗(· | x)||πref(· | x))

])
+ Ex∼ρ

[
Ey∼π̂(·|x)[r̂(x, y)]− βKL(π̂(· | x)||πref(· | x))

]
−
(
Ex∼ρ

[
Ey∼π̂(·|x)[r

∗(x, y)]− βKL(π̂(· | x)||πref(· | x))
])

=Ex∼ρ

[
Ey∼π∗(·|x)[r

∗(x, y)− r̂(x, y)]
]
− Ex∼ρ

[
Ey∼π̂(·|x)[r

∗(x, y)− r̂(x, y)]
]
,

where the inequality is due to Eq. (8). To complete the proof, note that

Ex∼ρ

[
Ey∼π∗(·|x)[r

∗(x, y)− r̂(x, y)]− Ex∼ρEy∼π̂(·|x)[r
∗(x, y)− r̂(x, y)]

]
=Ex∼ρ

[
Ey1∼π∗(·|x),y2∼π̂(·|x)[r

∗(x, y1)− r̂(x, y1)]
]
− Ex∼ρ

[
Ey1∼π∗(·|x),y2∼π̂(·|x)[r

∗(x, y2)− r̂(x, y2)]
]

=Ex∼ρ

[
Ey1∼π∗(·|x),y2∼π̂(·|x)

[
r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2)

]]
.

Lemma B.2 (Lemma C.2 from [9]). Assume that r∗ is bounded, let R be the reward function class,
and Let

r̂ = argmin
r∈R

Êx,y+,y−∼D

[
log

(
exp(r(x, y+))

exp(r(x, y+)) + exp(r(x, y−))

)]
,

then we have with probability at least 1− δ that

Ex,y1,y2∼µ◦πref

[(
r∗(x, y1)− r∗(x, y2)− r̂(x, y1) + r̂(x, y2)

)2] ≤ cκ2 log(|R|/δ)
N

,

where κ measures the non-linearity of the link function, and c is a constant, N := |D| is the size of
the offline dataset.
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C Additional Results

C.1 Results for IPO

In this section we give detailed technical details for IPO, and the negative results for IPO under partial
coverage. Recall that the empirical objective of IPO is is πipo ∈ argminπ ℓ̂ipo(π), where

ℓ̂ipo(π) = Êx,y+,y−∼D

[(
log

(
π(y+ | x)πref(y

− | x)
π(y− | x)πref(y+ | x)

)
− β−1

2

)2
]
.

The empirical objective is derived from the following population loss

ℓipo(π) = Ex,y1,y2∼ρ◦πref

[(
hπ

(
y1, y2

)
− I
(
y1, y2

)
/β
)2]

, (9)

where

hπ(y
1, y2) = log

(
π(y1)πref(y2)

π(y2)πref(y1)

)
,

and I(y1, y2) is a Bernoulli random variable with parameter p = p∗(y1 ≻ y2), where here p∗ can be
any underlying human preference (that is not necessarily parametrized by the Bradley Terry model).
To show the negative result, we can make the following learning assumption:

Assumption C.1 (In distribution guarantee for IPO). We assume that the returned policy πipo satisfies
that

πipo = argmin
π∈Π

ℓipo(π),

i.e., the returned policy πipo induces the smallest possible in-distribution error on its population loss.

With the setup, we can state and prove the formal version of the result:

Proposition C.1 (Formal version of of Proposition 4.2). Denote πref as any reference policy such
that Assumption 4.1 breaks. Let Πipo be the set of IPO returned policies such that Assumption C.1
holds. Then there exists policy π ∈ Πipo such that J(π) = −∞.

Proof. Without loss of generality, we consider a promptless setting, and assume that the response
space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref only covers y1 and y2,
and thus Assumption 4.1 breaks. Specifically, let πref(y1) = πref(y2) = 1/2. Then we have

πipo = argmin
π∈Π

Ey1,y2∼πref

[(
log

(
π(y1)

π(y2)

)
− I
(
y1, y2

)
/β

)2
]
,

which gives

log

(
πipo(y1)

πipo(y2)

)
= p∗(y1 ≻ y2)/β,

and thus we have the relation that

πipo(y1) = πipo(y2) · exp(p∗(y1 ≻ y2)/β).

Let πipo(y2) = α ∈ (0, 1], then for any α such that πipo(y3) = 1− (1+ exp(p∗(y1 ≻ y2)/β))α > 0,
we will have that KL(πipo||πref) is unbounded, and thus we complete the proof.

C.2 DPO Has Vacuous Forward KL

In this section, we show that in the worst case, the forward KL of DPO is vacuously large. We
first see how we can relate the forward KL divergence of the DPO policy with the reward learning
guarantee. Consider any DPO policy πdpo and its corresponding reward model r̂dpo. By construction
of the DPO algorithm, we have, for any x, y pair that is covered in the dataset, πdpo(y | x) =
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πref(y|x) exp(r̂dpo(x,y)/β)
Z(x) , where Z(x) =

∑
y πref(y | x) exp(r̂dpo(x, y)/β). Then the forward KL

divergence is

Ex,y∼ρ◦πref

[
log

(
πref(y | x)
πdpo(y | x)

)]
= Ex,y∼ρ◦πref

[
log

(
Z(x)

exp(r̂dpo(x, y)/β)

)]
= Ex,y∼ρ◦πref

[
− r̂dpo(x, y)

β
+ log(Z(x))

]
.

Although the first term can be easily related to the reward learning guarantee, the second term
(Ex∼ρ[log(Z(x))]) can unfortunately be vacuous without further assumptions. We formalize in the
following result:

Proposition C.2. There exist πdpo such that Assumption 4.3 holds, but KL(πref ||πdpo) is arbitrarily
large.

Proof. First without loss of generality let us consider that r∗ > 0. Now suppose there exists ỹ
such that πref(ỹ | x) = 1

n4 for all x, where n will be determined soon. Now suppose that for all x,
r̂dpo(x, ỹ)− r∗(x, ỹ) = n and r̂dpo(x, y) = r∗(x, y) for all y ̸= ỹ. Now we can check that

Ex∼ρEy∼πref(·|x)

[
(r̂dpo(x, y)− r∗(x, y))

2
]
=

1

n2
,

which is diminishing if we take n to be big enough. We can also check that

Ex∼ρEy∼πref(·|x)

[
− r̂dpo(x, y)

β

]
≥ − 1

n3β
− R

n4β

and thus the first term will have little impact on the final bound. However, the second term can be
lower bounded as follows:

log

(∑
y

πref(y | x) exp(r̂(x, y)/β)

)
= log

(∑
y

πref(y | x) exp
(
r∗(x, y) + r̂(x, y)− r∗(x, y)

β

))

≥ log

(∑
y

πref(y | x) exp
(
r̂(x, y)− r∗(x, y)

β

))

= log

(
πref(ỹ | x) exp

(
r̂(x, ỹ)− r∗(x, ỹ)

β

))
=

n

β
− 4 log(n).

Putting everything together, we have

KL(πref ||πdpo) ≥
n

β
− 4 log(n)− 1

n3β
− R

n4β

and since we can take n arbitrarily big we complete the proof.

D Omitted Proofs

D.1 Proof of Proposition 4.1

Proposition D.1 (Restatement of Proposition 4.1). Denote πref as any reference policy such that
Assumption 4.1 breaks. Let Πdpo be the set of DPO returned policies such that Assumption 4.3 holds.
Then there exists policy π ∈ Πdpo such that J(π) = −∞.

Proof. Again as in the proof sketch, without loss of generality, we consider a promptless setting, and
assume that the response space is Y = {y1, y2, y3}. Again without loss of generality, we assume πref

only covers y1 and y2, and thus Assumption 4.1 breaks. Now consider the optimal policy

π∗(y) =
πref(y | x) exp(r∗(y)/β)

Z∗(t)
,∀y ∈ Y,
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where Z∗ =
∑

y∈Y πref(y | x) exp(r∗(y)/β), note that by construction π∗(y3) = 0.

Then consider the following policy π such that

β log

(
π(y1)

πref(y1) · Z∗

)
= r∗(y1)−

√
εdpo, and β log

(
π(y2)

πref(y2) · Z∗

)
= r∗(y2)−

√
εdpo,

Then we have

Ey∼πref

[(
β log

(
πdpo(y)

πref(y | x) · Z∗

)
− r∗(x, y)

)2
]
= εdpo,

thus π satisfies Assumption 4.3. Rearranging we can see that π(y1) < π∗(y1) and π(y2) < π∗(y2).
Now since π∗ = 0, we have

π∗(y1) + π∗(y2) = 1,

and combine we get π(y3) > 0, which implies KL(π||πref) is unbounded, since πref(y3) = 0.

D.2 Proof of Theorem 4.2

In this section we prove Theorem 4.2:

Theorem D.1 (Restatement of Theorem 4.2). Suppose that Assumption 4.4 holds. Then for any
reference policy πref such that Assumption 4.2 holds with εkl =

2R′

β , for any RLHF policy πrlhf with r̂

such that (c.r. Assumption 4.3),

Ex,y∼ρ◦πref

[
(r∗(x, y)− r̂(x, y))

2
]
≤ εreward,

or more generally, the event in Lemma B.2 holds for r̂, we have

J(π∗)− J(πrlhf) ≤ O(Cεkl

√
εreward).

To prove this we first prove the following lemma so we can leverage Assumption 4.2:

Lemma D.1 (Restatement of Lemma 4.1). Suppose that Assumption 4.4 holds. Then for any RLHF
policy πrlhf , we have that

KL(πrlhf ||πref) := Ex∼ρEy∼πrlhf(·|x)

[
log

(
πrlhf(y | x)
πref(y | x)

)]
≤ 2R′

β
.

Proof. since we have that πrlhf(y | x) = πref(y|x) exp(r̂(x,y)/β)
Z(x) for all x ∈ supp(ρ), y ∈ Y , we have

KL(πrlhf ||πref) = Ex∼ρEy∼πrlhf(·|x)

[
log

(
exp(r̂(x, y))

βZ(x)

)]
= Ex∼ρEy∼πrlhf(·|x)

[
r̂(x, y)

β
− log(Z(x))

]
.

Plugging in the definition of Z(x) we get

log(Z(x)) = log

(
Ey∼πref(·|x)

[
exp

(
r̂(x, y)

β

)])
≥ Ey∼πref(·|x)

[
r̂(x, y)

β

]
due to Jensen’s inequality. Thus we have

KL(πrlhf ||πref) ≤ Ex∼ρEy∼πrlhf(·|x)

[
r̂(x, y)

β

]
− Ex∼ρEy∼πrlhf(·|x)

[
r̂(x, y)

β

]
≤ 2R′

β
.

Now with Lemma 4.1, we can prove Theorem 4.2:
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Proof. By Lemma B.1, we have
J(π∗)− J(πrlhf)

≤ Ex∼ρEy1∼π∗(·|x),y2∼πrlhf(·|x)
[
r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2)

]
≤
√
Ex∼ρEy1∼π∗(·|x),y2∼πrlhf(·|x)

[
(r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2))

2
]

≤
√
C2

gloEx∼ρEy1,y2∼πref(·|x)

[
(r∗(x, y1)− r̂(x, y1)− r∗(x, y2) + r̂(x, y2))

2
]

(Lemma 4.1 and Assumption 4.2)
≤ C

√
εreward. (Lemma B.2)

D.3 Proof of Proposition 6.1

Proposition D.2 (Restatement of Proposition 6.1). Under linear function approximation (Defini-
tion 6.1), there exists dataset collected from distribution µ that does not cover y∗, i.e., µ(y∗) = 0, but
has global coverage in the linear function approximation setting [54]: let Σµ = Ey∼µϕ(y)ϕ(y)

⊤,
then for all π, Ey∼π∥ϕ(y)∥2Σ−1

µ
≤ Cπ. Then DPO will return a policy πdpo such that πdpo(y

∗) > 0,

but πdpo(y) ≤ πref(y) for all y in the offline data support, i.e., µ(y) > 0.

Proof. Consider a response space Y = {y1, y2, y3}, with ϕ(y1) = [1, 0], ϕ(y2) =
[1/2, 1/2], ϕ(y3) = [0, 1] Let wref = [1, 1], then we have πref(yi) = 1/3,∀i ∈ {1, 2, 3}. Let
the ground truth reward function r∗(y) = [10, 1]⊤ϕ(y), and suppose supp(µ) = {y1, y2}, i.e., the
data only covers y1 and y2, and µ(y3) = 0. And as always, the preference is based on the ground
truth reward function under the Bradley-Terry model.

We can first check that the data distribution indeed has global coverage: for all π we have
Ey∼π∥ϕ(y)∥2Σ−1

µ
≤ Cπ. If we parameterize r̂(y) = ŵ⊤ϕ(y) (or in case of DPO, we can still

check and see that r̂dpo(y) = ŵdpo
⊤
ϕ(y) because of the softmax linear parametrization of the

policies), for either direct reward learning or DPO, we can have the learned reward function
r̂(y) = [10, 1]⊤ϕ(y)+ c, where c is the constant reward shift (c.r. Eq. (5)). Then a simple calculation
(by π(y) ∝ πref(y) exp(r̂(y)/β)) shows that, as long as c is small enough, the policies will decrease
the likelihood of y1 and y2 and increase the likelihood of y3.

E Synthetic experiment for extrapolation

E.1 Extrapolation with function approximation

We first describe our experiment setup. We consider linear function approximation setting where we
have 100 responses (|Y| = 100). We consider a 16-dimensional feature vector ϕ : Y → R16, and
we generate ϕ(y) by simply sampling 99 random 16-dimensional vectors where the ℓ1 norm of each
vector is 1. We add one final ϕ(y) = [1, 0, 0, . . . ].

We construct the implicit human reward r∗(y) = w∗⊤ϕ(y), where w∗ = [5, ...], and the rest of the
entries are sampled from Unif(-2,2).

We parametrize the policies as softmax linear policies, i.e., we parametrize each policy π with
wπ ∈ R16 such that π(y) = wπ⊤ϕ(y)∑

y∈Y wπ⊤ϕ(y)
. One can check in this formulation the implicit reward in

DPO (r̂dpo) is linear in ϕ.

We generate 10000 preference pairs, according to the BT model under r∗, for the first 50 responses.
We checked that the first responses indeed span R16. Thus the offline data has global coverage in
linear function approximation setting.

For on-policy RL methods, we first train a reward model. Then we simply perform gradient descent
on the KL-regularized bandit loss (we assume πref is uniform). For DPO, we simply perform SGD
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Figure 2: Extrapolation behavior of Online RL method and DPO under linear function approximation.
We plot the mean log probability of the preferred responses and the log probability of the best
response, which is unseen in the training data. We see that both algorithms correctly assigns
increasing probability to the best response.
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Figure 3: Extrapolation behavior of DPO without function approximation. We plot the average
probability of out-of-distribution responses along the training and DPO assigns increasing probability
to out-of-distribution responses.

on the offline preference dataset. We track two qualities over the training: the mean log probability of
a random subset of preferred responses, and the log probability of best response ϕ(y) = [1, 0, 0, . . . ].
We plot the results in Figure 2. We observe that both methods have the extrapolation behavior – the
probability of preferred responses decays but the probability of the optimal response goes up.

E.2 Extrapolation without function approximation

Now we describe the setting where function approximation fails, and this reduces to a Multi-arm
bandit setting. We set |Y| = 500, and the offline data only covers the first half of the responses. The
r∗(y) is set by sampling from Unif(-10,10), and we generate 10000 offline samples by uniformly
sample pairs of responses from the first half of the response space, and then label them with BT
model under r∗. We train DPO with 5000 iterations, and plot the mean probability of the responses
outside of the data support in Figure 3: we observe that the mean probability of the out-of-distribution
responses are increasing, however, this could be an undesirable behavior because the reward of the
out-of-distribution responses could be arbitrarily bad.

F Details of Section 5

F.1 Theoretical guarantee

In this section, we consider the constrained optimization version of HyPO (Eq. (6)). Note that the
reward function class is identical to DPO, i.e., Rhypo =

{
β log

(
π(y|x)

πref(y|x)Z(x)

)
| π ∈ Π

}
, where Z(x)

is the partition function. Then for each output policy πhypo, we can denote its implicit reward function
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r̂hypo(x, y) := β
πhypo(y|x)

πref(y|x)·Z(x) , and similarly to Theorem 4.2, we can obtain the following guarantee
in the partial coverage condition:

Theorem F.1. For any reference policy πref such that Assumption 4.2 holds with εkl =
2R′

β , for any
HyPO policy πhypo such that the event in Lemma B.2 holds, i.e.,

Ex,y1,y2∼µ◦πref

[(
r∗(x, y1)− r∗(x, y2)− r̂hypo(x, y

1) + r̂hypo(x, y
2)
)2] ≤ εhypo,

we have

J(π∗)− J(πhypo) ≤ O(Cεkl

√
εhypo).

Proof. The proof mostly follows the proof of Theorem 4.2. It remains to show the following two
properties:

1) Note that Theorem 4.2 requires Assumption 4.4, which does not hold for r̂hypo (note that r̂hypo
is only bounded under ρ, but not for all x), but we only use it to prove the sufficient condition in
Lemma 4.1, which is satisfied by the constraint of HyPO.

2) We need to check that the premise of Lemma B.1 holds, i.e.,

πhypo ∈ argmax
π

Ex∼ρ

[
Ey∼π(·|x)[r̂hypo(x, y)]− βKL(π(· | x)||πref(· | x))

]
,

note that with the reparametrization between πhypo and r̂hypo, πhypo is always among the minimizer
of the unconstrained policy set, so we can still invoke Lemma B.2. The rest of the proof now follows
the proof of Theorem 4.2 so we omit the details.

Finally, we remark the connection to the negative result of DPO, i.e, Proposition 4.1: note that given
KL(πhypo||πref) ≤ ∞, we have that for all x such that ρ(x) > 0, we have for all y, β log

(
πhypo(y|x)
πref(y|x)

)
<

∞, (again with the convention that 0
0 = 0), which breaks the construction of Proposition 4.1.

F.2 Experiment details

F.2.1 Summarization

In this section, we provide more details of our summarization experiment. We use the Pythia
1.4B and 2.8B model [5] with hugging face model cards: EleutherAI/pythia-1.4b-deduped and
EleutherAI/pythia-2.8b-deduped. The TL;DR dataset is available at https://github.com/openai/
summarize-from-feedback. The human reference dataset contains 117k training, 6.45K validation
and 6.55K testing data. The preference dataset contains 92.9K training and 83.8K validation data.
The reward evaluation and KL computation is performed on the whole validation data of the reference
dataset. The GPT winrate is computed on a subset of 600 samples from the validation data. The GPT
API checkpoint we use is gpt-4-0613. We follow the standard prompt for the winrate evaluation (e.g.,
see Appendix D.3 of [18]). Below we provide the hyperparameter for HyPO and DPO. Note that to
optmize the online KL, we use Reinforce with Leave One Out (RLOO) [24] with two generations per
prompt (k = 2) and optimize trajectory-level KL.

For our experiment, we run on a cluster of mixture of Nvidia A6000 and L40 GPUs with 48 GB
VRAM. We use 4 GPUs in parallel for training, and for DPO the experiment time varies from 1 hour
to 2 hours to finish, and for HyPO the time varies between 4 hours to 5 hours.

Table 4: RM/SFT hyperparameters.

Learning rate 3e-6
Batch size 64

Learning rate scheduler cosine
Optimizer Adamw

LoRA False

Table 5: DPO hyperparameters.

Learning rate 3e-6
Batch size 64

Learning rate scheduler cosine
Optimizer Adamw

β 0.05
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Table 6: HyPO hyperparameters.

Learning rate 3e-6
Batch size 64

Learning rate scheduler cosine
Optimizer Adamw

β 0.05
λ 0.0001

RLOO k 2

Table 7: Lora configurations.

r 1024
α 2048

Dropout 0

F.2.2 General Chat

For the base model of general chat experiments, we use Llama3-8B-Instruct [27] with hugging face
model card: meta-llama/Meta-Llama-3-8B-Instruct. The dataset card of the Ultrafeedback dataset
[14] is HuggingFaceH4/ultrafeedback_binarized. In addition to the KL penalty, in the general chat
task we add an additional length penalty, and the online penalty of a generation y with context x
becomes log

(
π(y|x)
πref(y|x)

)
+ α|y|. We summarize the hyperparameter of each baseline below.

We run the general chat experiment on a node of 8 Nvidia A100 80GB GPUs. DPO takes 3 hours to
train one epoch while HyPO takes 18 hours to train one epoch.

Table 8: HyPO hyperparameters.

Learning rate 3e-6
Batch size 8

Learning rate scheduler linear
Optimizer Adamw

β 0.05
λ 0.0002

RLOO k 2
α 0.02

Table 9: DPO hyperparameters.

Learning rate 3e-6
Batch size 8

Learning rate scheduler linear
Optimizer Adamw

β 0.05
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low
or images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best judgment
and recognize that individual actions in favor of transparency play an important role in
developing norms that preserve the integrity of the community. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We clearly state all our assumptions in all theorem statements, and the proofs
can be found in the appendix.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode, hyparameter table and code in this submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate
the results, access to a hosted model (e.g., in the case of a large language model), releasing
of a model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the
model (e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We use public data on hugging face, and we submit the code for this submis-
sion.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the training details and hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We repeat all our experiments over 3 seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided run time and type of GPUs we used in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We respect the code of conduct.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact in the discussion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models in this work

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring that
users adhere to usage guidelines or restrictions to access the model or implementing safety
filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited all the dataset and models used in this work.
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new asset.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: We do not have human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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