
Understanding and Mitigating the Limitations of Prioritized Experience Replay

Yangchen Pan1,3 Jincheng Mei*1 Amir-massoud Farahmand2,4 Martha White1,4

Hengshuai Yao1 Mohsen Rohani3 Jun Luo3

1University of Alberta
2University of Toronto & Vector Institute

3Huawei Noah’s Ark Lab
4CIFAR AI Chair

Abstract

Prioritized Experience Replay (ER) has been
empirically shown to improve sample efficiency
across many domains and attracted great attention;
however, there is little theoretical understanding
of why such prioritized sampling helps and its lim-
itations. In this work, we take a deep look at the
prioritized ER. In a supervised learning setting,
we show the equivalence between the error-based
prioritized sampling method for minimizing mean
squared error and the uniform sampling for cu-
bic power loss. We then provide theoretical in-
sight into why error-based prioritized sampling
improves convergence rate upon uniform sampling
when minimizing mean squared error during early
learning. Based on the insight, we further point
out two limitations of the prioritized ER method:
1) outdated priorities and 2) insufficient coverage
of the sample space. To mitigate the limitations,
we propose our model-based stochastic gradient
Langevin dynamics sampling method. We show
that our method does provide states distributed
close to an ideal prioritized sampling distribution
estimated by the brute-force method, which does
not suffer from the two limitations. We conduct
experiments on both discrete and continuous con-
trol problems to show our approach’s efficacy and
examine the practical implication of our method in
an autonomous driving application.

1 INTRODUCTION

Experience Replay (ER) [Lin, 1992] has been a popu-
lar method for training large-scale modern Reinforcement

*Work done while at the University of Alberta. Equal con-
tribution with Yangchen Pan. Correspondence to: Yangchen Pan
<pan6@ualberta.ca> and Jincheng Mei <jmei2@ualberta.ca>.

Learning (RL) systems [Degris et al., 2012, Adam and Buso-
niu, 2012, Mnih et al., 2015a, Hessel et al., 2018, François-
Lavet et al., 2018]. In ER, visited experiences are stored in
a buffer, and at each time step, a mini-batch of experiences
is uniformly sampled to update the training parameters in
the value or policy function. Such a method is empirically
shown to effectively stabilize the training and improve the
sample efficiency of deep RL algorithms. Several follow-up
works propose to improve upon it by designing non-uniform
sampling distributions or re-weighting mechanisms of ex-
periences [Schaul et al., 2016, Andrychowicz et al., 2017,
Oh et al., 2018, de Bruin et al., 2018, Horgan et al., 2018,
Zha et al., 2019, Novati and Koumoutsakos, 2019, Kumar
et al., 2020, Sun et al., 2020, Liu et al., 2021, Lee et al.,
2021, Sinha et al., 2022]. The most relevant one to our work
is prioritized ER [Schaul et al., 2016], which attempts to
improve the vanilla ER method by sampling those visited
experiences proportional to their absolute Temporal Differ-
ence (TD) errors. Empirically, it can significantly improve
sample efficiency upon vanilla ER on many domains.

ER methods have a close connection to Model-Based RL
(MBRL) methods [Kaelbling et al., 1996, Bertsekas, 2009,
Sutton and Barto, 2018]. ER can be thought of as an instance
of a classical model-based RL architecture—Dyna [Sut-
ton, 1991], using a non-parametric model given by the
buffer [van Seijen and Sutton, 2015, van Hasselt et al., 2019].
A Dyna agent uses real experience to update its policy as
well as its reward and dynamics model. In-between taking
actions, the agent can get hypothetical experiences from the
model and use them just like the real experiences to fur-
ther improve the policy. How to generate those hypothetical
experiences is largely dependent on search-control—the
mechanism of generating states or state-action pairs from
which to query the model to get the next states and rewards.
Existing works show that smart search-control strategies can
further improve sample efficiency of a Dyna agent [Sutton
et al., 2008, Gu et al., 2016, Goyal et al., 2019, Holland
et al., 2018, Pan et al., 2018, Corneil et al., 2018, Janner
et al., 2019, Chelu et al., 2020]. Particularly, prioritized

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

sweeping [Moore and Atkeson, 1993] is among the earliest
work that improves upon vanilla Dyna. The idea behind
prioritized sweeping is quite intuitive: we should give high
priority to states whose absolute TD errors are large because
they are likely to cause the most change in value estimates.
Hence, the prioritized ER by Schaul et al. [2016], which ap-
plies TD error-based prioritized sampling to ER, is a natural
idea in a model-free RL setting. However, there is little rig-
orous understanding towards prioritized ER method about
why it can help and its limitations.

This work provides a theoretical insight into the prioritized
ER’s advantage and points out its two drawbacks: outdated
priorities and insufficient sample space coverage, which may
significantly weaken its efficacy. To mitigate the two issues,
we propose to use the Stochastic Gradient Langevin Dynam-
ics (SGLD) sampling method to acquire states. Our method
relies on applying an environment model to 1) simulate
priorities of states and 2) acquire hypothetical experiences.
Then these experiences are used for further improving the
policy. We demonstrate that, comparing with the conven-
tional prioritized ER method, the hypothetical experiences
generated by our method are distributed closer to the ideal
TD error-based sampling distribution, which does not suffer
from the two drawbacks. Finally, we demonstrate the utility
of our approach on various benchmark discrete and continu-
ous control domains and an autonomous driving application.

2 BACKGROUND

In this section, we firstly review basic concepts in RL. Then
we briefly introduce the prioritized ER method, which will
be examined in-depth in the next section. We conclude this
section by discussing a classic MBRL architecture called
Dyna [Sutton, 1991] and its recent variants, which are most
relevant to our work.

Basic notations. We consider a discounted Markov De-
cision Process (MDP) framework [Szepesvári, 2010]. An
MDP can be denoted as a tuple (S,A,P, R, �) including
state space S, action space A, probability transition ker-
nel P, reward function R, and discount rate � 2 [0, 1].
At each environment time step t, an RL agent observes
a state st 2 S, takes an action at 2 A, and moves to
the next state st+1 ⇠ P(·|st, at), and receives a scalar re-
ward signal rt+1 = R(st, at, st+1). A policy is a mapping
⇡ : S⇥A! [0, 1] that determines the probability of choos-
ing an action at a given state.

A popular algorithm to find an optimal policy is Q-
learning [Watkins and Dayan, 1992]. With function approx-
imation, parameterized action-values Q✓ are updated using
✓ = ✓+↵�tr✓Q✓(st, at) for stepsize ↵ > 0 with TD-error
�t

def
= rt+1+�maxa02A Q✓(st+1, a

0)�Q✓(st, at). The pol-
icy is defined by acting greedily w.r.t. these action-values.

ER methods. ER is critical when using neural networks

to estimate Q✓, as used in DQN [Mnih et al., 2015b],
both to stabilize and speed up learning. The vanilla ER
method uniformly samples a mini-batch of experiences
from those visited ones in the form of (st, at, st+1, rt+1) to
update neural network parameters. Prioritized ER [Schaul
et al., 2016] improves upon it by sampling prioritized ex-
periences, where the probability of sampling a certain ex-
perience is proportional to its TD error magnitude, i.e.,
p(st, at, st+1, rt+1) / |�t|. However, the underlying the-
oretical mechanism behind this method is still not well un-
derstood.

MBRL and Dyna. With a model, an agent has more flex-
ibility to sample hypothetical experiences. We consider a
one-step model which takes a state-action pair as input and
provides a distribution over the next state and reward. We
build on the Dyna formalism [Sutton, 1991] for MBRL, and
more specifically, the recently proposed (Hill Climbing) HC-
Dyna [Pan et al., 2019] as shown in Algorithm 1. HC-Dyna
provides some smart approach to Search-Control (SC).

HC-Dyna proposes to employ stochastic gradient Langevin
dynamics (SGLD) for sampling states, which relies on hill
climbing on some criterion function h(·). The term “Hill
Climbing (HC)” is used for generality as the SGLD sam-
pling process can be thought of as doing some modified
gradient ascent [Pan et al., 2019, 2020].

The algorithmic framework maintains two buffers: the con-
ventional ER buffer storing experiences (i.e., an experi-
ence/transition has the form of (st, at, st+1, rt+1)) and a
search-control queue storing the states acquired by search-
control mechanisms (i.e., SLGD sampling). At each time
step t, a real experience (st, at, st+1, rt+1) is collected and
stored into the ER buffer. Then the HC search-control pro-
cess starts to collect states and store them into the search-
control queue. A hypothetical experience is obtained by
first selecting a state s from the search-control queue, then
selecting an action a according to the current policy, and
then querying the model to get the next state s0 and reward r

to form an experience (s, a, s0, r). These hypothetical tran-
sitions are combined with real experiences into a single
mini-batch to update the training parameters. The n updates,
performed before taking the next action, are called plan-
ning updates [Sutton and Barto, 2018], as they improve the
value/policy by using a model. The choice of pairing states
with on-policy actions to form hypothetical experiences has
been reported to be beneficial [Gu et al., 2016, Pan et al.,
2018, Janner et al., 2019].

Two instances have been proposed for h(·): the value func-
tion v(s) [Pan et al., 2019] and the sum of gradient and
Hessian magnitude ||rsv(s)||+ ||Hv(s)|| [Pan et al., 2020].
The former is used as a measure of the utility of a state: do-
ing HC on the learned value function should find high-value
states without being constrained by the physical environ-
ment dynamics. The latter is considered as a measure of

Algorithm 1 HC-Dyna: Generic framework
Input: Hill Climbing (HC) criterion function h : S 7! R;
batch-size b; initialize empty search-control queue Bsc;
empty ER buffer Ber; initialize policy and model P ; HC
stepsize ↵h; mini-batch size b; environment P; mixing
rate ⇢ decides the proportion of hypothetical experiences
in a mini-batch.
for t = 1, 2, . . . do

Add (st, at, st+1, rt+1) to Ber

while within some budget time steps do
// SGLD sampling for states
s s + ↵hrsh(s) + Gaussian noise // Search-
control, see Section 4 for details about SGLD sam-
pling
Add s into Bsc

// n planning updates/steps
for n times do
B ; // initialize an empty mini-batch B

for b⇢ times do
Sample s ⇠ Bsc, on-policy action a

Sample s
0
, r ⇠ P(s, a)

Add (s, a, s0, r) into B

Sample b(1� ⇢) experiences from Ber, add to B

// NOTE: if ⇢ = 0, then we only uniformly sample
b experiences from Ber and use them as B, and the
algorithm reduces to ER
Update policy/value on mixed mini-batch B

the value approximation difficulty, then doing HC provides
additional states whose values are difficult to learn. The two
suffer from several issues as we discuss in the Appendix A.1.
This paper will introduce a HC search-control method moti-
vated by overcoming the limitations of the prioritized ER.

3 A DEEPER LOOK AT ERROR-BASED
PRIORITIZED SAMPLING

In this section, we provide theoretical motivation for error-
based prioritized sampling by showing its equivalence to
optimizing a cubic power objective with uniform sampling
in a supervised learning setting. We prove that optimizing
the cubic objective provides a faster convergence rate during
early learning. Based on the insight, we discuss two limi-
tations of the prioritized ER: 1) outdated priorities and 2)
insufficient coverage of the sample space. We then empiri-
cally study the limitations.

3.1 THEORETICAL INSIGHT INTO
ERROR-BASED PRIORITIZED SAMPLING

In the l2 regression, we minimize the mean squared er-
ror min✓

1
2n

P
n

i=1(f✓(xi) � yi)2, for training set T =
{(xi, yi)}ni=1 and function approximator f✓, such as a neu-

ral network. In error-based prioritized sampling, we define
the priority of a sample (x, y) 2 T as |f✓(x) � y|; the
probability of drawing a sample (x, y) 2 T is typically
q(x, y; ✓) / |f✓(x)� y|. We employ the following form to
compute the probability of a point (x, y) 2 T :

q(x, y; ✓)
def
=

|f✓(x)� y|P
n

i=1 |f✓(xi)� yi|
. (1)

We can show an equivalence between the gradients of the
squared objective with this prioritization and the cubic
power objective 1

3n

P
n

i=1 |f✓(xi)�yi|3 in Theorem 1 below.
See Appendix A.3 for the proof.

Theorem 1. For a constant c determined by ✓, T , we have

cE(x,y)⇠q(x,y;✓)[r✓(1/2)(f✓(x)� y)2]

= E(x,y)⇠uniform(T)[r✓(1/3)|f✓(x)� y|
3].

We empirically verify this equivalence in the Appendix A.7.
This simple theorem provides an intuitive reason for why
prioritized sampling can help improve sample efficiency: the
gradient direction of the cubic function is sharper than that
of the square function when the error is relatively large (Fig-
ure 8). We refer readers to the work by Fujimoto et al. [2020]
regarding more discussions about the equivalence between
prioritized sampling and of uniform sampling. Theorem 2
below further proves that optimizing the cubic power objec-
tive by gradient descent has faster convergence rate than the
squared objective, and this provides a solid motivation for
using error-based prioritized sampling. See Appendix A.4
for a detailed version of the theorem below, and its proof
and empirical simulations.

Theorem 2 (Fast early learning, concise version). Let n be
a positive integer (i.e., the number of training samples). Let
xt, x̃t 2 Rn be the target estimates of all samples at time
t, t � 0, and x(i)(i 2 [n], [n]

def
= {1, 2, ..., n}) be the ith

element in the vector. We define the objectives:

`2(x, y)
def
=

1

2

nX

i=1

(x(i)� y(i))2,

`3(x, y)
def
=

1

3

nX

i=1

|x(i)� y(i)|3.

Let {xt}t�0 and {x̃t}t�0 be generated by using `2, `3 objec-
tives respectively. Then define the total absolute prediction
errors respectively:

�t
def
=

nX

i=1

�t(i) =
nX

i=1

|xt(i)� y(i)|,

�̃t
def
=

nX

i=1

�̃t(i) =
nX

i=1

|x̃t(i)� y(i)|,

where y(i) 2 R is the training target for the ith training
sample. That is, 8i 2 [n],

dxt(i)

dt
= �⌘ ·

d`2(xt, y)

dxt(i)
,

dx̃t(i)

dt
= �⌘0 ·

d`3(x̃t, y)

dx̃t(i)
.

Given any 0 < ✏  �0 =
P

n

i=1 �0(i), define the following
hitting time,

t✏
def
= min

t

{t � 0 : �t  ✏}, t̃✏
def
= min

t

{t � 0 : �̃t  ✏}.

Assume the same initialization x0 = x̃0. We have the fol-
lowing conclusion.
If there exists �0 2 R and 0 < ✏  �0 such that

1

n
·

nX

i=1

1

�0(i)


⌘

⌘0
·
log (�0/✏)

�0
✏
� 1

, (2)

then we have t✏ � t̃✏, which means gradient descent using
the cubic loss function will achieve the total absolute error
threshold ✏ faster than using the squared objective function.

This theorem illustrates that when the total loss of all
training examples is greater than some threshold, cubic
power learns faster. For example, let the number of samples
n = 1000, and each sample has initial loss �0(i) = 2. Then
�0 = 2000. Setting ✏ = 570 (i.e., ✏(i) ⇡ 0.57) satisfies the
inequality (2). This implies that using the cubic objective is
faster in reducing the total loss from 2000 to 570. Though
it is not our focus here to investigate the practical utility
of the high power objectives, we include some empirical
results and discuss the practical utilities of such objectives
in Appendix A.6.

Note that, although the original prioritized ER raises the
importance ratio to a certain power, which is annealing from
1 at the beginning to 0 [Schaul et al., 2016]; our theorem
still explains the improvement of sample efficiency during
the early learning stage. It is because, the power is close to
one and hence it is equivalent to using a higher power loss.
This point has also been confirmed by a concurrent work
[Fujimoto et al., 2020, Sec 5.1, Theorem 3].

3.2 LIMITATIONS OF THE PRIORITIZED ER

Inspired by the above theorems, we now discuss two draw-
backs of prioritized sampling: outdated priorities and in-
sufficient sample space coverage. Then we empirically
examine their importance and effects in the next section.

The above two theorems show that the advantage of prior-
itized sampling comes from the faster convergence rate of
cubic power objective during early learning. By Theorem 1,
such advantage requires to update the priorities of all train-
ing samples by using the updated training parameters ✓ at
each time step. In RL, however, at the each time step t, the
original prioritized ER method only updates the priorities of

those experiences from the sampled mini-batch, leaving the
priorities of the rest of experiences unchanged [Schaul et al.,
2016]. We call this limitation outdated priorities. It is typi-
cally infeasible to update the priorities of all experiences at
each time step.

In fact, in RL, “all training samples” in RL are restricted to
those visited experiences in the ER buffer, which may only
contain a small subset of the whole state space, making the
estimate of the prioritized sampling distribution inaccurate.
There can be many reasons for the small coverage: the ex-
ploration is difficult, the state space is huge, or the memory
resource of the buffer is quite limited, etc. We call this issue
insufficient sample space coverage, which is also noted
by Fedus et al. [2020].

Note that insufficient sample space coverage should not be
considered equivalent to off-policy distribution issue. The
latter refers to some old experiences in the ER buffer may
be unlikely to appear under the current policy [Novati and
Koumoutsakos, 2019, Zha et al., 2019, Sun et al., 2020, Oh
et al., 2021]. In contrast, the issue of insufficient sample
space coverage can raise naturally. For example, the state
space is large and an agent is only able to visit a small subset
of the state space during early learning stage. We visualize
the state space coverage issue on a RL domain in Section 4.

3.3 NEGATIVE EFFECTS OF THE LIMITATIONS

In this section, we empirically show that the outdated pri-
orities and insufficient sample space coverage significantly
blur the advantage of the prioritized sampling method.

Experiment setup. We conduct experiments on a super-
vised learning task. We generate a training set T by uni-
formly sampling x 2 [�2, 2] and adding zero-mean Gaus-
sian noise with standard deviation � = 0.5 to the target
fsin(x) values. Define fsin(x)

def
= sin(8⇡x) if x 2 [�2, 0)

and fsin(x) = sin(⇡x) if x 2 [0, 2]. The testing set contains
1k samples where the targets are not noise-contaminated.
Previous work [Pan et al., 2020] shows that the high fre-
quency region [�2, 0] usually takes long time to learn.
Hence we expect error-based prioritized sampling to make a
clear difference in terms of sample efficiency on this dataset.
We use 32⇥32 tanh layers neural network for all algorithms.
We refer to Appendix A.8 for missing details and A.7 for
additional experiments.

Naming of algorithms. L2: the l2 regression with uniformly
sampling from T . Full-PrioritizedL2: the l2 regression
with prioritized sampling according to the distribution de-
fined in (1), the priorities of all samples in the training set
are updated after each mini-batch update. PrioritizedL2:
the only difference with Full-PrioritizedL2 is that only the
priorities of those training examples sampled in the mini-
batch are updated at each iteration, the rest of the training
samples use the original priorities. This resembles the ap-

proach taken by the prioritized ER in RL [Schaul et al.,
2016]. We show the learning curves in Figure 1.

Outdated priorities. Figure 1 (a) shows that PrioritizedL2
without updating all priorities can be significantly worse
than Full-PrioritizedL2. Correspondingly, we further ver-
ify this phenomenon on the classical Mountain Car do-
main [Brockman et al., 2016]. Figure 1(c) shows the eval-
uation learning curves of different DQN variants in an RL
setting. We use a small 16⇥16 ReLu NN as the Q-function,
which should highlight the issue of priority updating: every
mini-batch update potentially perturbs the values of many
other states. Hence many experiences in the ER buffer have
the wrong priorities. Full-PrioritizedER does perform sig-
nificantly better.

Sample space coverage. To check the effect of insufficient
sample space coverage, we examine how the relative perfor-
mances of L2 and Full-PrioritizedL2 change when we train
them on a smaller training dataset with only 400 examples
as shown in Figure 1(b). The small training set has a small
coverage of the sample space. Unsurprisingly, using a small
training set makes all algorithms perform worse; however,
it significantly narrows the gap between Full-PrioritizedL2
and L2. This indicates that prioritized sampling needs suffi-
cient samples across the sample space to estimate the priori-
tized sampling distribution reasonably accurate. We further
verify the sample space coverage issue in prioritized ER on
a RL problem in the next section.

4 ADDRESSING THE LIMITATIONS

In this section, we propose a Stochastic Gradient Langevin
Dynamics (SGLD) sampling method to mitigate the limita-
tions of the prioritized ER method mentioned in the above
section. Then we empirically examine our sampling distri-
bution. We also describe how our sampling method is used
for the search-control component in Dyna.

4.1 SAMPLING METHOD

SGLD sampling method. Let v⇡(·; ✓) : S 7! R be a differ-
entiable value function under policy ⇡ parameterized by ✓.
For s 2 S, define y(s)

def
= Er,s0⇠P⇡(s0,r|s)[r + �v

⇡(s0; ✓)],
and denote the TD error as �(s, y; ✓t)

def
= y(s) � v(s; ✓t).

Given some initial state s0 2 S, let the state sequence
{si} be the one generated by updating rule si+1 si +
↵hrs log |�(si, y(si); ✓t)| + Xi, where ↵h is a stepsize
and Xi is a Gaussian random variable with some con-
stant variance.1 Then {si} converges to the distribution
p(s) / |�(s, y(s))| as i ! 1. The proof is a direct con-
sequence of the convergent behavior of Langevin dynam-

1The stepsize and variance decides the temperature parameter
in the Gibbs distribution: 2↵h/�

2 [Zhang et al., 2017]. The two
parameters are usually treated as hyper-parameters in practice.

ics stochastic differential equation (SDE) [Roberts, 1996,
Welling and Teh, 2011, Zhang et al., 2017]. We include a
brief background knowledge in Appendix A.2.

It should be noted that, this sampling method enables us to
acquire states 1) whose absolute TD errors are estimated by
using the current parameter ✓t and 2) that are not restricted
to those visited ones. We empirically verify the two points
in Section 4.2.

Implementation. In practice, we can compute the state
value estimate by v(s) = maxa Q(s, a; ✓t) as suggested
by Pan et al. [2019]. In the case that a true environment
model is not available, we compute an estimate ŷ(s) of y(s)
by a learned model. Then at each time step t, states approxi-
mately following the distribution p(s) / |�(s, y(s))| can be
generated by

s s+ ↵hrs log |ŷ(s)�max
a

Q(s, a; ✓t)|+X, (3)

where X is a Gaussian random variable with zero-mean
and some small variance. Observing that ↵h is small, we
consider ŷ(s) as a constant given a state s without backprop-
agating through it. Though this updating rule introduces
bias due to the usage of a learned model, fortunately, the
difference between the sampling distribution acquired by
the true model and the learned model can be upper bounded
as we show in Theorem 3 in Appendix A.5.

Algorithmic details. We present our algorithm called Dyna-
TD in the Algorithm 3 in Appendix A.8. Our algorithm
follows the general steps in Algorithm 1. Particularly, we
choose the function h(s)

def
= log |ŷ(s) � maxa Q(s, a; ✓t)|

for HC search-control process, i.e., run the updating rule 3
to generate states.

4.2 EMPIRICAL VERIFICATION OF TD
ERROR-BASED SAMPLING METHOD

We visualize the distribution of the sampled states by our
method and those from the buffer of the prioritized ER,
verifying that our sampled states have an obviously larger
coverage of the state space. We then empirically verify that
our sampling distribution is closer to a brute-force calculated
prioritized sampling distribution—which does not suffer
from the two limitations—than the prioritized ER method.
Finally, we discuss concerns regarding computational cost.
Please see Appendix A.8 for any missing details.

Large sample space coverage. During early learning, we
visualize 2k states sampled from 1) DQN’s buffer trained
by prioritized ER and 2) our algorithm Dyna-TD’s Search-
Control (SC) queue on the continuous state GridWorld (Fig-
ure 2(a)). Figure 2 (b-c) visualize state distributions with
different sampling methods via heatmap. Darker color in-
dicates higher density. (b)(c) show that DQN’s ER buffer,
no matter with or without prioritized sampling, does not

(a) |T | = 4000 (b) |T | = 400 (c) Mountain Car.

Figure 1: Comparing L2 (black), PrioritizedL2 (red), and Full-PrioritizedL2 (blue) in terms of testing RMSE v.s. number
of mini-batch updates. (a)(b) show the results trained on a large and small training set, respectively. (c) shows the result of a
corresponding RL experiment on mountain car domain. We compare episodic return v.s. environment time steps for ER
(black), PrioritizedER (red), and Full-PrioritizedER (blue). Results are averaged over 50 random seeds on (a), (b) and 30
on (c). The shade indicates standard error.

cover well the top-left part and the right half part on the
GridWorld. In contrast, Figure 2 (d) shows that states from
our SC queue are more diversely distributed on the square.
These visualizations verify that our sampled states cover
better the state space than the prioritized ER does.

Notations and experiment setting. We denote our sam-
pling distribution as p1(·), the one acquired by conven-
tional prioritized ER as p2(·), and the one computed by
thorough priority updating of enumerating all states in the
state space as p⇤(·) (this one should be unrealistic in prac-
tice and we call it the ideal distribution as it does not
suffer from the two limitations we discussed). We visu-
alize how well p1(·) and p2(·) can approximate p

⇤(·) on
the GridWorld domain, where the state distributions can
be conveniently estimated by discretizing the continuous
state GridWorld to a 50 ⇥ 50 one. We compute the dis-
tances of p1, p2 to p

⇤ by two sensible weighting schemes: 1)
on-policy weighting:

P2500
j=1 d

⇡(sj)|pi(sj) � p
⇤(sj)|, i 2

{1, 2}, where d
⇡ is approximated by uniformly sample

3k states from a recency buffer; 2) uniform weighting:
1

2500

P2500
j=1 |pi(sj)� p

⇤(sj)|, i 2 {1, 2}.

Sampling distribution is close to the ideal one. We plot
the distances change when we train our Algorithm 3 and
the prioritized ER in Figure 3(a)(b). They show that the
HC procedure in our algorithm Dyna-TD-Long produces a
state distribution with a significantly closer distance to the
desired sampling distribution p

⇤ than PrioritizedER under
both weighting schemes. In contrast, the state distribution
acquired from PrioritizedER, which suffers from the two
limitations, is far away from p

⇤. Note that the suffix “-Long”
of Dyna-TD-Long indicates that we run a large number of
SGLD steps (i.e., 1k) to reach stationary behavior. This is a
sanity check but impractical; hence, we test the version with
only a few SGLD steps.

Sampling distribution with much fewer SGLD steps. In
practice, we probably only want to run a small number of
SGLD steps to save time. As a result, we include a practical

version of Dyna-TD, which only runs 30 SGLD steps, with
either a true or learned model. Figure 3(a)(b) show that even
a few SGLD steps can give better sampling distribution than
the conventional PrioritizedER does.

Computational cost. Let the mini-batch size be b, and the
number of HC steps be kHC . If we assume one mini-batch
update takes O(c), then the time cost of our sampling is
O(ckHC/b), which is reasonable. On the GridWorld, Fig-
ure 3(c) shows that given the same time budget, our algo-
rithm achieves better performance.This makes the additional
time spent on search-control worth it.

5 EXPERIMENTS

In this section, we firstly introduce baselines and the ba-
sic experimental setup. Then we design experiments in the
three paragraphs 1) performances on benchmarks, 2) Dyna
variants comparison, and 3) a demo for continuous control
to answer three following questions correspondingly.

1. By mitigating the limitations of the conventional prior-
itized ER method, can Dyna-TD outperform the priori-
tized ER under various planning budgets in different
environments?

2. Can Dyna-TD outperform the existing Dyna variants?

3. How effective is Dyna-TD under an online learned
model, particularly for more realistic applications
where actions are continuous?

Baselines and basic setup. ER is DQN with a regular ER
buffer without prioritized sampling. PrioritizedER is the
one by Schaul et al. [2016], which has the drawbacks as
discussed in our paper. Dyna-Value [Pan et al., 2019] is
the Dyna variant which performs HC on the learned value
function to acquire states to populate the SC queue. Dyna-
Frequency [Pan et al., 2020] is the Dyna variant which
performs HC on the norm of the gradient of the value func-
tion to acquire states to populate the SC queue. For fair

6

*

(a) GridWorld (b) PER (uniform) (c) PER (prioritized) (d) Dyna-TD SC queue

Figure 2: (a) shows the GridWorld [Pan et al., 2019]. It has S = [0, 1]2,A = {up, down, right, left}. The agent starts
from the left bottom and learn to reach the right top within as few steps as possible. (b) and (c) respectively show the state
distributions with uniform and prioritized sampling methods from the ER buffer of prioritized ER. (d) shows the SC queue
state distribution of our Dyna-TD. Dark color indicates high density.

(a) on-policy weighting (b) uniform weighting (c) time cost v.s. performance

Figure 3: (a)(b) show the distance change as a function of environment time steps for Dyna-TD (black), PrioritizedER
(forest green), and Dyna-TD-Long (orange), with different weighting schemes. The dashed line corresponds to our
algorithm with an online learned model. The corresponding evaluation learning curve is in the Figure 4(c). (d) shows the
policy evaluation performance as a function of running time (in seconds) with ER(magenta). All results are averaged over
20 random seeds. The shade indicates standard error.

comparison, at each environment time step, we stochasti-
cally sample the same number of mini-batches to train those
model-free baselines as the number of planning updates
in Dyna variants. We are able to fix the same HC hyper-
parameter setting across all environments. Whenever it in-
volves an online learned model, we use the mean squared
error to learn a deterministic model, which we found to
be reasonably good on those tested domains in this paper.
Please see Appendix A.8 for experiment details.2 We also
refer readers to Appendix A.7.4 for experiments on the au-
tonomous driving domain.

Performances on benchmarks. Figure 4 shows the perfor-
mances of different algorithms on MountainCar, Acrobot,
GridWorld (Figure 2(a)), and CartPole. On these small do-
mains, we focus on studying our sampling distribution and
hence we need to isolate the effect of model errors (by using
a true environment model), though we include our algorithm
Dyna-TD with an online learned model for curiosity. We
have the following observations. First, our algorithm Dyna-

2The code is released at https://github.com/
yannickycpan/reproduceRL.git.

TD consistently outperforms PrioritizedER across domains
and planning updates. In contrast, the PrioritizedER may
not even outperform regular ER, as occurred in the previous
supervised learning experiment.

Second, Dyna-TD’s performance significantly improves and
even outperforms other Dyna variants when increasing the
planning budget (i.e., planning updates n) from 10 to 30.
This validates the utility of those additional hypothetical
experiences acquired by our sampling method. In contrast,
both ER and PrioritizedER show limited gain when increas-
ing the planning budget (i.e., number of mini-batch updates),
which implies the limited utility of those visited experiences.

Dyna variants comparison. Dyna-Value occasionally finds
a sub-optimal policy when using a large number of planning
updates, while Dyna-TD always finds a better policy. We
hypothesize that Dyna-Value results in a heavy sampling
distribution bias even during the late learning stage, with
density always concentrated around the high-value regions.
We verified our hypothesis by checking the entropy of the
sampling distribution in the late training stage, as shown
in Figure 5. A high entropy indicates the sampling distri-

https://github.com/yannickycpan/reproduceRL.git
https://github.com/yannickycpan/reproduceRL.git

(a) MountainCar, n = 10 (b) MountainCar, n = 30 (c) Acrobot, n = 10 (d) Acrobot, n = 30

(e) GridWorld, n = 10 (f) GridWorld, n = 30 (g) CartPole, n = 10 (h) CartPole, n = 30

Figure 4: Episodic return v.s. environment time steps: evaluation learning curves of Dyna-TD (black), Dyna-Frequency
(red), Dyna-Value (blue), PrioritizedER (forest green), and ER(magenta) with planning updates n = 10, 30. The dashed
line denotes Dyna-TD with an online learned model. All results are averaged over 20 random seeds after smoothing over a
window of size 30. The shade indicates standard error. Results with planning updates n = 5 are in Appendix A.7.3.

bution is more dispersed than the one with low entropy.
We found that the sampling distribution of Dyna-Value has
lower entropy than Dyna-TD.

Dyna-Frequency suffers from explosive or zero gradients. It
requires computing third-order differentiation rs||Hv(s)||
(i.e., taking the gradient of the Hessian). It is hence sensitive
to domains and parameter settings such as learning rate
choice and activation type. This observation is consistent
with the description from Pan et al. [2020].

(a) Dyna-TD (b) Dyna-Value

Figure 5: Sampling distributions on the GridWorld visual-
ized by building 2D histogram from sampled states. Heavy
color indicates high visitations/state density. The concrete
way of generating the distribution is the same as Figure 2.
(a) has entropy around 4.5 and (b) has entropy around 3.9.

A demo for continuous control. We demonstrate that our
approach can be applied for Mujoco [Todorov et al., 2012]
continuous control problems with an online learned model
and still achieve superior performance. We use DDPG (Deep
Deterministic Policy Gradient) [Lillicrap et al., 2016, Silver
et al., 2014] as an example for use inside our Dyna-TD. Let

⇡✓0 : S 7! A be the actor, then we set the HC function as
h(s)

def
= log |ŷ � Q✓(s,⇡✓0(s))| where ŷ is the TD target.

Figure 6 (a)(b) shows the learning curves of DDPG trained
with ER, PrioritizedER, and our Dyna-TD on Hopper and
Walker2d respectively. Since other Dyna variants never show
an advantage and are not relevant to the purpose of this ex-
periment, we no longer include them. Dyna-TD shows quick
improvement as before. This indicates our sampled hypothet-
ical experiences could be helpful for actor-critic algorithms
that are known to be prone to local optimums. Addition-
ally, we note again that ER outperforms PrioritizedER, as
occurred in the supervised learning (PrioritizedL2 is worse
than L2) experiments.

(a) Hopper-v2 (b) Walker2d-v2

Figure 6: Episodic returns v.s. environment time steps of
Dyna-TD (black) with an online learned model, and other
competitors. Results are averaged over 5 random seeds after
smoothing over a window of size 30. The shade indicates
standard error.

6 DISCUSSION

We provide theoretical insight into the error-based priori-
tized sampling by establishing its equivalence to the uniform

sampling for a cubic power objective in a supervised learn-
ing setting. Then we identify two drawbacks of prioritized
ER: outdated priorities and insufficient sample space cov-
erage. We mitigate the two limitations by SGLD sampling
method with empirical verification. Our empirical results
on both discrete and continuous control domains show the
efficacy of our method.

There are several promising future directions. First, a nat-
ural question is how a model should be learned to benefit
a particular sampling method, as this work mostly focuses
on sampling hypothetical experiences without considering
model learning algorithms. Existing results show that learn-
ing a model while considering how to use it should make the
policy robust to model errors [Farahmand et al., 2017, Farah-
mand, 2018]. Second, one may apply our approach with a
model in latent space [Hamilton et al., 2014, Wahlström
et al., 2015, Ha and Schmidhuber, 2018, Hafner et al., 2019,
Schrittwieser et al., 2020], which enables our method to
scale to large domains. Third, since there are existing works
examining how ER is affected by bootstrap return [Daley
and Amato, 2019], by buffer or mini-batch size [Zhang and
Sutton, 2017, Liu and Zou, 2017], and by environment steps
taken per gradient step [Fu et al., 2019, van Hasselt et al.,
2018, Fedus et al., 2020], it is worth studying the theoretical
implications of those design choices and their effects on
prioritized ER’s efficacy.

Last, as our cubic objective explains only one version of
the error-based prioritization, efforts should also be made
to theoretically interpret other sampling distributions, such
as distribution location or reward-based prioritization [Lam-
bert et al., 2020]. It is interesting to explore whether these
alternatives can be formulated as surrogate objectives. Fur-
thermore, a recent work by Fujimoto et al. [2020] establishes
an equivalence between various distributions and uniform
sampling for different loss functions. Studying if those gen-
eral loss functions have faster convergence rate as shown in
our Theorem 2 could help illuminate their benefits.

Acknowledgements

We would like to thank all anonymous reviewers for their
helpful feedback during multiple submissions of this pa-
per. We acknowledge the funding from the Canada CIFAR
AI Chairs program, Alberta Machine Intelligence Institute,
and Natural Sciences and Engineering Council of Canada
(NSERC) Discovery Grant.

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, and et al. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from
tensorflow.org, 2015.

S Adam and L Busoniu. Experience Replay for Real-Time Rein-
forcement Learning Control. Systems, 2012.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI
Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. Advances in Neural Information Processing Systems,
pages 5048–5058, 2017.

Dimitri P. Bertsekas. Neuro-Dynamic Programming. Springer US,
2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. OpenAI
Gym. arXiv:1606.01540, 2016.

Veronica Chelu, Doina Precup, and Hado van Hasselt. Forethought
and hindsight in credit assignment. Advances in Neural Infor-
mation Processing Systems, 2020.

Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Dif-
fusion for global optimization in Rn. SIAM Journal on Control
and Optimization, pages 737–753, 1987.

Dane S. Corneil, Wulfram Gerstner, and Johanni Brea. Efficient
model-based deep reinforcement learning with variational state
tabulation. In International Conference on Machine Learning,
pages 1049–1058, 2018.

Brett Daley and Christopher Amato. Reconciling lambda-returns
with experience replay. Advances in Neural Information Pro-
cessing Systems, pages 1133–1142, 2019.

Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. Ex-
perience selection in deep reinforcement learning for control.
Journal of Machine Learning Research, 2018.

T. Degris, P. M. Pilarski, and R. S. Sutton. Model-free reinforce-
ment learning with continuous action in practice. In American
Control Conference (ACC), 2012.

Alain Durmus and Eric Moulines. Nonasymptotic convergence
analysis for the unadjusted Langevin algorithm. The Annals of
Applied Probability, pages 1551–1587, 2017.

Amir-massoud Farahmand. Iterative value-aware model learning.
Advances in Neural Information Processing Systems, pages
9072–9083, 2018.

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski.
Value-Aware Loss Function for Model-based Reinforcement
Learning. International Conference on Artificial Intelligence
and Statistics, pages 1486–1494, 2017.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua
Bengio, Hugo Larochelle, Mark Rowland, and Will Dabney.
Revisiting fundamentals of experience replay. International
Conference on Machine Learning, pages 3061–3071, 2020.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G.
Bellemare, and Joelle Pineau. An introduction to deep reinforce-
ment learning. Foundations and Trends® in Machine Learning,
pages 219–354, 2018.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diag-
nosing bottlenecks in deep q-learning algorithms. International
Conference on Machine Learning, pages 2021–2030, 2019.

Scott Fujimoto, David Meger, and Doina Precup. An equivalence
between loss functions and non-uniform sampling in experience
replay. Advances in Neural Information Processing Systems,
2020.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty
of training deep feedforward neural networks. In International
Conference on Artificial Intelligence and Statistics, 2010.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. International
Conference on Learning Representations, 2015.

Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Sing-
hal, Timothy Lillicrap, Sergey Levine, Hugo Larochelle, and
Yoshua Bengio. Recall traces: Backtracking models for efficient
reinforcement learning. International Conference on Learning
Representations, 2019.

Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey
Levine. Continuous Deep Q-Learning with Model-based Ac-
celeration. In International Conference on Machine Learning,
pages 2829–2838, 2016.

David Ha and Jürgen Schmidhuber. Recurrent world models facili-
tate policy evolution. Advances in Neural Information Process-
ing Systems, pages 2450–2462, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas,
David Ha, Honglak Lee, and James Davidson. Learning latent
dynamics for planning from pixels. International Conference
on Machine Learning, pages 2555–2565, 2019.

W L Hamilton, M M Fard, and J Pineau. Efficient learning and
planning with compressed predictive states. Journal of Machine
Learning Research, 2014.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Moham-
mad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. AAAI Conference on
Artificial Intelligence, 2018.

G. Zacharias Holland, Erin Talvitie, and Michael Bowling. The
effect of planning shape on dyna-style planning in high-
dimensional state spaces. CoRR, abs/1806.01825, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron,
Matteo Hessel, Hado van Hasselt, and David Silver. Distributed
prioritized experience replay. International Conference on
Learning Representations, 2018.

Peter J. Huber. Robust estimation of a location parameter. Annals
of Mathematical Statistics, pages 73–101, 1964.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
When to trust your model: Model-based policy optimization.
Advances in Neural Information Processing Systems, pages
12519–12530, 2019.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. Journal of Artificial Intelli-
gence Research, page 237–285, 1996.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. International Conference on Learning Represen-
tations, 2014.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Cor-
rective feedback in reinforcement learning via distribution cor-
rection. Advances in Neural Information Processing Systems,
33:18560–18572, 2020.

Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto Calan-
dra. Objective mismatch in model-based reinforcement learning.
arXiv preprint arXiv:2002.04523, 2020.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel.
Sunrise: A simple unified framework for ensemble learning
in deep reinforcement learning. International Conference on
Machine Learning, pages 6131–6141, 2021.

Edouard Leurent. An environment for autonomous driving
decision-making. GitHub repository https://github.
com/eleurent/highway-env , 2018.

Edouard Leurent, Yann Blanco, Denis Efimov, and Odalric-
Ambrym Maillard. Approximate robust control of uncertain
dynamical systems. CoRR, abs/1903.00220, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning. Interna-
tional Conference on Learning Representations, 2016.

Long-Ji Lin. Self-Improving Reactive Agents Based On Reinforce-
ment Learning, Planning and Teaching. Machine Learning,
1992.

Ruishan Liu and James Zou. The effects of memory replay in
reinforcement learning. Conference on Communication, Control,
and Computing, 2017.

Xu-Hui Liu, Zhenghai Xue, Jing-Cheng Pang, Shengyi Jiang, Feng
Xu, and Yang Yu. Regret minimization experience replay in off-
policy reinforcement learning. Advances in Neural Information
Processing Systems, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, and et al. Human-level control through deep reinforce-
ment learning. Nature, 2015a.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin
Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 2015b.

Andrew W. Moore and Christopher G. Atkeson. Prioritized sweep-
ing: Reinforcement learning with less data and less time. Ma-
chine learning, pages 103–130, 1993.

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

Guido Novati and Petros Koumoutsakos. Remember and forget
for experience replay. International Conference on Machine
Learning, pages 4851–4860, 2019.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-
imitation learning. International Conference on Machine Learn-
ing, pages 3878–3887, 2018.

Youngmin Oh, Kimin Lee, Jinwoo Shin, Eunho Yang, and Sung Ju
Hwang. Learning to sample with local and global contexts in
experience replay buffer. International Conference on Learning
Representations, 2021.

Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patter-
son, and Martha White. Organizing experience: a deeper look
at replay mechanisms for sample-based planning in continuous
state domains. In International Joint Conference on Artificial
Intelligence, pages 4794–4800, 2018.

Yangchen Pan, Hengshuai Yao, Amir-massoud Farahmand, and
Martha White. Hill climbing on value estimates for search-
control in dyna. International Joint Conference on Artificial
Intelligence, 2019.

Yangchen Pan, Jincheng Mei, and Amir massoud Farahmand.
Frequency-based search-control in dyna. In International Con-
ference on Learning Representations, 2020.

Richard L. Roberts, Gareth O.and Tweedie. Exponential conver-
gence of langevin distributions and their discrete approxima-
tions. Bernoulli, pages 341–363, 1996.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver.
Prioritized Experience Replay. In International Conference on
Learning Representations, 2016.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen
Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward
Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by plan-
ning with a learned model. Nature, pages 604–609, 2020.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan
Wierstra, and Martin Riedmiller. Deterministic policy gradient
algorithms. In International Conference on Machine Learning,
pages I–387–I–395, 2014.

Samarth Sinha, Jiaming Song, Animesh Garg, and Stefano Ermon.
Experience replay with likelihood-free importance weights. An-
nual Learning for Dynamics and Control Conference, pages
110–123, 2022.

Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive experi-
ence replay. AAAI Conference on Artificial Intelligence, pages
5900–5907, 2020.

Richard S. Sutton. Integrated architectures for learning, planning,
and reacting based on approximating dynamic programming. In
Machine Learning, 1990.

Richard S. Sutton. Integrated modeling and control based on
reinforcement learning and dynamic programming. In Advances
in Neural Information Processing Systems, 1991.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. The MIT Press, second edition, 2018.

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and
Michael Bowling. Dyna-style planning with linear function
approximation and prioritized sweeping. Conference on Uncer-
tainty in Artificial Intelligence, pages 528–536, 2008.

Csaba Szepesvári. Algorithms for Reinforcement Learning. Mor-
gan Claypool Publishers, 2010.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 5026–5033,
2012.

Hado van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel,
Nicolas Sonnerat, and Joseph Modayil. Deep reinforcement
learning and the deadly triad. Deep Reinforcement Learning
Workshop at Advances in Neural Information Processing Sys-
tems, 2018.

Hado P van Hasselt, Matteo Hessel, and John Aslanides. When to
use parametric models in reinforcement learning? Advances in
Neural Information Processing Systems, pages 14322–14333,
2019.

Harm van Seijen and Richard S. Sutton. A deeper look at plan-
ning as learning from replay. In International Conference on
Machine Learning, pages 2314–2322, 2015.

Niklas Wahlström, Thomas B. Schön, and Marc P. Deisenroth.
From pixels to torques: Policy learning with deep dynamical
models. Deep Learning Workshop at International Conference
on Machine Learning, 2015.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Ma-
chine Learning, pages 279–292, 1992.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic
gradient Langevin dynamics. In International Conference on
Machine Learning, pages 681–688, 2011.

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Ex-
perience replay optimization. International Joint Conference
on Artificial Intelligence, pages 4243–4249, 2019.

Shangtong Zhang and Richard S. Sutton. A Deeper Look at Ex-
perience Replay. Deep Reinforcement Learning Symposium at
Advances in Neural Information Processing Systems, 2017.

Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time
analysis of stochastic gradient langevin dynamics. Conference
on Learning Theory, pages 1980–2022, 2017.

