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Abstract

Humans intuitively construct mental models of space beyond what they directly1

perceive, but can large visual-language models (VLMs) do the same with partial2

observations like limited views? We identify this significant gap for current3

VLMs via our new MINDCUBE benchmark with 17, 530 questions and 2, 9194

images, evaluating how well VLMs build robust spatial mental models, representing5

positions (cognitive mapping), orientations (perspective-taking), and dynamics6

(mental simulation for what-if movements), to solve spatial reasoning on unseen7

space that beyonds immediate perception.8

We explore three approaches to approximating spatial mental models in VLMs:9

(1) View interpolation to visualize mental simulation, which surprisingly offers10

little benefit, highlighting the challenge of reasoning from limited views; (2)11

Textual reasoning chains, which effectively guide model thinking when supervised;12

and (3) Structured representations like cognitive maps, where ground truth maps13

help little, but training VLMs to generate and reason over their own maps yields14

substantial gains—even if the maps are imperfect. Training models to reason15

over these internal maps raises accuracy from 38.3% to 61.7% (+23.5%). Adding16

reinforcement learning further improves performance to 76.1% (+37.8%).17

Our key insight is that such scaffolding of spatial mental models, actively construct-18

ing and utilizing internal structured spatial representations with flexible reasoning19

processes, significantly improves understanding of unobservable space.20

1 Introduction21

For Vision-Language Models (VLMs) [1, 2, 3, 4] to move beyond passive perception [5, 6] to22

interact with partially observable environments [7, 8, 9], it is fundamental to reason about unseen23

spatial relationships from limited views. Consider how effortlessly a human can infer the unseen24

objects behind the “plant” are the “tissue box” and the “hand sanitizer” in the second viewpoint in25

Figure 1, including their position, pose, and their relationship with objects that are not simultaneously26

visible, all by integrating information from four ego-centric observations: we build and update a27

mental model of our surroundings, even when objects are out of sight. This is enabled by a core28

cognitive function known as the spatial mental model [10, 11]: an internal representation of the29

environment that allows for consistent understanding and inference about space, independent of the30

current viewpoint. VLMs, despite their impressive progress, struggle to synthesize spatial information31

from limited views, maintain spatial consistency across views, and reason about objects not directly32

visible [12, 13, 14, 15].33

This gap calls for specialized evaluation settings, which must include: (a) reasoning with partial34

observations where objects are occluded or out of view (such as “hand sanitizer”in the second35

viewpoint in Figure 1), (b) maintaining cross-view consistency across shifting viewpoints (such as36

through anchor objects “plant”), and (c) mental simulation to infer hidden spatial relationships (such37

as “what if turning left and moving forward”). To fill this gap, we introduce MINDCUBE, featuring38

17, 530 questions and 2, 919 images, organized into 740 multi-view groups through various types of39

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Views

Question
If you are at view 1 and move to view 2, 
what is the furthest from you？
A. Potted plant           B. Hand sanitizer 
C. Black shelf              D. Fireplace Imagine the scene Move to view 2

Position & Orientation Mental Simulation

How to Approximate Mental Model in VLMs?

View Interpolation

1 2

1

2

The Challenge: Spatial Mental Modeling from Limited Views 

1

3
2 4

VLMs Are Bad at Spatial Mental Modeling

VLM

Inserted

2

Cognitive Map

Reasoning Instruct

Based on the 
images and the 
question, please first 
think step by step 
then answer …

Free-Form Reasoning

Three Cognitive Scaffold Data Structure

SFT

RL

VLM

Instruction

Elicitation Methods

1 QA CoT + Ans

2 + AnsQA2

2+ AnsQA3

AnsQA+ View Interp.4

QA CoT + Ans2+5

QA + CoT + Ans26In
ve

st
ig

at
ed

Se
tti

ng
s

38.27%

4 QA - 0.60%

3 QA +0.91%

6 QA +5.18%

5 QA - 0.82%

1 QA +12.82%

2 QA +8.91%

6 QA +23.46%

VLM1 QA +7.82%

VLM6 QA +7.82%

1 QA +1.55%

QA
Base

VLM

6 QA

QA

+37.82% 

Configurations Performance Overview

Figure 1: Top: VLMs cannot maintain a coherent mental model when evaluating on the MINDCUBE
benchmark. Bottom: We study how we can help VLMs imagine space through external (scaling of
views, cognitive map input) and internal strategies (fine-tuning, cognitive map elicitation). We find
joint cognitive map and reasoning setting yields the highest gain (37.8%). : Best within the same
elicitation method. : Best performance combination.

viewpoint transformations (i.e., ROTATION, AMONG, AROUND in Figure 2). We annotate questions40

with a focus on objects that are not visible in the current query view. As shown in Figure 2, we41

systematically design question types requiring “what-if” mental simulations from the given view42

(such as “what if turning to left”), perspective taking (such as “what if taking the sofa’s perspective”),43

complex relation reasoning queries (referencing either the agent or other objects).44

Our extensive evaluations of 14 state-of-the-art VLMs on MINDCUBE reveal that both open-source45

and closed-source models perform only marginally better than random guessing. This poor perfor-46

mance motivates a central question: How can we help VLMs reason from partial observations?47

Inspired by spatial cognition [16, 17, 18] operating through visual imagery, linguistic reasoning, or48

explicit cognitive maps, to build consistent spatial awareness across different views, we investigate49

whether intermediate representations can help VLMs approximate mental models through three50

approaches. View Interpolation generates intermediate views between given observations using51

recorded video or 3D reconstruction (Stable Virtual Camera [19]), which unexpectedly is not helpful,52

highlighting the importance of reasoning directly from limited views. Free-form Natural Language53

Reasoning verbalizes the mental simulation process, achieving substantial gains (+1.6%). Struc-54

tured Cognitive Map simulates global spatial memory from an allocentric (bird’s-eye) perspective55

with orientation and view augmentation. Interestingly, ground truth cognitive maps yield minimal56

improvements (+0.9%), while guiding models to construct their own cognitive maps achieves better57

results (+5.2%), which indicates that teaching a model to generate its own mental model and think58

this way, is more effective than directly making sense of provided ready-made representations.59

Despite generating seemingly correct maps, VLMs exhibit a significant bottleneck in accurate mental60

modeling, evidenced by low isomorphic similarity (17%) with ground truth maps. Recognizing61
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Figure 2: MINDCUBE taxonomy and examples. Left: Three camera movement patterns (ROTATION,
AROUND, AMONG) with corresponding spatial QA examples. Right: Four-dimensional taxonomy
categorizing MINDCUBE questions types.

this limitation, we train VLMs by constructing 10, 000 reasoning chains and 10, 000 ground truth62

cognitive maps, investigating how to effectively guide their thinking process through injection of these63

training signals. Self-supervised Finetuning (SFT) on cognitive maps significantly boost isomorphic64

similarity to 50% from 17%. While SFT on free-form reasoning chains proved more effective with a65

gain of +4.8%, guiding models to first build cognitive maps and then perform free-form reasoning66

over them achieved significantly better performance, resulting in a total gain of +15.4%, proving67

scaffolding spatial mental models via actively constructing and utilizing internal structured spatial68

representations with flexible reasoning processes is highly effective.69

We employ Reinforcement Learning (RL) to further boost post-SFT performance, guiding models to70

think in terms of building and reasoning over cognitive maps by injecting structured thinking before71

RL training, using our SFT model. This approach leads to a significant improvement—raising task72

accuracy from a baseline of 38.3% to 76.1%. Our empirical evidence substantiates a critical finding:73

VLMs exhibit superior performance in spatial reasoning tasks when autonomously generating and74

leveraging internal mental representations, as compared to conventional approaches such as view75

interpolation or externally-supplied maps.76

2 MINDCUBE Benchmark and Evaluation77

2.1 MINDCUBE Benchmark78

Overview. We introduce MINDCUBE, a benchmark for evaluating VLMs’ spatial reasoning under79

partial observations and dynamic viewpoints. MINDCUBE features multi-view image groups paired80

with spatial reasoning questions, enabling fine-grained analysis of spatial modeling performance.81

It targets key challenges such as maintaining object consistency across views and reasoning about82

occluded or invisible elements. Table 1 (left) summarizes the benchmark’s overall data distribution.83

Details on benchmark design, taxonomy, and curation are provided in the Appendix.84

Taxonomy. For a fine-grained analysis of VLM spatial reasoning abilities, we introduce a taxonomy85

that systematically categorizes the challenges in MINDCUBE (visualized in Figure 2). This taxonomy86

spans five key dimensions: 1) Camera Movement: We mainly collect three types of camera87

movement: ROTATION (Stays in place but rotates to look around), AROUND (Moves around evaluated88

objects in a circular path), and AMONG (Moves among evaluated objects in a circular path). 2)89
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Table 1: Left: MINDCUBE data statistics. Right: Performance of VLMs on MINDCUBE.
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Method Overall Rotation Among Around
Baseline
Random (chance) 39.40 36.36 39.00 46.44
Random (frequency) 41.60 39.00 39.00 46.00
Open-source Multi Image Models
LLaVA-Onevision-7B 49.00 36.84 50.54 38.43
LLaVA-Video-Qwen-7B 45.78 37.80 46.94 36.52
mPLUG-Owl3-7B 45.46 37.51 47.04 29.62
InternVL2.5-8B 29.01 35.69 27.00 52.97
Qwen2.5-VL-7B 35.44 38.09 34.73 45.13
LongVA-7B 35.29 35.31 34.95 40.55
idefics2-8B 38.74 37.22 38.65 41.83
DeepSeek-VL2-Small 47.42 36.36 49.44 28.03
Mantis-8B(Clip) 28.82 38.18 26.08 61.36
Proprietary Models(API)
GPT-4o 36.70 40.88 36.07 42.89
Claude-3.7-Sonnet 39.71 37.70 39.62 43.42
Spatial Models
RoboBrain 42.23 37.51 42.75 39.28
space-mantis 31.56 37.99 29.41 58.07
space-LLaVA 27.31 33.89 26.71 35.37

Visual Patterns: This describes the objects’ spatial configurations, including spatial linear or non-90

linear arrangements. 3) “What-if” Dynamics: The hypothetical transformations applied to the91

agent’s viewpoint, such as translation, rotation, or their combination (meanwhile and sequence). 4)92

Relation Query: The type of spatial relation being queried, including agent–object, agent–agent, or93

object–object. 5) Perspective Taking: Whether the spatial reasoning is grounded in the perceiver’s94

own viewpoint (self ) or involves adopting the viewpoint of another entity (other).95

Dataset Curation. The MINDCUBE dataset was created through a pipeline: We first selected96

multi-view image groups matching our taxonomy’s movement patterns (Figure 2) and spatial criteria.97

These were then annotated with key spatial information. Finally, we algorithmically generated98

taxonomy-aligned questions with targeted distractors. Details are included in the Appendix.99

2.2 Evaluation on MINDCUBE100

We evaluate VLMs’ spatial reasoning on MINDCUBE using a diverse set of models (Table 1, right;101

setup details in the Appendix). Results reveal a striking performance gap: the best model, LLaVA-102

Onev-7B, achieves only 49.00% accuracy—well above chance but far from human-level. ROTATION103

tasks proved hardest (top score: 40.88%), suggesting limited mental rotation and viewpoint adaptation.104

AMONG and AROUND tasks showed no consistent winners, highlighting weak relational reasoning.105

Large proprietary models often lagged behind smaller open-source counterparts. Spatial fine-tuning106

yielded mixed results. Overall, neither multi-image input nor spatial fine-tuning reliably improves107

spatial reasoning, raising a key question: How can we help VLMs develop or approximate these108

crucial spatial reasoning capabilities?109

3 Which Scaffolds Best Guide Spatial Thinking in Unchanged VLMs?110

To address the identified gap, we first evaluate whether structured data forms can scaffold spatial111

reasoning in frozen VLMs by approximating spatial mental models under limited views.112

3.1 Data Structures as Cognitive Scaffolds for Spatial Mental Models113

We investigate whether certain data structures can act as cognitive scaffolds that help VLMs form114

spatial mental models from limited visual observations. In cognitive science, spatial mental models115

are internal representations encoding the relative configuration of objects and viewpoints. Rather116

than metric-precise maps, they are schematic, manipulable constructs that support reasoning across117

fragmented observations and unseen perspectives [11, 20, 21, 22]. For instance, humans can mentally118

simulate turning or infer what lies behind them, suggesting that such representations are flexible,119

incomplete, yet functionally effective. Drawing on this literature, we define three data structures,120
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}, ...]

} ​
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{
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},
"Tissue box": {
"position": [5, 5]

},
"Hand sanitizer": {
"position": [7, 5]

},
"Sofa": {
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"facing": "down”

},
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}
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potted plant, so both views 
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spatially furthest behind the 
potted plant when looking in 
View 2. 
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me.

Views and Question Examples - Three Data Structures We Studied to Approximate Spatial Mental Models

insert

insert

Figure 3: Grounded examples of our three data structures that approximate spatial mental models.

each targeting distinct cognitive properties (integration, transformation, inference) of spatial mental121

models, with grounded examples in Figure 3:122

1. View Interpolation. Interpolating between sparse camera views introduces perceptual continuity,123

echoing the process of mental animation [23] and supporting internal transformation such as124

imagined rotation. This structure scaffolds the dynamic updating capability of spatial mental125

models. Figure 3 shows a one-frame inserting example that replaces the original question images.126

2. Augmented Cognitive Map. A cognitive map is a 2D schematic representation of object layouts in127

space. Such maps resemble Tversky’s cognitive collages [20], and they capture locally coherent but128

fragmented structures. Recent studies [24, 25] on VLM-based spatial intelligence typically adopt129

a plain form that only encodes object positions in a top-down view. We propose an augmented130

variant that incorporates discrete views, with both objects and views annotated by position and131

orientation, thereby approaching the relational consistency of spatial mental models.132

3. Free Form Reasoning. Open-ended, step-by-step natural language reasoning offers a procedural133

approximation of how spatial models are constructed and queried. While less rigid than map-like134

structures, such reasoning reflects the inferential function of spatial mental models, especially135

under ambiguous or incomplete observations [21].136

3.2 Experiment Setup137

Table 2: Abbreviations for the ten input-output configurations across
all experiments in this work. VI = View Interpolation, CGMap =
Cognitive Map, Aug = Augmented (objects + camera included), FF-
Rsn and FFR = Free-Form Reasoning.

Name Input Structure Output Format

Raw QA Raw views + question Direct answer
VI-1 Raw + 1 interp. view Direct answer
VI-2 Raw + 2 interp. views Direct answer
FF-Rsn Raw views + question Reasoning → answer
Aug-CGMap-In Aug. cognitive map Direct answer
Aug-CGMap-Out Aug. cognitive map Direct answer
Plain-CGMap-Out Plain cognitive map Direct answer
Plain-CGMap-FFR-Out Raw views + question Plain map + rsn → ans
Aug-CGMap-FFR-Out Raw views + question Aug. map + rsn → ans
CGMap-In-FFR-Out Aug. cognitive map Reasoning → answer

We conduct controlled ex-138

periments with fixed input139

formats to test whether140

structured scaffolds can141

help without retraining.142

Each condition introduces143

a different structure to144

support internal modeling145

under limited views.146

Model and Evaluation147

Data We conduct all ex-148

periments using Qwen2.5-149

VL-3B-Instruct [3]. Our150

evaluation is performed on151

MINDCUBE-TINY, a diag-152

nostic subset sampled from153

MINDCUBE, containing 1,100 questions in total. Detailed statistics are: 500 from the AMONG, 400154

from AROUND, and 200 from ROTATION.155

Configurations Each experiment is defined by two orthogonal axes: Input Structure (what spatial156

evidence VLMs receive) and Output Format (the required response type). We investigate a subset157

of the ten possible configurations shown in Table 2. Specifically, our grounded cognitive maps are158

generated using the object arrangements annotation described in Section 2.1, and examples for all con-159

figurations are provided in the Appendix. We exclude the Aug-CGMap-Out and Plain-CGMap-Out160

settings, as VLMs tend to conflate map generation with reasoning, even when instructed otherwise.161
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Table 3: Left: QA accuracy (%) of Qwen2.5-VL-3B-Instruct on the MINDCUBE-TINY benchmark
under different input/output scaffolds. Right: Graph metrics for two cog map output settings.

Config. Overall Rotation Among Around
Raw QA 38.27 35.50 31.40 48.25
VI-1 37.67↓ 30.05 32.80 47.25
VI-2 36.10↓ 22.95 31.80 47.50
Aug-CGMap-In 39.18↑ 38.00 31.60 49.25
FF-Rsn 39.82↑ 33.50 38.40 44.75
Aug-CGMap-FFR-Out 42.73↑ 37.50 44.60 43.00
Plain-CGMap-FFR-Out 43.45↑ 42.50 41.00 47.00
CGMap-In-FFR-Out 37.45↓ 35.00 31.60 46.00 Valid

CGMap Rate
Overall

Similarity
Isomophic

Rate

0

50

100 99.0099.00

41.1436.86

11.45
16.64

Aug-CGMap-Out
Plain-CGMap-Out

Evaluation Metrics We evaluate task performance using QA accuracy. For generated cognitive maps,162

we introduce a set of well-defined graph metrics: (1) Valid Cognitive Map Rate, indicating whether163

the output conforms to the expected schema; (2) Overall Similarity, a weighted score combining164

directional and facing consistency; and (3) Isomorphism Rate, measuring whether all pairwise object165

relations match the ground truth under optimal alignment. Full definitions are provided in Appendix.166

3.3 Do Scaffolds Improve Spatial Reasoning Without Training?167

We evaluate how well the seven input configurations defined in Table 2 support spatial reasoning in168

VLMs under limited views, without any model updates. Results are shown in Table 3 (left).169

How far can structure alone go? We begin with the baseline: raw input views and direct answering,170

which achieves just 38.27% accuracy. Adding interpolated views, which we hope to simulate smoother171

perceptual transitions, leads to no meaningful gain, and in some cases slightly harms performance172

(down to 36.10%). Providing an augmented cognitive map or free-form reasoning barely improve173

accuracy (39.18% and 39.82%). These results suggest: structure alone, whether visual or spatial, is174

not enough. Without engaging reasoning, VLMs struggle to leverage even well-formed spatial cues.175

Can we prompt the model to think spatially? The answer appears to be yes. Strikingly, compared176

to FF-Rsn only, prompting models to produce a cognitive map before answering leads to the strongest177

gains: 43.45% with plain maps (object only), and 42.73% with augmented maps (objects + views).178

This suggests that generating a map may encourage the model to first form a global understanding of179

the scene, which in turn supports more structured reasoning. Our case studies in the Appendix reveal180

that such reasoning often unfolds on the map itself. Both map forms have a great format following181

ability. Augmented maps perform slightly worse. In Table 3 (Right), despite generating syntactically182

valid maps for both formats, similarity to grounded maps is low (< 50%), reflecting limited mapping183

ability. Notably, augmented maps have lower isomorphism rates (↓ 5.19%), likely because the added184

view-level details increase generation errors, making downstream reasoning less reliable.185

What if we ask models to reason over grounded cognitive maps? Intuitively, combining map186

input and free-form reasoning seems promising. Yet, performance drops to 37.45%. We hypothesize187

this mismatch arises from representational dissonance: reasoning over externally imposed maps may188

conflict with the model’s latent space, leading to confusion rather than clarity.189

� Key Takeaways: Scaffolding Spatial Reasoning in Frozen VLMs

• Producing reasoning is effective, especially combined with cognitive maps.
• Self-generated reasoning consistently outperforms imposed formats.
• Visual continuity and passive structure provide little benefit.
• Simpler, object-only maps work better; too much structure can backfire for frozen VLMs.

190

4 Can We Teach VLMs to Build and Leverage Spatial Representations?191

So far, prompting frozen VLMs with external scaffolds, such as interpolated views or cognitive maps,192

has yielded limited gains. These techniques fail to tackle the core limitation: VLMs do not form193

internal spatial representations or reason through space effectively. To go further, we want to know:194

Can supervised fine-tuning (SFT) teach VLMs to build and leverage spatial models from within?195
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Table 4: QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under
SFT configurations on MINDCUBE-TINY. Both FF-Rsn and FFR refer to free-form reasoning.

SFT Config.
MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)

Overall Rotation Among Around Valid Rate Overall Sim. Isom. Rate
Raw QA 46.36 33.50 51.20 46.75 – – –

Aug-CGMap-Out 47.18↑ 35.00 52.80 46.25 100.00 77.27 51.91
Plain-CGMap-Out 45.73↓ 37.50 49.80 44.75 100.00 75.89 49.55
FF-Rsn 51.09↑ 34.00 56.40 53.00 – – –
Aug-CGMap-FFR-Out 61.73↑ 68.50 70.60 47.25 100.00 80.46 56.91

4.1 Designing a Robust Experimental Framework196

To ensure consistency and comparability, we inherit experimental configurations detailed in Sections197

3.1 and 3.2. Specifically, we retain: (1) the two effective data structures—Cognitive Maps (Object-198

only / Object + Camera) and Free-Form Reasoning, (2) the base model Qwen2.5-VL-3B-Instruct,199

(3) the evaluation benchmark MINDCUBE-TINY, and (4) all established evaluation metrics. View200

interpolation is excluded from our fine-tuning experiments due to its limited performance gains in201

earlier validations. Primary modifications in this SFT phase include adjusted training hyperparameters202

(detailed in the Appendix).203

SFT Task Configurations Drawing on insights from Section 3.3, we use selected configurations from204

Table 2 to evaluate the incremental impact of cognitive map generation and free-form reasoning in205

SFT. These include baseline QA without explicit reasoning (Raw QA), reasoning guided by generated206

maps only (Plain-CGMap-Out, Aug-CGMap-Out), reasoning-augmented prompts (FF-Rsn), and a207

fully integrated setup that asks VLMs to generate both maps and reasoning (Aug-CGMap-FFR-Out).208

Grounded Free-Form Reasoning Chain Generation We design grounded reasoning chains using209

detailed image annotations and structured question templates. Chains are manually constructed210

via a template-based method, ensuring logical coherence and clear grounding in observable spatial211

relations (see an example in Figure 3). This yields precise, interpretable supervision signals that212

help VLMs learn robust spatial reasoning representations. The detailed grounded reasoning data213

generation pipeline is shown in the Appendix.214
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Figure 4: SFT per 5 step training performance on task accuracy and graph metrics.

4.2 Do VLMs Truly Benefit from Explicit Training in Spatial Reasoning?215

We explore several SFT configurations (results shown in Table 4), guided by a series of core questions.216

Fine-tuning directly on raw QA pairs, without spatial supervision, raises accuracy from 38.27% to217

46.36%. This suggests VLMs can absorb some spatial cues from QA data alone. We use this setup as218

the baseline for evaluating methods that explicitly incorporate spatial structures.219

Can structured approximations of mental models alone meaningfully improve performance?220

As shown in Table 2, supervised fine-tuning on explicit cognitive maps, either Augmented or Plain,221

leads to substantial improvements in graph structure quality, with more than 30% gains in both overall222

similarity and Isomorphic rate. However, the effect on end-task accuracy remains limited. Both223

augmented maps (47.18%) and Plain maps (45.73%) offer only modest gains over the fine-tuned224

Raw QA (46.36%). In contrast, directly FF-Rsn yields a significantly larger improvement, increasing225

accuracy to 51.09%. This could be that free-form reasoning is well-aligned with base model language226

ability, which better guides the model towards the correct spatial understanding.227

Generating both cognitive maps and free-form reasoning is the most effective approximation.228

Among all configurations, this combination yields the most significant performance gain (61.73%,229
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↑15.37%), far surpassing models that rely on either map generation or reasoning alone. This suggests230

a strong synergy between structured spatial modeling and natural language inference. Why does231

this combination work so well? First, improvements in task accuracy are accompanied by sharper232

spatial representations. The Aug-CGMap-FFR-Out model, which first builds a cognitive map and233

then reasons over it, achieves 80.46% similarity and 56.91% isomorphism, surpassing all other234

variants. On the other hand, training dynamics further reinforce this view. As shown in Figure 4,235

models trained to jointly map and reason tend to converge more slowly, but ultimately achieve higher236

performance. Interestingly, spatial representation quality improves more quickly when reasoning237

is explicitly trained. These results suggest that reasoning encourages more precise and structured238

spatial understanding, rather than merely consuming it.239

� Key Takeaways: Teaching VLMs to Reason Spatially

• Joint cogmap and reasoning setting yields optimal performance through synergistic effects.
• Reasoning improves accuracy and map quality by strengthening spatial representations.
• More structured outputs slow convergence but lead to higher final performance.

240

5 Can Reinforcement Learning Further Refine Spatial Thought Processes?241

While SFT establishes a strong baseline for spatial reasoning, emerging evidence from models like242

DeepSeek R1 [26, 27] suggests reinforcement learning (RL) can offer additional gains by optimizing243

behavior through outcome-driven feedback. We ask: Can reward-guided refinement help VLMs build244

sharper spatial models and reason more effectively?245

5.1 Experimental Setup246

We employ the VAGEN framework [28] for VLM policy optimization, using Group Relative Policy247

Optimization (GRPO)[29] as our core algorithm. To manage compute cost, we train each configura-248

tion for only 0.5 epoch. For fair comparison, the RL setup retains all key components from the SFT249

stage, including the base model, spatial input formats, benchmark dataset (MINDCUBE-TINY), and250

evaluation metrics, as detailed in Sections 3.1 and 3.2. Additional details appear in the Appendix.251

Task Configurations and Reward Design. We evaluate three RL variants: (1) RL-FF-Rsn252

(from scratch), which trains Qwen2.5-VL-3B-Instruct to produce free-form reasoning chains; (2)253

RL-Aug-CGMap-FFR-Out (from scratch), which trains the model to jointly generate cognitive254

maps and reasoning; and (3) RL-Aug-CGMap-FFR-Out (from SFT), which initializes from the255

strongest SFT checkpoint. The reward function is sparse but targeted: +1 for structurally valid256

outputs, and +5 for correct answers.257

Table 5: QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under
various RL configurations on MINDCUBE-TINY.

RL Config.
MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)

Overall Rotation Among Around Valid Rate Overall Sim. Isom. Rate
RL-FF-Rsn (from scratch) 46.09 32.50 53.40 43.75 – – –
RL-Aug-CGMap-FFR-Out (from scratch) 47.91 35.00 53.40 47.50 99.73 65.73 0.00
RL-Aug-CGMap-FFR-Out (from SFT) 76.09 78.50 96.80 49.00 100.00 84.51 66.36

5.2 Can Reinforcement Learning Unleash the Power of Approximating Spatial Mentaling?258

Reinforcement learning (RL) lets a model feel the consequences of its spatial thoughts through reward,259

but does that feedback alone forge a genuine “mental map,” or must we first teach the model what a260

map looks like? Table 5 summarizes three key settings and answers the question in two parts.261

RL in a vacuum is not enough. Training RL-FF-Rsn from scratch and asking the policy to emit free-262

form reasoning and rewarding only correct answers barely surpasses the raw QA baseline (46.09%263

overall; 32.50% on the hardest Rotation queries). Sparse rewards guide the model toward useful264

heuristics, yet provide too little structure for constructing a robust spatial abstraction.265

Structured outputs provide modest benefits when learned from scratch. Adding cognitive-map266

generation (RL-Aug-CGMap-FFR-Out) introduces an explicit spatial scaffold the policy must satisfy.267

Accuracy nudges to 47.91%, and map validity soars to 99.73%. Still, without a prior notion of “good”268

geometry, RL cannot fully exploit the scaffold: similarity and isom. remain low (65.73%, 0.00%).269
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RL shines when it stands on an SFT-built scaffold. Warm-starting RL from the optimal SFT270

checkpoint (RL-Aug-CGMap-FFR-Out (from SFT)) produces remarkable improvements: 76.09%271

overall QA accuracy, representing a ↑ 14.36% gain over SFT alone and ↑ 29.00% over RL-from-272

scratch approaches. Spatial metrics show parallel enhancements—map similarity reaches 84.51%273

while isomorphism hits 66.36%, nearing oracle-level performance. Qualitative analysis reveals the274

policy effectively eliminates extraneous objects, generates streamlined maps, and produces concise275

yet definitive reasoning chains. These results suggest RL is (1) polishing rather than reconstructing276

spatial representations from the ground up, and (2) raise the convergence ceiling of SFT, enabling the277

model to break through previous performance plateaus.278

� Key Takeaways: Reinforcement Learning for Spatial Reasoning

• RL enhances spatial reasoning, even without prior supervised fine-tuning.
• Combining cognitive maps with reasoning consistently improves all learning outcomes.
• RL best boosts performance post-SFT, pushing the upper limits of spatial reasoning.

279

6 Related Works280

Spatial Cognition. Spatial cognition encompasses skills like mental rotation, spatial visualization281

and object assembly, essential for perceiving and manipulating spatial relationships in both 2D and 3D282

environments [30, 18, 31]. At the core of these abilities are Spatial Mental Models (SMMs) [10, 11],283

which are internal representations that allow for consistent understanding about space. Recently, much284

effort has been dedicated to evaluating spatial cognition in VLMs [32, 12, 17, 33]. Moreover, some285

methods are proposed to enhance spatial understanding such as coordinate-aware prompting [34],286

CoT reasoning [9, 35], explicit spatial representation alignment [36, 37], and RL-based approach [38].287

However, existing benchmarks and approaches often neglect the mental-level spatial reasoning that288

underpins human cognition, leaving a gap between machine and human capabilities. To bridge this289

gap, a new approach is needed that trains VLMs to reason about space not only through visual data290

but also through mental-level spatial reasoning, aligning more closely with human spatial cognition.291

Multi Views understanding. Prior work in multi-view fusion has explored 3D perception by292

reconstructing point clouds from images captured along random trajectories [39, 40, 41]. These293

methods focus on creating 3D models but often lack a detailed understanding of object-specific spatial294

relationships, particularly in terms of maintaining spatial consistency across multiple views. On the295

other hand, existing multi-image or video benchmarks [42, 43, 44, 45, 46] primarily focus on assessing296

perceptual and reasoning abilities, falling short in thoroughly evaluating spatial consistency and the297

ability to maintain coherent scene representations. Recently, some spatial multi-view benchmarks [47,298

15, 14, 8, 13, 48, 7] aim to assess spatial reasoning in multi-view settings. However, they often299

overlook the fusion and consistent representation of spatial information across different perspectives.300

To address this gap, we propose MINDCUBE to bridge the divide between perception and spatial301

consistency understanding.302

7 Conclusion and Future Impact303

We introduced MINDCUBE to study how VLMs can approximate spatial mental models from limited304

views, a core cognitive ability for reasoning in partially observable environments. Moving beyond305

benchmarking, we explored how internal representations can be scaffolded through structured data306

and reasoning. Our key finding is that constructing and reasoning over self-generated cognitive307

maps, rather than relying on view interpolation or externally provided maps, yields the most effective308

approximation of spatial mental models across all elicitation methods (input-output configurations, su-309

pervised fine-tuning, and reinforcement learning). Initializing RL from a well-trained SFT checkpoint310

further optimizes the process, pushing spatial reasoning performance to new limits.311

Future Impact. Our work establishes that combining cognitive map generation with reasoning to312

model spatial information is the most effective. We believe that once high-quality SFT datasets313

for cogmap generation and reasoning are established, RL can be leveraged to further push the314

performance boundaries. We anticipate the exploration of novel training paradigms designed to315

unlock even greater synergistic effects and thus achieving a "1+1 > 2" impact on spatial intelligence.316
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paper’s contributions and scope?445

Answer: [Yes]446
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scope by identifying a significant gap in VLMs, introducing a new benchmark, evaluating448

three approaches, and highlighting a key insight that significantly improves understanding449

of unobservable space, all of which are well-supported by the paper’s content and findings.450
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• The answer NA means that the abstract and introduction do not include the claims452

made in the paper.453
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contributions made in the paper and important assumptions and limitations. A No or455

NA answer to this question will not be perceived well by the reviewers.456

• The claims made should match theoretical and experimental results, and reflect how457

much the results can be expected to generalize to other settings.458

• It is fine to include aspirational goals as motivation as long as it is clear that these goals459

are not attained by the paper.460

2. Limitations461

Question: Does the paper discuss the limitations of the work performed by the authors?462

Answer: [Yes]463

Justification: We discussed the limitations of the work about spatial mental modeling in464

Appendix.465
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• The answer NA means that the paper has no limitation while the answer No means that467

the paper has limitations, but those are not discussed in the paper.468
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Question: For each theoretical result, does the paper provide the full set of assumptions and494

a complete (and correct) proof?495

Answer: [Yes]496

Justification: We detail the assumption and proof of theoretical result on time complexity in497

Appendix.498
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• The answer NA means that the paper does not include theoretical results.500
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referenced.502
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proof sketch to provide intuition.506

• Inversely, any informal proof provided in the core of the paper should be complemented507
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4. Experimental result reproducibility510
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of the paper (regardless of whether the code and data are provided or not)?513

Answer: [Yes]514
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our results are reproducible.516
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• The answer NA means that the paper does not include experiments.518
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whether the code and data are provided or not.521
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to make their results reproducible or verifiable.523
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might suffice, or if the contribution is a specific model and empirical evaluation, it may526

be necessary to either make it possible for others to replicate the model with the same527
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instructions for how to replicate the results, access to a hosted model (e.g., in the case530

of a large language model), releasing of a model checkpoint, or other means that are531

appropriate to the research performed.532

• While NeurIPS does not require releasing code, the conference does require all submis-533

sions to provide some reasonable avenue for reproducibility, which may depend on the534

nature of the contribution. For example535

(a) If the contribution is primarily a new algorithm, the paper should make it clear how536

to reproduce that algorithm.537

(b) If the contribution is primarily a new model architecture, the paper should describe538

the architecture clearly and fully.539

(c) If the contribution is a new model (e.g., a large language model), then there should540

either be a way to access this model for reproducing the results or a way to reproduce541
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the dataset).543
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In the case of closed-source models, it may be that access to the model is limited in546

some way (e.g., to registered users), but it should be possible for other researchers547

to have some path to reproducing or verifying the results.548
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5. Open access to data and code549

Question: Does the paper provide open access to the data and code, with sufficient instruc-550

tions to faithfully reproduce the main experimental results, as described in supplemental551

material?552

Answer: [Yes]553

Justification: Yes, we plan to open-source our data and code to promote the development of554

the field of spatial intelligence. We have also provided them in the supplementary materials.555
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• The answer NA means that paper does not include experiments requiring code.557

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/558

public/guides/CodeSubmissionPolicy) for more details.559

• While we encourage the release of code and data, we understand that this might not be560

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not561

including code, unless this is central to the contribution (e.g., for a new open-source562
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• The instructions should contain the exact command and environment needed to run to564

reproduce the results. See the NeurIPS code and data submission guidelines (https:565

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.566

• The authors should provide instructions on data access and preparation, including how567

to access the raw data, preprocessed data, intermediate data, and generated data, etc.568

• The authors should provide scripts to reproduce all experimental results for the new569

proposed method and baselines. If only a subset of experiments are reproducible, they570

should state which ones are omitted from the script and why.571

• At submission time, to preserve anonymity, the authors should release anonymized572

versions (if applicable).573

• Providing as much information as possible in supplemental material (appended to the574

paper) is recommended, but including URLs to data and code is permitted.575

6. Experimental setting/details576

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-577

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the578

results?579

Answer: [Yes]580

Justification: All this information is presented in detail in our supplementary materials.581

Guidelines:582

• The answer NA means that the paper does not include experiments.583

• The experimental setting should be presented in the core of the paper to a level of detail584

that is necessary to appreciate the results and make sense of them.585

• The full details can be provided either with the code, in appendix, or as supplemental586

material.587

7. Experiment statistical significance588

Question: Does the paper report error bars suitably and correctly defined or other appropriate589

information about the statistical significance of the experiments?590

Answer: [No]591

Justification: LLM training and inference tasks are very resource intensive and costly.592

Guidelines:593

• The answer NA means that the paper does not include experiments.594

• The authors should answer "Yes" if the results are accompanied by error bars, confi-595

dence intervals, or statistical significance tests, at least for the experiments that support596

the main claims of the paper.597

• The factors of variability that the error bars are capturing should be clearly stated (for598

example, train/test split, initialization, random drawing of some parameter, or overall599

run with given experimental conditions).600
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• The method for calculating the error bars should be explained (closed form formula,601

call to a library function, bootstrap, etc.)602

• The assumptions made should be given (e.g., Normally distributed errors).603

• It should be clear whether the error bar is the standard deviation or the standard error604

of the mean.605

• It is OK to report 1-sigma error bars, but one should state it. The authors should606

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis607

of Normality of errors is not verified.608

• For asymmetric distributions, the authors should be careful not to show in tables or609

figures symmetric error bars that would yield results that are out of range (e.g. negative610

error rates).611

• If error bars are reported in tables or plots, The authors should explain in the text how612

they were calculated and reference the corresponding figures or tables in the text.613

8. Experiments compute resources614

Question: For each experiment, does the paper provide sufficient information on the com-615

puter resources (type of compute workers, memory, time of execution) needed to reproduce616

the experiments?617

Answer: [Yes]618

Justification: Yes, we conducted our experiments primarily on two H100 GPUs, and you619

can find more details in the supplementary materials.620

Guidelines:621

• The answer NA means that the paper does not include experiments.622

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,623

or cloud provider, including relevant memory and storage.624

• The paper should provide the amount of compute required for each of the individual625

experimental runs as well as estimate the total compute.626

• The paper should disclose whether the full research project required more compute627

than the experiments reported in the paper (e.g., preliminary or failed experiments that628

didn’t make it into the paper).629

9. Code of ethics630

Question: Does the research conducted in the paper conform, in every respect, with the631

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?632

Answer: [Yes]633

Justification: We followed the NeurIPS Code of Ethics.634

Guidelines:635

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.636

• If the authors answer No, they should explain the special circumstances that require a637

deviation from the Code of Ethics.638

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-639

eration due to laws or regulations in their jurisdiction).640

10. Broader impacts641

Question: Does the paper discuss both potential positive societal impacts and negative642

societal impacts of the work performed?643

Answer:[Yes]644

Justification: You can find more details in the supplementary materials about the discuss of645

our self collected data.646

Guidelines:647

• The answer NA means that there is no societal impact of the work performed.648

• If the authors answer NA or No, they should explain why their work has no societal649

impact or why the paper does not address societal impact.650
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• Examples of negative societal impacts include potential malicious or unintended uses651

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations652

(e.g., deployment of technologies that could make decisions that unfairly impact specific653

groups), privacy considerations, and security considerations.654

• The conference expects that many papers will be foundational research and not tied655

to particular applications, let alone deployments. However, if there is a direct path to656

any negative applications, the authors should point it out. For example, it is legitimate657

to point out that an improvement in the quality of generative models could be used to658

generate deepfakes for disinformation. On the other hand, it is not needed to point out659

that a generic algorithm for optimizing neural networks could enable people to train660

models that generate Deepfakes faster.661

• The authors should consider possible harms that could arise when the technology is662

being used as intended and functioning correctly, harms that could arise when the663

technology is being used as intended but gives incorrect results, and harms following664

from (intentional or unintentional) misuse of the technology.665

• If there are negative societal impacts, the authors could also discuss possible mitigation666

strategies (e.g., gated release of models, providing defenses in addition to attacks,667

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from668

feedback over time, improving the efficiency and accessibility of ML).669

11. Safeguards670

Question: Does the paper describe safeguards that have been put in place for responsible671

release of data or models that have a high risk for misuse (e.g., pretrained language models,672

image generators, or scraped datasets)?673

Answer: [No]674

Justification: We do not foresee any high risk for misuse of this work.675

Guidelines:676

• The answer NA means that the paper poses no such risks.677

• Released models that have a high risk for misuse or dual-use should be released with678

necessary safeguards to allow for controlled use of the model, for example by requiring679

that users adhere to usage guidelines or restrictions to access the model or implementing680

safety filters.681

• Datasets that have been scraped from the Internet could pose safety risks. The authors682

should describe how they avoided releasing unsafe images.683

• We recognize that providing effective safeguards is challenging, and many papers do684

not require this, but we encourage authors to take this into account and make a best685

faith effort.686

12. Licenses for existing assets687

Question: Are the creators or original owners of assets (e.g., code, data, models), used in688

the paper, properly credited and are the license and terms of use explicitly mentioned and689

properly respected?690

Answer: [Yes]691

Justification: Yes, we credited them in appropriate ways.692

Guidelines:693

• The answer NA means that the paper does not use existing assets.694

• The authors should cite the original paper that produced the code package or dataset.695

• The authors should state which version of the asset is used and, if possible, include a696

URL.697

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.698

• For scraped data from a particular source (e.g., website), the copyright and terms of699

service of that source should be provided.700

• If assets are released, the license, copyright information, and terms of use in the701

package should be provided. For popular datasets, paperswithcode.com/datasets702

has curated licenses for some datasets. Their licensing guide can help determine the703

license of a dataset.704
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• For existing datasets that are re-packaged, both the original license and the license of705

the derived asset (if it has changed) should be provided.706

• If this information is not available online, the authors are encouraged to reach out to707

the asset’s creators.708

13. New assets709

Question: Are new assets introduced in the paper well documented and is the documentation710

provided alongside the assets?711

Answer: [Yes]712

Justification: Yes, we provided it in the supplementary materials.713

Guidelines:714

• The answer NA means that the paper does not release new assets.715

• Researchers should communicate the details of the dataset/code/model as part of their716

submissions via structured templates. This includes details about training, license,717

limitations, etc.718

• The paper should discuss whether and how consent was obtained from people whose719

asset is used.720

• At submission time, remember to anonymize your assets (if applicable). You can either721

create an anonymized URL or include an anonymized zip file.722

14. Crowdsourcing and research with human subjects723

Question: For crowdsourcing experiments and research with human subjects, does the paper724

include the full text of instructions given to participants and screenshots, if applicable, as725

well as details about compensation (if any)?726

Answer: [NA]727

Justification: The paper does not involve crowdsourcing nor research with human subjects.728

Guidelines:729

• The answer NA means that the paper does not involve crowdsourcing nor research with730

human subjects.731

• Including this information in the supplemental material is fine, but if the main contribu-732

tion of the paper involves human subjects, then as much detail as possible should be733

included in the main paper.734

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,735

or other labor should be paid at least the minimum wage in the country of the data736

collector.737

15. Institutional review board (IRB) approvals or equivalent for research with human738

subjects739

Question: Does the paper describe potential risks incurred by study participants, whether740

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)741

approvals (or an equivalent approval/review based on the requirements of your country or742

institution) were obtained?743

Answer: [NA]744

Justification: The paper does not involve crowdsourcing nor research with human subjects.745

Guidelines:746

• The answer NA means that the paper does not involve crowdsourcing nor research with747

human subjects.748

• Depending on the country in which research is conducted, IRB approval (or equivalent)749

may be required for any human subjects research. If you obtained IRB approval, you750

should clearly state this in the paper.751

• We recognize that the procedures for this may vary significantly between institutions752

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the753

guidelines for their institution.754

• For initial submissions, do not include any information that would break anonymity (if755

applicable), such as the institution conducting the review.756
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16. Declaration of LLM usage757

Question: Does the paper describe the usage of LLMs if it is an important, original, or758

non-standard component of the core methods in this research? Note that if the LLM is used759

only for writing, editing, or formatting purposes and does not impact the core methodology,760

scientific rigorousness, or originality of the research, declaration is not required.761

Answer: [Yes]762

Justification: In the experimental section, we described the large models we used to test763

performance.764

Guidelines:765

• The answer NA means that the core method development in this research does not766

involve LLMs as any important, original, or non-standard components.767

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)768

for what should or should not be described.769
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