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Abstract

Humans intuitively construct mental models of space beyond what they directly
perceive, but can large visual-language models (VLMs) do the same with partial
observations like limited views? We identify this significant gap for current
VLMs via our new MINDCUBE benchmark with 17,530 questions and 2,919
images, evaluating how well VLMs build robust spatial mental models, representing
positions (cognitive mapping), orientations (perspective-taking), and dynamics
(mental simulation for what-if movements), to solve spatial reasoning on unseen
space that beyonds immediate perception.

We explore three approaches to approximating spatial mental models in VLMs:
(1) View interpolation to visualize mental simulation, which surprisingly offers
little benefit, highlighting the challenge of reasoning from limited views; (2)
Textual reasoning chains, which effectively guide model thinking when supervised;
and (3) Structured representations like cognitive maps, where ground truth maps
help little, but training VLMs to generate and reason over their own maps yields
substantial gains—even if the maps are imperfect. Training models to reason
over these internal maps raises accuracy from 38.3% to 61.7% (+23.5%). Adding
reinforcement learning further improves performance to 76.1% (+37.8%).

Our key insight is that such scaffolding of spatial mental models, actively construct-
ing and utilizing internal structured spatial representations with flexible reasoning
processes, significantly improves understanding of unobservable space.

1 Introduction

For Vision-Language Models (VLMs) [1, 2, 3, 4] to move beyond passive perception [5, 6] to
interact with partially observable environments [7, 8, 9], it is fundamental to reason about unseen
spatial relationships from limited views. Consider how effortlessly a human can infer the unseen
objects behind the “plant” are the “tissue box” and the “hand sanitizer” in the second viewpoint in
Figure 1, including their position, pose, and their relationship with objects that are not simultaneously
visible, all by integrating information from four ego-centric observations: we build and update a
mental model of our surroundings, even when objects are out of sight. This is enabled by a core
cognitive function known as the spatial mental model [10, 11]: an internal representation of the
environment that allows for consistent understanding and inference about space, independent of the
current viewpoint. VLMs, despite their impressive progress, struggle to synthesize spatial information
from limited views, maintain spatial consistency across views, and reason about objects not directly
visible [12, 13, 14, 15].

This gap calls for specialized evaluation settings, which must include: (a) reasoning with partial
observations where objects are occluded or out of view (such as “hand sanitizer’in the second
viewpoint in Figure 1), (b) maintaining cross-view consistency across shifting viewpoints (such as
through anchor objects “plant”), and (c) mental simulation to infer hidden spatial relationships (such
as “what if turning left and moving forward”). To fill this gap, we introduce MINDCUBE, featuring
17,530 questions and 2,919 images, organized into 740 multi-view groups through various types of
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The Challenge: Spatial Mental Modeling from Limited Views
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How to Approximate Mental Model in VLMs?
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Figure 1: Top: VLMs cannot maintain a coherent mental model when evaluating on the MINDCUBE
benchmark. Bottom: We study how we can help VLMs imagine space through external (scaling of
views, cognitive map input) and internal strategies (fine-tuning, cognitive map elicitation). We find

joint cognitive map and reasoning setting yields the highest gain (37.8%). 7%: Best within the same
elicitation method. ®: Best performance combination.

viewpoint transformations (i.e., ROTATION, AMONG, AROUND in Figure 2). We annotate questions
with a focus on objects that are not visible in the current query view. As shown in Figure 2, we
systematically design question types requiring ‘“what-if” mental simulations from the given view
(such as “what if turning to left”), perspective taking (such as “what if taking the sofa’s perspective”),
complex relation reasoning queries (referencing either the agent or other objects).

Our extensive evaluations of 14 state-of-the-art VLMs on MINDCUBE reveal that both open-source
and closed-source models perform only marginally better than random guessing. This poor perfor-
mance motivates a central question: How can we help VLMs reason from partial observations?

Inspired by spatial cognition [16, 17, 18] operating through visual imagery, linguistic reasoning, or
explicit cognitive maps, to build consistent spatial awareness across different views, we investigate
whether intermediate representations can help VLMs approximate mental models through three
approaches. View Interpolation generates intermediate views between given observations using
recorded video or 3D reconstruction (Stable Virtual Camera [19]), which unexpectedly is not helpful,
highlighting the importance of reasoning directly from limited views. Free-form Natural Language
Reasoning verbalizes the mental simulation process, achieving substantial gains (+1.6%). Struc-
tured Cognitive Map simulates global spatial memory from an allocentric (bird’s-eye) perspective
with orientation and view augmentation. Interestingly, ground truth cognitive maps yield minimal
improvements (+0.9%), while guiding models to construct their own cognitive maps achieves better
results (+5.2%), which indicates that teaching a model to generate its own mental model and think
this way, is more effective than directly making sense of provided ready-made representations.

Despite generating seemingly correct maps, VLMs exhibit a significant bottleneck in accurate mental
modeling, evidenced by low isomorphic similarity (17%) with ground truth maps. Recognizing
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Figure 2: MINDCUBE taxonomy and examples. Left: Three camera movement patterns (ROTATION,
AROUND, AMONG) with corresponding spatial QA examples. Right: Four-dimensional taxonomy
categorizing MINDCUBE questions types.

this limitation, we train VLMs by constructing 10, 000 reasoning chains and 10, 000 ground truth
cognitive maps, investigating how to effectively guide their thinking process through injection of these
training signals. Self-supervised Finetuning (SFT) on cognitive maps significantly boost isomorphic
similarity to 50% from 17%. While SFT on free-form reasoning chains proved more effective with a
gain of +4.8%, guiding models to first build cognitive maps and then perform free-form reasoning
over them achieved significantly better performance, resulting in a total gain of +15.4%, proving
scaffolding spatial mental models via actively constructing and utilizing internal structured spatial
representations with flexible reasoning processes is highly effective.

We employ Reinforcement Learning (RL) to further boost post-SFT performance, guiding models to
think in terms of building and reasoning over cognitive maps by injecting structured thinking before
RL training, using our SFT model. This approach leads to a significant improvement—raising task
accuracy from a baseline of 38.3% to 76.1%. Our empirical evidence substantiates a critical finding:
VLMs exhibit superior performance in spatial reasoning tasks when autonomously generating and
leveraging internal mental representations, as compared to conventional approaches such as view
interpolation or externally-supplied maps.

2 MINDCUBE Benchmark and Evaluation

2.1 MINDCUBE Benchmark

Overview. We introduce MINDCUBE, a benchmark for evaluating VLMSs’ spatial reasoning under
partial observations and dynamic viewpoints. MINDCUBE features multi-view image groups paired
with spatial reasoning questions, enabling fine-grained analysis of spatial modeling performance.
It targets key challenges such as maintaining object consistency across views and reasoning about
occluded or invisible elements. Table 1 (left) summarizes the benchmark’s overall data distribution.
Details on benchmark design, taxonomy, and curation are provided in the Appendix.

Taxonomy. For a fine-grained analysis of VLM spatial reasoning abilities, we introduce a taxonomy
that systematically categorizes the challenges in MINDCUBE (visualized in Figure 2). This taxonomy
spans five key dimensions: 1) Camera Movement: We mainly collect three types of camera
movement: ROTATION (Stays in place but rotates to look around), AROUND (Moves around evaluated
objects in a circular path), and AMONG (Moves among evaluated objects in a circular path). 2)
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Table 1: Left: MINDCUBE data statistics. Right: Performance of VLMs on MINDCUBE.

Rotation(1081) Il\g/f;tel;i(:lde Overall Rotation Among Around

AN S EEES 865/53 Random (chance) 39.40 36.36 39.00 46.44
Random (frequency) 41.60 39.00 39.00 46.00

Self collected 2R Open-source Multi Image Models

. © LLaVA-Onevision-7B 49.00 36.84 50.54 38.43
LLaVA-Video-Qwen-7B 45.78 37.80 46.94 36.52
mPLUG-OwI3-7B 45.46 37.51 47.04 29.62

Among(14782) InternVL2.5-8B 2001 3569 2700  52.97

e . Qwen2.5-VL-7B 35.44 38.09 34.73 45.13
LongVA-7B 35.29 35.31 34.95 40.55

DL3DV-10K 961/30 idefics2-8B 38.74 37.22 38.65 41.83
DeepSeek-VL2-Small 47.42 36.36 49.44 28.03

Img groups R Mantis-8B(Clip) 28.82 38.18 26.08 61.36
Proprietary Models(API)

Around(1667) GPT-40 3670 4088 3607  42.89

VAT 725/109 Claude-3.7-Sonnet 39.71 37.70 39.62 4342
Spatial Models

Self collected 942/76 RoboBrain 42.23 37.51 42.75 39.28

Img groups 85 space-mantis 31.56 37.99 29.41 58.07
space-LLaVA 27.31 33.89 26.71 35.37

Visual Patterns: This describes the objects’ spatial configurations, including spatial linear or non-
linear arrangements. 3) “What-if”” Dynamics: The hypothetical transformations applied to the
agent’s viewpoint, such as translation, rotation, or their combination (meanwhile and sequence). 4)
Relation Query: The type of spatial relation being queried, including agent—object, agent—agent, or
object—object. 5) Perspective Taking: Whether the spatial reasoning is grounded in the perceiver’s
own viewpoint (self) or involves adopting the viewpoint of another entity (other).

Dataset Curation. The MINDCUBE dataset was created through a pipeline: We first selected
multi-view image groups matching our taxonomy’s movement patterns (Figure 2) and spatial criteria.
These were then annotated with key spatial information. Finally, we algorithmically generated
taxonomy-aligned questions with targeted distractors. Details are included in the Appendix.

2.2 Evaluation on MINDCUBE

We evaluate VLMs’ spatial reasoning on MINDCUBE using a diverse set of models (Table 1, right;
setup details in the Appendix). Results reveal a striking performance gap: the best model, LLaVA-
Onev-7B, achieves only 49.00% accuracy—well above chance but far from human-level. ROTATION
tasks proved hardest (top score: 40.88%), suggesting limited mental rotation and viewpoint adaptation.
AMONG and AROUND tasks showed no consistent winners, highlighting weak relational reasoning.
Large proprietary models often lagged behind smaller open-source counterparts. Spatial fine-tuning
yielded mixed results. Overall, neither multi-image input nor spatial fine-tuning reliably improves
spatial reasoning, raising a key question: How can we help VLMs develop or approximate these
crucial spatial reasoning capabilities?

3 Which Scaffolds Best Guide Spatial Thinking in Unchanged VLMs?

To address the identified gap, we first evaluate whether structured data forms can scaffold spatial
reasoning in frozen VLMs by approximating spatial mental models under limited views.

3.1 Data Structures as Cognitive Scaffolds for Spatial Mental Models

We investigate whether certain data structures can act as cognitive scaffolds that help VLMs form
spatial mental models from limited visual observations. In cognitive science, spatial mental models
are internal representations encoding the relative configuration of objects and viewpoints. Rather
than metric-precise maps, they are schematic, manipulable constructs that support reasoning across
fragmented observations and unseen perspectives [11, 20, 21, 22]. For instance, humans can mentally
simulate turning or infer what lies behind them, suggesting that such representations are flexible,
incomplete, yet functionally effective. Drawing on this literature, we define three data structures,
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Views and Question Examples - Three Data Structures We Studied to Approximate Spatial Mental Models

Figure 3: Grounded examples of our three data structures that approximate spatial mental models.

each targeting distinct cognitive properties (integration, transformation, inference) of spatial mental
models, with grounded examples in Figure 3:

1.

View Interpolation. Interpolating between sparse camera views introduces perceptual continuity,
echoing the process of mental animation [23] and supporting internal transformation such as
imagined rotation. This structure scaffolds the dynamic updating capability of spatial mental
models. Figure 3 shows a one-frame inserting example that replaces the original question images.

Augmented Cognitive Map. A cognitive map is a 2D schematic representation of object layouts in
space. Such maps resemble Tversky’s cognitive collages [20], and they capture locally coherent but
fragmented structures. Recent studies [24, 25] on VLM-based spatial intelligence typically adopt
a plain form that only encodes object positions in a top-down view. We propose an augmented
variant that incorporates discrete views, with both objects and views annotated by position and
orientation, thereby approaching the relational consistency of spatial mental models.

. Free Form Reasoning. Open-ended, step-by-step natural language reasoning offers a procedural

approximation of how spatial models are constructed and queried. While less rigid than map-like
structures, such reasoning reflects the inferential function of spatial mental models, especially
under ambiguous or incomplete observations [21].

3.2 [Experiment Setup

‘We conduct controlled ex-
periments with fixed input
formats to test whether
structured scaffolds can
help without retraining.
Each condition introduces
a different structure to
support internal modeling
under limited views.

Model and Evaluation
Data We conduct all ex-
periments using Qwen2.5-
VL-3B-Instruct [3]. Our
evaluation is performed on
MINDCUBE-TINY, a diag-
nostic subset sampled from

Table 2: Abbreviations for the ten input-output configurations across
all experiments in this work. VI = View Interpolation, CGMap =
Cognitive Map, Aug = Augmented (objects + camera included), FF-
Rsn and FFR = Free-Form Reasoning.

Name Input Structure Output Format

Raw QA Raw views + question Direct answer

VI-1 Raw + 1 interp. view  Direct answer

VI-2 Raw + 2 interp. views Direct answer
FF-Rsn Raw views + question Reasoning — answer

Aug-CGMap-In
Aug-CGMap-0ut
Plain-CGMap-0Out
Plain-CGMap-FFR-0ut
Aug-CGMap-FFR-0ut
CGMap-In-FFR-0ut

Aug. cognitive map
Aug. cognitive map
Plain cognitive map
Raw views + question
Raw views + question
Aug. cognitive map

Direct answer

Direct answer

Direct answer

Plain map + rsn — ans
Aug. map + rsn — ans
Reasoning — answer

MINDCUBE, containing 1,100 questions in total. Detailed statistics are: 500 from the AMONG, 400
from AROUND, and 200 from ROTATION.

Configurations Each experiment is defined by two orthogonal axes: Input Structure (what spatial
evidence VLMs receive) and Output Format (the required response type). We investigate a subset
of the ten possible configurations shown in Table 2. Specifically, our grounded cognitive maps are
generated using the object arrangements annotation described in Section 2.1, and examples for all con-
figurations are provided in the Appendix. We exclude the Aug-CGMap-0ut and Plain-CGMap-0Out
settings, as VLMs tend to conflate map generation with reasoning, even when instructed otherwise.
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Table 3: Left: QA accuracy (%) of Qwen2.5-VL-3B-Instruct on the MINDCUBE-TINY benchmark
under different input/output scaffolds. Right: Graph metrics for two cog map output settings.

100

Config. Overall Rotation Among Around 99.00 99.00 Aug-CGMap-Out
Raw QA 38.27 35.50 3140 48.25 Plain-CGMap-Out
VI-1 37.67 30.05 32.80 47.25

VI-2 36.10 22.95 31.80 47.50 50 1 56,86 4114
Aug-CGMap-In 39.187  38.00 31.60 49.25 .

FF-Rsn 39.827  33.50 3840 4475 1064 o
Aug-CGMap-FFR-0ut 42,731 37.50 44.60 43.00

Plain-CGMap-FFR-Out 43457 42.50 41.00  47.00 0 Valid Overall Isomophic
CGMap—In—FFR— Out 3745 3500 3 1 60 4600 CGMap Rate Similarity Ratg

Evaluation Metrics We evaluate task performance using QA accuracy. For generated cognitive maps,
we introduce a set of well-defined graph metrics: (1) Valid Cognitive Map Rate, indicating whether
the output conforms to the expected schema; (2) Overall Similarity, a weighted score combining
directional and facing consistency; and (3) Isomorphism Rate, measuring whether all pairwise object
relations match the ground truth under optimal alignment. Full definitions are provided in Appendix.

3.3 Do Scaffolds Improve Spatial Reasoning Without Training?

We evaluate how well the seven input configurations defined in Table 2 support spatial reasoning in
VLMs under limited views, without any model updates. Results are shown in Table 3 (left).

How far can structure alone go? We begin with the baseline: raw input views and direct answering,
which achieves just 38.27% accuracy. Adding interpolated views, which we hope to simulate smoother
perceptual transitions, leads to no meaningful gain, and in some cases slightly harms performance
(down to 36.10%). Providing an augmented cognitive map or free-form reasoning barely improve
accuracy (39.18% and 39.82%). These results suggest: structure alone, whether visual or spatial, is
not enough. Without engaging reasoning, VLMs struggle to leverage even well-formed spatial cues.

Can we prompt the model to think spatially? The answer appears to be yes. Strikingly, compared
to FF-Rsn only, prompting models to produce a cognitive map before answering leads to the strongest
gains: 43.45% with plain maps (object only), and 42.73% with augmented maps (objects + views).
This suggests that generating a map may encourage the model to first form a global understanding of
the scene, which in turn supports more structured reasoning. Our case studies in the Appendix reveal
that such reasoning often unfolds on the map itself. Both map forms have a great format following
ability. Augmented maps perform slightly worse. In Table 3 (Right), despite generating syntactically
valid maps for both formats, similarity to grounded maps is low (< 50%), reflecting limited mapping
ability. Notably, augmented maps have lower isomorphism rates (J. 5.19%), likely because the added
view-level details increase generation errors, making downstream reasoning less reliable.

What if we ask models to reason over grounded cognitive maps? Intuitively, combining map
input and free-form reasoning seems promising. Yet, performance drops to 37.45%. We hypothesize
this mismatch arises from representational dissonance: reasoning over externally imposed maps may
conflict with the model’s latent space, leading to confusion rather than clarity.

@ Key Takeaways: Scaffolding Spatial Reasoning in Frozen VLMs

* Producing reasoning is effective, especially combined with cognitive maps.

o Self-generated reasoning consistently outperforms imposed formats.

e Visual continuity and passive structure provide little benefit.

o Simpler, object-only maps work better; too much structure can backfire for frozen VLMs.

4 Can We Teach VLMs to Build and Leverage Spatial Representations?

So far, prompting frozen VLMs with external scaffolds, such as interpolated views or cognitive maps,
has yielded limited gains. These techniques fail to tackle the core limitation: VLMs do not form
internal spatial representations or reason through space effectively. To go further, we want to know:
Can supervised fine-tuning (SFT) teach VLMs to build and leverage spatial models from within?
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Table 4: QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under
SFT configurations on MINDCUBE-TINY. Both FF-Rsn and FFR refer to free-form reasoning.

SFT Confi MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)
onfig.
& Overall Rotation Among Around Valid Rate Overall Sim. Isom. Rate
Raw QA 46.36 33.50 51.20 46.75 - - -
Aug-CGMap-0ut 47.187 35.00 52.80 46.25 100.00 77.27 51.91
Plain-CGMap-0Out 45.73 37.50 49.80 44.75 100.00 75.89 49.55
FF-Rsn 51.091 34.00 56.40 53.00 - - -
Aug-CGMap-FFR-Out  61.737 68.50 70.60 47.25 100.00 80.46 56.91

4.1 Designing a Robust Experimental Framework

To ensure consistency and comparability, we inherit experimental configurations detailed in Sections
3.1 and 3.2. Specifically, we retain: (1) the two effective data structures—Cognitive Maps (Object-
only / Object + Camera) and Free-Form Reasoning, (2) the base model Qwen2.5-VL-3B-Instruct,
(3) the evaluation benchmark MINDCUBE-TINY, and (4) all established evaluation metrics. View
interpolation is excluded from our fine-tuning experiments due to its limited performance gains in
earlier validations. Primary modifications in this SFT phase include adjusted training hyperparameters
(detailed in the Appendix).

SFT Task Configurations Drawing on insights from Section 3.3, we use selected configurations from
Table 2 to evaluate the incremental impact of cognitive map generation and free-form reasoning in
SFT. These include baseline QA without explicit reasoning (Raw QA), reasoning guided by generated
maps only (Plain-CGMap-0ut, Aug-CGMap-0ut), reasoning-augmented prompts (FF-Rsn), and a
fully integrated setup that asks VLMs to generate both maps and reasoning (Aug-CGMap-FFR-0ut).

Grounded Free-Form Reasoning Chain Generation We design grounded reasoning chains using
detailed image annotations and structured question templates. Chains are manually constructed
via a template-based method, ensuring logical coherence and clear grounding in observable spatial
relations (see an example in Figure 3). This yields precise, interpretable supervision signals that
help VLMs learn robust spatial reasoning representations. The detailed grounded reasoning data
generation pipeline is shown in the Appendix.
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§ 30 ,% E 60
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Figure 4: SFT per 5 step training performance on task accuracy and graph metrics.

4.2 Do VLMs Truly Benefit from Explicit Training in Spatial Reasoning?

We explore several SFT configurations (results shown in Table 4), guided by a series of core questions.
Fine-tuning directly on raw QA pairs, without spatial supervision, raises accuracy from 38.27% to
46.36%. This suggests VLMs can absorb some spatial cues from QA data alone. We use this setup as
the baseline for evaluating methods that explicitly incorporate spatial structures.

Can structured approximations of mental models alone meaningfully improve performance?
As shown in Table 2, supervised fine-tuning on explicit cognitive maps, either Augmented or Plain,
leads to substantial improvements in graph structure quality, with more than 30% gains in both overall
similarity and Isomorphic rate. However, the effect on end-task accuracy remains limited. Both
augmented maps (47.18%) and Plain maps (45.73%) offer only modest gains over the fine-tuned
Raw QA (46.36%). In contrast, directly FF-Rsn yields a significantly larger improvement, increasing
accuracy to 51.09%. This could be that free-form reasoning is well-aligned with base model language
ability, which better guides the model towards the correct spatial understanding.

Generating both cognitive maps and free-form reasoning is the most effective approximation.
Among all configurations, this combination yields the most significant performance gain (61.73%,



230
231
232
233
234
235

237
238
239

240

241

242
243
244
245

246

247
248
249
250
251

252
253
254

256
257

258

259
260
261

262
263
264

266
267
268
269

115.37%), far surpassing models that rely on either map generation or reasoning alone. This suggests
a strong synergy between structured spatial modeling and natural language inference. Why does
this combination work so well? First, improvements in task accuracy are accompanied by sharper
spatial representations. The Aug-CGMap-FFR-0ut model, which first builds a cognitive map and
then reasons over it, achieves 80.46% similarity and 56.91% isomorphism, surpassing all other
variants. On the other hand, training dynamics further reinforce this view. As shown in Figure 4,
models trained to jointly map and reason tend to converge more slowly, but ultimately achieve higher
performance. Interestingly, spatial representation quality improves more quickly when reasoning
is explicitly trained. These results suggest that reasoning encourages more precise and structured
spatial understanding, rather than merely consuming it.

@ Key Takeaways: Teaching VLM:s to Reason Spatially

* Joint cogmap and reasoning setting yields optimal performance through synergistic effects.
* Reasoning improves accuracy and map quality by strengthening spatial representations.
* More structured outputs slow convergence but lead to higher final performance.

5 Can Reinforcement Learning Further Refine Spatial Thought Processes?

While SFT establishes a strong baseline for spatial reasoning, emerging evidence from models like
DeepSeek R1 [26, 27] suggests reinforcement learning (RL) can offer additional gains by optimizing
behavior through outcome-driven feedback. We ask: Can reward-guided refinement help VLMs build
sharper spatial models and reason more effectively?

5.1 Experimental Setup

We employ the VAGEN framework [28] for VLM policy optimization, using Group Relative Policy
Optimization (GRPO)[29] as our core algorithm. To manage compute cost, we train each configura-
tion for only 0.5 epoch. For fair comparison, the RL setup retains all key components from the SFT
stage, including the base model, spatial input formats, benchmark dataset (MINDCUBE-TINY), and
evaluation metrics, as detailed in Sections 3.1 and 3.2. Additional details appear in the Appendix.

Task Configurations and Reward Design. We evaluate three RL variants: (1) RL-FF-Rsn
(from scratch), which trains Qwen2.5-VL-3B-Instruct to produce free-form reasoning chains; (2)
RL-Aug-CGMap-FFR-Out (from scratch), which trains the model to jointly generate cognitive
maps and reasoning; and (3) RL-Aug-CGMap-FFR-0Out (from SFT), which initializes from the
strongest SFT checkpoint. The reward function is sparse but targeted: +1 for structurally valid
outputs, and +5 for correct answers.

Table 5: QA accuracy (%) and cognitive map generation quality of Qwen2.5-VL-3B-Instruct under
various RL configurations on MINDCUBE-TINY.

RL Confi MINDCUBE-TINY QA Accuracy (%) Generated Cognitive Map (%)
onfig.

& Overall Rotation Among Around Valid Rate Overall Sim. Isom. Rate
RL-FF-Rsn (from scratch) 46.09 32.50 53.40 43.75 - - -
RL-Aug-CGMap-FFR-Out (from scratch) 4791 35.00 53.40 47.50 99.73 65.73 0.00
RL-Aug-CGMap-FFR-Out (from SFT) 76.09 78.50 96.80 49.00 100.00 84.51 66.36

5.2 Can Reinforcement Learning Unleash the Power of Approximating Spatial Mentaling?

Reinforcement learning (RL) lets a model feel the consequences of its spatial thoughts through reward,
but does that feedback alone forge a genuine “mental map,” or must we first teach the model what a
map looks like? Table 5 summarizes three key settings and answers the question in two parts.

RL in a vacuum is not enough. Training RL-FF-Rsn from scratch and asking the policy to emit free-
form reasoning and rewarding only correct answers barely surpasses the raw QA baseline (46.09%
overall; 32.50% on the hardest Rotation queries). Sparse rewards guide the model toward useful
heuristics, yet provide too little structure for constructing a robust spatial abstraction.

Structured outputs provide modest benefits when learned from scratch. Adding cognitive-map
generation (RL-Aug-CGMap-FFR-0ut) introduces an explicit spatial scaffold the policy must satisfy.
Accuracy nudges to 47.91%, and map validity soars to 99.73%. Still, without a prior notion of “good”
geometry, RL cannot fully exploit the scaffold: similarity and isom. remain low (65.73%, 0.00%).
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RL shines when it stands on an SFT-built scaffold. Warm-starting RL from the optimal SFT
checkpoint (RL-Aug-CGMap-FFR-0ut (from SFT)) produces remarkable improvements: 76.09%
overall QA accuracy, representing a T 14.36% gain over SFT alone and 1 29.00% over RL-from-
scratch approaches. Spatial metrics show parallel enhancements—map similarity reaches 84.51%
while isomorphism hits 66.36%, nearing oracle-level performance. Qualitative analysis reveals the
policy effectively eliminates extraneous objects, generates streamlined maps, and produces concise
yet definitive reasoning chains. These results suggest RL is (1) polishing rather than reconstructing
spatial representations from the ground up, and (2) raise the convergence ceiling of SFT, enabling the
model to break through previous performance plateaus.

@ Key Takeaways: Reinforcement Learning for Spatial Reasoning

* RL enhances spatial reasoning, even without prior supervised fine-tuning.
e Combining cognitive maps with reasoning consistently improves all learning outcomes.
* RL best boosts performance post-SFT, pushing the upper limits of spatial reasoning.

6 Related Works

Spatial Cognition. Spatial cognition encompasses skills like mental rotation, spatial visualization
and object assembly, essential for perceiving and manipulating spatial relationships in both 2D and 3D
environments [30, 18, 31]. At the core of these abilities are Spatial Mental Models (SMMs) [10, 11],
which are internal representations that allow for consistent understanding about space. Recently, much
effort has been dedicated to evaluating spatial cognition in VLMs [32, 12, 17, 33]. Moreover, some
methods are proposed to enhance spatial understanding such as coordinate-aware prompting [34],
CoT reasoning [9, 35], explicit spatial representation alignment [36, 37], and RL-based approach [38].
However, existing benchmarks and approaches often neglect the mental-level spatial reasoning that
underpins human cognition, leaving a gap between machine and human capabilities. To bridge this
gap, a new approach is needed that trains VLMs to reason about space not only through visual data
but also through mental-level spatial reasoning, aligning more closely with human spatial cognition.

Multi Views understanding. Prior work in multi-view fusion has explored 3D perception by
reconstructing point clouds from images captured along random trajectories [39, 40, 41]. These
methods focus on creating 3D models but often lack a detailed understanding of object-specific spatial
relationships, particularly in terms of maintaining spatial consistency across multiple views. On the
other hand, existing multi-image or video benchmarks [42, 43, 44, 45, 46] primarily focus on assessing
perceptual and reasoning abilities, falling short in thoroughly evaluating spatial consistency and the
ability to maintain coherent scene representations. Recently, some spatial multi-view benchmarks [47,
15, 14, 8, 13, 48, 7] aim to assess spatial reasoning in multi-view settings. However, they often
overlook the fusion and consistent representation of spatial information across different perspectives.
To address this gap, we propose MINDCUBE to bridge the divide between perception and spatial
consistency understanding.

7 Conclusion and Future Impact

We introduced MINDCUBE to study how VLMs can approximate spatial mental models from limited
views, a core cognitive ability for reasoning in partially observable environments. Moving beyond
benchmarking, we explored iow internal representations can be scaffolded through structured data
and reasoning. Our key finding is that constructing and reasoning over self-generated cognitive
maps, rather than relying on view interpolation or externally provided maps, yields the most effective
approximation of spatial mental models across all elicitation methods (input-output configurations, su-
pervised fine-tuning, and reinforcement learning). Initializing RL from a well-trained SFT checkpoint
further optimizes the process, pushing spatial reasoning performance to new limits.

Future Impact. Our work establishes that combining cognitive map generation with reasoning to
model spatial information is the most effective. We believe that once high-quality SFT datasets
for cogmap generation and reasoning are established, RL can be leveraged to further push the
performance boundaries. We anticipate the exploration of novel training paradigms designed to
unlock even greater synergistic effects and thus achieving a "1+1 > 2" impact on spatial intelligence.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope by identifying a significant gap in VLMs, introducing a new benchmark, evaluating
three approaches, and highlighting a key insight that significantly improves understanding
of unobservable space, all of which are well-supported by the paper’s content and findings.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discussed the limitations of the work about spatial mental modeling in
Appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We detail the assumption and proof of theoretical result on time complexity in
Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We presented comprehensive experimental information in paper, ensuring that
our results are reproducible.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we plan to open-source our data and code to promote the development of
the field of spatial intelligence. We have also provided them in the supplementary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All this information is presented in detail in our supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: LLM training and inference tasks are very resource intensive and costly.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we conducted our experiments primarily on two H100 GPUs, and you
can find more details in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:[Yes]

Justification: You can find more details in the supplementary materials about the discuss of
our self collected data.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, we provided it in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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757 16. Declaration of LLLM usage

758 Question: Does the paper describe the usage of LLMs if it is an important, original, or
759 non-standard component of the core methods in this research? Note that if the LLM is used
760 only for writing, editing, or formatting purposes and does not impact the core methodology,
761 scientific rigorousness, or originality of the research, declaration is not required.

762 Answer: [Yes]

763 Justification: In the experimental section, we described the large models we used to test
764 performance.

765 Guidelines:

766 * The answer NA means that the core method development in this research does not
767 involve LLMs as any important, original, or non-standard components.

768 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
769 for what should or should not be described.
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