
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TUMIX: MULTI-AGENT TEST-TIME SCALING WITH TOOL-USE
MIXTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

While integrating tools like Code Interpreter and Search has significantly enhanced Large Language
Model (LLM) reasoning in models like ChatGPT Agent and Gemini-Pro, practical guidance on
optimal tool use is lacking. The core challenge is effectively combining textual reasoning, coding,
and search for diverse questions. In this paper, we propose Tool-Use Mixture (TUMIX), an ensemble
framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer
paths. Agents in TUMIX iteratively share and refine responses based on the question and previous
answers. In experiments, TUMIX achieves significant gains over state-of-the-art tool-augmented
and test-time scaling methods, delivering an average accuracy improvement of up to 3.55% over
the best baseline on Gemini-2.5-Pro and Gemini-2.5-Flash across key reasoning benchmarks, with
near-equal inference costs. We find that agent diversity and quality are crucial and can be enhanced by
using LLMs to auto-optimize agent designs. Furthermore, TUMIX can halt refinement upon reaching
sufficient confidence, preserving performance at only 49% of the inference cost. Further scaling can
achieve higher performance, albeit at a greater cost.

w/o TTS

Self-M
oA

Sym
bolic-MoE DEI

SciMaste
r

GSA

TUMIX (O
urs)

TUMIX+ (O
urs)

20

25

30

35

40

Sc
or

e

Humanity's Last Exam (HLE)  Pro

21.6

29.3 29.5 29.1

26.9
28.7

32.3
34.1

w/o TTS

Self-M
oA

Sym
bolic-MoE DEI

SciMaste
r

GSA

TUMIX (O
urs)

TUMIX+ (O
urs)

80

85

90

Sc
or

e

GPQA, Diamond  Pro

84.6
85.5

86.7
86.0

86.9
85.8

87.9 88.1

w/o TTS

Self-M
oA

Sym
bolic-MoE DEI

SciMaste
r

GSA

TUMIX (O
urs)

TUMIX+ (O
urs)

85

90

95

100
Sc

or
e

AIME 24&25  Pro

87.3

94.7 94.7 95.0 94.1 93.7

96.7 96.7

w/o TTS

Self-M
oA

Sym
bolic-MoE DEI

SciMaste
r

GSA

TUMIX (O
urs)

TUMIX+ (O
urs)

5

10

15

20

25

30

Sc
or

e

Humanity's Last Exam (HLE)  Flash

9.7

18.2 18.5 19.3
18.0 17.4

21.2
23.1

w/o TTS

Self-M
oA

Sym
bolic-MoE DEI

SciMaste
r

GSA

TUMIX (O
urs)

TUMIX+ (O
urs)

50

60

70

80

90

Sc
or

e

GPQA, Diamond  Flash

50.0

65.4 64.1 64.9
67.9

62.6

77.3
82.1

w/o TTS

Self-M
oA

Sym
bolic-MoE DEI

SciMaste
r

GSA

TUMIX (O
urs)

TUMIX+ (O
urs)

65

70

75

80

85

90

Sc
or

e

AIME 24&25  Flash

70.0

80.3 80.7
82.3

79.1 79.7

83.3

86.7

Figure 1: Comparison of tool-augmented test-time scaling methods on Gemini-2.5-Pro (first row) and Gemini-2.5-Flash
(second row) across HLE, GPQA, and AIME 24&25. Except for methods without test-time scaling (w/o TTS) or
additional scaling (TUMIX+), all methods in the same subplot use nearly the same number of inferences and tokens. For
fair comparison, methods that originally lacked tool use are run with strong tool-augmented agents instead of text-only
agents. Each score is the average of three repetitive runs.

1 INTRODUCTION

While reinforcement learning-based fine-tuning has greatly improved LLM reasoning (Guo et al., 2025), models still
struggle with seemingly simple tasks (Chen et al., 2024b). Such tasks are often better handled with code (Madaan

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2022; Chen et al., 2022) or search (Jin et al., 2025; Li et al., 2025b). Textual reasoning is strong in semantics and
commonsense, but weak in precise computation and in accessing or updating the latest knowledge.

A key challenge is fully utilizing the potential capabilities of textual reasoning, coding, and searching when facing
distinctive questions with varied characteristics. Most input questions lack explicit cues for the best approach, and the
combined text/code/search solution space is large. Frontier LLM-powered products such as ChatGPT, Claude, Gemini,
and Grok report using code and search at test time to augment reasoning, but without publishing detailed methods.
Recent work (Chen et al., 2024b) shows that current Code Interpreter implementations in OpenAI models often fail to
balance text and code, leaving coding capabilities underused, as shown in Appendix Fig. 11. Moreover, public research
still lacks a clear understanding of how to integrate Code Interpreter and Search for improved LLM reasoning.

To better leverage both tool use and LLM self-reasoning, we propose Tool-Use Mixture (TUMIX), a framework that
integrates Code Interpreter and Search into LLMs via test-time scaling. TUMIX runs multiple diverse agents in parallel,
each with different tool-use strategies. Their outputs are iteratively aggregated and refined across multiple rounds. In
each round, every agent generates a new solution by considering both the original question and the previous round’s
reasoning and answers from all agents. TUMIX uses diverse agents and tool-augmented reasoning strategies to explore
a wide range of possible solutions. The following iterative process encourages diverse reasoning paths and deeper
integration. This design is inspired by prior test-time scaling methods such as Mixture-of-Agents (MoA) (Wang et al.,
2024), which rely on multiple LLMs within a single framework and do not incorporate external tools. In contrast,
TUMIX employs a single LLM with both text-only and tool-augmented agent frameworks, making it more generalizable
for practical applications. Furthermore, in tool-augmented multi-agent test-time scaling, we find a diverse group of
agents outperforms repeated use of the single best agent, a conclusion that differs from MoA (Li et al., 2025a). We later
reveal that human pre-designed agent group can be further optimized by querying LLMs to self-design more diverse
high-quality agents based on current ones, adding an average 1.2% improvement without cost increase.

Since questions vary in difficulty, they require different amounts of iterative refinement. We query the LLMs to decide
whether to terminate refinement early, while still enforcing a minimum number of rounds to maintain answer quality.
This adaptive early-termination strategy reduces inference costs to 49% of the original two settings (termination in a
fixed round number or by majority-vote consistency across rounds), while preserving or even improving performance.
The improvement arises because over-refinement rarely changes the final result and can even degrade performance, as
correct answers may be mistakenly discarded.

Compared to the model without test-time scaling, TUMIX delivers an average +7.8% and +17.4% accuracy gains
in benchmarks Humanity’s Last Exam (HLE) (Phan et al., 2025), Graduate-Level Google-Proof Q&A (GPQA,
Diamond) (Rein et al., 2024), and American Invitational Mathematics Examination (AIME 24&25) with base models
Gemini-2.5-Pro and Gemini-2.5-Flash, respectively. Under the same inference costs, TUMIX also outperforms existing
representative test-time scaling methods such as Self-MoA, Symbolic-MoE, DEI, SciMaster, and GSA, with an average
+3.55% lifting compared to the best performing baselines. Notably, with further scaling, TUMIX raises Gemini-2.5-Pro
accuracy on HLE from 21.6% to 34.1%, surpassing Gemini-2.5-Pro Deep Research at 26.9% (32.4% with higher
compute) (Comanici et al., 2025). Test-time scaling hinges on two stages (Brown et al., 2024): (1) generating diverse
candidate solutions and (2) selecting the correct one. For questions with both small answer spaces (e.g., multiple-choice)
and large ones, diverse sampling greatly improves coverage. While it achieves high coverage on HLE (among generated
answers in the whole round, at least one is correct on ≥ 65% of questions), accuracy plateaus at about 34% because
LLMs struggle to identify the correct answer among noisy candidates. We identify and explore four key factors: agent
quality, agent diversity, refinement termination, and answer selection. Our work makes the following contributions:

1. TUMIX: A competitive tool-augmented test-time scaling method. We propose TUMIX, a novel framework
for test-time scaling that integrates tool augmentation. Extensive experiments demonstrate that TUMIX consistently
outperforms strong baselines, achieving an average improvement of +3.55% over the best-performing prior methods.

2. Key factors and mechanisms in tool-augmented scaling. We provide a systematic analysis that distinguishes
tool-augmented scaling from traditional test-time scaling:

• Agent diversity and quality outweigh scale alone. High-temperature sampling increases coverage, but heterogeneous
agent strategies yield higher accuracy and lower cost than repeatedly sampling from a single best-performing agent.

• Tool augmentation boosts performance. Agent groups equipped with tools such as Code Interpreter and Search
achieve superior coverage and accuracy compared to text-only agent groups.

3. LLMs as agent designers. We show that prompting LLMs to automatically generate diverse, high-quality agents
based on existing ones further improves TUMIX. This yields an additional average accuracy lift of +1.2%.

4. LLM-as-Judge for refinement termination. We introduce an LLM-based judge to adaptively determine the
optimal stopping round in iterative refinement. This prevents excessive refinement, which reduces diversity and can

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

mistakenly discard correct answers. By enforcing a minimum refinement depth and querying the judge for termination,
we achieve near-optimal accuracy while reducing inference cost to ∼49% of the original.

2 RELATED WORK

Code Interpreter and Search Many benchmark tasks can in fact be better solved through code (Gao et al., 2023)
and search (Li et al., 2025b), and recent work extends coding to reasoning and semantic analysis (Li et al., 2023a; Weir
et al., 2024). Most prior approaches use either text (Yao et al., 2024) or code (Bairi et al., 2024; Zhou et al., 2023)
exclusively as output. Recent work (Chen et al., 2024b) emphasizes the need to dynamically switch between modalities,
proposing CodeSteer (Chen et al.) as a guidance model. Extensions with retrieval (Jin et al., 2025; Li et al., 2025b) and
tool use (Qian et al., 2025) further improve reasoning, but lack the thorough exploitation of Code Interpreter and Search
tools. Leading models such as OpenAI’s ChatGPT Agent, Google’s Gemini-Pro (Comanici et al., 2025), and XAI’s
Grok4 report using code and search at test time to augment reasoning, but without publishing detailed methods. Open
work such as ToRL (Li et al., 2025c) and ReTool (Feng et al., 2025) investigates training reasoning models to integrate
with Code Interpreters. However, their training and evaluation are limited to math problems, leaving a significant
gap from real-world applications that demand effectiveness across broader benchmarks. ToolRL (Qian et al., 2025)
instead focuses on teaching models to select among multiple tools, where the generated codes and search queries are
relative simple and the evaluation tasks require less reasoning capabilities. SciMaster (Chai et al., 2025) samples the
same pre-designed tool-use agent five times, then uses other pre-designed agents to critique, refine, and aggregate the
answers. This approach shows clear improvement over single-inference text-only baselines, but the extent and manner
of tool exploitation remain underexplored. In summary, integrating Code Interpreter and Search into LLM reasoning is
essential and challenging. The academic community currently lacks methods and studies that fully exploit the benefits
of LLM self-reasoning, code execution, and search, which is the focus of our work.

Test-time scaling LLM self-exploration, reflection, and evaluation can enhance task performance across do-
mains (Yang et al., 2022; Welleck et al., 2022; Madaan et al., 2023). Models like OpenAI o1 (Jaech et al., 2024) and
DeepSeek R1 (Guo et al., 2025) showcase agentic behavior via Chain-of-Thought (CoT) reasoning and self-reflection,
which is learned by RL-based training with rule-based outcome rewards (Shao et al., 2024; Wei et al., 2025). Apart
from the training-based scaling, many research also explore scaling during LLM inference time by pre-designing
prompt and agent frameworks. In these works, multi-agent reasoning has emerged as a promising paradigm for
enhancing complex problem-solving and decision-making in AI systems (Wu et al., 2023; Li et al., 2023b; Topsakal &
Akinci, 2023). Prior work finds gathering the answers from different LLMs improves LLM performance (Du et al.).
Mixture-of-Agents (MoA) (Wang et al., 2024) further extends this idea by sharing and gathering answer among LLMs.
However, Self-MoA (Li et al., 2025a) argues that LLM diversity may not be critical since replacing different types of
LLMs with the best one achieves better performance. Symbolic-MoE (Chen et al., 2025b) further assigns different
questions with different specialized LLMs. Instead of using different types of LLMs, many works such as DEI (Zhang
et al., 2024), GSA (Li et al., 2025d), and SETS (Chen et al., 2025a) employ different agents from the same LLM for
extensive test-time scaling, in which the agent types and frameworks are explored (Chen et al., 2024a). Similar to
our work, previous work in test-time scaling also finds the correct answer selection (Brown et al., 2024) is the main
bottleneck. While previous work in test-time scaling do not incorporate tool-use of Code Interpreter and Search, we
study how to utilize test-time scaling methods to better exploit the benefits of each reasoning mode.

3 TOOL-USE MIXTURE

Appendix B presents the full TUMIX algorithm, and Appendix C lists all agent prompts.

3.1 PRE-DESIGNED DIVERSE AGENTS

As shown in Fig. 2, we regard TUMIX as sequential decision-making under a compute budget with diverse and correlated
experts (agents). Each round selects which agents to run, what they may read (communication policy), when to stop
(optimal stopping), and how to aggregate (decision rule), trading off accuracy and cost. Let q be a task with unknown
correct answer a⋆ in answer space A. There is a pool of agents S = {s1, . . . , sK}. Agent si outputs an answer Yi ∈ A
at cost ci and has competence pi(q) = P{Yi = a⋆ | q}. Let Zi = 1{Yi = a⋆} denote correctness indicators. Their
dependencies (and hence ensemble diversity) are captured by a correlation or mutual-information structure over {Zi}.
A policy π (our focus) chooses in each round: (i) which agents to run, (ii) the communication graph (what each agent
may read from prior rounds), (iii) the stopping rule, and (iv) the aggregation rule producing âπ . A canonical objective is

max
π

P{âπ = a⋆} − λ · Costπ, (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Question

…

Selector

Round 1

Refine answers based on {all_answers_previous_round}

CoT

Guided 
Agent

Code

Search

…

Round 2

Dual-Tool

…

Termination Round T

Search+
Answer

…
Human and 

LLM designed 
agents

Termination 
and selection 

methodsGuided 
Agent

Guided 
Agent+

Code

Code+

Code+

Search

Figure 2: Overview of TUMIX framework. At each iteration, the responses from all agents in the previous round are
concatenated with the original question, forming a joint prompt for the next round. This prompt is then provided to all
agents (either the same or new agent groups) to produce refined answers. The subsequent prompts follow the structure
illustrated in the above. The design of the agents, their number and specialization, the refinement termination criteria,
and the selection strategies are the key factors that determine the effectiveness of the framework.

Table 1: 15 pre-designed agents used in TUMIX.

Full Name Short Name Description (15 agents)
w/o TTS Base Direct prompt.
CoT Agent CoT Chain-of-Thought prompt (Wei et al., 2022).
CoT-Code Agent CoTcode CoT prompt to output code.
Search Agent S Uses WebSearch (LLM inherent tool only).
Code Agent C Uses Code Interpreter (base version).
Code Agent+ C+ Uses Code Interpreter (hinted version with extra human pre-designed priors).
Dual-Tool Agent CS Uses Code Interpreter + WebSearch (with 3 search variants).
Guided Agent CSG Dual-Tool agent (CS) guided by a steering module (Chen et al.) (with 3 search variants).
Guided Agent+ CSG+ Guided agent (CSG) with enhanced/hinted prompts (with 3 search variants).

where λ > 0 trades off compute and accuracy. In our work, the Costπ is the total number of inference times and input
and output tokens to generate the final answer. In the default TUMIX setting, we utilize the same 15 pre-designed agents
in all answer refinement rounds. These 15 agents have distinct reasoning and tool-use strategies, as summarized in
Table 1. Agents with search access have three search methods (Google Search API (gs), inherent LLM search function
(llm), or their combination (com)), yielding three variants per agent. For agents employing multi-round interactions
with Search or Code Interpreter, the maximum tool interaction round number is set to 5. In Section 5.3, we discuss how
to further query LLMs to automatically optimize and design more diverse agents to achieve better performance. We
also compare with a dynamic setting where agent types vary across rounds.

3.2 REFINEMENT AS MESSAGE PASSING (ACCURACY RISES AND DIVERSITY SHRINKS)
In each round, every agent independently generates a new solution by considering both the original question and the
solutions provided by all agents in the previous round, as shown in Fig. 2. We evaluate the refinement process using
two metrics: average accuracy and coverage (the probability of at least one correct) across agents in each round, which
capture the quality and diversity of group answers (Brown et al., 2024). For a set S ⊆ S, the coverage is

Coverage(S) = P
( ⋃

i∈S

{Yi = a⋆}
)
. (2)

Under independence, Coverage(S) = 1−
∏

i∈S(1− pi). With positive correlations, Coverage(S) shrinks. Fig. 3
shows the typical evolution dynamics of coverage, individual agent accuracy, and average scores over refinement rounds.
Across all three benchmarks, coverage steadily declines, indicating that some correct answers are mistakenly discarded
during iterative refinement. For HLE and AIME, the average score rises in the early rounds and then plateaus, while for
GPQA it improves from round 1 to 2 but later declines. Fig. 4 visualizes the dynamics over 2,500 HLE questions. From

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 3: Evolution of coverage, individual agent scores, and average scores across refinement rounds. Coverage
decreases monotonically across all benchmarks. For HLE and AIME, the average score rises over the initial rounds
before plateauing. For GPQA, the average score improves early on but subsequently declines with further refinement.

Figure 4: Sankey diagram of the evolution of correctly answering agents across 2,500 HLE questions over refinement
rounds. Based on the distribution dynamics, we define five categories: all wrong (0), few correct (1–3), moderate
correct (4–11), high correct (12–14), and all correct (15).

round 1 to 2, the number of partially correct cases (few/moderate/high correct) increases, while both all wrong and all
correct cases decrease. This suggests that initial thought-sharing broadens exploration and promotes diversity. After
round 2, however, partially correct cases diminish toward near zero, while all wrong and all correct cases grow. This
indicates that agents gradually converge to a single shared answer across rounds, either correct or incorrect.

3.3 TERMINATION IN OPTIMAL ROUNDS AND FINAL ANSWER SELECTION

The observed evolution indicates that round-by-round refinement not only improves answers in the initial rounds but
also drives convergence, as each agent selects based on prior responses. However, due to the limited reasoning ability
of LLMs, many correct answers are prematurely discarded. Beyond the early rounds, refinement rarely yields further
accuracy gains and, in some cases, even degrades performance. Thus, identifying an effective termination strategy is
essential for both robust performance and cost efficiency. Let Ar denote acquired accuracy after round r. Define the
expected marginal value of another round

∆r = E[Ar+1 −Ar | signals up to round r] . (3)

Stop at the first round r where ∆r ≤ λ · marginal cost (here is increased inference costs). A practical termination
strategy decides whether to stop based on the estimated future gain ∆r, which relies on round-r statistics such as (i)
diversity collapse (coverage drop; rising agreement), (ii) vote margin between top answers, and (iii) answer entropy.

In TUMIX, our termination determination strategy is to query the LLM to decide whether to stop refinement and finalize
answers based on the current round, with a minimum round number of 2. We find this termination strategy achieves
nearly the same performance with only 49% of the inference cost. In Section 5.2, we explore other termination methods
such as stopping once the majority answer stabilizes across two consecutive rounds or termination based on LLM

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

confidence scores (Fu et al., 2025), but find only worse performance. After termination, we obtain the final answer
through majority voting over the agents’ responses, with Gemini-2.5-Pro selecting the most consistent output.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks For a comprehensive evaluation and comparison across methods, we conduct experiments on three
representative benchmarks that demand extensive reasoning and planning, particularly the ability to effectively leverage
Code Interpreter and Search. HLE (Phan et al., 2025) consists of 2,500 highly challenging questions spanning diverse
subject areas, including mathematics, biology, engineering, computer science, and the social sciences. It is designed
as a final, closed-ended benchmark of broad academic capability. We evaluate both its text-only and multimodal
subsets. In the following sections, we primarily use HLE to study different mechanisms, as it contains a large number
of questions spanning diverse domains and is the most challenging benchmark. GPQA (Rein et al., 2024) is a
multiple-choice dataset authored by domain experts in biology, physics, and chemistry. We focus on its most widely
used subset, GPQA Diamond, which contains 198 of the most challenging and carefully curated questions. Finally,
AIME 2024&2025 comprises 60 problems from the 2024 and 2025 AIME exams, a notoriously difficult high school
mathematics competition. All reported results are averaged over three independent runs.

Baselines/TUMIX ablations and extensions/Test models As shown in Appendix Table 10, we compare against the
following methods: (1) Majority-Vote (Brown et al., 2024);(2) GSA (Li et al., 2025d); (3) Self-Reflection (Ji
et al., 2023); (4) SETS (Chen et al., 2025a); (5) Self-MoA (Li et al., 2025a); (6) Symbolic-MoE (Chen et al.,
2025b); (7) DEI (Zhang et al., 2024); (8) SciMaster (Chai et al., 2025). For baselines (1)–(4), we use the CS
agent, which has full access to both Code Interpreter and Search and achieves relatively high first-round accuracy
(Appendix Table 11). For baselines (5)–(7), we select agents following their original methods. For SciMaster, we
retain the original prompts and agents to ensure consistency with published results. We match the total inference counts
of all baselines to TUMIX by adjusting agent numbers and sampling repetitions for fair comparison. All the baselines
have full access to Code Interpreter and Search. We evaluate TUMIX variants with different design choices, either to
ablate framework components or to introduce improvements over existing TUMIX, as shown in Appendix Table 12.
TUMIX+ uses higher inference costs to test scaling effects, while other variants consume nearly the same inference and
token counts. We evaluate our methods on the reasoning LLM Gemini-2.5-Pro and Gemini-2.5-Flash.

Evaluation protocol Answers are evaluated against ground-truth solutions, with Gemini-2.5-Pro assisting in normal-
izing answer formats when necessary or serving directly as the judge for answer comparison. In cases where the model
outputs code as the final answer, we extract the code using predefined algorithms and execute it to produce the final
result. To avoid infinite loops, all code execution whether during intermediate or final rounds is limited to 60 seconds.
If execution exceeds this limit, a “code runtime error” is returned to the model for regeneration in intermediate rounds;
in the final round, the task is marked as a failure. We report success rate as the primary evaluation metric. In addition to
task performance, we also analyze token usage and inference time for each method in later sections.

4.2 OVERALL BETTER PERFORMANCE

Table 2 shows that TUMIX outperforms all baselines, with average accuracy improvements of 2.0% and 5.9% over the
best methods using Gemini-2.5-Pro and Gemini-2.5-Flash, respectively. Its superior performance over methods without
answer sharing (Self-Reflection, SETS) highlights the importance of answer sharing in multi-round test-time
scaling. Comparisons with methods lacking multi-round refinement (Majority-Vote, Symbolic-MoE, DEI,
GSA) demonstrate the benefits of refinement, while comparisons with methods lacking agent diversity (Self-MoA,
SciMaster) confirm the value of diverse agents. The accuracy improvement of SciMaster on HLE is smaller
than reported by the authors. We suspect this discrepancy arises from differences in tools, as their Search and Code
Interpreter modules are not open-sourced.

5 DISCUSSION

5.1 AGENT DIVERSITY AND QUALITY ARE CRITICAL

To investigate the role of agent diversity and quality in TUMIX performance, we compare groups of agents with
varying levels of diversity and capability, as shown in Fig. 5 and Appendix Table 13. Under the same amount of
refinement rounds and inferences, increasing the number of agents from 1 to 3 to 15 leads to substantial improvements
in both coverage and average score across rounds on HLE and GPQA, indicating that diversity significantly benefits
performance. Moreover, comparing a single strong agent with a single weak agent (see Appendix Table 11, where

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Experimental results of baseline and proposed methods on HLE, GPQA, and AIME 24&25. Except for the
single-inference w/o TTS and the scaled-up TUMIX+, all methods use comparable inference costs for scaling. For
some methods, Gemini-2.5-Pro’s HLE results are used to select agents within their agentic framework. In these cases,
the method has prior knowledge of HLE and the results cannot be strictly regarded as test performance. Such cases are
marked with * in the HLE results. All the values are the average of three repetitive runs.

METHODS BASELINE METHODS PROPOSED METHODS

A
C

C
U

R
A

C
Y

%

W
/O

T
T

S

M
A

JO
R

IT
Y

V
O

T
E

SE
L

F
-M

O
A

SY
M

B
O

L
IC

-M
O

E

D
E

I

SE
L

F
-R

E
FL

E
C

T
IO

N

SE
T

S

SC
IM

A
S

T
E

R

G
SA

T
U

M
IX

T
U

M
IX

-F
IX

E
D

R

T
U

M
IX

-E
V

O
LV

E

T
U

M
IX

+

GEMINI-2.5-PRO
HLE 21.6 28.4 29.3* 29.5* 29.1* 23.5 27.9 26.9 28.7 32.3 32.4 32.7* 34.1
GPQA 84.6 84.9 85.5 86.7 86.0 84.9 85.3 86.9 85.8 87.9 86.8 88.1 88.3
AIME 24&25 87.3 94.3 94.7 94.7 95.0 88.3 94.7 94.1 93.7 96.7 95.6 96.7 96.7
AVE. NORM. 64.5 69.2 69.8 70.3 70.0 65.6 69.3 69.3 69.4 72.3 71.6 72.5 73.0

GEMINI-2.5-FLASH
HLE 9.7 17.9 18.2 18.5 19.3 10.4 18.5 18.0 17.4 21.2 20.9 21.9 23.1
GPQA 50.0 63.1 65.4 64.1 64.9 53.2 63.2 67.9 62.6 77.3 76.8 79.8 82.1
AIME 24&25 70.0 80.0 80.3 80.7 82.3 72.3 74.0 79.1 79.7 83.3 83.3 86.7 86.7
AVE. NORM. 43.2 53.7 54.7 54.4 55.5 45.3 51.9 55.0 53.2 60.6 60.3 62.8 64.0

CSgs achieves higher first-round scores than w/o TTS), we observe that higher-quality agents consistently yield better
coverage and higher average scores.

Code Interpreter and Search increase answer diversity. In Fig. 6, we evaluate three settings where each agent
group consists of three agents, each sampling five times per round. The groups differ in their tool access: in Code Text,
agents cannot access Search; in Search Text, they cannot access the Code Interpreter; and in Code Search Text, agents
have full access to both. While the average agent quality (as measured by first-round scores in Appendix Table 11)
is comparable across groups, the group with access to both Code Interpreter and Search achieves notably higher
coverage and average scores. This result demonstrates that integrating complementary tools within agents enhances
both reasoning and answer diversity, thereby facilitating more effective problem solving.

(a) (b) (c) (d)

Figure 5: Coverage and average score vs. rounds under varying agent diversity and quality. In 15 Agents, all 15 varied
pre-designed agents generate one answer each round. In 3 Agents, three strong agents (C+, CSgs, and CSGgs) each
samples 5 times per round. In 1 Agent Strong and 1 Agent Weak, CSgs and w/o TTS sample 15 times, respectively.

5.2 TERMINATION AND SELECTION METHODS

Achieving optimal performance at 49% cost. Tasks of varying difficulty require different numbers of refinement
rounds, and excessive refinement can even degrade accuracy (see Fig. 3b). Thus, an effective termination strategy is
essential to balance performance and cost. We evaluate two termination strategies (Sec. 3.3): 1) Term LLM, which
queries the LLM to decide when to stop refinement, subject to a minimum round constraint; and 2) Term Rule, which
stops once the majority answer stabilizes across two consecutive rounds, also with a minimum round constraint. We

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 6: Comparison of groups all with three agents but either partial
or full accesses to textual reasoning, coding, and search: Code Text
(CoT, C, C+), Search Text (CoT, S, CSgs), and Code Search Text
(CSgs, C+, and CSGgs).

1 2 3 4 5 6 7
Average Round

20

24

28

32

A
cc

ur
ac

y 
(%

)

Random Selector
Majority Vote
LLM Selector

Term_LLM
Term_Rule

Figure 7: Comparison of refinement termina-
tion and answer selection strategies for higher
accuracy with lower costs.

vary the minimum number of rounds to examine how performance evolves as the number of rounds increases in Fig. 7,
and we compare their peak performance in Appendix Table 13. Term LLM achieves nearly the same peak accuracy
as unlimited refinement, but with substantially fewer rounds. On average, Term LLM retains optimal performance
while requiring only 49% of the LLM inferences needed to obtain the final answer (LLM judging cost counted). The
token costs are even less (approximately 46%), as the number of inference tokens used in later rounds exceeds that
of the first two rounds. This demonstrates the effectiveness of using LLM-as-Judge to determine when refinement is
sufficient and answers can be finalized. However, Term LLM still requires a minimum number of refinement rounds
(set to two across all benchmarks). This is because we observe that LLMs tend to be overconfident and may terminate
refinement early, even when additional refinement could improve performance. For example, as shown in Fig. 7 green
curve, setting the minimum refinement rounds to one leads to worse performance.

For answer selection, we compare three strategies: (1) randomly choosing one agent’s answer, (2) majority voting, and
(3) LLM-based selection with LLM-as-Selector. Fig. 7 shows that majority voting and LLM-based selection consistently
outperform random choice, especially in early rounds when agent answers diverge. However, once answers converge
in later rounds, all selection methods yield similar results, and their impact becomes negligible. The multi-round
refinement process is also a selection process. We also explore improved selection based on LLM token confidence (Fu
et al., 2025), but observe no significant differences (Appendix Fig. 13).

5.3 HUMAN PRE-DESIGNED AGENTS VS. LLM GENERATED AGENTS


�� 
�� 
	� 

� 

�

���
������������


	�



�


��


��



�

��
��

�

��

��
�
�

����

����

�����
��������

�

�

	

	��

	�	

	�


��
��
���

��
���

��
���

��
��

��
��

(a) (b)

Figure 8: We evaluate the coverage and average score of 25,000 15-agent combinations sampled from 30 agents (15
pre-designed and 15 LLM-generated). Baseline refers to the original 15 pre-designed agents. Top-3 refers to the three
sampled combinations with the highest joint performance in coverage and average score.
The human-designed agents and their tool-use strategies are built on existing frameworks or intuition. To explore
whether stronger agents can be discovered automatically, we query Gemini-2.5-Pro with current agent code examples
and ask it to generate full implementations of more diverse and high-quality ones, where the agent prompts and
frameworks are all determined by LLMs. This yield 25 diverse agents beyond the 15 human-designed ones. From these,
we retain the 15 that perform best in HLE with first-round answer generation. We then combine the 15 human-designed

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

and 15 LLM-generated agents into a pool of 30, randomly sample groups of 15, and evaluate their average score and
coverage (Fig. 8a). Compared to the baseline of 15 human-designed agents (gray triangle), many mixed groups achieve
both higher average score and coverage. We select the top-3 groups based on the combined metric

Combined Scorei =
Coveragei
E[Coverage]

+
Average Scorei
E[Average Score]

. (4)

As shown in Fig. 8b, these groups outperform the original TUMIX in both HLE and GPQA. This demonstrates that
increasing agent diversity and quality improves effectiveness, and that LLM-generated agents hold strong potential for
further enhancing TUMIX. Appendix Table 14 describes each generated agent, whose strategies differ substantially
from the original ones beyond prompt variations. Appendix Table 15 presents the agents in each top-3 group, with
roughly half overlapping with the original group.

Evolve agents in each round to enhance the diversity In all previous experiments, the agent set remained fixed
across refinement rounds. We now investigate whether dynamically varying agent types per round can improve
performance. As shown in Appendix Table 13, the variant TUMIX-EvolveD, which randomly selects agents from the
top-3 sets each round, performs slightly worse than the fixed variant TUMIX-Evolve across all three benchmarks.

Impact of number of agent types We next examine the marginal benefit of increasing the number of agents in
TUMIX. Agents are randomly sampled from the pool of 30, with each contributing one inference per round. To isolate
this effect, we exclude termination and selection and report the evolution of peak average accuracy across rounds. As
shown in Fig. 10, accuracy rises quickly when the number of agents is below 12, but gains become negligible thereafter.
This indicates that beyond a certain point, increasing agent types and inference budget yields little benefit, as additional
candidate answers make round-by-round selection more challenging. Based on these results, we decide to only include
15 agents in TUMIX to balance performance and cost.

5.4 SCALING CURVES: PERFORMANCE VS. COSTS

0 50 100 150 200
Inference Num.

21

24

27

30

33

Sc
or

e

Gemini-2.5-Pro  Inference

104 105 106

Token Num.
21

24

27

30

33

Sc
or

e

Gemini-2.5-Pro  Token

TUMIX
TUMIX+

Self-MoA
DEI

GSA
Symbolic-MoE

Figure 9: Scaling behavior of HLE scores relative to inference cost
and total token count across different tool-augmented test-time scaling
methods, where the token count includes both input and output tokens.

0 5 10 15 20 25
Number of Agent Types

22

24

26

28

30

32
Pe

ak
 R

ou
nd

 A
cc

 (
%

)

Figure 10: Peak round accuracy versus number
of agent types. Agent types randomly sampled
from the 30 well-performing agents with three
repetition. Each agent infers once per round.

We compare the scaling behavior of different tool-augmented test-time scaling methods in terms of inference and
token costs. In TUMIX and Self-MoA, scaling comes from adding more refinement rounds; in GSA, DEI, and
Symbolic-MoE, from repeating inference; and in TUMIX+, from both. As shown in Fig. 9 and Appendix Fig. 12,
TUMIX consistently outperforms other methods, achieving the highest scores with fewer inference steps and tokens.
TUMIX+ pushes peak performance further by repeating inference four times across the first two refinement rounds, but
at substantially higher cost and lower efficiency. Overall, test-time scaling demands far more inferences and roughly
two orders of magnitude more tokens, a seemingly unavoidable trade-off.

6 CONCLUSION

We introduce Tool-use Mixture (TUMIX), a framework that leverages diverse tool-use strategies to improve reasoning
in LLMs. By coordinating multiple agents with complementary approaches to textual reasoning, coding, and search,
TUMIX substantially improves performance across challenging benchmarks, including HLE, GPQA, and AIME. Our
findings highlight that diversity and quality of agents, rather than scale alone, drive these gains. Furthermore, automatic
generation of agents and principled termination strategies enable both higher accuracy and significant efficiency
improvements, reducing inference cost by nearly half without sacrificing performance. This work demonstrates that
structured diversity and selective refinement are key to maximizing the potential of tool-augmented LLMs.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper contributes to advancing Foundation Models by augmenting language models with Code Interpreter and
Search tools via test-time scaling, which has strong potential to improve performance and alignment with human
preferences. However, such capabilities are inherently dual-use, the same techniques that augment models toward
harmless outputs can, with minor changes, be misused to generate harmful content. While misuse is a concern, we
believe the broader societal benefits outweigh the risks.

REPRODUCIBILITY STATEMENT

For better reproducibility, we include detailed descriptions of 15 pre-designed agents and 15 LLM-generated agents
in Table 1 and Table 14. The prompts of all agents are in Appendix Sec. C. The complete algorithm of TUMIX is
illustrated in Appendix Sec. B. Our code and dataset will be made publicly available under an open-source license
following the acceptance of the paper.

LARGE LANGUAGE MODEL USAGE FOR WRITING

In this paper, we use LLMs—specifically Gemini and ChatGPT—as general-purpose writing aids. Draft text was
provided to these models for grammatical correction and structural refinement, after which the output was verified and
further edited when necessary. Their use was strictly limited to text refinement; they were not employed to generate
new content or references.

REFERENCES

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh Parthasarathy, Sriram Rajamani, B Ashok, and
Shashank Shet. Codeplan: Repository-level coding using llms and planning. Proceedings of the ACM on Software
Engineering, 1(FSE):675–698, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and Azalia Mirhoseini.
Large language monkeys: Scaling inference compute with repeated sampling. arXiv preprint arXiv:2407.21787,
2024.

Jingyi Chai, Shuo Tang, Rui Ye, Yuwen Du, Xinyu Zhu, Mengcheng Zhou, Yanfeng Wang, Yuzhi Zhang, Linfeng
Zhang, Siheng Chen, et al. Scimaster: Towards general-purpose scientific ai agents, part i. x-master as foundation:
Can we lead on humanity’s last exam? arXiv preprint arXiv:2507.05241, 2025.

Jiefeng Chen, Jie Ren, Xinyun Chen, Chengrun Yang, Ruoxi Sun, Jinsung Yoon, and Sercan Ö Arık. Sets: Leveraging
self-verification and self-correction for improved test-time scaling. arXiv preprint arXiv:2501.19306, 2025a.

Justin Chih-Yao Chen, Sukwon Yun, Elias Stengel-Eskin, Tianlong Chen, and Mohit Bansal. Symbolic mixture-of-
experts: Adaptive skill-based routing for heterogeneous reasoning. arXiv preprint arXiv:2503.05641, 2025b.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588, 2022.

Yongchao Chen, Yilun Hao, Yueying Liu, Yang Zhang, and Chuchu Fan. Codesteer: Symbolic-augmented language
models via code/text guidance. In Forty-second International Conference on Machine Learning.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot collaboration with
large language models: Centralized or decentralized systems? In 2024 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4311–4317. IEEE, 2024a.

Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma, Chuchu Fan, and Chi Wang. Steering large language models
between code execution and textual reasoning. arXiv preprint arXiv:2410.03524, 2024b.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein,
Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
long context, and next generation agentic capabilities. arXiv preprint arXiv:2507.06261, 2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factuality and reasoning
in language models through multiagent debate. In Forty-first International Conference on Machine Learning.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin Chi, and
Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms. arXiv preprint arXiv:2504.11536,
2025.

Yichao Fu, Xuewei Wang, Yuandong Tian, and Jiawei Zhao. Deep think with confidence. arXiv preprint
arXiv:2508.15260, 2025.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and Graham Neubig. Pal:
Program-aided language models. In International Conference on Machine Learning, pp. 10764–10799. PMLR, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang,
Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander
Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint arXiv:2412.16720, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating llm hallucination via
self reflection. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 1827–1843, 2023.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei Han. Search-
r1: Training llms to reason and leverage search engines with reinforcement learning. arXiv preprint arXiv:2503.09516,
2025.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey Levine, Li Fei-Fei, Fei
Xia, and Brian Ichter. Chain of code: Reasoning with a language model-augmented code emulator. arXiv preprint
arXiv:2312.04474, 2023a.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Communicative agents
for” mind” exploration of large language model society. Advances in Neural Information Processing Systems, 36:
51991–52008, 2023b.

Wenzhe Li, Yong Lin, Mengzhou Xia, and Chi Jin. Rethinking mixture-of-agents: Is mixing different large language
models beneficial? arXiv preprint arXiv:2502.00674, 2025a.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng Dou.
Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint arXiv:2501.05366, 2025b.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint arXiv:2503.23383, 2025c.

Zichong Li, Xinyu Feng, Yuheng Cai, Zixuan Zhang, Tianyi Liu, Chen Liang, Weizhu Chen, Haoyu Wang, and Tuo
Zhao. Llms can generate a better answer by aggregating their own responses. arXiv preprint arXiv:2503.04104,
2025d.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of code are few-shot
commonsense learners. arXiv preprint arXiv:2210.07128, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri,
Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. arXiv preprint
arXiv:2303.17651, 2023.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed
Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint arXiv:2501.14249, 2025.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and Heng Ji.
Toolrl: Reward is all tool learning needs. arXiv preprint arXiv:2504.13958, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael,
and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In First Conference on Language
Modeling, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li,
Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint
arXiv:2402.03300, 2024.

Oguzhan Topsakal and Tahir Cetin Akinci. Creating large language model applications utilizing langchain: A primer
on developing llm apps fast. In International Conference on Applied Engineering and Natural Sciences, volume 1,
pp. 1050–1056, 2023.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances large language
model capabilities. arXiv preprint arXiv:2406.04692, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-
of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems,
35:24824–24837, 2022.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried, Gabriel Synnaeve,
Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via reinforcement learning on open software
evolution. arXiv preprint arXiv:2502.18449, 2025.

Nathaniel Weir, Muhammad Khalifa, Linlu Qiu, Orion Weller, and Peter Clark. Learning to reason via program
generation, emulation, and search. arXiv preprint arXiv:2405.16337, 2024.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin Choi. Generating
sequences by learning to self-correct. In The Eleventh International Conference on Learning Representations, 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang,
and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation framework. arXiv preprint
arXiv:2308.08155, 2023.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan Klein. Re3: Generating longer stories with recursive reprompting
and revision. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
4393–4479, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts:
Deliberate problem solving with large language models. Advances in Neural Information Processing Systems, 36,
2024.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei Li, Renze Lou, Jiacheng
Xu, et al. Diversity empowers intelligence: Integrating expertise of software engineering agents. arXiv preprint
arXiv:2408.07060, 2024.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song, Mingjie
Zhan, et al. Solving challenging math word problems using gpt-4 code interpreter with code-based self-verification.
arXiv preprint arXiv:2308.07921, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX–TUMIX: MULTI-AGENT TEST-TIME SCALING WITH TOOL-USE MIXTURE

A Example of GPT-5 failure in code/text decision 14

B Algorithm of TUMIX 15

C Prompts of TUMIX 16

D Baseline methods 17

E Agent accuracy and coverage over multi-round answer refinement on HLE 18

F Illustration and experimental results of TUMIX variants 19

G New agents in TUMIX completely designed by Gemini-2.5-Pro automatically 20

H Scaling behavior of Gemini-2.5-flash 21

I LLM token confidence of generated responses 22

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXAMPLE OF GPT-5 FAILURE IN CODE/TEXT DECISION

(b)(a) (c)

Figure 11: Example of GPT-5 failure in code/text decision. In this case, the question is incorrectly solved with textual
reasoning (a) but can be easily addressed through code generation (c). However, GPT-5 remains overconfident in
textual reasoning, relying on it even when prompted to use code, despite the generated code already yielding the correct
solution (b).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B ALGORITHM OF TUMIX

Algorithm 1 TUMIX: Multi-Agent Test-Time Scaling (answers only)

Require: question q; agent pool S = {s1, . . . , sK} ▷ 15 pre-designed agents (Code / Search / Dual-Tool variants)
Require: minimum rounds rmin = 2; maximum rounds rmax; tool-interaction budget Rtool = 5; code time limit

τ = 60s
1: A0 ← ∅ ▷ answers from prior rounds
2: for r = 1, 2, . . . , rmax do

// Round-r message passing: each agent reads q + prior answers
3: parallel for each s ∈ S
4: psr ← BUILDPROMPT(q,Ar−1) ▷ concatenate q with all answers from prior round
5: ysr ← AGENTCALL(s, psr, Rtool, τ) ▷ tool-augmented reasoning (Alg. 2)
6: Ar ← {ysr : s ∈ S}
7: if r ≥ rmin and LLMTERMINATE(q,Ar) = STOP then
8: break
9: end if

10: end for
11: a⋆ ← MAJORITYVOTE(Ar)
12: return a⋆

Algorithm 2 AGENTCALL(s, p,Rtool, τ): tool-augmented reasoning for agent s (returns answer only)

1: h← p; b← 0 ▷ h is the running context; b counts tool interactions
2: while b < Rtool do
3: o← LLMGENERATE(s, h) ▷ run agent s with its strategy/prompt
4: if o contains a final answer y then
5: return o
6: else if o proposes code and s allows Code Interpreter then
7: r ← EXECUTECODE(o, τ) ▷ hard limit τ = 60s; capture stdout/plots/files
8: if RUNTIMEERROR(r) then
9: h← h ∥ “Runtime error:” r; b← b+ 1; continue

10: else
11: h← h ∥ “Code result:” r; b← b+ 1; continue
12: end if
13: else if o issues a search query and s allows Search then
14: E ← WEBSEARCH(o) ▷ supports gs/llm/com variants
15: h← h ∥ “Retrieved evidence:” E; b← b+ 1; continue
16: else
17: h← h ∥ “Continue reasoning with current context.” ▷ encourage self-reflection
18: end if
19: end while
20: o← LLMGENERATE(s, h) ▷ budget exhausted; force a decision
21: return o

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROMPTS OF TUMIX

Table 3: Prompt for answer refinement based on all agent answers in the previous round.

Task: Decide the final answer based on the following answers from other agents.

Question:
{question}
Candidate answers from several methods:
{joined answers}
Based on the candidates above, analyze the question step by step and try to list all the careful points. In the end of your response,
directly output the answer to the question with the format <<<answer content>>>.

Table 4: Prompt for LLM-as-Judge of refinement termination.

Task: Carefully assess whether the answers below (enclosed by <<< >>>) show clear and strong consensus, or if another round
of reasoning is needed to improve alignment.

IMPORTANT: If there are any differences in reasoning, phrasing, emphasis, conclusions, or interpretation of key details, you
should conservatively decide to continue refinement.

The current round number is {round num}. Note: Finalizing before round 3 is uncommon and discouraged unless answers
are fully aligned in both logic and language.

Question:
{question}

Candidate answers from different methods:
{joined answers}
Instructions:

1. Identify any differences in wording, structure, or logic.

2. Be especially cautious about subtle variations in conclusion or emphasis.

3. Err on the side of caution: if there’s any ambiguity or divergence, recommend another round.

Output your reasoning first, then conclude clearly with <<<YES>>> if the answers are highly consistent and finalization is safe,
or <<<NO>>> if further refinement is needed.

Table 5: Head prompt for CoT Agent.

• Analyze the question step by step and try to list all the careful points.

• Then try to acquire the final answer with step by step analysis.

• In the end of your response, directly output the answer to the question.

Do not output the code for execution.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Head prompt for CoT-Code Agent.

You are a helpful AI assistant. Solve tasks using your coding skills.

In the following cases, suggest python code (in a python coding block) for the user to execute.

• Don’t include multiple code blocks in one response, only include one in the response.

• Do not ask users to copy and paste the result. Instead, use the ’print’ function for the output when relevant.
Think the task step by step if you need to. If a plan is not provided, explain your plan first. You can first output your thinking
steps with texts and then the final python code.

Remember in the final code you still need to output each number or choice in the final print!
Start the python block with ```python

Table 7: Head prompt for Code Agent.

The User asks a question, and you solve it. You first generate the reasoning and thinking process and then provide the User
with the final answer. During the thinking process, **you can generate python code** for efficient searching, optimization, and
computing with the format of starting the python block with ```python. **A code query must involve only a
single script that uses ‘print’ function for the output.**. Once the code script is complete, stop
the generation. Then, the code interpreter platform will execute the code and return the execution output and error. Once you feel
you are ready for the final answer, directly return the answer with the format <<<answer content>>> at the end of your
response. Otherwise, you can continue your reasoning process and possibly generate more code query to solve the problem.

Table 8: Head prompt for Dual-Tool Agent.

The User asks a question, and you solve it. You first generate the reasoning and thinking process and then provide the User with
the final answer.

During the thinking process, you can generate python code for efficient searching, optimization, and computing with the format
of starting the python block with ```python. **A code query must involve only a single script that
uses ‘print’ function for the output.**.. Once the code script is complete, stop the generation. Then, the
code interpreter platform will execute the code and return the execution output and error.

If you lack the related knowledge, you can use the Google Search Tool to search the web and get the information. You
can call a search query with the format of <search>your search query</search>, e.g., <search>Who is the
current president of US?</search>. The searched results will be returned between <information> and
</information>. Once the search query is complete, stop the generation. Then, the search platform will return the
searched results.

If you need to search the web, do not generate code in the same response. Vice versa. You can also solve the question without
code and searching, just by your textual reasoning.

Once you feel you are ready for the final answer, directly return the answer with the format <<<answer content>>> at the
end of your response. Otherwise, you can continue your reasoning process and possibly generate more code or search queries to
solve the problem.

D BASELINE METHODS

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Head prompt for Guided Agent.

You are guiding another TaskLLM to solve a task. You will be presented with a task that can be solved using textual reasoning,
coding, and web searching. Sometimes the TaskLLM may need extra help to solve the task, such as generating code or searching
the web. Then must follow the rules below for both query and return answer:

During the thinking process, you can generate python code for efficient searching, optimization, and computing with the format
of starting the python block with ```python. A code query must involve only a single script that
uses ’print’ function for the output.. Once the code script is complete, stop the generation. Then, the code
interpreter platform will execute the code and return the execution output and error.

If you lack the related knowledge, you can use the Google Search Tool to search the web and get the information. You
can call a search query with the format of <search>your search query</search>, e.g., <search>Who is the
current president of US?</search>. The searched results will be returned between <information> and
</information>. Once the search query is complete, stop the generation. Then, the search platform will return the
searched results.

If you need to search the web, do not generate code in the same response. Vice versa. You can also solve the question without
code and searching, just by your textual reasoning.

Once you feel you are ready for the final answer, directly return the answer with the format <<<answer content>>> at the
end of your response. Otherwise, you can continue your reasoning process and possibly generate more code or search queries to
solve the problem.

Your goal is to determine which method will be most effective for solving the task. Then you generate the guidance prompt
for the TaskLLM to follow in the next round. The final returned guidance prompt should be included between <<< and >>>,
such as <<<You need to generate more complex code to solve...>>>.

Now, here is the task:

Table 10: Baseline methods compared against TUMIX.

Method Handle Type Description
Majority-Vote Voting A single agent runs multiple parallel inferences, with the final answer decided by

majority voting, without sharing intermediate results. Uses CS agent.
GSA Aggregation Similar to Majority-Vote, but the same LLM generates a new response condi-

tioned on multiple samples. Uses CS agent.
Self-Reflection Iterative Refinement A single agent iteratively refines its answer by reflecting on past responses (up to

10 accessible per round; varied to 8 or 15 in experiments, with no performance
difference). Uses CS agent.

SETS Multi-Trial Voting The same LLM performs multiple self-reflection trials, and the final answer is chosen
by majority vote. Uses CS agent.

Self-MoA Best-Agent Selection Selects the best-performing agent among 15 candidates for parallel sampling, answer
sharing, and multi-round refinement. Adapted to select the best agent within the same
LLM instead of the original setting, selecting the best LLM across different LLMs.

Symbolic-MoE Expert Selection Categorizes questions (e.g., algebra, probability, coding, biology), pre-tests the top 3
agents per category, and LLM judges the question category and assigns test questions
to these top agents for sampling and aggregation.

DEI Committee Heuristic Selects the top 5 agents, generates multiple answers via repetitive sampling, and then
uses a predefined agent committee with heuristics to select the best answer.

SciMaster Critic and Refine Samples the same pre-designed tool-use agent five times, then employs other agents
to critique, refine, and aggregate the answers. Original prompts/agents retained.

E AGENT ACCURACY AND COVERAGE OVER MULTI-ROUND ANSWER REFINEMENT ON HLE

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 11: Accuracy of each agent, average accuracy, and coverage across rounds for HLE. Dual-Tool Agent,
Guided Agent, and Guided Agent+ have three variants with different search strategies: Google Search API
(gs), inherent LLM search function (llm), or their combination (com).

Humanity’s Last Exam (HLE) RD 1 RD 2 RD 3 RD 4 RD 5 RD 6
Coverage 51.92 44.20 43.48 37.04 34.85 33.87
Average 21.13 28.72 30.37 31.70 32.16 32.37
w/o TTS 20.32 28.08 30.88 31.60 32.18 32.36

CoT Agent (CoT) 20.84 28.16 30.40 31.12 32.30 32.48

CoT-Code Agent (CoTcode) 18.36 28.28 31.40 31.52 31.96 32.40

Search Agent (S) 21.72 29.04 28.84 32.08 32.08 32.20

Code Agent (C) 21.16 29.68 31.40 31.96 32.12 32.36

Code Agent+ (C+) 22.96 29.00 31.44 31.88 32.20 32.40

Dual-Tool Agent (CSgs) 22.96 28.60 30.84 31.72 32.24 32.36

Dual-Tool Agent (CSllm) 21.36 28.36 31.28 31.20 32.48 32.32

Dual-Tool Agent (CScom) 20.76 28.56 30.36 31.44 32.32 32.48

Guided Agent (CSGgs) 22.04 28.72 29.96 32.24 32.00 31.96

Guided Agent (CSGllm) 21.20 28.64 29.20 31.52 32.16 32.32

Guided Agent (CSGcom) 20.76 28.92 29.88 31.88 32.20 32.40

Guided Agent+ (CSG+
gs) 20.56 29.32 30.36 31.92 31.84 32.52

Guided Agent+ (CSG+
llm) 21.56 28.80 29.20 31.64 32.16 32.52

Guided Agent+ (CSG+
com) 20.44 28.68 30.08 31.72 32.28 32.48

F ILLUSTRATION AND EXPERIMENTAL RESULTS OF TUMIX VARIANTS

Table 12: TUMIX framework and its variants, designed to ablate core components.

Method Handle Component Ablated Description

TUMIX Main Method (Default) Uses an LLM query to determine the optimal termination round
(min. 2) and majority vote for final selection.

TUMIX-Rule Termination Replaces the LLM-query termination with a rule: stops when the majority
answer stabilizes across two consecutive rounds.

TUMIX-Fixed Termination Replaces smart termination with a fixed 5-round limit, followed by ma-
jority voting for selection.

TUMIX-FixedR Termination & Selection Uses a fixed 5-round limit, followed by random selection.

TUMIX-Evolve Agent Composition Replaces the 15 human-designed agents with a static group of top-
performing, LLM-generated agents for each refinement round.

TUMIX-EvolveD Agent Composition Extends the above by dynamically sampling a new agent group from the
top-3 Evolved Agent groups for each refinement round.

TUMIX-Single Agent Diversity Ablates diversity by replacing the 15 distinct agents with a single agent
type from the CS family.

TUMIX-Three Agent Diversity Reduces diversity by using only three agent types (CS, C+, and CSO),
each sampled 5 times per round.

TUMIX+ Inference Scaling Extends ‘TUMIX‘ with test-time scaling, running four inference passes
per agent at different temperatures for the initial two rounds.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 13: Experimental results of TUMIX variants. All the values are the average of three repetitive runs.

METHODS TUMIX VARIANTS

SU
C

C
E

S
S

R
A

T
E

%

T
U

M
IX

T
U

M
IX

-S
IN

G
L

E

T
U

M
IX

-T
H

R
E

E

T
U

M
IX

-F
IX

E
D

R

T
U

M
IX

-F
IX

E
D

T
U

M
IX

-R
U

L
E

T
U

M
IX

-E
V

O
LV

E

T
U

M
IX

-E
V

O
LV

E
D

T
U

M
IX

+

GEMINI-2.5-PRO
HLE 32.3 29.0 30.2 32.4 32.4 32.4 32.7 32.1 34.1
GPQA 87.9 86.1 86.6 86.8 86.7 87.7 88.1 87.4 88.3
AIME 24&25 96.7 95.0 95.3 95.6 96.7 96.7 96.7 96.1 96.7
AVE. NORM. 72.3 70.0 70.7 71.6 71.9 72.3 72.5 71.9 73.0

GEMINI-2.5-FLASH
HLE 21.2 18.2 18.6 20.9 20.8 21.3 21.9 21.3 23.1
GPQA 77.3 65.8 67.1 76.8 77.1 77.4 79.8 78.3 82.1
AIME 24&25 83.3 80.6 81.2 83.3 83.3 83.3 86.7 86.7 86.7
AVE. NORM. 60.6 54.9 55.6 60.3 60.4 60.7 62.8 62.1 64.0

G NEW AGENTS IN TUMIX COMPLETELY DESIGNED BY GEMINI-2.5-PRO AUTOMATICALLY

Table 14: Summary of 15 LLM-generated agents, categorized by their framework characteristics.

Full Name Short Name Description
Iterative Agents (Multi-turn conversational frameworks)
Plan-Verify-Refine PVR Iteratively plans, executes one action (code or search), and

refines based on checker feedback.
SearchThenCode S→C Enforces a search-first, then code execution sequence in an

iterative loop.
CodeThenSearch C→S Enforces a code-first, then search execution sequence in an

iterative loop.
ConstraintPrune-Solver CPsolv Iteratively prunes the solution space using constraints,

guided by a checker and tools (code/search).
MonteCarlo-Verify MCV Uses Monte Carlo sampling via code to find a likely answer

and then deterministically verifies it.
Debate-CrossExam DCE Simulates a Proposer/Skeptic debate to guide tool use, with

a checker for cross-examination.
MultiHop-Search-Aggregate Sm →C Enforces at least two sequential search actions before allow-

ing any code execution.
TDD-Code-Solver TDDsolv A TDD agent that lists tests, writes code to pass them, and

uses a checker for iterative refinement.
Sequential Agents (Few-shot, non-conversational frameworks)
SearchThenAnswer S→A A two-step agent that mandates a single web search before

formulating the final answer.
PlanThenCode P→C A two-step agent that first generates a plan, then a single

code block to execute it.
VerifierRefine VR A three-step agent that generates a text answer, validates it

with a checker, and then refines it.
ToolSelector TS Explicitly selects one tool (Search, Code, or Text) in the

first step, then finalizes.
HypothesisPruner-Code HPcode Generates code to enumerate and prune solution hypotheses

based on problem constraints.
DualSearch-Consensus S2

con Issues two distinct search queries and then synthesizes the
results into a consensus answer.

TDD-CodeThenFix TDDfix A Test-Driven Development approach that writes tests and
code, then generates a fix if tests fail.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 15: Comparison of original agent group and top-3 agent group used in TUMIX, each with 15 agents, either
pre-designed or LLM-generated.

Original Top-3-1 Top-3-2 Top-3-3
w/o TTS HypothesisPruner-Code TDD-Code-Solver w/o TTS
CoT Agent CoT Agent CoT Agent CoT Agent
CoT-Code Agent Plan-Verify-Refine CoT-Code Agent CoT-Code Agent
Search Agent Search Agent Search Agent SearchThenCode
Code Agent Code Agent Code Agent TDD-Code-Solver
Code Agent+ SearchThenCode Code Agent+ HypothesisPruner-Code
Dual-Tool Agentgs Dual-Tool Agentgs SearchThenCode DualSearch-Consensus
Dual-Tool Agentllm ConstraintPrune-Solver Plan-Verify-Refine MonteCarlo-Verify
Dual-Tool Agentcom MonteCarlo-Verify Dual-Tool Agentcom ConstraintPrune-Solver
Guided Agentgs Guided Agentgs Guided Agentgs Debate-CrossExam
Guided Agentllm Guided Agentllm Guided Agentllm Guided Agentllm
Guided Agentcom Debate-CrossExam Guided Agentcom Guided Agentcom
Guided Agent+gs Guided Agent+gs MonteCarlo-Verify Guided Agent+gs
Guided Agent+llm SearchThenAnswer Guided Agent+llm Plan-Verify-Refine
Guided Agent+com DualSearch-Consensus DualSearch-Consensus Guided Agent+com

H SCALING BEHAVIOR OF GEMINI-2.5-FLASH

0 50 100 150
Inference Num.

9

12

15

18

21

Sc
or

e

Gemini-2.5-Flash  Inference

104 105 106

Token Num.
9

12

15

18

21

Sc
or

e
Gemini-2.5-Flash  Token

TUMIX
TUMIX+

Self-MoA
DEI

GSA
Symbolic-MoE

Figure 12: Scaling behavior of HLE scores in Gemini-2.5-flash relative to inference cost and total token count across
different tool-augmented test-time scaling methods, where the token count includes both input and output tokens.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I LLM TOKEN CONFIDENCE OF GENERATED RESPONSES

0.75 0.80 0.85 0.90 0.95 1.00
Answer Token Confidence

0.00

0.05

0.10

0.15

0.20

0.25

0.30
R

at
io

Confidence Distributions (Correct vs Wrong)

Correct answers
Wrong answers

Figure 13: Distribution of LLM response confidence for correct and wrong answers. The response confidence is
calculated based on the average token probability of the whole generated response. Here we use the responses of agent
CoT as representative, as we find the distribution characteristics are very close among different agents.

22


	Introduction
	Related Work
	Tool-Use Mixture
	Pre-designed diverse agents
	Refinement as message passing (accuracy rises and diversity shrinks)
	Termination in optimal rounds and final answer selection

	Experiments
	Experimental settings
	Overall better performance

	Discussion
	Agent diversity and quality are critical
	Termination and selection methods
	Human pre-designed agents vs. LLM generated agents
	Scaling Curves: Performance vs. Costs

	Conclusion
	Example of GPT-5 failure in code/text decision
	Algorithm of TUMIX
	Prompts of TUMIX
	Baseline methods
	Agent accuracy and coverage over multi-round answer refinement on HLE
	Illustration and experimental results of TUMIX variants
	New agents in TUMIX completely designed by Gemini-2.5-Pro automatically
	Scaling behavior of Gemini-2.5-flash
	LLM token confidence of generated responses

