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ABSTRACT

While integrating tools like Code Interpreter and Search has significantly enhanced Large Language
Model (LLM) reasoning in models like ChatGPT Agent and Gemini-Pro, practical guidance on
optimal tool use is lacking. The core challenge is effectively combining textual reasoning, coding,
and search for diverse questions. In this paper, we propose Tool-Use Mixture (TUMIX), an ensemble
framework that runs multiple agents in parallel, each employing distinct tool-use strategies and answer
paths. Agents in TUMIX iteratively share and refine responses based on the question and previous
answers. In experiments, TUMIX achieves significant gains over state-of-the-art tool-augmented
and test-time scaling methods, delivering an average accuracy improvement of up to 3.55% over
the best baseline on Gemini-2.5-Pro and Gemini-2.5-Flash across key reasoning benchmarks, with
near-equal inference costs. We find that agent diversity and quality are crucial and can be enhanced by
using LLMs to auto-optimize agent designs. Furthermore, TUMIX can halt refinement upon reaching
sufficient confidence, preserving performance at only 49% of the inference cost. Further scaling can
achieve higher performance, albeit at a greater cost.
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Figure 1: Comparison of tool-augmented test-time scaling methods on Gemini-2.5-Pro (first row) and Gemini-2.5-Flash
(second row) across HLE, GPQA, and AIME 24&25. Except for methods without test-time scaling (w/o TTS) or
additional scaling (TUMIX+), all methods in the same subplot use nearly the same number of inferences and tokens. For
fair comparison, methods that originally lacked tool use are run with strong tool-augmented agents instead of text-only
agents. Each score is the average of three repetitive runs.

1 INTRODUCTION

While reinforcement learning-based fine-tuning has greatly improved LLM reasoning (Guo et al., 2025), models still
struggle with seemingly simple tasks (Chen et al., 2024b). Such tasks are often better handled with code (Madaan
et al., 2022; Chen et al., 2022) or search (Jin et al., 2025; Li et al., 2025b). Textual reasoning is strong in semantics and
commonsense, but weak in precise computation and in accessing or updating the latest knowledge.
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A key challenge is fully utilizing the potential capabilities of textual reasoning, coding, and searching when facing
distinctive questions with varied characteristics. Most input questions lack explicit cues for the best approach, and the
combined text/code/search solution space is large. Frontier LLM-powered products such as ChatGPT, Claude, Gemini,
and Grok report using code and search at test time to augment reasoning, but without publishing detailed methods.
Recent work (Chen et al., 2024b) shows that current Code Interpreter implementations in OpenAl models often fail to
balance text and code, leaving coding capabilities underused, as shown in Appendix Fig. 11. Moreover, public research
still lacks a clear understanding of how to integrate Code Interpreter and Search for improved LLM reasoning.

To better leverage both tool use and LLM self-reasoning, we propose Tool-Use Mixture (TUMIX), a framework that
integrates Code Interpreter and Search into LLMs via test-time scaling. TUMIX runs multiple diverse agents in parallel,
each with different tool-use strategies. Their outputs are iteratively aggregated and refined across multiple rounds. In
each round, every agent generates a new solution by considering both the original question and the previous round’s
reasoning and answers from all agents. TUMIX uses diverse agents and tool-augmented reasoning strategies to explore
a wide range of possible solutions. The following iterative process encourages diverse reasoning paths and deeper
integration. This design is inspired by prior test-time scaling methods such as Mixture-of-Agents (MoA) (Wang et al.,
2024), which rely on multiple LLMs within a single framework and do not incorporate external tools. In contrast,
TUMIX employs a single LLM with both text-only and tool-augmented agent frameworks, making it more generalizable
for practical applications. Furthermore, in tool-augmented multi-agent test-time scaling, we find a diverse group of
agents outperforms repeated use of the single best agent, a conclusion that differs from MoA (Li et al., 2025a). We later
reveal that human pre-designed agent group can be further optimized by querying LLMs to self-design more diverse
high-quality agents based on current ones, adding an average 1.2% improvement without cost increase.

Since questions vary in difficulty, they require different amounts of iterative refinement. We query the LLMs to decide
whether to terminate refinement early, while still enforcing a minimum number of rounds to maintain answer quality.
This adaptive early-termination strategy reduces inference costs to 49% of the original two settings (termination in a
fixed round number or by majority-vote consistency across rounds), while preserving or even improving performance.
The improvement arises because over-refinement rarely changes the final result and can even degrade performance, as
correct answers may be mistakenly discarded.

Compared to the model without test-time scaling, TUMIX delivers an average +7.8% and +17.4% accuracy gains
in benchmarks Humanity’s Last Exam (HLE) (Phan et al., 2025), Graduate-Level Google-Proof Q&A (GPQA,
Diamond) (Rein et al., 2024), and American Invitational Mathematics Examination (AIME 24&25) with base models
Gemini-2.5-Pro and Gemini-2.5-Flash, respectively. Under the same inference costs, TUMIX also outperforms existing
representative test-time scaling methods such as Self-MoA, Symbolic-MoE, DEI, SciMaster, and GSA, with an average
+3.55% lifting compared to the best performing baselines. Notably, with further scaling, TUMIX raises Gemini-2.5-Pro
accuracy on HLE from 21.6% to 34.1%, surpassing Gemini-2.5-Pro Deep Research at 26.9% (32.4% with higher
compute) (Comanici et al., 2025). Test-time scaling hinges on two stages (Brown et al., 2024): (1) generating diverse
candidate solutions and (2) selecting the correct one. For questions with both small answer spaces (e.g., multiple-choice)
and large ones, diverse sampling greatly improves coverage. While it achieves high coverage on HLE (among generated
answers in the whole round, at least one is correct on > 65% of questions), accuracy plateaus at about 34% because
LLMs struggle to identify the correct answer among noisy candidates. We identify and explore four key factors: agent
quality, agent diversity, refinement termination, and answer selection. Our work makes the following contributions:

1. TUMIX: A competitive tool-augmented test-time scaling method. We propose TUMIX, a novel framework
for test-time scaling that integrates tool augmentation. Extensive experiments demonstrate that TUMIX consistently
outperforms strong baselines, achieving an average improvement of +3.55% over the best-performing prior methods.

2. Key factors and mechanisms in tool-augmented scaling. We provide a systematic analysis that distinguishes
tool-augmented scaling from traditional test-time scaling:

» Agent diversity and quality outweigh scale alone. High-temperature sampling increases coverage, but heterogeneous
agent strategies yield higher accuracy and lower cost than repeatedly sampling from a single best-performing agent.

*» Tool augmentation boosts performance. Agent groups equipped with tools such as Code Interpreter and Search
achieve superior coverage and accuracy compared to text-only agent groups.

3. LLMs as agent designers. We show that prompting LLMs to automatically generate diverse, high-quality agents
based on existing ones further improves TUMIX. This yields an additional average accuracy lift of +1.2%.

4. LLM-as-Judge for refinement termination. We introduce an LLM-based judge to adaptively determine the
optimal stopping round in iterative refinement. This prevents excessive refinement, which reduces diversity and can
mistakenly discard correct answers. By enforcing a minimum refinement depth and querying the judge for termination,
we achieve near-optimal accuracy while reducing inference cost to ~49% of the original.
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Table 1: 15 pre-designed agents used in TUMIX.

Full Name Short Name Description (15 agents)

w/o TTS Base Direct prompt.

CoT Agent CoT Chain-of-Thought prompt (Wei et al., 2022).

CoT-Code Agent CoTecode CoT prompt to output code.

Search Agent S Uses WebSearch (LLM inherent tool only).

Code Agent C Uses Code Interpreter (base version).

Code Agent+ ct Uses Code Interpreter (hinted version with extra human pre-designed priors).
Dual-Tool Agent CS Uses Code Interpreter + WebSearch (with 3 search variants).

Guided Agent CSG Dual-Tool agent (CS) guided by a steering module (Chen et al.) (with 3 search variants).
Guided Agent+ csGgt Guided agent (CSG) with enhanced/hinted prompts (with 3 search variants).

2 RELATED WORK

Code Interpreter and Search Many benchmark tasks can in fact be better solved through code (Gao et al., 2023)
and search (Li et al., 2025b), and recent work extends coding to reasoning and semantic analysis (Li et al., 2023a; Weir
et al., 2024). Most prior approaches use either text (Yao et al., 2024) or code (Bairi et al., 2024; Zhou et al., 2023)
exclusively as output. Recent work (Chen et al., 2024b) emphasizes the need to dynamically switch between modalities,
proposing CodeSteer (Chen et al.) as a guidance model. Extensions with retrieval (Jin et al., 2025; Li et al., 2025b) and
tool use (Qian et al., 2025) further improve reasoning, but lack the thorough exploitation of Code Interpreter and Search
tools. Leading models such as OpenAI’s ChatGPT Agent, Google’s Gemini-Pro (Comanici et al., 2025), and XAI’s
Grok4 report using code and search at test time to augment reasoning, but without publishing detailed methods. Open
work such as ToRL (Li et al., 2025¢) and ReTool (Feng et al., 2025) investigates training reasoning models to integrate
with Code Interpreters. However, their training and evaluation are limited to math problems, leaving a significant
gap from real-world applications that demand effectiveness across broader benchmarks. ToolRL (Qian et al., 2025)
instead focuses on teaching models to select among multiple tools, where the generated codes and search queries are
relative simple and the evaluation tasks require less reasoning capabilities. SciMaster (Chai et al., 2025) samples the
same pre-designed tool-use agent five times, then uses other pre-designed agents to critique, refine, and aggregate the
answers. This approach shows clear improvement over single-inference text-only baselines, but the extent and manner
of tool exploitation remain underexplored. In summary, integrating Code Interpreter and Search into LLM reasoning is
essential and challenging. The academic community currently lacks methods and studies that fully exploit the benefits
of LLM self-reasoning, code execution, and search, which is the focus of our work.

Test-time scaling LLM self-exploration, reflection, and evaluation can enhance task performance across do-
mains (Yang et al., 2022; Welleck et al., 2022; Madaan et al., 2023). Models like OpenAl ol (Jaech et al., 2024) and
DeepSeek R1 (Guo et al., 2025) showcase agentic behavior via Chain-of-Thought (CoT) reasoning and self-reflection,
which is learned by RL-based training with rule-based outcome rewards (Shao et al., 2024; Wei et al., 2025). Apart
from the training-based scaling, many research also explore scaling during LLLM inference time by pre-designing
prompt and agent frameworks. In these works, multi-agent reasoning has emerged as a promising paradigm for
enhancing complex problem-solving and decision-making in Al systems (Wu et al., 2023; Li et al., 2023b; Topsakal &
Akinci, 2023). Prior work finds gathering the answers from different LLMs improves LLLM performance (Du et al.).
Mixture-of-Agents (MoA) (Wang et al., 2024) further extends this idea by sharing and gathering answer among LLMs.
However, Self-MoA (Li et al., 2025a) argues that LLM diversity may not be critical since replacing different types of
LLMs with the best one achieves better performance. Symbolic-MoE (Chen et al., 2025b) further assigns different
questions with different specialized LLMs. Instead of using different types of LLMs, many works such as DEI (Zhang
et al., 2024), GSA (Li et al., 2025d), and SETS (Chen et al., 2025a) employ different agents from the same LLM for
extensive test-time scaling, in which the agent types and frameworks are explored (Chen et al., 2024a). Similar to
our work, previous work in test-time scaling also finds the correct answer selection (Brown et al., 2024) is the main
bottleneck. While previous work in test-time scaling do not incorporate tool-use of Code Interpreter and Search, we
study how to utilize test-time scaling methods to better exploit the benefits of each reasoning mode.

3 ToOL-USE MIXTURE

Appendix B presents the full TUMIX algorithm, and Appendix C lists all agent prompts.

3.1 PRE-DESIGNED DIVERSE AGENTS

As shown in Fig. 2, we regard TUMIX as sequential decision-making under a compute budget with diverse and correlated
experts (agents). Each round selects which agents to run, what they may read (communication policy), when to stop
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Figure 2: Overview of TUMIX framework. At each iteration, the responses from all agents in the previous round are
concatenated with the original question, forming a joint prompt for the next round. This prompt is then provided to all
agents (either the same or new agent groups) to produce refined answers. The subsequent prompts follow the structure
illustrated in the above. The design of the agents, their number and specialization, the refinement termination criteria,
and the selection strategies are the key factors that determine the effectiveness of the framework.

(optimal stopping), and how to aggregate (decision rule), trading off accuracy and cost. Let ¢ be a task with unknown
correct answer a* in answer space .A. There is a pool of agents S = {s1,..., sk }. Agent s; outputs an answer Y; € A
at cost ¢; and has competence p;(q¢) = P{Y; = a* | ¢}. Let Z; = 1{Y; = a*} denote correctness indicators. Their
dependencies (and hence ensemble diversity) are captured by a correlation or mutual-information structure over {Z;}.

A policy 7 (our focus) chooses in each round: (i) which agents to run, (ii) the communication graph (what each agent
may read from prior rounds), (iii) the stopping rule, and (iv) the aggregation rule producing a,. A canonical objective is

max P{a, =a*} — X Costr, (1

where A > 0 trades off compute and accuracy. In our work, the Cost is the total number of inference times and input
and output tokens to generate the final answer. In the default TUMIX setting, we utilize the same 15 pre-designed agents
in all answer refinement rounds. These 15 agents have distinct reasoning and tool-use strategies, as summarized in
Table 1. Agents with search access have three search methods (Google Search API (gs), inherent LLM search function
(11m), or their combination (com)), yielding three variants per agent. For agents employing multi-round interactions
with Search or Code Interpreter, the maximum tool interaction round number is set to 5. In Section 5.3, we discuss how
to further query LLMs to automatically optimize and design more diverse agents to achieve better performance. We
also compare with a dynamic setting where agent types vary across rounds.

3.2 REFINEMENT AS MESSAGE PASSING (ACCURACY RISES AND DIVERSITY SHRINKS)

In each round, every agent independently generates a new solution by considering both the original question and the
solutions provided by all agents in the previous round, as shown in Fig. 2. We evaluate the refinement process using
two metrics: average accuracy and coverage (the probability of at least one correct) across agents in each round, which
capture the quality and diversity of group answers (Brown et al., 2024). For a set S C S, the coverage is

Coverage(S) = ]P( U{YZ = a*}). )
i€S

Under independence, Coverage(S) = 1 — [],c4(1 — p;). With positive correlations, Coverage(S) shrinks. Fig. 3
shows the typical evolution dynamics of coverage, individual agent accuracy, and average scores over refinement rounds.
Across all three benchmarks, coverage steadily declines, indicating that some correct answers are mistakenly discarded
during iterative refinement. Note that from round 4 to round 5 in GPQA, coverage slightly lifts. When we extend
the refinement to rounds 6 and 7, the coverage decreases again as expected, confirming that the observed anomaly
is transient. For HLE and AIME, the average score rises in the early rounds and then plateaus, while for GPQA it
improves from round 1 to 2 but later declines. Fig. 4 visualizes the dynamics over 2,500 HLE questions. From round 1
to 2, the number of partially correct cases (few/moderate/high correct) increases, while both all wrong and all correct
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Figure 3: Evolution of coverage, individual agent scores, and average scores across refinement rounds. Coverage
decreases monotonically across all benchmarks. For HLE and AIME, the average score rises over the initial rounds
before plateauing. For GPQA, the average score improves early on but subsequently declines with further refinement.
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Figure 4: Sankey diagram of the evolution of correctly answering agents across 2,500 HLE questions over refinement
rounds. Based on the distribution dynamics, we define five categories: all wrong (0), few correct (1-3), moderate
correct (4—11), high correct (12—14), and all correct (15).

cases decrease. This suggests that initial thought-sharing broadens exploration and promotes diversity. After round 2,
however, partially correct cases diminish toward near zero, while all wrong and all correct cases grow. This indicates
that agents gradually converge to a single shared answer across rounds, either correct or incorrect.

3.3 TERMINATION IN OPTIMAL ROUNDS AND FINAL ANSWER SELECTION

The observed evolution indicates that round-by-round refinement not only improves answers in the initial rounds but
also drives convergence, as each agent selects based on prior responses. However, due to the limited reasoning ability
of LLMs, many correct answers are prematurely discarded. Beyond the early rounds, refinement rarely yields further
accuracy gains and, in some cases, even degrades performance. Thus, identifying an effective termination strategy is
essential for both robust performance and cost efficiency. Let A,. denote acquired accuracy after round r. Define the
expected marginal value of another round

A, = E[A,;1 — A, |signals up to round r]. 3)

Stop at the first round r where A, < )\ - marginal cost (here is increased inference costs). A practical termination
strategy decides whether to stop based on the estimated future gain A,., which relies on round-r statistics such as (i)
diversity collapse (coverage drop; rising agreement), (ii) vote margin between top answers, and (iii) answer entropy.

In TUMIX, our termination determination strategy is to query the LLM to decide whether to stop refinement and finalize
answers based on the current round, with a minimum round number of 2. We find this termination strategy achieves
nearly the same performance with only 49% of the inference cost. In Section 5.2, we explore other termination methods
such as stopping once the majority answer stabilizes across two consecutive rounds or termination based on LLM
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confidence scores (Fu et al., 2025), but find only worse performance. After termination, we obtain the final answer
through majority voting over the agents’ responses, with Gemini-2.5-Pro selecting the most consistent output.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Benchmarks For a comprehensive evaluation and comparison across methods, we conduct experiments on three
representative benchmarks that demand extensive reasoning and planning, particularly the ability to effectively leverage
Code Interpreter and Search. HLE (Phan et al., 2025) consists of 2,500 highly challenging questions spanning diverse
subject areas, including mathematics, biology, engineering, computer science, and the social sciences. It is designed
as a final, closed-ended benchmark of broad academic capability. We evaluate both its text-only and multimodal
subsets. In the following sections, we primarily use HLE to study different mechanisms, as it contains a large number
of questions spanning diverse domains and is the most challenging benchmark. GPQA (Rein et al., 2024) is a
multiple-choice dataset authored by domain experts in biology, physics, and chemistry. We focus on its most widely
used subset, GPQA Diamond, which contains 198 of the most challenging and carefully curated questions. Finally,
AIME 2024&2025 comprises 60 problems from the 2024 and 2025 AIME exams, a notoriously difficult high school
mathematics competition. All reported results are averaged over three independent runs.

Baselines/TUMIX ablations and extensions/Test models As shown in Appendix Table 13, we compare against the
following methods: (1) Majority—-Vote (Brownetal., 2024);(2) GSA (Lietal.,2025d); (3) Self-Reflection (Ji
et al., 2023); (4) SETS (Chen et al., 2025a); (5) Self-MoA (Li et al., 2025a); (6) Symbolic—MoE (Chen et al.,
2025b); (7) DEI (Zhang et al., 2024); (8) SciMaster (Chai et al., 2025). For baselines (1)-(4), we use the CS
agent, which has full access to both Code Interpreter and Search and achieves relatively high first-round accuracy
(Appendix Table 20). For baselines (5)—(7), we select agents following their original methods. For SciMaster, we
retain the original prompts and agents to ensure consistency with published results. We match the total inference counts
of all baselines to TUMIX by adjusting agent numbers and sampling repetitions for fair comparison. All the baselines
have full access to Code Interpreter and Search. We evaluate TUMIX variants with different design choices, either to
ablate framework components or to introduce improvements over existing TUMIX, as shown in Appendix Table 21.
TUMIX+ uses higher inference costs to test scaling effects, while other variants consume nearly the same inference and
token counts. We evaluate our methods on the reasoning LLM Gemini-2.5-Pro and Gemini-2.5-Flash.

Evaluation protocol Answers are evaluated against ground-truth solutions, with Gemini-2.5-Pro assisting in normal-
izing answer formats when necessary or serving directly as the judge for answer comparison. In cases where the model
outputs code as the final answer, we extract the code using predefined algorithms and execute it to produce the final
result. To avoid infinite loops, all code execution whether during intermediate or final rounds is limited to 60 seconds.
If execution exceeds this limit, a “code runtime error” is returned to the model for regeneration in intermediate rounds;
in the final round, the task is marked as a failure. We report success rate as the primary evaluation metric. In addition to
task performance, we also analyze token usage and inference time for each method in later sections.

4.2 OVERALL BETTER PERFORMANCE

Table 2 shows that TUMIX outperforms all baselines, with average accuracy improvements of 2.0% and 5.9% over the
best methods using Gemini-2.5-Pro and Gemini-2.5-Flash, respectively. Its superior performance over methods without
answer sharing (Self-Reflection, SETS) highlights the importance of answer sharing in multi-round test-time
scaling. Comparisons with methods lacking multi-round refinement (Majority-Vote, Symbolic-MoE, DEI,
GSA) demonstrate the benefits of refinement, while comparisons with methods lacking agent diversity (Sel f-MoA,
SciMaster) confirm the value of diverse agents. The accuracy improvement of SciMaster on HLE is smaller
than reported by the authors. We suspect this discrepancy arises from differences in tools, as their Search and Code
Interpreter modules are not open-sourced. In Appendix Table 14, we report both mean and standard deviation values.
The performance gains of TUMIX over the strongest baselines exceed the reported deviations, indicating stable and
consistent improvements. Additional experiments with diverse LLLM types (Table 3) further confirm the robustness
and generality of these results. To validate the statistical reliability of these improvements, we also perform two-tailed
paired ¢-tests using repeated run scores, as shown in Appendix Table 15. Across nearly all benchmarks and models, the
resulting p-values are below 0.05, confirming that the improvements of TUMIX are statistically significant.

5 DISCUSSION

5.1 AGENT DIVERSITY AND QUALITY ARE CRITICAL

To investigate the role of agent diversity and quality in TUMIX performance, we compare groups of agents with
varying levels of diversity and capability, as shown in Fig. 5 and Appendix Table 22. Under the same amount of
refinement rounds and inferences, increasing the number of agents from 1 to 3 to 15 leads to substantial improvements
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Table 2: Experimental results of baseline and proposed methods on HLE, GPQA, and AIME 24&25. Except for the
single-inference w/o TTS and the scaled-up TUMIX+, all methods use comparable inference costs for scaling. For
some methods, Gemini-2.5-Pro’s HLE results are used to select agents within their agentic framework. In these cases,
the method has prior knowledge of HLE and the results cannot be strictly regarded as test performance. Such cases are
marked with * in the HLE results. All the values are the average of three repetitive runs.

BASELINE METHODS PROPOSED METHODS
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HLE 21.6 28.4 293" 29.5° 29.1° 235 27.9 269 287 323 324 327 34.1
GPQA 84.6 849 855 867 86.0 849 853 869 858 879 86.8 88.1 88.3
95.0 88.3 94.7 94.1 937 96.7 95.6 96.7 96.7

AIME 24&25 87.3 943 94.7 94.7
69.3 694 723 71.6 725 73.0

AVE. NORM. 64.5 69.2 69.8 70.3 70.0 65.6 69.3
GEMINI-2.5-FLASH
HLE 9.7 17.9 18.2 18.5 19.3 104 185 18.0 17.4 21.2 209 219 23.1
GPQA 50.0 63.1 654 64.1 649 532 632 679 626 773 768 79.8 82.1
72.3 74.0 79.1 79.7 83.3 83.3 86.7 86.7

AIME 24&25 70.0 80.0 80.3 80.7 82.3

AVE. NORM. 43.2 537 54.7 544 55,5 453 519 550 532 60.6 60.3 62.8 64.0

in both coverage and average score across rounds on HLE and GPQA, indicating that diversity significantly benefits
performance. Moreover, comparing a single strong agent with a single weak agent (see Appendix Table 20, where
CSg4s achieves higher first-round scores than w/o TTS), we observe that higher-quality agents consistently yield better

coverage and higher average scores.
Code Interpreter and Search increase answer diversity. In Fig. 6, we evaluate three settings where each agent
group consists of three agents, each sampling five times per round. The groups differ in their tool access: in Code_Text,
agents cannot access Search; in Search_Text, they cannot access the Code Interpreter; and in Code_Search_Text, agents
have full access to both. While the average agent quality (as measured by first-round scores in Appendix Table 20)
is comparable across groups, the group with access to both Code Interpreter and Search achieves notably higher
coverage and average scores. This result demonstrates that integrating complementary tools within agents enhances
both reasoning and answer diversity, thereby facilitating more effective problem solving.
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Figure 5: Coverage and average score vs. rounds under varying agent diversity and quality. In 15_Agents, all 15 varied
pre-designed agents generate one answer each round. In 3_Agents, three strong agents (C*, CSys, and CSGgys, top-3
performed agents in round 1 as demonstrated in Appendix Table 20), each samples 5 times per round. In 1_Agent_Strong

and 1_Agent_Weak, CSys and w/o TTS sample 15 times, respectively.
5.2 TERMINATION AND SELECTION METHODS

Achieving optimal performance at 49% cost. Tasks of varying difficulty require different numbers of refinement
rounds, and excessive refinement can even degrade accuracy (see Fig. 3b). Thus, an effective termination strategy is
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Figure 6: Comparison of groups all with three agents but either partial

or full accesses to textual reasoning, coding, and search: Code_Text Figure 7: Comparison of refinement termina-
(CoT, C, CT), Search_Text (CoT, S, CSqs), and Code_Search_Text tion and answer selection strategies for higher
(CSgs, CT, and CSGys). accuracy with lower costs.

essential to balance performance and cost. We evaluate two termination strategies (Sec. 3.3): 1) Term_LLM, which
queries the LLM to decide when to stop refinement, subject to a minimum round constraint; and 2) Term_Rule, which
stops once the majority answer stabilizes across two consecutive rounds, also with a minimum round constraint. We
vary the minimum number of rounds to examine how performance evolves as the number of rounds increases in Fig. 7,
and we compare their peak performance in Appendix Table 22. Term_LLM achieves nearly the same peak accuracy as
unlimited refinement, but with substantially fewer rounds. On average, Term_LLM retains optimal performance while
requiring only 49% of the LLM inferences needed to obtain the final answer (LLM judging cost counted). The token
costs are even less (approximately 46%), as the number of inference tokens used in later rounds exceeds that of the first
two rounds. This demonstrates the effectiveness of using LLM-as-Judge to determine when refinement is sufficient
and answers can be finalized. However, Term_LLM still requires a minimum number of refinement rounds (set to two
across all benchmarks). This is because we observe that LLMs tend to be overconfident and may terminate refinement
early, even when additional refinement could improve performance. Appendix Section F specifically discusses the
impacts of minimum refinement round on TUMIX performance and efficiency.

For answer selection, we compare three strategies: (1) randomly choosing one agent’s answer, (2) majority voting, and
(3) LLM-based selection with LLM-as-Selector. Fig. 7 shows that majority voting and LLM-based selection consistently
outperform random choice, especially in early rounds when agent answers diverge. However, once answers converge
in later rounds, all selection methods yield similar results, and their impact becomes negligible. The multi-round
refinement process is also a selection process. We also explore improved selection based on LLM token confidence (Fu
et al., 2025), but observe no significant differences (Appendix Fig. 13).

5.3 HUMAN PRE-DESIGNED AGENTS VS. LLM GENERATED AGENTS
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Figure 8: We evaluate the coverage and average score of 25,000 15-agent combinations sampled from 30 agents (15
pre-designed and 15 LLM-generated). Baseline refers to the original 15 pre-designed agents. Top-3 refers to the three
sampled combinations with the highest joint performance in coverage and average score.

The human-designed agents and their tool-use strategies are built on existing frameworks or intuition. To explore
whether stronger agents can be discovered automatically, we query Gemini-2.5-Pro with current agent code examples
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(total input prompt in Appendix Table 7) and ask it to generate full implementations of more diverse and high-quality
ones, where the agent prompts and frameworks are all determined by LLMs. This yield 25 diverse agents beyond the 15
human-designed ones. From these, we retain the 15 that perform best in HLE with first-round answer generation. We
then combine the 15 human-designed and 15 LLM-generated agents into a pool of 30, randomly sample groups of 15,
and evaluate their average score and coverage (Fig. 8a). Compared to the baseline of 15 human-designed agents (gray
triangle), many mixed groups achieve both higher average score and coverage. We select the top-3 groups based on the
combined metric

Coverage, Average Score;

E[Coverage] E[Average Score]’

Combined Score; =

“

As shown in Fig. 8b, these groups outperform the original TUMIX in both HLE and GPQA. This demonstrates that
increasing agent diversity and quality improves effectiveness, and that LLM-generated agents hold strong potential for
further enhancing TUMIX. Appendix Table 23 describes each generated agent, whose strategies differ substantially
from the original ones beyond prompt variations. Appendix Table 24 presents the agents in each top-3 group, with
roughly half overlapping with the original group.

Evolve agents in each round to enhance the diversity In all previous experiments, the agent set remained fixed
across refinement rounds. We now investigate whether dynamically varying agent types per round can improve
performance. As shown in Appendix Table 22, the variant TUMIX-EvolveD, which randomly selects agents from the
top-3 sets each round, performs slightly worse than the fixed variant TUMIX-Evolve across all three benchmarks.
Agent quality may decline because useful specialized agents get replaced, reducing their ability to interpret or reflect on
others’ answers. However, the effect is minimal, so we conclude that agent evolution has no meaningful impact.

Impact of number of agent types We next examine the marginal benefit of increasing the number of agents in
TUMIX. Agents are randomly sampled from the pool of 30, with each contributing one inference per round. To isolate
this effect, we exclude termination and selection and report the evolution of peak average accuracy across rounds.
As shown in Fig. 10, accuracy rises quickly when the number of agents is below 12, but gains become negligible
thereafter. This indicates that beyond a certain point, increasing agent types and inference budget yields little benefit.
Under a constrained set of tools, the marginal gains from additional agent types diminish to nearly zero because agent
diversity and viable tool-use strategies are inherently limited, while the growing number of candidate answers makes
round-by-round selection increasingly challenging. Based on these results, we decide to only include 15 agents in
TUMIX to balance performance and cost.

5.4 SCALING CURVES: PERFORMANCE VS. COSTS
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e
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Figure 10: Peak round accuracy versus number
of agent types. Agent types randomly sampled
from the 30 well-performing agents with three
repetition. Each agent infers once per round.

Figure 9: Scaling behavior of HLE scores relative to inference cost
and total token count across different tool-augmented test-time scaling
methods, where the token count includes both input and output tokens.

We compare the scaling behavior of different tool-augmented test-time scaling methods in terms of inference and
token costs. In TUMIX and Self-MoA, scaling comes from adding more refinement rounds; in GSA, DEI, and
Symbolic-MoE, from repeating inference; and in TUMIX+, from both. As shown in Fig. 9 and Appendix Fig. 12,
TUMIX consistently outperforms other methods, achieving the highest scores with fewer inference steps and tokens.
TUMIX+ pushes peak performance further by repeating inference four times across the first two refinement rounds,
but at substantially higher cost and lower efficiency. In Appendix Section G, we report tool latency, code execution
time, and API cost, showing that all tool operations are relatively negligible compared to LLM inference time and that
TUMIX maintains lower or comparable financial costs than baselines. Overall, test-time scaling demands far more
inferences and roughly two orders of magnitude more tokens, a seemingly unavoidable trade-off.
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5.5 DIFFERENT TYPES OF LLMS AND MIXTURE OF LLMS TO ENHANCE PERFORMANCE

In Table 3, we extend our evaluation to four new base models: Claude-sonnet-4-20250514, DeepSeek-R1, GPT-o0ss-
120B, and Qwen3-32B. We compare TUMIX with both the base method (w/o TTS) and the strongest baseline (DET).
Across all three benchmarks and four base models, TUMIX consistently yields higher performance under comparable
token costs, demonstrating its robustness and broad applicability across heterogeneous LLMs. We also investigate
heterogeneous mixtures of models, where agents are powered by different LLMs. Specifically, we evenly split agents
between GPT-0ss-120B and Qwen3-32B, which show similar capabilities in Table 3. As reported in Table 4, mixed-
agent configurations outperform their single-model counterparts across rounds, confirming that heterogeneity enhances
reasoning diversity and collaboration. However, when models differ substantially in capability (e.g., DeepSeek-R1
combined with weaker models), performance degrades, suggesting that mixtures are most effective when participating
models have comparable strength. Overall, these findings reinforce that diversity is critical, and TUMIX generalizes
well across both model families and heterogeneous agent settings.

Table 3: Experimental results of w/o TTS, DEI, TUMIX with four different base models.

Model HLE GPQA AIME 2024&2025
Claude-sonnet-4-20250514 8.2, 15.8,21.8  44.6,61.4,72.3 34.4,55.0,70.8
DeepSeek-R1 15.2,23.7,29.0 74.7,78.0, 81.2 69.3, 85.0, 88.3
GPT-0ss-120B 13.6,15.4,17.8  66.3,70.1,72.3 60.2, 82.7, 89.1
Qwen3-32B 13.1,16.0,18.0  54.6,64.1, 68.3 59.6, 84.4, 88.1

Table 4: Mixed-LLM vs. Single-LLM agents. (Top:) mixtures of comparable LLMs (GPT-0ss-120B and Qwen3-32B).
(Bottom:) mixtures with a large capability gap (DeepSeek-R1 with GPT+Qwen).

Base Setting HLE GPQA AIME 2024&2025
Comparable-strength models (GPT-oss-120B & Qwen3-32B)

GPT-0ss-120B  Single 17.8 72.3 89.1
GPT-0ss-120B  Mixed (GPT+Qwen) 19.8 75.5 90.6
Qwen3-32B Single 18.0 68.3 88.1
Qwen3-32B Mixed (GPT+Qwen) 19.0 70.0 914
Capability-gap mixture (DeepSeek-R1 with GPT+Qwen)

DeepSeek-R1 Single 29.0 81.2 88.3
DeepSeek-R1 Mixed (DeepSeek+GPT+Qwen) 22.6 73.4 91.8

5.6 TUMIX APPLICATION TO OPEN-ENDED TASKS: SUMMARIZATION

To further evaluate the generality of our approach beyond structured reasoning benchmarks, we test TUMIX on
open-ended, real-world tasks where correctness may be ambiguous. We conduct experiments on long-document
summarization, a representative open-ended task requiring both comprehension and abstraction. We adopt two
benchmarks from the SCROLLS suite (Shaham et al., 2022): (1) GovReport (Huang et al., 2021), consisting of
multi-page U.S. government reports (CRS/GAO), and (2) SummScreen-FD (Glaser et al., 2022), comprising TV-episode
transcripts summarized into human-written recaps. These datasets feature realistic, lengthy documents with human
references, enabling reproducible and objective evaluation. We report standard ROUGE-1/2/L F1 metrics (Lin, 2004),
which measure unigram, bigram, and sequence-level overlap. As shown in Appendix Table 19, TUMIX consistently
improves ROUGE-1/2/L scores compared to w/o TTS and DEI across both datasets using Gemini-2.5-Flash and
GPT-0ss-120B as base models, demonstrating the robust adaptability of TUMIX to open-ended, real-world tasks.

6 CONCLUSION

We introduce Tool-use Mixture (TUMIX), a framework that leverages diverse tool-use strategies to improve reasoning
in LLMs. By coordinating multiple agents with complementary approaches to textual reasoning, coding, and search,
TUMIX substantially improves performance across challenging benchmarks, including HLE, GPQA, and AIME. Our
findings highlight that diversity and quality of agents, rather than scale alone, drive these gains. Furthermore, automatic
generation of agents and principled termination strategies enable both higher accuracy and significant efficiency
improvements, reducing inference cost by nearly half without sacrificing performance. This work demonstrates that
structured diversity and selective refinement are key to maximizing the potential of tool-augmented LLMs.

10
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ETHICS STATEMENT

This paper contributes to advancing Foundation Models by augmenting language models with Code Interpreter and
Search tools via test-time scaling, which has strong potential to improve performance and alignment with human
preferences. However, such capabilities are inherently dual-use, the same techniques that augment models toward
harmless outputs can, with minor changes, be misused to generate harmful content. While misuse is a concern, we
believe the broader societal benefits outweigh the risks.

REPRODUCIBILITY STATEMENT

For better reproducibility, we include detailed descriptions of 15 pre-designed agents and 15 LLM-generated agents
in Table 1 and Table 23. The prompts of all agents are in Appendix Sec. C. The complete algorithm of TUMIX is
illustrated in Appendix Sec. B. Our code and dataset will be made publicly available under an open-source license
following the acceptance of the paper.

LARGE LANGUAGE MODEL USAGE FOR WRITING

In this paper, we use LLMs—specifically Gemini and Chat GPT—as general-purpose writing aids. Draft text was
provided to these models for grammatical correction and structural refinement, after which the output was verified and
further edited when necessary. Their use was strictly limited to text refinement; they were not employed to generate
new content or references.
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APPENDIX—-TUMIX: MULTI-AGENT TEST-TIME SCALING WITH TOOL-USE MIXTURE
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A EXAMPLE OF GPT-5 FAILURE IN CODE/TEXT DECISION

ChatGPT 5> g - Q@] = chatcrrs ChatGPT5

Solve:
59=x+51
with code generation

Solve:
59=x+51

Solve:

59=x+51

with code generation. No
textual reasoning
AN~

We want to solve:

5.9=x+5.11 Q x

Subtract 5.11 from both sides:

Thought for 4 seconds >

o T@X

| also generated code to solve it
programmatically (using Python's
Decimal for exact subtraction) and

z =0.79 ()

e o

Analysis

ran it just now—the calculation
confirms the result. (>-)

Now compute carefully:
«590—-5.11=0.79 Analysis

n Code

Since 5.90 < 5.11, the result is
negative:

cimal import Decimal,

stcontext().prec = 28

Result

[0.790000000000000 ]

Result

Decimal('0.79')

Figure 11: Example of GPT-5 failure in code/text decision. In this case, the question is incorrectly solved with textual
reasoning (a) but can be easily addressed through code generation (c). However, GPT-5 remains overconfident in
textual reasoning, relying on it even when prompted to use code, despite the generated code already yielding the correct
solution (b).
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B ALGORITHM OF TUMIX

Algorithm 1 TUMIX: Multi-Agent Test-Time Scaling (answers only)

Require: question ¢; agent pool S = {s1,...,sx} > 15 pre-designed agents (Code / Search / Dual-Tool variants)
Require: minimum rounds r,;, = 2; maximum rounds 7p,,x; tool-interaction budget Ry, = 5; code time limit
T = 60s
I: Ag @ > answers from prior rounds
2: forr=1,2,...,7max do

// Round-r message passing: each agent reads ¢ + prior answers

3: parallel for each s € S
4: pS + BUILDPROMPT(q, A1) > concatenate ¢ with all answers from prior round
5: Y2 < AGENTCALL(S, p2, Riool, T) > tool-augmented reasoning (Alg. 2)
6: A, —{y::s€ S}
7: if 7 > ruyin, and LLMTERMINATE(q, A,.) = STOP then
8: break
9: end if
10: end for

11: a* <~ MAJORITYVOTE(A,)
12: return a*

Algorithm 2 AGENTCALL(S, p, Riol, T): tool-augmented reasoning for agent s (returns answer only)

1: h<p;b<+<0 > h is the running context; b counts tool interactions
2: while b < R, do
3 0 < LLMGENERATE(s, h) > run agent s with its strategy/prompt
4 if o contains a final answer y then
5: return o
6 else if o proposes code and s allows Code Interpreter then
7 r < EXECUTECODE(o0, T) > hard limit 7 = 60s; capture stdout/plots/files
8 if RUNTIMEERROR(7) then
9: h < h || “Runtime error:” r; b <— b + 1; continue
10: else
11: h < h || “Code result:” r; b + b+ 1; continue
12: end if
13: else if o issues a search query and s allows Search then
14: E + WEBSEARCH(0) > supports gs/11m/com variants
15: h < h || “Retrieved evidence:” E; b < b + 1; continue
16: else
17: h + h || “Continue reasoning with current context.” > encourage self-reflection
18: end if
19: end while
20: 0 < LLMGENERATE(s, h) > budget exhausted; force a decision

21: return o
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C ProMPTS OF TUMIX

Table 5: Prompt for answer refinement based on all agent answers in the previous round.

Task: Decide the final answer based on the following answers from other agents.
Question:
{question}

Candidate answers from several methods:
{joined_answers}

Based on the candidates above, analyze the question step by step and try to list all the careful points. In the end of your response,
directly output the answer to the question with the format <<<answer content>>>.

Table 6: Prompt for LLM-as-Judge of refinement termination.

Task: Carefully assess whether the answers below (enclosed by <<< >>>) show clear and strong consensus, or if another round
of reasoning is needed to improve alignment.

IMPORTANT: If there are any differences in reasoning, phrasing, emphasis, conclusions, or interpretation of key details, you
should conservatively decide to continue refinement.

The current round number is {round_num}. Note: Finalizing before round 3 is uncommon and discouraged unless answers
are fully aligned in both logic and language.

Question:
{question}

Candidate answers from different methods:

{joined_answers}

Instructions:

1. Identify any differences in wording, structure, or logic.

2. Be especially cautious about subtle variations in conclusion or emphasis.

3. Err on the side of caution: if there’s any ambiguity or divergence, recommend another round.

Output your reasoning first, then conclude clearly with <<<YES>>> if the answers are highly consistent and finalization is safe,
or <<<NO>>> if further refinement is needed.

Table 7: Prompt for Gemini-2.5-Pro to synthesize diverse and high-quality agents based on the code of human
pre-designed agents.

Task: Generate new, diverse, and high-quality agents based on the full code of existing agents. You have full access to tools Code
Interpreter and Search. Output the complete implementation code for each new agent. Separate the agent framework code and the
prompt code into two files.

Instruction: Generate agents that are totally different in reasoning and tool-use strategy, not just limited to prompt optimization.

Existing agent codes:
{agent code}

Output:
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Table 8: Head prompt for CoT Agent.

* Analyze the question step by step and try to list all the careful points.
e Then try to acquire the final answer with step by step analysis.

* In the end of your response, directly output the answer to the question.

Do not output the code for execution.

Table 9: Head prompt for CoT-Code Agent.

You are a helpful Al assistant. Solve tasks using your coding skills.
In the following cases, suggest python code (in a python coding block) for the user to execute.

* Don’t include multiple code blocks in one response, only include one in the response.

* Do not ask users to copy and paste the result. Instead, use the ' print’ function for the output when relevant.
Think the task step by step if you need to. If a plan is not provided, explain your plan first. You can first output your thinking
steps with texts and then the final python code.

Remember in the final code you still need to output each number or choice in the final print!

Start the python block with * * " python

Table 10: Head prompt for Code Agent.

The User asks a question, and you solve it. You first generate the reasoning and thinking process and then provide the User
with the final answer. During the thinking process, **you can generate python code** for efficient searching, optimization, and
computing with the format of starting the python block with * * " python. **A code query must involve only a
single script that uses ‘print’ function for the output.*+. Once the code script is complete, stop
the generation. Then, the code interpreter platform will execute the code and return the execution output and error. Once you feel
you are ready for the final answer, directly return the answer with the format <<<answer content>>> atthe end of your
response. Otherwise, you can continue your reasoning process and possibly generate more code query to solve the problem.

Table 11: Head prompt for Dual-Tool Agent.

The User asks a question, and you solve it. You first generate the reasoning and thinking process and then provide the User with
the final answer.

During the thinking process, you can generate python code for efficient searching, optimization, and computing with the format
of starting the python block with * * " python. x*A code query must involve only a single script that
uses ‘print’ function for the output.*x.. Once the code script is complete, stop the generation. Then, the
code interpreter platform will execute the code and return the execution output and error.

If you lack the related knowledge, you can use the Google Search Tool to search the web and get the information. You
can call a search query with the format of <search>your search query</search>,e.g., <search>Who is the
current president of US?</search>. The searched results will be returned between <information> and
</information>. Once the search query is complete, stop the generation. Then, the search platform will return the
searched results.

If you need to search the web, do not generate code in the same response. Vice versa. You can also solve the question without
code and searching, just by your textual reasoning.

Once you feel you are ready for the final answer, directly return the answer with the format <<<answer content>>> atthe
end of your response. Otherwise, you can continue your reasoning process and possibly generate more code or search queries to
solve the problem.

D BASELINE METHODS

18
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Table 12: Head prompt for Guided Agent.

You are guiding another TaskLLM to solve a task. You will be presented with a task that can be solved using textual reasoning,
coding, and web searching. Sometimes the TaskLLM may need extra help to solve the task, such as generating code or searching
the web. Then must follow the rules below for both query and return answer:

During the thinking process, you can generate python code for efficient searching, optimization, and computing with the format
of starting the python block with * * "python. A code query must involve only a single script that
uses ’‘print’ function for the output.. Once the code scriptis complete, stop the generation. Then, the code
interpreter platform will execute the code and return the execution output and error.

If you lack the related knowledge, you can use the Google Search Tool to search the web and get the information. You
can call a search query with the format of <search>your search query</search>,e.g., <search>Who is the
current president of US?</search>. The searched results will be returned between <information> and
</information>. Once the search query is complete, stop the generation. Then, the search platform will return the
searched results.

If you need to search the web, do not generate code in the same response. Vice versa. You can also solve the question without
code and searching, just by your textual reasoning.

Once you feel you are ready for the final answer, directly return the answer with the format <<<answer content>>> atthe
end of your response. Otherwise, you can continue your reasoning process and possibly generate more code or search queries to
solve the problem.

Your goal is to determine which method will be most effective for solving the task. Then you generate the guidance prompt
for the TaskLLLM to follow in the next round. The final returned guidance prompt should be included between <<< and >>>,
such as <<<You need to generate more complex code to solve...>>>.

Now, here is the task:

Table 13: Baseline methods compared against TUMIX.

Method Handle Type Description

Majority-Vote Voting A single agent runs multiple parallel inferences, with the final answer decided by
majority voting, without sharing intermediate results. Uses CS agent.

GSA Aggregation Similar to Majority-Vote, but the same LLM generates a new response condi-

tioned on multiple samples. Uses CS agent.

Self-Reflection Iterative Refinement A single agent iteratively refines its answer by reflecting on past responses (up to
10 accessible per round; varied to 8 or 15 in experiments, with no performance
difference). Uses CS agent.

SETS Multi-Trial Voting The same LLM performs multiple self-reflection trials, and the final answer is chosen
by majority vote. Uses CS agent.
Self-MoA Best-Agent Selection Selects the best-performing agent among 15 candidates for parallel sampling, answer

sharing, and multi-round refinement. Adapted to select the best agent within the same
LLM instead of the original setting, selecting the best LLM across different LLMs.

Symbolic—MoE Expert Selection Categorizes questions (e.g., algebra, probability, coding, biology), pre-tests the top 3
agents per category, and LLM judges the question category and assigns test questions
to these top agents for sampling and aggregation.

DEI Committee Heuristic Selects the top 5 agents, generates multiple answers via repetitive sampling, and then
uses a predefined agent committee with heuristics to select the best answer.
SciMaster Critic and Refine Samples the same pre-designed tool-use agent five times, then employs other agents

to critique, refine, and aggregate the answers. Original prompts/agents retained.

E STATISTICAL SIGNIFICANCE OF TESTED RESULTS ON TUMIX AND BASELINE METHODS.

Paired significance testing. As for the method to calculate p-value, we perform a two-tailed paired #-test on their
run-wise score differences d; = x; — ;. The test statistic is

d
salyn 4T

with df = n — 1 degrees of freedom. The corresponding p-value is
p= 2(1 — F(Jtl;df =n — 1)),

t =
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Table 14: Experimental results of baseline and proposed methods on HLE, GPQA, and AIME 24&25. Except for the
single-inference w/o TTS and the scaled-up TUMIX+, all methods use comparable inference costs for scaling. For
some methods, Gemini-2.5-Pro’s HLE results are used to select agents within their agentic framework. In these cases,
the method has prior knowledge of HLE and the results cannot be strictly regarded as test performance. Such cases are
marked with * in the HLE results. All the values are the average of three repetitive runs. Here we report both the mean

values and standard deviations, covering around 68% confidence intervals.

BASELINE METHODS PROPOSED METHODS

o
S s
& g < &8 .

%)

s ~ S 3 g o £
=) =~ Lz: 23] E S S
g Q 3 g ) 5 5 5 5
< 2 4 A Q s O [ £

GEMINI-2.5-PRO
HLE 21.6+£03 293 +0.5 29.5+04 29.1°4+0.6 269404 287+0.7 323+04 34.1+0.5

GPQA 84.6+05 855+04 86.7 £ 0.5 86.0£0.6 869+06 858+£0.6 879+04 883+£0.6
87.3£0.4 94705 94706 950£04 941+£06 93.7£04 96.7£05 96.7+04

AIME
AVE. 64.5+04 69.8+0.5 70.3 £+ 0.5 70.0 +0.5 69.3+0.5 694+0.6 723+0.4 73.0+0.5
GEMINI-2.5-FLASH
18.2 +0.6 18.5+0.7 19.3 £0.8 18.0+0.6 17.4+£0.5 21.24+0.5 23.1+0.7

HLE 9.7+0.5
GPQA 50.0+£05 654+0.6
AIME 70.0+0.7 80.3+0.7 80.7 £ 0.8
AVE. 432+0.6 547+£06 544+0.7 555+0.7 55.0+0.6

64.1 £0.7 64.9+0.7 679+£07 62607 773+£0.7 82.1+£0.6
823+£0.6 79.1+06 79.7£0.6 833+0.7 86.7+£0.7
53.2+£0.6 60.6+0.6 64.0=+0.7

where F} is the cumulative distribution function of the ¢ distribution. We consider differences statistically significant
when p < 0.05.

Table 15: Statistical significance of TUMIX vs. baselines (DEI, SciMaster, Symbolic-MoE, GSA, Self-MoA) on
each dataset. P-values come from two-tailed paired ¢-tests computed over run-wise score differences (d; = x; — y;)
across n=3 runs. A v indicates p<<0.05 (statistically significant), while o denotes non-significant differences.

Task TUMIX vs. DEI vs. SciMaster  vs. Symbolic-MoE vs. GSA vs. Self-MoA
p-value Sig. p-value Sig. p-value Sig. p-value Sig. p-value Sig.

Gemini-2.5-Pro

HLE 323+04 <0.01 v <107t v < 0.01 v < 0.01 v < 0.01 v

GPQA 879+04 0.014 v 0.084 o 0.034 v 0.010 v 0.002 v

AIME 96.7+0.5 0.011 v < 0.01 v 0.012 v 0.002 v 0.008 v

Gemini-2.5-Flash

HLE 21.2+£05 0.033 v < 0.01 v < 0.01 v < 0.01 v < 0.01 v

GPQA 773+07 <107* v <10* v <107¢ v <107t v <107* v

AIME 833+0.7 0.135 o < 0.01 v 0.014 v 0.003 v 0.006 v
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F IMPACTS OF MINIMUM REFINEMENT ROUND ON TUMIX PERFORMANCE AND EFFICIENCY.

To mitigate premature termination in our semi-adaptive refinement process, we enforce a minimum number of refinement
rounds. Table 16 presents an ablation study evaluating this hyperparameter. We observe that enforcing at least two
refinement rounds substantially improves performance across both Gemini-2.5-Pro and Gemini-2.5-Flash models.
Increasing the minimum round number beyond two provides negligible gains in HLE scores but incurs a steep rise
in token consumption. Hence, we adopt a minimum of two rounds as the default setting, achieving the best trade-off
between performance and computational efficiency.

Table 16: Ablation study on the minimum refinement round requirement in our semi-adaptive termination mechanism.
Setting the minimum round number to 2 consistently improves HLE scores across models while maintaining a favorable
token cost. Increasing the round number beyond 2 yields marginal gains at substantially higher computational costs.

Minimum Round Number 1 2 3 4

HLE Score (Gemini-2.5-Pro) 31.3 322 323 32.1
Token Cost (Gemini-2.5-Pro, x1k tokens) 29.6 285 350 570
HLE Score (Gemini-2.5-Flash) 21.7 23.0 23.1 23.0

Token Cost (Gemini-2.5-Flash, x1k tokens) 22.7 230 300 522

G ANALYSIS OF RUNTIME STABILITY AND FINANCIAL EFFICIENCY.

Regarding practical runtime, we opted for a more stable and reproducible metric. Wall-clock time can be highly volatile
and difficult to compare fairly, as it is affected by factors such as network latency, server load, and specific hardware
conditions. To ensure a standardized and hardware-agnostic comparison, the original paper reports API token counts
and LLM inference numbers as direct proxies for computational cost. This approach allows our evaluation to reflect the
intrinsic efficiency of the methods themselves, independent of experimental environments.

Although overall wall-clock time is not a reliable performance metric, in Table 17 we additionally report the average
code execution and search latency. While these times are influenced by the content of generated code and search queries,
we find that the average latencies are very similar across TUMIX and baseline methods. The average runtime per query
for all tools remains under 7 seconds, which is negligible compared to LLM inference time (typically over 50 seconds
for Gemini-2.5-Pro). Since each tool use corresponds to one LLM inference, this confirms that tool-use latency is not a
computational bottleneck.

Table 17: Average tool latency per query. While tool latency varies slightly by task, all remain well below the typical
LLM inference time, indicating that tool invocation overhead is negligible.

Tools Average Runtime (seconds)
Code Interpreter Execution 2.3
Google Search API 1.2
Gemini-2.5-Pro Search 6.9
Gemini-2.5-Flash Search 4.5

We also report the average financial API cost per sample (including input/output tokens, Google Search API, and Gemini
Search API) for TUMIX and strong baseline methods in Table 18. As shown, TUMIX incurs lower or comparable costs
relative to most baseline methods, despite achieving higher performance and efficiency.

These analyses demonstrate that TUMIX achieves strong computational and financial efficiency while maintaining
superior performance compared to baseline methods. The inclusion of latency and cost analyses further supports the
practicality of our approach.
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Table 18: Average financial API cost per sample in HLE/GPQA/AIME (in USD). TUMIX achieves competitive or
lower costs than baseline methods while maintaining superior performance and computational efficiency.

Method Gemini-2.5-Pro  Gemini-2.5-Flash
TUMIX 1.70 0.82
DEI 1.59 0.84
SciMaster 1.93 0.92
Symbolic-MoE 2.19 0.99
GSA 2.25 0.99
Self-MoA 2.23 0.96

H PERFORMANCE OF TUMIX ON OPEN-ENDED SUMMARIZATION TASKS.

Table 19: Performance of TUMIX on open-ended summarization tasks from SCROLLS. TUMIX consistently out-
performs both the baseline method without test-time scaling w/o TTS and the best baseline DET across datasets and
models, achieving the best ROUGE-1/2/L F1 scores.

Metric Model w/o TTS DEI (Zhang et al., 2024) TUMIX
ROUGE-1 (GovReport) Gemini-2.5-Flash 0.440 0.458 0.466
GPT-0ss-120B 0.447 0.462 0.468
ROUGE-2 (GovReport) Gemini-2.5-Flash 0.162 0.176 0.182
GPT-0ss-120B 0.152 0.169 0.175
ROUGE-L (GovReport) Gemini-2.5-Flash 0.204 0.216 0.222
GPT-o0ss-120B 0.203 0.214 0.220
ROUGE-1 (SummScreen-FD)  Gemini-2.5-Flash 0.282 0.315 0.323
GPT-0ss-120B 0.273 0.304 0.310
ROUGE-2 (SummScreen-FD) Gemini-2.5-Flash 0.056 0.064 0.063
GPT-0ss-120B 0.051 0.058 0.060
ROUGE-L (SummScreen-FD) Gemini-2.5-Flash 0.137 0.149 0.153
GPT-o0ss-120B 0.134 0.146 0.149
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I AGENT ACCURACY AND COVERAGE OVER MULTI-ROUND ANSWER REFINEMENT ON HLE

Table 20: Accuracy of each agent, average accuracy, and coverage across rounds for HLE. Dual-Tool Agent,
Guided Agent, and Guided Agent+ have three variants with different search strategies: Google Search API
(gs), inherent LLM search function (1 1m), or their combination (com).

Humanity’s Last Exam (HLE) RD1 RD 2 RD 3 RD 4 RDS RD 6
Coverage 51.92 44.20 43.48 37.04 34.85 33.87
Average 21.13 28.72 30.37 31.70 32.16 32.37
w/o TTS 20.32 28.08 30.88 31.60 32.18 32.36
CoT Agent (CoT) 20.84 28.16 30.40 31.12 32.30 32.48
CoT-Code Agent (CoTcoge) 18.36 28.28 31.40 31.52 31.96 32.40
Search Agent (S) 21.72 29.04 28.84 32.08 32.08 32.20
Code Agent (C) 21.16 29.68 31.40 31.96 32.12 32.36
Code Agent+ (CT) 22.96 29.00 31.44 31.88 32.20 32.40
Dual-Tool Agent (CSgs) 22.96 28.60 30.84 31.72 3224 32.36
Dual-Tool Agent (CSiin) 21.36 28.36 31.28 31.20 32.48 32.32
Dual-Tool Agent (CScom) 20.76 28.56 30.36 31.44 32.32 3248
Guided Agent (CSGgs) 22.04 28.72 29.96 32.24 32.00 31.96
Guided Agent (CSGiin) 21.20 28.64 29.20 31.52 32.16 32.32
Guided Agent (CSGeom) 20.76 28.92 29.88 31.88 32.20 32.40
Guided Agent+ (CSGtgs) 20.56 29.32 30.36 31.92 31.84 32.52
Guided Agent+ (CSGtiin) 21.56 28.80 29.20 31.64 32.16 32.52
Guided Agent+ (CSG'eom) 20.44 28.68 30.08 31.72 32.28 3248
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J

ILLUSTRATION AND EXPERIMENTAL RESULTS OF TUMIX VARIANTS

Table 21: TUMIX framework and its variants, designed to ablate core components.

Method Handle Component Ablated

Description

TUMIX Main Method
TUMIX-Rule Termination

TUMIX-Fixed Termination

TUMIX-FixedR  Termination & Selection

TUMIX-Evolve  Agent Composition

TUMIX-EvolveD Agent Composition

TUMIX-Single  Agent Diversity

TUMIX-Three Agent Diversity

TUMIX+ Inference Scaling

(Default) Uses an LLM query to determine the optimal termination round
(min. 2) and majority vote for final selection.

Replaces the LLM-query termination with a rule: stops when the majority
answer stabilizes across two consecutive rounds.

Replaces smart termination with a fixed 5-round limit, followed by ma-

jority voting for selection.
Uses a fixed 5-round limit, followed by random selection.

Replaces the 15 human-designed agents with a static group of top-
performing, LLM-generated agents for each refinement round.

Extends the above by dynamically sampling a new agent group from the
top-3 Evolved Agent groups for each refinement round.

Ablates diversity by replacing the 15 distinct agents with a single agent

type from the C'S family.
Reduces diversity by using only three agent types (C'S, C*, and C'SO),

each sampled 5 times per round.

Extends ‘“TUMIX* with test-time scaling, running four inference passes
per agent at different temperatures for the initial two rounds.

Table 22: Experimental results of TUMIX variants. All the values are the average of three repetitive runs.

TUMIX VARIANTS

METHODS

IS ) ~ &3] g

& s & § § s 5 3

N z £ 5 x 5 £ g

o v & L oL & o [ +

S 5 5 S S S 5 5 S S

A j = = = = = = = =
GEMINI-2.5-PRO

HLE 32.3 29.0 30.2 324 324 324 327 32.1 34.1

GPQA 87.9 86.1 86.6 86.8 86.7 87.7 88.1 87.4 88.3

AIME 24&25 96.7 95.0 953 956 96.7 96.7 96.7 96.1 96.7

AVE. NORM. 72.3 70.0 70.7 71.6 719 723 72,5 719 73.0
GEMINI-2.5-FLASH

HLE 21.2 182 18.6 209 208 21.3 219 21.3 23.1

GPQA 77.3 658 67.1 768 77.1 77.4 79.8 78.3 82.1

AIME 24&25 83.3 80.6 81.2 833 83.3 833 86.7 86.7 86.7

AVE. NORM. 60.6 549 556 603 604 60.7 62.8 62.1 64.0
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K NEW AGENTS IN TUMIX COMPLETELY DESIGNED BY GEMINI-2.5-PRO AUTOMATICALLY

Table 23: Summary of 15 LLM-generated agents, categorized by their framework characteristics.

Full Name Short Name Description

Iterative Agents (Multi-turn conversational frameworks)

Plan-Verify—-Refine PVR Iteratively plans, executes one action (code or search), and
refines based on checker feedback.

SearchThenCode S—C Enforces a search-first, then code execution sequence in an
iterative loop.

CodeThenSearch C—S Enforces a code-first, then search execution sequence in an
iterative loop.

ConstraintPrune—-Solver CPsolv Iteratively prunes the solution space using constraints,
guided by a checker and tools (code/search).

MonteCarlo-Verify MCV Uses Monte Carlo sampling via code to find a likely answer
and then deterministically verifies it.

Debate-CrossExam DCE Simulates a Proposer/Skeptic debate to guide tool use, with
a checker for cross-examination.

MultiHop-Search-Aggregate S, —C Enforces at least two sequential search actions before allow-
ing any code execution.

TDD-Code-Solver TDDso1v A TDD agent that lists tests, writes code to pass them, and

uses a checker for iterative refinement.
Sequential Agents (Few-shot, non-conversational frameworks)

SearchThenAnswer S—A A two-step agent that mandates a single web search before
formulating the final answer.

PlanThenCode P—C A two-step agent that first generates a plan, then a single
code block to execute it.

VerifierRefine VR A three-step agent that generates a text answer, validates it
with a checker, and then refines it.

ToolSelector TS Explicitly selects one tool (Search, Code, or Text) in the
first step, then finalizes.

HypothesisPruner-Code HPcode Generates code to enumerate and prune solution hypotheses
based on problem constraints.

DualSearch-Consensus s2.. Issues two distinct search queries and then synthesizes the
results into a consensus answer.

TDD-CodeThenFix TDDsix A Test-Driven Development approach that writes tests and

code, then generates a fix if tests fail.
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Table 24: Comparison of original agent group and top-3 agent group used in TUMIX, each with 15 agents, either
pre-designed or LLM-generated.

Original Top-3-1 Top-3-2 Top-3-3

w/o TTS HypothesisPruner-Code TDD-Code-Solver w/o TTS

CoT Agent CoT Agent CoT Agent CoT Agent
CoT-Code Agent Plan-Verify-Refine CoT-Code Agent CoT-Code Agent
Search Agent Search Agent Search Agent SearchThenCode

Code Agent

Code Agent+
Dual-Tool Agentgys
Dual-Tool Agentiin
Dual-Tool Agentcom
Guided Agentgys
Guided Agentiin
Guided Agentcom
Guided Agent+gs
Guided Agent+iim
Guided Agent+com

Code Agent
SearchThenCode
Dual-Tool Agentgys
ConstraintPrune-Solver
MonteCarlo-Verify
Guided Agentgys
Guided Agentiin
Debate-CrossExam
Guided Agent+gs
SearchThenAnswer
DualSearch-Consensus

Code Agent

Code Agent+
SearchThenCode
Plan-Verify—-Refine
Dual-Tool Agentconm
Guided Agentgys
Guided Agentiinm
Guided Agentcom
MonteCarlo-Verify
Guided Agent+iin

TDD-Code—-Solver
HypothesisPruner-Code
DualSearch-Consensus
MonteCarlo-Verify
ConstraintPrune-Solver
Debate-CrossExam
Guided Agentiin

Guided Agentcom

Guided Agent+gs
Plan-Verify-Refine

DualSearch-Consensus Guided Agent+con

L SCALING BEHAVIOR OF GEMINI-2.5-FLASH

Gemini-2.5-Flash — Inference

Gemini-2.5-Flash — Token

121 —o— TUMIX —o— Self-MoA —o— GSA
=0— TUMIX+ DEI =0- Symbolic-MoE
91— T T T T T T
0 50 100 150 7 10* 105 106

Inference Num.

Token Num.

Figure 12: Scaling behavior of HLE scores in Gemini-2.5-flash relative to inference cost and total token count across
different tool-augmented test-time scaling methods, where the token count includes both input and output tokens.
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M LLM TOKEN CONFIDENCE OF GENERATED RESPONSES

Confidence Distributions (Correct vs Wrong)

Correct answers
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0.00— ‘ ‘ ‘ . ‘
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Answer Token Confidence

Figure 13: Distribution of LLM response confidence for correct and wrong answers. The response confidence is
calculated based on the average token probability of the whole generated response. Here we use the responses of agent
CoT as representative, as we find the distribution characteristics are very close among different agents.
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