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ABSTRACT

We introduce novel techniques to enhance Frank-Wolfe algorithms by leveraging
function smoothness beyond traditional short steps. Our study focuses on Frank-
Wolfe algorithms with step sizes that incorporate primal-dual guarantees, offering
practical stopping criteria. We present a new Frank-Wolfe algorithm utilizing an
optimistic framework and provide a primal-dual convergence proof. Additionally,
we propose a generalized short-step strategy aimed at optimizing a computable
primal-dual gap. Interestingly, this new generalized short-step strategy is also
applicable to gradient descent algorithms beyond Frank-Wolfe methods. Empirical
results demonstrate that our optimistic algorithm outperforms existing methods,
highlighting its practical advantages.

1 INTRODUCTION

We are interested in solving the following optimization problem:

min
x∈X

f(x),

where X is a compact convex set and f is a convex and L-smooth function. The Frank-Wolfe (FW)
algorithm (Frank & Wolfe, 1956), also known as the conditional gradient algorithm (Levitin &
Polyak, 1966), is a key algorithm for this problem class, particularly for problems where projection
onto a constraint set is computationally expensive, as it does not require projections. It leverages a
linear minimization oracle (LMO) for X , which upon presentation with a linear function c returns
v ← argminv∈X ⟨c, v⟩, and a gradient oracle for f , which given a point x ∈ dom(f) returns
∇f(x). Given its low cost per iteration it is often highly effective in various machine learning
applications. These include optimal transport (Luise et al., 2019), neural network pruning (Ye et al.,
2020), adversarial attacks (Chen et al., 2020), non-negative matrix factorization (Nguyen et al., 2022),
particle filtering (Lacoste-Julien et al., 2015), and distributed learning (Bellet et al., 2015), among
others.

A more general version of the Frank-Wolfe algorithm can handle the optimization of f(x) + ψ(x)
for a convex function ψ. In this case however, we require access to a gradient oracle for f and an
oracle that can solve argminv{⟨w, v⟩ + ψ(v)} for any w ∈ Rd, as discussed in (Nesterov, 2018).
We recover the classical FW algorithm by choosing ψ(x) as the indicator function of the set X .

In this work, we will focus on primal-dual analyses for FW algorithms. In contrast to classical analyses
where a step-size strategy and corresponding convergence rate need to be heuristically estimated
and then proven by induction, in the primal-dual setup they emerge as a natural consequence of
the analysis. This approach does not only provide tighter dual gaps and hence stopping criteria but
also enhances the convergence properties of the algorithm. In particular, rather than considering
primal progress without clear indication how good the solution is, primal-dual progress refers to the
reduction in the primal-dual gap, which is a measure of how close the current solution is to optimality;
this will be our measure here. A well-known strategy for FW algorithms is the so-called short step,
which essentially chooses the step size to maximize primal guaranteed progress from the descent
lemma, see (Frank & Wolfe, 1956)); and also (Braun et al., 2022) for an in-depth discussion.

We introduce the concept of primal-dual short steps, that maximize primal-dual guaranteed progress
based on a model obtained from the primal-dual analysis. We also show that this new step-size
strategy is also applicable to gradient descent algorithms. Moreover, recent advancements have
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introduced adaptive step-size strategies, such as, e.g., (Pedregosa et al., 2020) (see also (Pokutta,
2024) for a numerically improved version), which further refine the short-step. These strategies aim
to decrease a model of the function adaptively, enhancing the algorithm’s performance and stability
and in particular allow for leveraging local curvature information. However, they come at the extra
cost of a line search like procedure and are subject to the same lower bounds as the classical short
steps (Guélat & Marcotte, 1986).

MAIN CONTRIBUTIONS

Optimistic Frank-Wolfe Algorithm We introduce a novel Frank-Wolfe method that leverages
the concept of optimism (Rakhlin & Sridharan, 2013; Steinhardt & Liang, 2014). This algorithm is
designed to adapt effectively to varying conditions and provides a robust analysis of the convergence
rate associated with a primal-dual gap.

Primal-Dual Short Steps We propose a new class of step-size rules for existing Frank-Wolfe
algorithms, termed primal-dual short steps. These steps are based on the sequential minimization of a
primal-dual gap defined in the algorithm’s analysis. This approach is flexible and extends to gradient
descent algorithms, allowing for line search over the primal-dual gap in both algorithm classes.

Numerical Experiments We conduct numerical experiments that showcase the practical advan-
tages of the proposed optimistic Frank-Wolfe algorithm. In our tests, the results consistently show
the effectiveness of this new variant in minimizing the primal-dual gap more efficiently than tradi-
tional methods. In particular, in most experiments the empirical order of convergence is better, as
demonstrated by the steeper slope in a log plot.

Additionally, we have obtained primal-dual analyses for algorithms and results where so far only
classical primal convergence analysis where available, often improving constants and providing
effective stopping criteria for these algorithms. These findings are detailed in Appendix E.

RELATED WORK

The Frank-Wolfe algorithm, introduced by Frank & Wolfe (1956) where also short steps were intro-
duced, is a foundational method in projection-free optimization, particularly for problems involving
convex constraints. Levitin & Polyak (1966) further extended the method, which they referred to as
conditional gradient algorithm. A significant advancement for the Frank-Wolfe algorithm was made
by Jaggi (2013), who introduced the FW gap and provided convergence guarantees on this measure,
marking the first instance of FW guarantees for a primal-dual gap.

The development of primal-dual methods for conditional gradient algorithms has been explored in
works such as Nesterov (2018) and Diakonikolas & Orecchia (2019), which have contributed to the
broader understanding of these algorithms. Additionally, Abernethy & Wang (2017) described a
Frank-Wolfe variant that incorporates cumulative gradients, albeit with equal weights, resulting in an
additional logarithmic factor in complexity.

Several methods apply the LMO at a convex combination of previously obtained directions. In
particular, variants of the Frank-Wolfe algorithm have been developed by Mokhtari et al. (2020), Lu
& Freund (2021), and Négiar et al. (2020) using stochastic gradients. Notably, the analysis of Lu
& Freund (2021) reduces to the optimal rate in the deterministic case, up to constant factors. Wang
et al. (2024) also presented a cumulative-gradient FW algorithm, with additional logarithmic factors.
Further contributions include the work of Li et al. (2021), who provided a primal-dual analysis of the
deterministic algorithm, heavy-ball Frank-Wolfe (HB-FW), using a convex combination of gradients.

In the context of online learning, the concept of optimism, which involves using hints such as past
losses to predict future losses, originated in (Azoury & Warmuth, 2001; Chiang et al., 2012; Rakhlin
& Sridharan, 2013). This idea had already been developed in saddle point optimization, as seen in
the work of Popov (1980). A duality was found and further explored between mirror descent and
Frank-Wolfe algorithms by Bach (2015) and Peña (2019). Wang et al. (2024) and Gutman & Peña
(2023) have also shown that FW and mirror descent, among other methods, can be unified under a
common framework. In this work, we generalize an anytime online-to-batch conversion (Nesterov &
Shikhman, 2015; Cutkosky, 2019) for connecting FW algorithms with online learning ones.
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Works that have studied modifications of the gradients to obtain faster convergence of FW algorithms
and linking them back to gradient descent methods and gradient mappings include Combettes &
Pokutta (2020); Mortagy et al. (2020) and in Diakonikolas et al. (2020) local acceleration in the
Nesterov sense has been demonstrated for FW algorithms for strongly convex functions while whether
local acceleration is possible for non-strongly convex but smooth functions remains an open question.

2 PRELIMINARIES AND GROUNDWORK

In this section, we introduce the necessary notation and an overview of some FW algorithms. In the
following let X be a compact convex set with diameter D. Further, let f : X → R be a differentiable
function defined on an open set containing X . We assume that f is convex and L-smooth on X with
respect to a norm ∥ · ∥. This means that for all x, y ∈ X , the following inequality holds:

0 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥x− y∥2.

These two conditions imply f has an L-Lipschitz gradient ∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥, where
∥ · ∥∗ denotes the dual norm.

If not stated otherwise let x∗ ∈ argminx∈X f(x) be a minimizer of f over X . Further, let IX (x) be
the indicator function of the set X that is 0 if x ∈ X and +∞ otherwise, and let 1B be the event
indicator function that is 1 if the event B holds and 0 otherwise. We denote [T ] def

= {1, 2, . . . , T}. We
denote by ∂ψ(x) the subdifferential of ψ at x so that if g ∈ ∂ψ(x), we have ψ(y) ≥ ψ(x)+⟨g, y−x⟩.
We provide now a sketch of the proof structure for some primal-dual analysis of FW as well as
HB-FW and other methods, and in Appendix B we provide full details of this overview. With respect
to (Li et al., 2021), we provide a slightly more general analysis of HB-FW by allowing for a composite
term and we provide an analysis of FW when decreasing regularization is used. We start by defining
a lower bound Lt on the optimal value that we have access to at time t, and for iterates xt, t ≥ 1, we
define a primal-dual gap as

Gt
def
= f(xt+1)− Lt (1)

where f(xt+1) is one step ahead of the lower bound, which is a subtle shift that differs slightly from
known analysis and allows us to get very simple primal-dual analyses of and convergence results for
the new and old algorithms we present in this work. In the sequel, if not stated otherwise, let at > 0
to be determined later and define At = At−1 + at =

∑t
ℓ=0 aℓ. For instance, for FW and HB-FW

we use the following lower bounds, or rather, the choice of lower bound defines the iterate vt of the
algorithm:

Atf(x
∗)

1
≥

t∑

ℓ=0

aℓf(xℓ) +

t∑

ℓ=0

aℓ⟨∇f(xℓ), x∗ − xℓ⟩

2
≥

t∑

ℓ=0

aℓf(xℓ) + min
v∈X

{ t∑

ℓ=0

aℓ⟨∇f(xℓ), v − xℓ⟩
}

def
=AtL

HB
t

3
≥

t∑

ℓ=0

aℓf(xℓ) +

t∑

ℓ=0

aℓmin
v∈X
⟨∇f(xℓ), v − xℓ⟩ def

= AtL
FW
t =

t∑

ℓ=0

aℓf(xℓ)−
t∑

ℓ=0

aℓg(xℓ).

(2)

where the term above g(xℓ)
def
= maxv∈X ⟨∇f(xℓ), xℓ − v⟩ (≥ f(xℓ)− f(x∗)) is the so-called FW

gap, which is also a primal dual gap, the best of which for ℓ ∈ [t] was shown to converge by Jaggi
(2013) at a O(LD

2

t ) rate for FW. Above 1 holds by convexity, 2 takes a min. This expression is
At times the lower bound LHB

t in HB-FW is and its argmin corresponds to the iterate vt of HB-FW,
cf. Algorithm 1, whereas after 3 we have At times the lower bound LFW

t used in the FW algorithm
and the argmin of the ℓ-th summand is the iterate vt of FW, cf. Algorithm 1.

3
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Algorithm 1 Frank-Wolfe and Heavy-Ball FW algorithms
Input: Function f , feasible set X , initial point x0. Weights at, γt.

1: for t = 0 to T do
2: ⋄ Choose either 3 (HB-FW) or 4 (FW) for the entire run:
3: vt ← argmin

v∈X

∑t−1
i=1 ai⟨∇f(xi), v⟩

4: vt ← argmin
v∈X

⟨∇f(xt), v⟩
5: xt+1 ← (1− γt)xt + γtvt
6: end for

If we now show a bound
AtGt −At−1Gt−1 ≤ Et for all t ≥ 0, (3)

then we have f(xt+1)− f(x∗) ≤ Gt ≤ 1
At

∑t
i=0Ei. Our aim is thus to have small Et and large At.

Note A−1 = 0 by definition. If f is L-smooth with respect to ∥ · ∥ and D def
= maxx,y∈X ∥x−y∥, then

choosing at = 2t+ 2, γt = at/At one can show that both FW and HB-FW in Algorithm 1 satisfy
(3) with Et =

LD2a2t
2At

and consequently Gt ≤ 2LD2

t+2 , cf. Appendix B. The term f(xt+1) − f(x∗)
cannot be computed in general since we usually do not have access to the value f(x∗). However, the
primal-dual bound Gt is computable and thus it can be used as a stopping criterion.
Remark 2.1 (Alternative step-size strategies). The analysis uses the guaranteed primal progress, that
is, the descent that is guaranteed on f(xt+1)− f(xt), in particular with the choice γt = at

At
= 2

t+2

by using the upper bound that the smoothness inequality provides. Any step size strategy whose primal
progress is greater than this guaranteed progress yields a better convergence rate. For instance, the
so-called short step-size strategy, maximizes this guaranteed progress along the segment joining xt,
and vt. Indeed the best lower bound on f(xt)− f(xt+1) given by smoothness is

max
γ∈[0,1]

{
γ⟨f(xt), xt − vt⟩+ γ2

L∥xt − vt∥2
2

}
.

And the argmax is γ = min{1, ⟨∇f(xt),xt−vt⟩
L∥xt−vt∥2 }, which is the short step-size. Another alternative is

performing a line search over the segment joining xt and vt. Even if the line search is performed
with an error at iteration t, this error only contributes additively to the corresponding Et, and so its
global impact can be easily quantified.

Although short steps induce monotonic primal progress by definition, they do not necessarily induce
monotonic primal-dual progress, which is the important measure to look at when we require a
stopping criterion. To remedy this, in Section 4 we introduce a new primal-dual short step strategy
that induces monotonic primal-dual progress.

On the other hand all of previous FW approaches exploit smoothness of f in the same way: a
quadratic upper bound on the function is computed and the yielded guaranteed progress is used to
compensate from some other errors in the analysis. In Section 3, we introduce a framework that
goes beyond this by making use of optimism. The algorithm has the potential of better adapt to the
environment, as we show in the experiments section, where Optimisitic Frank-Wolfe performs better
than other approaches.

3 AN OPTIMISTIC FRANK-WOLFE ALGORITHM

In this section, we propose a new Frank-Wolfe method that at each iteration, uses a prediction of the
next gradient in order to minimize a suitable regularized lower model of the objective. The more
accurate this prediction is, the better the resulting convergence rate. For functions with Lipschitz
continuous gradients, the previous gradient serves as a sufficiently accurate predictor for the next one.
We sketch the main ideas of our new algorithm and provide all details in Appendix C.

The algorithm and analysis is based on optimistic versions of the Online Mirror Descent (OMD) algo-
rithm and of the Follow the Regularized Leader (FTRL) algorithm. We provide a slight generalization
over these online learning algorithms in order to allow for non-differentiable regularizers, in order
to cover typical cases where Frank-Wolfe is applied. To that effect, we make use of the following

4
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Bregman divergence definition, that specifies a subgradient of ϕ of the regularizer for its definition:
Dψ(x, y, ϕ)

def
= ψ(x)− ψ(y)− ⟨ϕ, x− y⟩, where ϕ ∈ ∂ψ(y). Note that in the pseudocode of Algo-

rithm 2 we write Dψ(v, vt−1, ϕt ∈ ∂ψ(vt−1)) to mean that the algorithm can use Dψ(v, vt−1, ϕt)
for any ϕt ∈ ∂ψ(vt−1).

Online learning algorithms typically use regularizers ψ that are strongly convex or enjoy any other
curvature property such as uniform convexity, in order to obtain a low enough regret. Even though
we do not assume strong convexity or any other curvature property of the regularizer ψ (in fact, ψ can
be 0 in the feasible set), we show that we can apply an optimistic approach that leads to the optimal
convergence rate in this setting, and we show in Section 5 that our algorithm empirically outperforms
other approaches.

The starting point of the method, as in (2), is defining a lower bound on the optimal value, which we
do by taking inspiration on the anytime online-to-batch conversion of Cutkosky (2019), that connects
the regret of online learning algorithms with convergence guarantees of optimization methods. This
naturally leads to the definition xt = 1

At

∑t
i=1 aivi =

at
At
vt+

At−1

At
xt−1 for all t ≥ 1 in Algorithm 2.

We are also able to show that at each iteration, the theory allows for making use of a point yt−1

with lower function value than the previous xt−1, in place of using xt−1, and we show that this
does not hurt the convergence guarantee, so it allows for heuristics like performing line search over
the segment xt−1 and vt, or other future heuristics that may be built on top of this algorithm. The
definition of vt comes from the optimistic online learning algorithmic schemes.

In a similar fashion to the one in (1), using said lower bound we define a primal-dual gap that we
denote GOP

t for both variants of the algorithm, cf. Appendix C.2. We provide guarantees on this
primal-dual gap by the regret of the optimistic procedure, gradient Lipschitzness of the function,
along with the loss weighting and compactness of the domain.

We use an optimistic FTRL algorithm (Algorithm 2) or an optimistic MD algorithm (Algorithm 2)
with constant step size, designed to work for subdifferentiable losses. Interesting, while it is well-
known that for constant step size and unconstrained problems, FTRL and OMD have the same
updates, we note the more general property that in the constrained setting, FTRL is an instance of
OMD with subdifferentiable regularizers for a precise choice of subgradients, cf. Remark C.5.

Algorithm 2 Optimistic Frank-Wolfe algorithms
Input: Convex subdifferentiable regularizer ψ such that argminx{⟨w, x⟩ + ψ(x)} exists for all

w ∈ Rd. A convex function f , differentiable and L-smooth with respect to a norm ∥ · ∥ in
dom(ψ). Initial point x0 = v0 ∈ dom(ψ).

1: A0 ← 0; a0 ← 0; g0 = 0; g1 = ∇f(x0)
2: for t← 1 to T do
3: at ← 2t; At ← At−1 + at =

∑t
i=1 ai = t(t+ 1)

4: ⋄ Choose either 5 or 6 for the entire run, for ϕt∈∂ψ(vt−1):
5: vt ← point in argminv∈Rd{

∑t−1
i=1 ai⟨∇f(xi), v⟩+ at⟨gt, v⟩+ ψ(v)}

6: vt ←point in argminv∈Rd{at−1⟨∇f(xt−1)−gt−1, v⟩+at⟨gt, v⟩+Dψ(v, vt−1;ϕt)}
7: yt−1 ← point such that f(yt−1) ≤ f(xt−1)

8: xt ← At−1

At
yt−1 +

at
At
vt ⋄ that is, xt ← t−1

t+1yt−1 +
2
t+1vt

9: gt+1 ← ∇f(xt)
10: end for
11: return xT .

One subtlety of GOP
t is that it is not directly computable as is, since the direction we apply the LMO

depends on the hint that we choose, that is, a prediction for the next gradient. We can compute
a simple close bound of it at every iteration, or if we want to compute it after certain number of
iterations, we can do it by performing an extra LMO, cf. Remark C.6. The guarantee we obtain on
the algorithm is the following.
Theorem 3.1. [↓] Let X be compact and convex, and let ψ : X → R be a closed convex function,
subdifferentiable in X . Let f be convex and L-smooth in the set X of diameter D with respect to a
norm ∥ · ∥. The iterates xt of Algorithm 2 satisfy:

f(xt)− f(x∗) ≤ GOP
t ≤ ψ(x∗)− ψ(x1)

t(t+ 1)
+

4LD2

t+ 1
,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for the variant in Line 5. For the variant in Line 6 we obtain the same except that ψ(x∗)− ψ(x1) is
substituted by Dψ(x

∗, x0;ϕ0), where ϕ0 ∈ ∂ψ(x0).

We note that the term involving ψ is just a consequence of our choice of step sizes, which we used for
simplicity. It is possible to keep the O(LD

2

t+1 ) rate and have an arbitrarily fast polinomial-on-t decay
on the term involving ψ by making a different choice of step sizes, see Appendix C.2.

4 PRIMAL-DUAL SHORT STEPS

A key step of the analysis in most Frank-Wolfe algorithms for smooth problems, such as in Section 2,
consists of using the smoothness inequality in order to guarantee some descent that compensates other
per-iteration errors that appear. Several step-size rules have been devised, that may change depending
on the specific setting. However, three families of step sizes stand out in almost every setting, which
correspond to the ones we discussed in Section 2: (A) open-loop step-sizes, that only depend on the
iteration count, (B) short steps, that minimize the upper bound given by the last computed gradient
∇f(xt) and the smoothness inequality with respect to some norm, along the segment in between the
current point xt and the computed Frank-Wolfe vertex vt ∈ argmaxv∈X {⟨∇f(xt), v⟩}, and (C) line
search in the aforementioned segment to maximize primal progress.

In the sequel, we devise a new class of step sizes, which are a generalization of (B). The idea of (B) is
to greedily maximize the guaranteed primal progress along the segment in between xt and vt, where
we know we are feasible. The key idea of our new step-size rule consists of taking the primal-dual
gap (1) that is defined for the analyses with the structure of (3), and choosing the step size in order to
maximize the guaranteed progress in terms of this primal-dual gap.

We also show that our primal-dual gap bound at iteration t is convex with respect to the step size,
which implies that one can efficiently do a line search to maximize the primal-dual progress. In
order to show the flexibility of this paradigm, we also generalize these ideas to the gradient descent
algorithm.

4.1 PRIMAL-DUAL SHORT STEPS FOR FW ALGORITHMS

Let us consider first the case of FW and HB-FW. In this section, we denote Gt, and xt and vt the
respective primal-dual gaps, and iterates. From the analyses in Appendix B, cf. (8) or (11), we have
the following

AtGt −At−1Gt−1 ≤
La2t
2At
∥vt − xt∥2,

and defining γt
def
= at/At, dividing the above by At on both sides, and rearranging gives

Gt ≤ (1− γt)Gt−1 + γ2t
L

2
∥vt − xt∥2. (4)

The right-hand side is minimized for the choice

γt = min

{
1,

Gt−1

L∥vt − xt∥2
}
, (5)

which is what we refer to as the primal-dual short step for these two algorithms, and focuses on
maximizing guaranteed progress of the primal-dual gap, as discussed above. We show that this step-
size is sound in the sense that we still keep the optimal convergence guarantees of other approaches.
We also show that we can perform a line search over the primal-dual gap bound obtained before using
the smoothness inequality in the analyses.

Proposition 4.1. [↓] Let f be convex and differentiable. The FW and HB-FW algorithms satisfy

Gt ≤ (1− γ)Gt−1 − γ⟨∇f(xt), vt − xt⟩ − f(xt) + f((1− γ)xt + γvt), (6)

for all γ ∈ [0, 1], t > 1 and the RHS is convex on γ. If further f is L-smooth w.r.t. a norm ∥ · ∥, and
D

def
= maxx,y∈X ∥x− y∥, then using (5) or line search on the RHS of (6), we obtain: Gt ≤ 4LD2

t+2 .
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The convergence above for the line search is derived from the one for the primal-dual short step, since
the right hand side of (5) upper bounds the one of (6).

We note that, naturally, if we define the gap as Gt
def
= f(xt+1)− f(x∗), which is the primal gap, then

analyzing the algorithm with the strategy in (3), yields that the primal-dual short steps become regular
short steps. In that case, even though we do not know the value f(x∗) in the gap definition, the step
can still be defined without this knowledge, cf. Remark D.1.

4.2 PRIMAL-DUAL SHORT STEPS FOR GRADIENT DESCENT

We now extend our primal-dual short steps to gradient descent (GD) whose updates are given by
xt+1 ← xt − at∇f(xt). We use the Euclidean norm in this section for the problem minx∈Rd f(x),
where f is convex and L-smooth. One possible analysis of GD relies on defining a primal-dual
gap similarly to the one in Appendix B.2, and then show AtGt ≤ At−1Gt−1 for at = 1/L and
A1G1 = 1

2∥x1 − x∗∥22, for an initial point x1 and a minimizer x∗. We provide a sketch of the steps
that we take and leave the details to Appendix D.1. The lower bound on f(x∗) that we use is

Atf(x
∗) ≥

t∑

i=1

aif(xi) +

t∑

i=1

ai⟨∇f(xi), xt+1 − xi⟩+
1

2
∥xt+1 − x1∥22 −D2 def

= AtLt,

where D is an upper bound on the initial distance to a minimizer ∥x∗ − x1∥2. Defining the gap as
Gt = f(xt+1)− Lt, we arrive to

Gt ≤
At−1

At
Gt−1 + ∥∇f(xt)∥22

(
−atAt−1

At
+
a2tL

2
− a2t

2At

)
,

for t > 1 and a similar expression for t = 1. Recall that At
def
=
∑t
i=1 at. So at this stage, one can

optimize at in order to minimize the right hand side, by solving a simple cubic equation, which is
what we term the primal-dual short steps for GD. We show that the optimal value satisfies at ≥ 1

2L ,
which ultimately yields to a convergence rate no slower than Gt ≤ LD2

t , as we formalize in the
following. We also show, as above, that we can perform a line search for minimizing a better bound
on the primal-dual gap, yielding no worse convergence rates. Recall that f(xt+1)− f(x∗)≤Gt.
Proposition 4.2. [↓] Let f be convex and differentiable. The primal-dual gap of GD is bounded by
(26) which is convex on the step at. If further f is L-smooth with respect to ∥ · ∥2, GD using the
primal-dual short step-size or line search on the aforementioned bound then the step size satisfies
at ≥ 1

2L and we have Gt ≤ LD2

t .

A notable difference between the line search on these primal-dual bounds in GD and FW algorithms is
that convexity was shown in Proposition 4.1 to hold with respect to the parameter γ which corresponds
to at

At
whereas for GD in Proposition 4.2, the convexity is shown to hold for the parameter at.

5 EXPERIMENTS

Here we provide experiments demonstrating the good performance of the optimistic variant. All
experiments were performed in Julia based on the FrankWolfe.jl package run on a MacBook Pro
with an Apple M1 chip with Julia 1.11.1. The code will be made publicly available upon publication.
In our experiments we compare the optimistic FW variant (with OFTRL) with the heavy ball variant,
and the vanilla FW algorithm. For the FW variant, apart from the agnostic step size rule γt

def
= 2

t+2
we also consider the adaptive line search (indicated by adaptive in the plots) from (Pokutta, 2024),
a numerically improved variant of (Pedregosa et al., 2020), which is the default line search in the
FrankWolfe.jl package. As shown in (Guélat & Marcotte, 1986), line search is subject to a
lower bound that does not hold for, e.g., open-loop step-sizes and in particular the heavy ball variant
and the optimistic variants. In fact, there are cases where the line search variant is slower than the
vanilla variant as asymptotically shown in (Bach, 2021) and later in (Wirth et al., 2023; 2024) for the
non-asymptotic case; we observe a similar behavior in our experiments as they satisfy the conditions
of (Wirth et al., 2023; 2024); see also (Kerdreux et al., 2021).

Our numerical experiments are over various polytopes P , so that in particular ψ(x) def
= IP (x) is the

indicator function of the respective polytope. In the following, we will use the dual gap the definition

7
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Figure 1.
fig:sq_optimistic_fw_oftrl_prob_simplex
Comparison over the probability simplex of dimension n = 1000 with objective f(x) = →x↑ x0→22, where x0 is a random

point outside the probability simplex. We can see that the optimistic variant converges faster than the other variants both in iterations and
time.

In our experiments we compare the optimistic FW variant
(with OFTRL) with the heavy ball variant, and the vanilla
FW algorithm. For the FW variant, apart from the agnos-
tic step size rule ωt

def
= 2

t+2 we also consider the adaptive
line search (indicated by adaptive in the plots) from
(Pokutta, 2024), a numerically improved variant of (Pe-
dregosa et al., 2020), which is the default line search in
the FrankWolfe.jl package and which we used for our
experiments. As shown in (Guélat & Marcotte, 1986) line
search is subject to a lower bound that does not hold for, e.g.,
open-loop step-sizes and in particular the heavy ball variant
and the optimistic variants. In fact, there are cases where
the line search variant is slower than the vanilla variant as
asymptotically shown in (Bach, 2021) and later in (Wirth
et al., 2023; 2024) for the non-asymptotic case; we observe
a similar behavior in our experiments as they satisfy the
conditions of (Wirth et al., 2023; 2024) (see also (Kerdreux
et al., 2021)).

Our numerical experiments are over various polytopes, so
that in particular ε is the indicator function of the respective
polytope. Let P be the polytope. In the following we will
use for the dual gap the definition of Gt

def
= f(xt) → Lt,

where the lower bound function is defined as

f(x→) ↑
t∑

i=0

ai

At
f(xi) +

t∑

i=0

ai

At
↓↔f(xi), x

→ → xi↗

↑
t∑

i=0

ai

At
f(xi) +

t∑

i=0

ai

At
↓↔f(xi), vi → xi↗ def

= Lt.

In the case of the heavy ball variant from Seciton B.2 we set
vi = vt, for all i ↘ t, and

vt ≃ arg min
v↑P

t∑

i=0

ai

At
f(xi) +

t∑

i=0

ai

At
↓↔f(xi), vt → xi↗.

Clearly this is a lower bound and in fact this is precisely
the heavy ball vertex that is computed in the heavy ball
algorithm. It is important to note that this lower bound and
the associated dual gap is valid for any algorithm as it is
simply a convex combination of liner lower bound functions
minimized over P . For comparability and due to its natural
form being valid for any algorithm, we use this gap also for
the optimistic variant.

In the case of the vanilla FW variant (either with open loop
step sizes or with line search) the vi in the expression above
are chosen to be the FW vertices, i.e.,

vi ≃ arg min
v↑P

f(xi) + ↓↔f(xi), v → xi↗,

8

Figure 1: Comparison over the probability simplex with objective f(x) = ∥x− x0∥22, where x0 is a
random point outside the probability simplex. The optimistic method converges faster in iterations
and time.

of Gt
def
= f(xt) − LFWt , as in (2). In the case of the heavy ball variant from Appendix B.1 we set

vi = vt, for all i ≤ t, and vt ∈ argminv∈P
∑t
i=0

ai
At
f(xi) +

∑t
i=0

ai
At
⟨∇f(xi), v − xi⟩, and we

refer to this lower bound as LHB
t if not clear from the context. Clearly this is a lower bound and in

fact this is precisely the heavy ball vertex that is computed in the heavy ball algorithm. It is important
to note that this lower bound and the associated dual gap is valid for any algorithm as it is simply a
convex combination of linear lower bound functions minimized over P . For comparability and due to
its natural form and being valid for any algorithm, we use this definition of the gap also for reporting
the results of the optimistic variant in our experiments.

In the case of the vanilla FW variant (either with open loop step sizes or with line search) the vi in the
expression above are chosen to be the FW vertices, i.e., vi ∈ argminv∈P f(xi) + ⟨∇f(xi), v − xi⟩,
minimizing each summand separately. This bound is thus separable in contrast to the heavy ball
one as we will discuss further below in Remark 5.1 and we can use f(x∗) ≥ max0≤i≤t f(xi) +
⟨∇f(xi), vi − xi⟩, as lower bound so that the gap becomes the running minimum of the FW gaps
across the iterations, which we refer to as LFW

t .

Remark 5.1 (Strength of lower bounds). Suppose that g(xt) denotes a generic gap function that
bounds the primal gap at xt, i.e., f(xt)− f(x∗) ≤ g(xt). We will choose the specific gap function
later depending on the context. Observe that the gap function immediately gives a lower bound for
f(x∗) simply by rewriting as f(x∗) ≥ f(xt) − g(xt). Then in line with the above if we make the
choice for the lower bound Lt as Atf(x∗) ≥

∑t
ℓ=0 aℓf(xℓ)−

∑t
ℓ=0 aℓg(xℓ) = AtLt, then in this

case, the lower bound Lt cannot be stronger than taking the best lower bound observed so far, since
f(x∗) ≥ maxℓ=0,...,t f(xℓ) − g(xℓ) ≥ 1

At

∑t
ℓ=0 aℓ(f(xℓ) − g(xℓ)), This is the case because the

lower bound is a convex combination of lower bound terms from individual iterations.

As mentioned, this is different, e.g., for the heavy ball lower bound function, which does not decompose
in individual iterations as the Frank-Wolfe vertex is computed for the cumulative function across
rounds. The reason why the primal-dual gap for HB-FW can be significantly better (as in: lower)
than the Frank-Wolfe gap is illustrated in the following example: The FW algorithm, commonly used
with polytopal constraints, sometimes suffers from the so-called zigzag problem (Wolfe, 1970; Guélat
& Marcotte, 1986) (see also Braun et al. (2022) for an in-depth discussion), that usually is due to
a minimizer being in the relative interior of a face while the points vt, being the result of an LMO,
are chosen as vertices of the polytope. In this scenario, it is possible that ∇f(xt) is aligned with the
direction vt − xt for all t, while a convex combination of gradients is close to being perpendicular to
the optimal face making the lower bound LHB

t be closer to the optimal value.

8
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Figure 2.
fig:non-sq_optimistic_fw_oftrl_k-sparse
Comparison over k-sparse polytope of dimension n = 100 and k = 10 with objective f(x) = →Ax↑ b→22, where A and b are

random. We can see that the optimistic variant converges faster than the other variants both in iterations and time.

minimizing each summand separately. This bound is sepa-
rable in contrast to the heavy ball one, so that Remark A.2
applies and we can use

f(x→) → max
0↑i↑t

f(xi) + ↑↓f(xi), vi ↔ xi↗,

as lower bound so that the gap becomes the running mini-
mum of the FW gaps across the iterations.

Throughout our experiments we see that the optimistic
variant significantly outperforms the heavyball variant, the
vanilla FW, and often (but not always) also the FW variant
with the adaptive line search strategy from (Pokutta, 2024).

We also run experiments for the primal-dual short step from
Section 4, however this variant did not perform well and
in fact is no better than the vanilla FW variant with line
search (see Figure 3 in Appendix H). The reason seems to
be that because the primal-dual gap measure is better, the
step size is actually smaller, leading to slower convergence;
this in fact is reminiscent of the lower bound in (Guélat &
Marcotte, 1986) and not completely surprising.

Finally, we also tested whether it is simply that the heavy
ball lower bound is stronger than the vanilla FW lower
bound, however this is not the case (see Figure 4 in Ap-
pendix H). In fact the heavy ball lower bound applied to the
vanilla FW variant is weaker that the normal FW gap in our
tests. This strongly suggests that it is really the trajectory of
the optimistic variant that is better.

In the plots we show the primal value and the dual gap vs.
the number of iterations and time. As our variants compute
one gradient per iteration, the number of iterations is equal
to the number of gradient evaluations. We tested various
combinations of functions and feasible regions. For the
functions, we used (a) a simple quadratic function of the
form f(x) = ↘x↔x0↘2 with x0 being drawn randomly. This
is basically euclidean projection onto the feasible region. (b)
a more complex, ill-conditioned quadratic function of the
form f(x) = xT Qx + cT x, where the data was randomly
generated so that Q is positive definite and c is a random
vector. In terms of the feasible regions, we considered (i)
the probability simplex P = {x ≃ Rd |∑i xi = 1, x → 0},
(ii) and the more complex k-sparse polytope P which is the
convex hull of all 0/1-vectors with k non-zero entries. We
detail the instance parameters in the captions of the figures.

SP: run optimal ED example
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Figure 2: Comparison over k-sparse polytope with k = 10 with objective f(x) = ∥Ax − b∥22,
where A and b are random. The optimistic method converges faster in iterations and time.

In the plots we show the primal value and the dual gap vs. the number of iterations and time. Points
with excessively large values are not shown in the plots, leading to apparent different starting points.
We use log-log plots so that the slope is equal to the polynomial order of convergence. As our variants
compute one gradient per iteration, the number of iterations is equal to the number of gradient
evaluations. Throughout our experiments we see that the optimistic variant significantly outperforms
the heavyball variant, the vanilla FW, and often, although not always, also the FW variant with the
adaptive line search strategy from (Pokutta, 2024) in the order of convergence.

We also run experiments for the primal-dual short step from Section 4. However, we found that it
behaved similarly than the vanilla FW variant with standard short-steps (or line search), without
outperforming this already good heuristic; see Figure 3 in Appendix F. The reason seems to be that
because the primal-dual gap measure is better, the step size is actually often smaller, leading to no
faster convergence; this is reminiscent of the lower bound in (Guélat & Marcotte, 1986).

Finally, we also tested whether optimism is really the main source of improvement or whether most
of it is explained by using the heavy ball lower bound which shows to be stronger than the vanilla FW
lower bound. In fact, we show in Figure 4 in Appendix F, that indeed optimism is what is making the
algorithm be faster. In fact the heavy ball lower bound applied to the vanilla FW variant is weaker that
the normal FW gap in our tests. This strongly suggests that it is really the trajectory of the optimistic
variant that is better.

We tested various combinations of functions and feasible regions. For the functions, we used (a)
quadratic optimization consisting essentially on (b) ill-conditioned quadratic optimization and (c)
portfolio optimization problems, which are all widespread benchmarks for Frank-Wolfe algorithms
(Braun et al., 2022), see Appendix F. In terms of the feasible regions, we considered (i) the probability
simplex P = {x ∈ Rd |∑i xi = 1, x ≥ 0}, (ii) and the more complex k-sparse polytope P which
is the convex hull of all 0/1-vectors with k non-zero entries. We detail the instance parameters in the
captions of the figures.

In our experiments we report results for regression problems. The reason for this is to allow us to
build specific setups where the different convergence behaviors of FW variants are known to emerge.
We also performed preliminary experiments over portfolio optimization instances (here the objective
is the negative log-likelihood of the portfolio returns) and also Optimal Experiment Design instances
(Hendrych et al., 2024) (here the objective arises via matrix means) and found that the optimistic
variant also outperforms the other variants similarly.

The optimistic approach presents a good alternative for current Frank-Wolfe methods that is theoreti-
cally justified and enjoys faster convergence in practice.

9
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